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Recent results from Daya Bay

• The Daya Bay Reactor Neutrino Experiment

• Recent oscillation results 

• Absolute reactor anti-neutrino flux, spectrum, and their 
changes due to fuel evolution

• Search for a light sterile neutrino
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|<e(t)|e(0)>|2  1 -

Neutrino Oscillations

- Each flavor state is a mixture of mass eigenstates
- Described by a neutrino mixing matrix

The Maki-Nakagawa-Sakata-Pontecorvo Matrix
- A freely propagating e will oscillate into other types
- In general, |<,(t)|e(0)>|2  0

U



The Daya Bay Reactor 
Neutrino Experiment
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F. P. An et al., Daya Bay Collaboration, NIM A 811, 133 (2016); 
PRD 95, 072006 (2017).



Reactor expt.: a clean way to measure  13

- Reactor: abundant, free, 
pure source of  e

- disappearance of  e at 
small L depends only on 13

Near-far configuration

Near detectors: e flux and 
spectrum for normalization

Far detectors: near oscillation 
maximum for best sensitivity

Relative measurement: 
cancel out most systematics L

12 only
13 only

12 and 13

ee
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Near/far Configuration

RFar

RNear
= 

LNear

LFar

2
NFar

NNear

Far

Near

Psurv(LFar)

Psurv(LNear)

e detection ratio 1/r2
number 
of protons 

detector 
efficiency

Survival prob. 
 sin2(213)

Parameter CHOOZ error Near/far configuration

Reaction cross section 1.9 % Cancelled out

Number of protons 0.8 % Reduced to ~ 0.03%

Detection efficiency 1.5 % Reduced to ~ 0.2%

Reactor power 0.7 % Reduced to ~ 0.04%

Energy released per 
fission

0.6 % Cancelled out 

CHOOZ Combined 2.7 % ~ 0.21%

Minimize systematic uncertainties:
reactor-related: cancelled by near-far ratio
detector-related: use ‘identical’ detectors, careful calibration
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Daya Bay (China)

~40 km
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Daya Bay Experiment

- Top five most powerful 
nuclear plants  (17.4 GWth) 

→ large number of e (3x1021/s)

- Adjacent mountains shield 
cosmic rays
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Daya Bay Near Site (Hall 1)

~365 m from Daya Bay

Overburden: 93 m

Far Site (Hall 3)

~1537 m from Ling Ao

~1909  m from Daya Bay

Overburden: 324 m

Ling Ao Near Site (Hall 2)

~481 m from Ling Ao

~529  m from Ling Ao II

Overburden: 100 m
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Daya Bay detectors

5m

8 functionally identical anti-neutrino 
detectors (AD) to suppress systematic 
uncertainties Calibration units

Top and bottom reflectors: more light, 
more uniform detector response 

192 8” PMTs

RPC : muon veto
Water pool: muon veto + shielding 
from environmental radiations 
(2.5m water)



Interior of an AD
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Anti-neutrino detection

Powerful background rejection! 

E  Te+ + Tn + (mn - mp) + me+  Te+ + 1.8 MeV 

Prompt Signal

  visible photons 
in liq. scintillator

e detected via inverse beta-decay (IBD):

Delayed Signal

nH

nGd

e  p  e+ + n (prompt signal)

 + p  D +  (2.2 MeV)   

 + Gd  Gd*

 Gd + ’s (8 MeV)

~180s

~30s

for  0.1% Gd

(delayed signal)



42 Institutes, ~ 203 collaborators from China, USA, Hong 
Kong, Taiwan, Chile, Czech Republic and Russia 

The Daya Bay Collaboration
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AD Installation - Near Hall
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AD Installation - Far Hall

14



Background
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Background Near Far Uncertainty Method Improvement

Accidentals 1.4% 2.3% ~1% Statistically calculated from 
uncorrelated singles

Extend to larger data 
set

9Li/8He 0.4% 0.4% ~44% Measured with after-muon
events

Extend to larger data 
set

Fast 
neutrons

0.1% 0.1% ~13% Measured from RPC+OWS tagged 
muon events

Model independent 
measurement

AmC source 0.03% 0.2% ~45% MC benchmarked with single 
gamma and strong AmC source

Two sources are taken
out in Far site ADs

-n 0.01% 0.1% ~50% Calculated from measured 
radioactivity

Reassess systematics

Fast neutron background 
with uncertainty

IBD candidates



Operation history
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Latest result!

6AD: 217 days (12/11 – 07/12)
8AD: 1013 days (10/12 - 07/15)
>2.5M IBD events 
>300k IBD in far hall

nH



Signal and background summary
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F. P. An et al., Daya Bay Collaboration, PRD 95, 072006 (2017).



