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Nature of Compact Objects
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Nature of compact objects imprinted in gravitational waveform.




Multipolar structure of isolated bodies
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(See e.g. Poisson & Will, “Gravity”)

❖ Structure of a self-gravitating object can be characterised 
through its multipole moments.
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Relativistic multipole moments

❖ Stationary, asymptotically flat spacetimes  can be described through a set of 
relativistic mass multipole moments   and current multipole 
moments .
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❖ Axial symmetry   if  


❖ Axial symmetry and equatorial symmetry:

⟹ Mℓm = 0 , Sℓm = 0 m ≠ 0

  if  is odd     &       if  is even⟹ Mℓ0 = 0 ℓ Sℓ0 = 0 ℓ

(K. Thorne ’80)



Testing the spacetime symmetries

❖ Multipolar structure can be much richer for exotic objects and in beyond GR 
theories, with solutions breaking the symmetries of the Kerr metric. [fuzzballs: 
Bianchi+’20;Bena+ ’20-’21; boson stars: Herdeiro+ ‘20] [See P. Pani’s talk]

Credits: G. Raposo

❖ For a Kerr black hole (which is axisymmetric and equatorially symmetric) 
non-vanishing multipole moments only depend on its mass  and angular 
momentum :
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Breaking equatorial symmetry, e.g. 



Breaking axial symmetry, e.g.  

S20 ≠ 0 , M30 ≠ 0

M2±1 ≠ 0 , M2±2 ≠ 0



Deviations away from Kerr mass quadrupole 
 measurable with 

accuracies  with EMRIs.

Δ𝒬 ≡ (M20 − MKerr

20 )/M3

∼ 10−4 − 10−2

❖ Multipolar structure of orbiting bodies imprinted in gravitational waves 
emitted by a binary system.


❖ Inspiral of a small body with mass  orbiting an axisymmetric and 
equatorially symmetric massive body ( ): 


μ
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Ryan’s theorem

(Barack and Cutler, ’06; Babak et al, 2017)
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From: S. Babak et al, PRD95, 103012 (2017) 



Constraining equatorial symmetry with LISA

❖ EMRI around non-equatorially symmetric but axisymmetric 
body with  and  using extension of analytic kludge 
model by Barack&Cutler [arXiv:0310125 ;arXiv:0612029].

S20 ≠ 0 M30 ≠ 0

K. Fransen & D.R. Mayerson, arXiv:2201.03569

ΔM̃1 = Δ(S2 /M3) = Δ(M3/M4)

M = 106M⊙

SNR = 30

LISA could constrain 
deviations away from 

equatorial symmetry with 
accuracies .𝒪(1%)

Credits: Raposo+

arXiv:1812.07615

See: K. Fransen & D.R. Mayerson,

 arXiv:2201.03569 for details



See: Nick Loutrel, RB, Andrea Maselli & Paolo Pani, arXiv: 2203.01725


Let’s be even more generic and consider the inspiral of 
two deformed bodies with no symmetries.

Inspiral of two bodies with no symmetries



Conservative orbital dynamics
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❖ Consider a two-body system with masses , each one endowed with a 
generic mass quadrupole moment .


❖ Conservative orbital dynamics can be described through a Lagrangian 
formulation. To leading-order in the mass quadrupole contribution:
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Equations of motion & Osculating orbits

❖  Keplerian motion which in the “body” 
frame ( ) can be parameterised by a set of five 
constants of motion: .


❖ Treat the problem as Keplerian orbits perturbed by a 
small additional “force” .


❖ Method of osculating orbits -  At each time  take 
orbit to be Keplerian with orbital elements :
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❖ Schematically equations of motion can be written as:

(See e.g. Poisson & Will, “Gravity”)

 - semi-latus rectum

 - Newtonian eccentricity

 - inclination

 - longitude of pericenter

 - longitude of ascending node

p
e
ι
ω
Ω⃗r(t) = ⃗rKepler (t, μa(t)) , ⃗v (t) = ⃗v Kepler (t, μa(t))



Secular variation
❖  introduces a new timescale in the problem, longer than orbital timescale, 

which lead to secular changes in the orbital elements: use multiscale analysis. 
⃗fquad

(See e.g. Poisson & Will, “Gravity”)



Secular variation

⟨ dp
dt ⟩ = ⟨de

dt ⟩ = 0

(See e.g. Poisson & Will, “Gravity”)

No secular changes for  

(but have periodic corrections on orbital timescale)

p, e

❖  introduces a new timescale in the problem, longer than orbital timescale, 
which lead to secular changes in the orbital elements: use multiscale analysis. 

⃗fquad
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Nutation due to non-axisymmetric 
mass quadrupole moment

Secular variation

Q21 = QR
+1 + iQI

+1 , Q22 = QR
+1 + iQI

+1 , Q0 ≡ Q20



Secular variation
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Pericenter advance due to mass quadrupole moment



Secular mass quadrupole effects
❖ Closed-form analytic solutions for particular cases ( ), whereas for generic 

mass quadrupole equations can be solved perturbatively assuming  
Q21 = 0

Q21 ≪ Q20
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Radiation reaction
❖ Gravitational-wave emission becomes important on radiation reaction timescale 

.


❖ Focusing on circular orbits, leading-order radiation reaction effects can be 
computed using: 


tRR ≫ tprec. ≫ torb

Quadrupole formula
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❖ Use hierarchy of timescales  , to average over 
precession timescale (solved analytically for ), e.g. :
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Gravitational waveform
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❖ Leading-order corrections to metric perturbation can be computed using 
quadrupole approximation:


❖ Time-domain waveform found by projecting  into TT gauge:
hij

❖ Frequency-domain waveform waveform obtained applying “SPA” and “SUA”: 
[A. Klein, N. Cornish & N. Yunes, PRD90, 124029 (2014)]

n = ± 2
|m | ≤ 2



Amplitude modulations

𝒜0( f )

𝒜−1( f )

𝒜+1( f )

𝒜−2( f )

𝒜+2( f )

Amplitudes  generically 
modulated due to precession of 

orbital angular momentum.

𝒜m( f )

M f

Black: 

Red: 

Blue:  

ϵ1 = ϵ2 = 0
ϵ1 = ϵ2 = 10−3

ϵ1 = 10−3 , ϵ2 = 10−1
ι ≠ 0



Gravitational-wave phase
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Total phase difference between 
axisymmetric case and generically 

deformed bodies can be .≳ 0.1

Detectability?


Mapping to realistic 
exotic compact objects?



Conclusions

❖ To do: Fisher Matrix analysis for different systems and detectors


❖ Degeneracies? Degeneracy between non-axisymmetric and 
axisymmetric pieces?


❖ EMRIs/IMRIs in LISA are in general best systems to constrain 
multipole moments, but accurate modelling requires going 
beyond PN and kludge models…

Detecting non-axisymmetry or  non-equatorial symmetry through 
measurements of the multipole moments of a compact object would be 

smoking-gun from departures from Kerr geometry.

Thank you!


