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Anomaly Introduction

What’s it about in 3 steps:

Where is the anomaly?

Antineutrino’s from β− decay of reactor fission fragments

What goes wrong?

Measured # ν̄e < predicted from β decay

How should we interpret this?

Prediction error (mean, σ) or sterile neutrino’s, something else

When new physics lurks, look out for quirks!
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Generalized weak Hamiltonian

Active participation of QED, QCD & WI → Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: radiative

corrections

2. QCD adds extra terms in weak vertex: induced currents
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Generalized weak Hamiltonian

Active participation of QED, QCD & WI → Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: radiative

corrections

2. QCD adds extra terms in weak vertex: induced currents

Relevant to this talk:

Vµ(q
2) → i〈ūp|gV γµ −

κp − κn
2M

σµνq
ν |un〉

‘Weak magnetism’
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Analytical beta spectrum shape

Recently accomplished: Fully analytical description (hydra)

N(W )dW =
G 2
VV

2
ud

2π3
F0(Z ,W ) L0(Z ,W ) U(Z ,W ) RN(W ,W0,M)

× Q(Z ,W ,M) R(W ,W0) S(Z ,W ) X (Z ,W ) r(Z ,W )

× C (Z ,W ) DC (Z ,W , β2) DFS(Z ,W , β2)

× pW (W0 −W )2 dW
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Analytical beta spectrum shape

Recently accomplished: Fully analytical description (hydra)

N(W )dW =
G 2
VV

2
ud

2π3
F0(Z ,W ) L0(Z ,W ) U(Z ,W ) RN(W ,W0,M)

× Q(Z ,W ,M) R(W ,W0) S(Z, W) X(Z, W) r(Z, W)

× C(Z, W) DC (Z, W, β2) DFS(Z, W, β2)

× pW (W0 −W )2 dW

Main corrections and improvements:

Atomic effects: Screening, exchange, atomic mismatch,

molecular effects

Nuclear effects: Spatial variation of wave functions, nuclear

structure & deformation

L. H. et al., Accepted for Rev. Mod. Phys.; arXiv: 1709.07530
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Extrapolation & Virtual branches

Typical procedure

1. Make grid for E0 in [2, 12] MeV

2. Every gridpoint E0,i , choose Z (E0,i )

3. Assume allowed shape, extrapolate average nuclear matrix

elements

4. Fit VB intensities to cumulative exp. spectrum

S(Ee) =
∑

i

ciS(Ee , Z̄ (E0,i ),E0,i )

5. Invert spectra using Eν = E0 − Ee
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Extrapolation & Virtual branches

Huber (conversion) method has many issues:

• Estimated average b/Ac from spherical mirrors, but highly

transition and deformation dependent

• Incorrectly estimates (αZ )n>1 effects, RNA(〈Z 〉n>1) 6=

〈RNA(ZN>1)〉!

• Fixed endpoints on grid

• 239Pu/235U is wrong

• Only allowed transitions (dominant 0+ ↔ 0− transitions)

• Quenching of gA is absent

• . . .

Predictions are dubious

An et al. (Daya Bay Collab.), PRL 118 (2017) 251801 & Hayes et al.,

arXiv:1707.07728
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Planned improvements

Central idea is more realistic uncertainty by assessing 3 main

sources of error

• Fission yields

• Proper (forbidden) spectral shapes

• Database extrapolation
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Planned improvements

Central idea is more realistic uncertainty by assessing 3 main

sources of error

• Fission yields

• Proper (forbidden) spectral shapes

• Database extrapolation

Collaboration with SCK-CEN for FY uncertainties, Jyvaskyla for

forbidden shape factors

17



Forbidden shape factors

Out of thousands of β− decays, many dominant are forbidden

Nuclide Jπgs → Jπgs GS β2
96Y 0− → 0+ 0.308
92Rb 0− → 0+ 0.240
100Nb 1+ → 0+ 0.412
135Te (7/2−) → 7/2+ -0.011
142Cs 0− → 0+ 0.141
140Cs 1− → 0+ 0.097
90Rb 0− → 0+ -0.105
95Sr 1/2+ → 1/2− 0.308
88Rb 2− → 0+ -0.073

Sonzogni et al., PRC 91 (2015) 011301(R)
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Clustering & Machine Learning

Nuclear β decays live in high-dimensional vector spaces

• Z , A

• Branching Ratio, E0, daughter excitation

• ∆J∆π (forbiddenness, unique)

• Initial and final deformation

• . . .
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Clustering & Machine Learning

Nuclear β decays live in high-dimensional vector spaces

• Z , A

• Branching Ratio, E0, daughter excitation

• ∆J∆π (forbiddenness, unique)

• Initial and final deformation

• . . .

Clusters in high dimensions are smeared in 2D projections
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Monte Carlo sampling

How to combine these results?

Instead of a single Z (E0) fit, use

Multidimensional Cluster Markov Chain Monte Carlo (MC3)
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Monte Carlo sampling

How to combine these results?

Instead of a single Z (E0) fit, use

Multidimensional Cluster Markov Chain Monte Carlo (MC3)

Build a distribution of anomaly → better uncertainty estimate
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Virtual β branch creation

Procedure:

For each E0 bin, for each cluster, build sampling distribution
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Virtual β branch creation

Procedure:

For each E0 bin, for each cluster, build sampling distribution

Bayes’ theorem:

P(θ|d) =
P(θ)P(d |θ)

P(d)

Prior (P(θ)): intrinsic probability for a β branch,

fission yield × BR

Likelihood (P(d |θ)): probability for point to belong to cluster

Continue with affine-invariant MCMC (shape-insensitive)
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Statistical validity

Results are very much preliminary, prepare salt

However, interesting trends appear to

• violate previously used statistical inference methods

• increase uncertainties significantly
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Statistical validity

Results are very much preliminary, prepare salt

However, interesting trends appear to

• violate previously used statistical inference methods

• increase uncertainties significantly

Still simplest case, haven’t even used cluster information, or

nuclear structure!
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Sensitivity to weak magnetism

Main allowed correction matrix element

b

Ac
=

1

gA

[

gM + gV
ML

MGT

]

From low-Z mirror systems, b/Ac ∼ 5, however

• For l ± 1/2 → l ± 1/2 transitions, b/Ac ∝ ±l
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Sensitivity to weak magnetism

Main allowed correction matrix element

b

Ac
=

1

gA

[

gM + gV
ML

MGT

]

From low-Z mirror systems, b/Ac ∼ 5, however

• For l ± 1/2 → l ± 1/2 transitions, b/Ac ∝ ±l

• l ± 1/2 → l ∓ 1/2 = constant, but deformation mixes

oscillator shells

• Strong gA quenching in heavy systems

Pretty easily see this going upward, subject of further study
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Current anomaly analysis has shaky foundation
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Summary

Current anomaly analysis has shaky foundation

Triple-pronged approach to better assess (mean, σ)

Nuclear β decays live in high-dimensional clusters, use of Machine

Learning to investigate
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