Recent Oscillation 
Results
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F. P. An et al., Daya Bay Collaboration, PRD 95, 072006 (2017).
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Oscillation results

5 independent analysis methods, all consistent with each other and 
validated by simulated data generated with various sin2213 and m2

ee



Oscillation results

• Far/near relative measurement

• Oscillation parameters measured 
with rate

• Both consistent with neutrino 
oscillation interpretation
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F. P. An et al., Daya Bay Collaboration, PRD 95, 072006 (2017).

+ spectral distortion



Oscillation results

m2
32 = (2.450.08)x10-3 eV2 (N.H.)

(-2.560.08)x10-3 eV2 (I.H.)   

- Most  precise measurement (< 4%) 
of sin2213 and |m2

ee|  

2/NDF = 232.6/263

 

2

13

2 3 2

sin 2 0.084 0.005

2.42 0.11 10 eVeem





 

   

sin2213 = 0.0841  0.0027(stat.)

 0.0019 (syst.) 

(2.50  0.06 (stat.) 

0.06 (syst.) )x10-3 eV2

N.H.Experiment value (10-3 eV2)

m2
32(10-3 eV2)

Experiment value

sin2213
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• Independent measurement, 
statistics, different systematics

• Longer capture time, lower 
delayed energy (2.2 MeV)  

high accidental background 

•  higher prompt energy cut 
(> 1.5 MeV) + prompt-to-delay 
distance cut (< 0.5 m) 

• nH:

• Combined nH + nGd: 

• 3rd world’s most precise 
measurement of 13 after Daya
Bay nGd and RENO

Independent θ13 measurement with nH
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Daya Bay Collaboration, PRD93, 072011 (2016).

sin2213 = 0.071  0.011

sin2213 = 0.082  0.004
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GUT models

Lepton Flavor models

Taken from C. 
Albright, arXiv: 
0905.0146

13 selects 
Flavor/GUT 
models

Daya Bay



Absolute reactor anti-neutrino 
flux and spectrum
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F. P. An et al., Daya Bay Collaboration, PRL 116, 061801 (2016); 
Chinese Physics C 41(1), 13002 (2017); PRL 118, 251801 (2017).



Reactor anti-neutrino flux
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4-AD  (near halls) measurement
Y= (1.53  0.03 )×10-18 cm2GW-1day-1

σf = (5.91  0.12)×10-43 cm2fission-1

Compared to flux model
Data/Prediction (Huber+Mueller)
0.946 ± 0.020

Data/Prediction (ILL+Vogel)
0.992 ± 0.021

Effective baseline (near sites)
Leff = 573m

Effective fission fractions Fi

235U 238U 239Pu 241Pu

0.561 0.076 0.307 0.056

Daya Bay’s reactor anti-neutrino 
flux measurement is consistent 
with previous short baseline expts.

Measured IBD events (background subtracted) in each 
detector are normalized to cm2/GW/day (Y) and cm2/fission (σf).

Global comparison of measurement and prediction (Huber+Mueller)

621 days data



Reactor anti-neutrino spectrum

- Absolute positron spectral shape is 
NOT consistent with the prediction. A 
bump is observed in 4-6 MeV (4.4 ). 
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- Extract a generic observable 
reactor anti-neutrino spectrum by 
removing the detector response



(

Reactor anti-neutrino flux evolution

Effective fission fraction for ith isotope changes in time as fuel evolves:

f(t) = i iFi(t) also evolves
IBD yield ith isotope

27

fi,r(t) (fission fraction for ith isotope 

in reactor r) and Wth,r(t) (thermal 

power) obtained from reactor data, 
validated with MC.
pr = survival probability
Lr = baseline
Er = average energy per fission 

PRL 118, 251801 (2017).



Reactor antineutrino flux and spectrum evolution

28

Best fit of f(t) = i iFi(t) to get i

Favors: overestimation of 235U yield

Sterile  only  same fractional 
flux deficit for all isotopes: 
(df/dF239)/<f> = theory
incompatible with data at 2.6

Slope differs from theory by 3.1

f(t) = i iFi(t) also evolves
IBD yield ith isotope

PRL 118, 251801 (2017).



Reactor antineutrino spectrum evolution
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- First observation of change in 
IBD spectrum with F239 at 5.1
- Shape ~ theory
- Demonstration of neutrino 
monitoring of reactors

Sj = observed IBD per fission 
in jth energy bin

PRL 118, 251801 (2017).



Search for a light sterile 
neutrino
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F. P. An et al., Daya Bay Collaboration, PRL 117, 151802 (2016); 
PRL 113, 141802 (2014).
Daya Bay and MINOS Collaborations, PRL 117, 151801 (2016).



