

NOvA

(with focus on the mass hierarchy)

European Research Council

Established by the European Commission

Jeff Hartnell

University of Sussex

Solvay Workshop, Brussels 30th November 2017

Introduction

- NOvA experiment and physics goals
 - NuMI beam
 - NOvA detectors
- Mass hierarchy via MSW matter effect
- Nue and nuebar appearance probabilities
- Results:
 - Muon neutrino disappearance
 - NC analysis
 - Electron neutrino appearance
- Future sensitivity

NOvA Overview

- "Conventional" beam
- Two-detector experiment:
- Near detector
 - measure beam composition
 - energy spectrum
- Far detector
 - measure oscillations and search for new physics

810 km

Fermilab

The NOvA Collaboration

Argonne, Atlantico, Banaras Hindu University, Caltech, Cochin, Institute of Physics and Computer science of the Czech Academy of Sciences, Charles University, Cincinnati, Colorado State, Czech Technical University, Delhi, JINR, Fermilab, Goiás, IIT Guwahati, Harvard, IIT Hyderabad, U. Hyderabad, Indiana, Iowa State, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab, South Carolina, SD School of Mines, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, UCL,Virginia, Wichita State, William and Mary, Winona State

242 Collaborators49 institutions7 countries

Physics Goals

Results from 3 different oscillation analyses

- Disappearance of
 - v_{μ} CC events
 - clear suppression as a function of energy
 - 2016 analysis results
 PRL 118.151802

```
|\Delta m_{32}^2| \sin^2(2\theta_{23})
```


- Deficit of NC events?
 - suppression of NCs could be evidence of oscillations involving a sterile neutrino
 - Fit to 3+1model

$$\hfill new! \qquad \Delta m_{41}^2, \theta_{34}, \theta_{24}$$

Appearance of $v_e CC$ events

 $\theta_{13}, \theta_{23}, \delta_{CP},$ and Mass Hierarchy

- 2 GeV neutrinos enhances matter effects
- ±30% effect
- 2016 analysis results in PRL 118.231801.

JS University of Sussex

Medium Energy Tune

Jeff Hartnell, Solvay 2017

NOvA detectors

A NOvA cell

To APD

Extruded PVC cells filled with 11M liters of scintillator instrumented with λ-shifting fiber and APDs

Far Detector 14 kton 896 layers

32-pixel APD

Fiber pairs from 32 cells

	and the second second
חי	00 00
	 00 00
	 46.00
_	 00 00
5	 00 00
lls	
	 A 10 10 /

Near Detector

Far detector:14-kton, fine-grained,low-Z, highly-activetracking calorimeter \rightarrow 344,000 channels

Near detector: 0.3-kton version of the same → 20,000 channels

US University of Sussex

15.6 m

4 cm × 6 cm

→ Need a leap in precision on θ_{23} (and Δm_{32}^2)

 ν_e appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(\Delta m_{32}^{2}L/4E)$$

Daya Bay reactor experiment:
$$\sin^{2}(2\theta_{13}) = 0.084 \pm 0.005$$
 ...plus potentially
large CPv and
matter effect
modifications!

Starting with v_{μ}

How does the mass hierarchy come into play?

$\Delta m^2_{\,31}$ and $\Delta m^2_{\,32}\,differ$ by 3%

Small effect

JUNO's planned measurement involves this

Jeff Hartnell, Solvay 2017

Matter Effect & Mass Hierarchy

- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes asymmetry (fake CPv!)
 - via specifically CC coherent forward elastic scattering
 - different Feynman diagrams for $v_{\rm e}$ and $\overline{v_{\rm e}}$ interactions with electrons so different amplitudes

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$ plotted for a single neutrino energy and baseline

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

Measure these probabilities

(an example measurement of each shown)

Also: Both probabilities $\propto \sin^2 \theta_{23}$

- lf 🖲 🚎 non-maximal
- The measured probabilities then effect of octa he and Of a and ant, and

University

of Sussex

02/11/16

Effect of Increasing Energy

T2K

C University

of Sussex

NOvA

DUNE

Increasing Energy

[→ bigger matter effect and hence bigger fake CP violation]

