

A Solvay workshop in Brussels, November 29th - December 1st 2017

ULB, Campus Plaine - Solvay Room

The SOX experiment

Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1st 2017

Beyond the Standard model with Neutrinos

Neutrino masses call for physics beyond Standard model

Either right-handed neutrinos for Dirac mass term

or Majorana fields for Majorana mass term and possibly explain small mass through See-Saw

A few experimental results do not fit well with the standard 3 neutrino mixing ...

Beyond 3 neutrino mixing

Anomalies at small L/E may be **interpreted** as **mixing** between know states with **sterile** state(s)

LSND/MiniBOONE (appearance) Short BaseLine reactor anomaly ⁵¹Cr an ³⁷Ar sources in Gallium

same L/E ~ 1m/MeV points to eV mass scale ...

... although reactor anomaly strongly weakened by Daya Bay (arXiv 1704.01082)

Towards sterile neutrino oscillation measurements

Elements needed

a **reactor** (anti- v_e) or powerful **source** (v_e or anti- v_e) measuring interaction **rate vs distance** from source

Experimental signatures

deviation of 1/d² counting rate "disappearance"

direct observation of oscillation pattern "spatial waves"

Towards a source experiment

- Smaller size -> smaller Δm^2
- Smaller **distance**: few meters
- No source background: shielded
- No µ, cosmogenic bkg: underground
- Decay spectrum less complicated than reactor's

- Lower flux than reactor: 150 kCi max because of heat
- Live-time limited: source decays
- **Challenging**: making, authorisation, transportation

The SOX experiment

Measuring oscillation space waves in the Borexino detector ...

\dots tagging with Inverse β Decay \dots

... using a ¹⁴⁴Ce-Pr anti-v_e source

SOX history

Idea of v_e or anti- v_e source within Borexino dates back to the birth of the project (1991)

SOX Proposal European Research Council 320873 - February 2012, P.I. Marco Pallavicini

Original proposal: ⁵¹Cr v_e or ¹⁴⁴Ce anti-v_e source

Agreement between **CEA** and **INFN** and **Borexino** Collaboration in 2014: merging CELAND proposal with SOX

CeSOX using the ¹⁴⁴Ce source proposed and developed by CEA, based on another ERC project P.I. Thierry Lassere

The SOX anti-v_e source

¹⁴⁴**Pr** β -decay: Q-value ~ 3 MeV, τ ~ 17 minutes replenished by ¹⁴⁴**Ce** β -decay: $\tau \sim 285$ days

¹⁴⁴Ce extracted from spent nuclear fuel, activity up to 150 kCi (4.5 10¹⁵ Bq)

anti-ve from ¹⁴⁴Pr detected via Inverse Beta Decay in Borexino

Borexino and SOX

270 ton Liquid Scintillator

> 1000 ton Buffer Fluid

> External Water Tank

150 µm Nylon Vessels

2200 PMTs

SOX source under the floor

Anti-ve detection in Borexino

Anti-ve from ¹⁴⁴Pr source detected via Inverse Beta Decay in Borexino

IBD Threshold: 1.8 MeV Spatial resolution: ~12 cm at 2 MeV, comparable to source size

Anti- v_e detection capability demonstrated by geo-neutrino detection geo-v: ~5 ev/y in 300 t, distant reactors: ~10 ev/y in 300 t

SOX is **background free**: expected 10⁴ events in 1 year in 300 t

The signals in SOX (I)

Disappearance: depends on θ_s and (weakly) Δm^2 Sensitivity depends on source activity, FV determination

Spatial oscillation waves: independent measurement of θ_s and Δm² For Δm² ~1eV -> oscillation λ ~ 15 cm smaller than detector size (~7 m), larger than position resolution plus source size (~15 cm) Distribution of anti-v_e count vs distance -> oscillation pattern No dependence on source activity, FV determination

The signals in SOX (II)

The making of SOX

Making of **100-150 kCi**¹⁴⁴Ce source manufactured by PA **Mayak** (Russia) expected delivery at **LNGS** in April 2018

Challenges

source production authorisation (Russia, France, Italy) transportation

Synergy between CEA, INFN, and Borexino Collaboration

production and transportation (CEA, INFN) site preparation at LNGS (INFN, Borexino) calorimeter for source activity measurement (CEA, INFN, TUM) detector, trigger, calibration, simulation and analysis tools (Borexino)

The making of the ¹⁴⁴Ce source

capsule with copper disks: heat transfer, internal free space for pressure control

Calcination

The CeANG

γ-rays must be **shielded** capsule inserted into 19 cm thick **tungsten shield**

thermal power ~1 kW, internal T ~500 C, external T ~85 C pressure from free O₂ in 4CeO₂ -> 2Pr₂O₃ + O₂ careful design of capsule and shielding, safety certifications

 10^{2}

CeANG transportation

a pleasant three week trip across Europe

SOX at LNGS

Calorimetric measurement

beta decays heat up source and shield source activity measured by heat released in shield absorbed by water flow resolution better than 1%, obtained by decreasing heat losses

> disappearance (rate only) measurement sensitivity depends on accuracy on activity

and **knowledge** of ¹⁴⁴**Ce** decay **spectrum** ongoing **dedicated setups** measuring it

(and as well Borexino detector response, known well)

Expected sensitivity

Conclusions and Outlook

- Source experiment as alternative to reactor experiment to test sterile neutrinos at m ~1 eV
- SOX ¹⁴⁴Ce source (100-150 kCi), to detect disappearance and spatial oscillation waves in Borexino
- Sensitivity for discovery of sterile neutrino of rejection of SBL anomaly

But ...

- SOX under attack by massive campaign of misinformation in Italy
- Please support SOX signing the petition on change.org
- <u>https://www.change.org/p/luciano-d-alfonso-</u> <u>continuazione-dell-esperimento-sox-nei-laboratori-infn-</u> <u>del-gran-sasso-abruzzo?</u> <u>utm_medium=email&utm_source=petition_signer_receipt</u> <u>&utm_campaign=triggered&share_context=signature_rece</u> <u>ipt&recruiter=838701645</u>

backup slides

Solar v detection in Borexino

Elastic scattering on **electrons** (v_x-e⁻)

Emission of scintillation light

Scintillation light detected by **PMTs**

SOX calorimeters

