Primordial black holes

in the era of precision cosmology

Yacine Ali-Haïmoud (NYU) Solvay workshop, April 4th 2019

Why PBHs are interesting

-if they are O(I) of the dark matter

No need for a new fundamental particle?

- Dark matter is made of... (collapsed) radiation!
- Maybe a mixture of both?

-if they are a fraction f < 1 of dark matter

A plea regarding constraints to PBHs

- 95%-confidence exclusion requires confidence beyond reasonable doubt
- Constraints should qualify the level of confidence in the constraint plot
- Recent revival implies more scrutiny, hence large changes to old constraints.
- However, let's not dismiss constraints without spending at least as much effort as the authors...

LIGO: Ali-Haïmoud, Kovetz & Kamionkowski 2017

CMB limits to accreting PBHs

Pregalactic black hole accretion and the thermal history of the Universe Mon. Not. R. astr. Soc. (1981) 194, 639–668 B. J. Carr Astronomy Department, University of California, Berkeley,

for a wide range of values for the mass and density of the holes, the matter would be completely re-ionized. In some circumstances, the Universe would never pass through a neutral phase at

Ricotti, Ostriker & Mack 2008: first modern and detailed analysis of effect on CMB

Basic setup

I- Accretion rate

Accretion, rate M

I- Accretion rate

- Assume spherical accretion. Disk accretion typically more luminous
 => conservative hypothesis (confirmed by Poulin et al. 2017)
- Assume steady-state accretion (modified Bondi-Hoyle). Self-consistent for $M \leq 3 \times 10^4 M_{sun}$.
- Account for Compton drag and (finite) Compton cooling by CMB photons
- Account for relative velocity v_{rel} of PBHs wrt baryons: Gaussian random field with supersonic rms ~30km/s at recombination (Tseliakhovich & Hirata 2010)

I- Accretion rate

$$\dot{M}_{\rm Bondi} \sim \rho_b M^2 / c_s^3$$

2-Radiative efficiency

Luminosity ner BH L=ETIC2

2-Radiative efficiency

- At minimum, ionized gas near the horizon emits free-free radiation
- Estimate the density and temperature profile around accreting BH using modified Shapiro (1973) model
- Consider two limiting cases: collisional ionization and (local) photoionization by BH radiation (neither is self-consistent)

2-Radiative efficiency

Luminosity per BH

3. Energy deposition efficiency

Solve an approximate Boltzmann equation, assuming energy mostly deposited through Compton scattering of ~0.1-10 MeV photons

4. CMB spectral distortions?

Planck
$$I_v - B_v \sim \int_{J} dt \frac{dE}{dt dV}$$

bunction $B_v \sim \int_{J} dt \frac{dE}{dt dV}$

$$\mu \le 6 \times 10^{-8} f_{\text{pbh}} \max_{z \ge 5 \times 10^4} \left(\frac{\langle L \rangle}{L_{\text{Edd}}} \right)$$
$$y \approx 0.02 f_{\text{pbh}} \frac{\langle L \rangle}{L_{\text{Edd}}} \Big|_{z \approx 200}$$

Undetectable by FIRAS (μ , y ~10⁻⁵), or even by PIXIE (μ , y ~10⁻⁸)

•

5-CMB anisotropies

- . free electrons
- neutral hydrogen
- · free motons

Z Last-scattering "surface": where most photons scatter for the last time

Planck sensitive to ~ 0.1 % changes to this function

Qualitatively similar to increased reionization optical depth

- Very simplified treatment but bounds ought to be conservative
- Concrete suggestions on what might loosen the bounds are welcome. e.g. ideal fluid assumption may not hold (A Gruzinov)
- Most likely, can be made tighter:
 - * accretion geometry and efficiency: disk vs spherical? e.g. Poulin et al. 2017
 - * if f < 1, other-dark matter halo may enhance accretion rate (Ricotti, Ostriker & Mack 2008)
 - * non-gaussianity from inhomogeneous recombination (in prep, with PhD student Trey Jensen)

Did LIGO detect dark matter?

Does LIGO rule out PBH dark matter?

Basic idea: Nakamura et al. 1997, Sasaki et al. 2016 (cf Teruaki Suyama's talk)

Additions in paper with Kovetz & Kamionkowski:

- more accurate description of probability distribution of a, e at binary formation (cf. Raidal et al. 2018 for even more accurate description)
- analytically checked whether PBH binaries get significantly torqued by first non-linear structures (cf Kavanagh et al. 2019 for numerical check of effect of particle-dark matter halo).

Do binaries that form at $z \sim 10^4 - 10^5$ evolve only through GW radiation until the present time?

dynamical time

$$\sigma^2(M_h; \mathrm{eq}) \approx \sigma_{\mathrm{eq}}^2 + \frac{f^2}{\langle N \rangle} = \sigma_{\mathrm{eq}}^2 + f \frac{M}{M_h}$$

$$s_{\rm coll}(M_h) \approx \left(\sigma_{\rm eq}^2 + fM/M_h\right)^{-1/2}$$

 $\rho_h \approx 200 \ \overline{\rho}_m(s_{\text{coll}})$

$$v_h^2 \approx 2 \left(\frac{4\pi\rho_h}{3}M_h^2\right)^{1/3}$$

$$t_h \approx \sqrt{\frac{3}{4\pi\rho_h}}.$$

We assume that most of the mass lies in haloes currently collapsing.

Estimated analytically and found to be negligible:

- Torques by the smooth halo tidal field
- Distant encounters with other PBHs
- Close encounters with other PBHs
- Dynamical friction by dark matter particles with m << M

Numerical checks needed

 $M_{\rm pbh}/M_{\odot}$

Structure formation in APBH cosmology

with Derek Inman (in preparation)

- Use N-body code CUBEP³M (Merz et al. 2004, Harnois-Déraps et al. 2012, Emberson et al. 2016)
- fraction f_{pbh} in PBHs and (I- f_{pbh}) made of low-mass collisionless particles "PDM"
- PDM given adiabatic initial conditions consistent with (extrapolated) Planck
- PP force for r < 3 grid cells
- softening: 1/10 grid cell (unphysical for PBHs)
 - box size: L = 45 kpc
 - PDM: $2x256^3$ "particles", with mass 0.09 (1-f_{pbh}) M_{sun}
 - PBH mass: $30 M_{sun}$. $N_{pbh} = 10^5 f_{pbh}$

snapshots at z = 99, slice width = 3 kpc

snapshots at z = 99, slice width = 3 kpc

snapshots at z = 99, slice width = 3 kpc

Sanity checks

vival

erally, impact on current bounds t stars (cf Kashlinsky) reichzation, 21 cm?