Jeff Hartnell, Solvay 2017

The measurements

Event Types

ν_{μ} disappearance

- Identify contained ν_{μ} CC events in each detector
- Measure their energies
- Extract oscillation information from differences between the Far and Near energy spectra

v_{μ} Near Detector Data

v_{μ} Far Detector Data

v_{μ} Disappearance Result

Neutral Current Result

(NOvA's first 2017 dataset result, presented at NuFact Sep/17)

NC Far Detector Data & Results

	θ_{24}	θ_{34}	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
NOvA 2016	20.8°	31.2°	0.126	0.268
NOvA 2017	16.2°	29.8°	0.078	0.228
MINOS	7.3°	26.6°	0.016	0.20
SuperK	11.7°	25.1°	0.041	0.18
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.15

ν_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to **predict beam backgrounds** in the Far Detector
- Interpret any **Far Det. excess** over predicted backgrounds as v_e appearance

v_e Near Detector Data

- Select v_e CC interactions with 73% efficiency and 76% purity
- Use ND data to predict background in FD

of Sussex

- NC, CC, beam v_e each propagate differently
- constrain beam v_e using selected v_{μ} CC spectrum
- constrain v_{μ} CC using Michel Electron distribution

Jeff Hartnell, Solvay 2017

beam v_e up by 4%

NC up by 17%

 $\nu_{\!\scriptscriptstyle \rm L}$ CC up by 10%

Prediction

- Extrapolate each component in bins of energy and CVN output
- Expected event counts depend on oscillation parameters

Signal events (±5% systematic uncertainty):

NH, 3π/2,	IH, π/2,
28.2	11.2

Background by component (±10% systematic uncertainty):

Total BG	NC	Beam v _e	v_{μ} CC	v_{τ} CC	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5

v_e Far Detector Data

- Observe 33 events
 - background 8.2 ± 0.8

>8σ electron neutrino appearance signal

Joint $v_e + v_\mu$ Fit Contours

- Fit for hierarchy, $\boldsymbol{\delta}_{\mathrm{CP}}$, $\sin^2\theta_{23}$
 - Constrain $\sin^2(2\theta_{13})=0.085\pm0.05$
 - Constrain Δm^2 and $\sin^2\theta_{23}$ with NOvA disappearance results
- Global best fit Normal Hierarchy
 - $\delta_{CP} = 1.49\pi$ $\sin^2(\theta_{23}) = 0.40$
 - best fit IH-NH, $\Delta \chi^2$ =0.47
 - both octants & hierarchies allowed at 1σ
 - 3σ exclusion in IH, lower octant around $\delta_{\rm CP} = \pi/2$

Contours

Upper Octant

Lower

Conclusions

With 6.05x10²⁰ POT, NOvA finds:

- Muon neutrinos disappear
 - Maximal mixing excluded at 2.6σ
- Electron neutrinos appear
 - Data prefers NH at low significance
 - IH, lower octant, $\delta_{\rm CP}$ = $\pi/2$ region excluded at 3σ
- 50% more neutrino data being analysed
 - Neutral current events show no evidence of steriles
 - New v_e and v_μ results very soon
- Antineutrino run underway: results in summer 2018
- Stay tuned!

Backup slides

2024

2024

Year

S University of Sussex

Jeff Hartnell

$v_{\mu} \rightarrow v_{e}$ appearance probability

 $P_m^{3\nu \ man}(\nu_\mu \to \nu_e) \cong P_0 + P_{\sin\delta} + P_{\cos\delta} + P_3.$

Here

$$P_0 = \sin^2 \theta_{23} \, \frac{\sin^2 2\theta_{13}}{(A-1)^2} \, \sin^2[(A-1)\Delta]$$
$$P_3 = \alpha^2 \, \cos^2 \theta_{23} \, \frac{\sin^2 2\theta_{12}}{A^2} \, \sin^2(A\Delta) \,,$$