Search for a light sterile neutrino

• Sterile neutrino: additional oscillation mode 14:

• 3 expt. halls  multiple baselines

– Relative measurement at EH1 (~350m), EH2 (~500m), EH3 (~1600m)

– Unique sensitivity at 10-4 eV2 < Δm2
41 < 0.1 eV2

• most stringent limit on sin2214 for 2x10-4 eV2 < Δm2
41 < 0.2 eV2
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Pee
4  Pee

3 – sin2214sin2(1.267m2
41L/E)

PRL 117, 151802 (2016).



Daya Bay and MINOS Collaborations, PRL 117, 151801 (2016).
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Search for a light sterile neutrino

- Constrain  → e  by
combining constraints on 
sin2214 from e

disappearance in Daya Bay 
and Bugey-3 with 
constraints on sin2224 from 
 disappearance in MINOS

- Set constraints over 6 orders 
of magnitude in m2

41.  
Strongest constraint to date.

- Exclude parameter space 
allowed by MiniBooNE and 
LSND for m2

41 < 0.8 eV2.

= sin224sin2214

PRL 117, 151801 (2016).



Summary

• Daya Bay 1230 days of data, > 2.5M IBD events
– Most precision measurement of                 : 3.9%

– Most precision measurement of            : 3.4%

– Oscillation results confirmed with independent nH
rate measurement (621 days)

• Reactor antineutrino flux and spectrum
– Flux : consistent with previous short baseline expts, 

but ~5% < theoretical prediction (1.7) 

– Spectrum: 4.4 deviation from prediction in [4, 6] 

MeV prompt energy

– Evolution observed. Favors overestimation of 235;                     
disfavors equal contribution from isotopes at 2.6

• Set new limit to light sterile neutrinos

• Will continue till 2020
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More to come …

• Will continue until 2020  2.5x data, > 6M neutrino events

• Precision measurement of oscillation parameters sin2213, m2
ee

• Precision measurement of spectral distortion: 

- neutrino decoherence

- sterile neutrino mixing 

- CPT violation

• Precision measurement of neutrino rate:

- sidereal modulation (CPT violation, …)

- supernova neutrinos

• Search for gravitational-wave neutrino sources

• Other analyses

34
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backup
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More searches

• Precision measurement of spectral distortion: 

- neutrino decoherence

- sterile neutrino mixing 

- CPT violation/NSI 

- mass-varying neutrinos

• Precision measurement of neutrino rate:

- sidereal modulation (CPT violation, …)

- supernova neutrinos

• High energy events:

- neutron-anti-neutron oscillation
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Detector energy response model

• Particle-dependent scintillator 
nonlinearity: modeled with 
Birks’ law and Cherenkov 
fraction 

• Charge-dependent electronics 
nonlinearity: modeled with 
MC and single channel FADC 
measurement

• Nominal model: fit to mono-
energetic gamma lines and 12B 
beta-decay spectrum

• Cross-validation model: fit to 
208Th, 212Bi, 214Bi beta-decay 
spectrum, Michel electron

• Uncertainty < 1% above 2 MeV
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Detector energy response model
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AD Calibration



Energy calibration

• PMT gain: Single electrons from 
photocathode

• Absolute energy scale:  AmC at AD 
center

• Time variation: 60Co at AD center
• Non-uniformity: 60Co at different 

positions
• Alternative calibration: spallation 

neutrons

41

• Relative energy scale uncertainty: 0.2%

• 68Ge, 60Co, AmC: detector center

• nGd from IBD and muon spallation: Gd-LS 
region

• α from polonium decay: Gd-LS vertex cut

• 40K, 208Tl, nH: 1m vertex cut



Anti-neutrino candidates selection

• Reject PMT flashers 

• Coincidence in energy and time with 
multiplicity = 2

- Energy:  0.7 MeV < Ep < 12.0 MeV,              

6.0 MeV < Ed < 12.0 MeV 

- Time: 1 μs < Δ tp-d < 200 μs

• Muon anticoincidence

- Water pool muon: reject 0.6 ms

- AD muon (>20 MeV): reject 1 ms

- AD shower muon (>2.5 GeV): reject 1 s 

nepe  IBD:

42
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Detector calibration

Relative energy scale uncertainty < 0.2%

Calibration using 68Ge 
(1.02MeV), 60Co (2.5MeV), 
241Am-13C (8MeV), LED, 
spallation neutrons



44

Energy non-linearity

Positron

Electron 

Gamma

- Measured  and e responses
- Derive e+ energy model from 

and e responses using 
simulation Uncertainty ~ 1% 
(correlated among detectors)
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Systematics

Detector efficiency

Uncorrelated uncertainties 
cross-checked by multiple 
detectors in the same hall

Correlated uncertainties 
cancelled out in relative 
measurement