[PDG, 2014]

$$P_{\sin\delta} = -\alpha \frac{8 J_{CP}}{A(1-A)} (\sin\Delta) (\sin A\Delta) (\sin[(1-A)\Delta]) ,$$
$$P_{\cos\delta} = \alpha \frac{8 J_{CP} \cot\delta}{A(1-A)} (\cos\Delta) (\sin A\Delta) (\sin[(1-A)\Delta]) ,$$

where

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}, \ \ \Delta = \frac{\Delta m_{31}^2 L}{4E}, \ \ A = \sqrt{2} G_{\rm F} N_e^{man} \frac{2E}{\Delta m_{31}^2},$$

and $\cot \delta = J_{CP}^{-1} \operatorname{Re}(U_{\mu 3} U_{e3}^* U_{e2} U_{\mu 2}^*), \ J_{CP} = \operatorname{Im}(U_{\mu 3} U_{e3}^* U_{e2} U_{\mu 2}^*).$

University of Sussex

Matter Effect & Mass Hierarchy

- Coherent forward elastic scattering
- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes the asymmetry
 - via specifically **CC** coherent forward elastic scattering
 - different Feynman diagrams for v_e and \overline{v}_e interactions with electrons...

Different Feynman Diagrams

- Amplitude for electron neutrino interaction with an electron
- is not equal to...
- Amplitude for electron antineutrino interaction with an electron

Electron neutrinos and antineutrinos are affected differently by interactions with matter → fake CP violation

Why does the mass hierarchy affect oscillations involving electron (anti)neutrinos?

Matter effect (neutrino case)

- Matter effect raises (or lowers) the energy state of the mass eigenstates
 - strength depends on electron neutrino content of each mass eigenstate

Antineutrino case

- Matter effect raises (or lowers) the energy state of the mass eigenstates
 - strength depends on electron neutrino content of each mass eigenstate

Splittings and mixing angles affected

 Mixing angles in matter (θ_M) are modified by the mass squared splitting in matter (Δm²_M)
 – e.g. simple 2-flavour case:

 $\sin 2\vartheta_{\rm M} = \frac{\Delta m^2 \sin 2\vartheta}{\Delta m_{\rm M}^2}$

- Also see it in full 3-flavour equations (a few slides back)

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in sensitivity from CVN equivalent to 30% more exposure

We consider multiple possible sources of systematic error

Systematic	Effect on sin²(θ₂₃)	Effect on Δm ² 32
Normalisation	± 1.0%	± 0.2 %
Muon E scale	± 2.2%	± 0.8 %
Calibration	± 2.0 %	± 0.2 %
Relative E scale	± 2.0 %	± 0.9 %
Cross sections + FSI	± 0.6 %	± 0.5 %
Osc. parameters	± 0.7 %	± 1.5 %
Beam backgrounds	± 0.9 %	± 0.5 %
Scintillation model	± 0.7 %	± 0.1 %
All systematics	± 3.4 %	± 2.4 %
Stat. Uncertainty	± 4.1 %	± 3.5 %

In each case:

- The effect is propagated through the extrapolation
- We include those effects as pull terms in the fit
- The increase (in quadrature) of the parameter measurement error is recorded

v_{μ} Event Selection

- Goal: Isolate a pure sample of v_{μ} CC events less than 5GeV
 - Select events with long tracks
 - Suppress NC and cosmic backgrounds

4-variable kNN used to identify muons

track length

University

- dE/dx along track
- scattering along track
- track-only plane fraction
- ND data matches simulation well for muon variables

NOvA Preliminary

20

- FD Data

S University of Sussex

Jeff Hartnell, Solvay 2017

Goodness of fit

There is no significant pull in the oscillation fit from bins in the tail

Scattering in a Nuclear Environment

 Near detector hadronic energy distribution suggests unsimulated process between quasielastic and delta production **NOvA** Preliminary

Jeff Hartnell, Solvay 2017

Scattering in a Nuclear Environment

- Enable GENIE empirical Meson Exchange Current Model
- Reweight to match NOvA excess as a function of 3momentum transfer
- 50% systematic uncertainty on MEC component
- Reduces largest systematics
 - hadronic energy scale
 - QE cross section modeling
- Reduce single non-resonant pion production by 50% (P.A. Rodrigues et al, arXiv:1601.01888.)

MEC model by S. Dytman, inspired by J. W. Lightbody, J. S. O'Connell, Computers in Physics 2 (1988) 57. University