

# **The Bright Side of Black Holes**: dark matter, primordial black holes and the cosmic infrared background

## A. Kashlinsky (GSFC/SSAI and Euclid)

In collaboration with R. Arendt, M. Ashby, F. Atrio-Barandela, N. Cappelluti, G. Fazio, A. Finoguenov, A. Ferrara, G. Hasinger, K. Helgason, Y. Li, J. Mather, H. Moseley. M. Ricotti and others.

A. Kashlinsky

Brussels

Apr 2019

#### *Why/what CIB and 1<sup>st</sup> stars and BHs?*



- Galaxies are now found out to  $z \sim 6$
- Star formation increases rapidly between z=0 and ~1
  Systems are metal rich early on
- Colours show 'normal' stellar populations
- Typical mass ~0.3-1 M<sub>•</sub>
- First stars era:
- What were they? (Stars/Black holes?)
- When did they form?
- How long has their era lasted?
- Can be detected perhaps through their unique imprint in
  - cosmic infrared background (CIB)
- **LOOK FOR THESE OBJECTS IN CIB**

## Diffuse background from Pop 3 and BHs (Kashlinsky et al 2004)

If first objects were massive stars or BHs radiating at the Eddington limit they would CIB as follows:

$$\int M n(M) dM = \Omega_{\text{baryon}} 3H_0^2 / 8\pi G f_* \qquad f_* \text{ fraction in Pop 3}$$

$$\frac{dF}{dt} = \frac{\int Ln(M)dM}{4\pi d_L^2} \frac{dV}{dt}(1+z)$$

 $dV = 4 \ \pi \ cd_L^2(1+z)^{-1} \ dt \ ; \quad L \approx L_{edd} \propto M \quad ; \quad t_L = \epsilon \ Mc^2/L << t(z=20)$ 



Emissions are cut at  $\lambda > 0.1$  (1+z) µm, or ~ 1µm for z~10

## Mean CIB is difficult to probe because of foregrounds but Zodi and Galactic Cirrus are smooth!



Mean squared flux  $\delta F_{\lambda}^2 = q^2 P_{\lambda}(q)/(2\pi)$ , power  $P = \langle |FFT_{Flux}|^2 \rangle$ , scales via  $q(rad^{-1}) = \ell$  (multipole)

*I.* Shot noise component to power from sources occasionally entering the beam  $\delta F/F \sim 1/N_{beam}^{\frac{1}{2}}$  $P_{SN} = \int S^2(m) dN/dm dm \sim S F_{CIB} \sim n S^2$ . *Units:*  $[P_{SN}] = nJy nW/m^2/sr$  (or  $nW^2/m^4/sr$ )

*II. Clustering component* reflects clustering of the emitters, their epochs and duration of their era.

## CIB fluctuations at 3-8 µm

### from deep Spitzer images (cryogenic + warm era)

A. Kashlinsky, R. Arendt, J. Mather & H. Moseley

(Nature, 2005, 438, 45; ApJL, 2007, 654, L1; 654, L5; 666, L1 – KAMM1-4)

R. Arendt, A. Kashlinsky, H. Moseley & J. Mather (2010, ApJS, 186,10 – AKMM)

A. Kashlinsky et al. (2012, ApJ, 753, 63)

## Results briefly:

- Source-subtracted IRAC images contain significant CIB fluctuations at 3.6 to 8µm.
- These fluctuations come from populations with significant clustering component but only low levels of the shot-noise component.
- There are no correlations between source-subtracted IRAC maps and HST/ACS source catalog maps (< 0.9  $\mu$ m).
- These imply that the CIB fluctuations originate in populations in either 1) 1st 0.5 Gyr or z>6-7 (t<0.5 Gyr), or 2) very faint more local populations not yet observed.
- If at high z, these populations have projected number density of up to a few arcsec<sup>-2</sup> and are within the confusion noise of the present-day instruments.

#### • But so far there is no direct info on the epochs of these populations

### Comparison of self-calibration w standard image assembly



(Median across the array) From Arendt et al (2010)

A. Kashlinsky

#### From Kashlinsky et al (2012)

Averaged over fields. Signal, inc the 3.6x4.5  $\mu$ m cross-power, is measured to ~ 1°



- Measurement now extends to ~ 1deg for 7+ regions
- Shaded region is contribution of remiaining ordinary galaxies (low/high faint end of luminosity function)
- CIB fluctuations continue to diverge to more than 10 X of ordinary galaxies.
- Blue line corresponds to "toy-model" of LCDM populations at z>10
- Fits are reasonable by high-z populations coinciding with first stars epochs

### Estimating contribution from remaining known galaxies per

Helgason, Ricotti, Kashlinsky (HRK12)

## Probing the redshift cone



## Luminosity Functions

## From HRK12 – currently updated to 340+ LF surveys

| Arnouts et al. (2005)      1500Å      0.2-1.2      1039      NUV<24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Wyder et al. (2005) NUV, FUV 0.055 896,1124 $m_{UV} < 20$ GALEX/2dF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Oesch et al. (2010) 1500Å $0.5-2.5$ 284-403 $\leq 26$ HST ERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Oesch et al. (2012) 1500Å $\sim 8$ 70 $H \leq 27.5$ CANDLES/HUDF09/ERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Reddy et al. (2008) 1700Å 1.9-3.4 $\sim$ 15.000 $\mathcal{R}$ <25.5 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Yoshida et al. (2006) 1500Å ~4,5 3808,539 <26-27 Subaru Deep Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| McLure et al. (2009) 1500Å $\sim 5,6$ $\sim 1500$ $z' \leq 26$ SXDS/UKIDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Ouchi et al. (2009) 1500Å 7 22 $\lesssim 26$ SDF/GOODS-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Bouwens et al. (2007) $1600 \text{\AA}, 1350 \text{\AA} \sim 4,5,6  4671,1416,627  \leq 29  \text{HUDF/GOODS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Bouwens et al. (2011) $1600 \text{\AA}, 1750 \text{\AA}$ $\sim 7, 8$ $73, 59$ $\lesssim 26-29.4$ HUDF09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Gabasch et al. (2004) $u'g'$ 0.45-5 5558 $I < 26.8$ FORS Deep Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Baldry et al. (2005) $0.1u$ <0.3 43223 u<20.5 SDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Faber et al. (2007) B 0.2-1.2 $\sim$ 34000 $R \lesssim 24$ DEEP2/COMBO-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Norberg et al. (2002) $b_j$ <0.2 110500 <19.45 2dFGRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Blanton et al. (2003b) $0.1 ugriz$ 0.1 147986 <16.5-18.3 SDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Montero-Dorta & Prada (2009) $0.1 ugriz \lesssim 0.2 947053 < 17-19$ SDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Loveday et al. (2012) $0.1 ugriz 0.002-0.5 8647-12860 r < 19.8$ GAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Ilbert et al. (2005) UBVRI 0.05-2.0 11034 $I < 24$ VIMOS-VLT Deep Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 + 1 +    |
| Gabasch et al. (2006) $i'z'r'$ 0.45-3.8 5558 $I < 26.8$ FDF $\phi(L)dL = \phi''$ (exp (-1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $L^{dL}$ . |
| Marchesini et al. (2007) BVR 2.0-3.5 989 $K_s \lesssim 25$ MUSYC/FIRES/GOODS/EIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Marchesini et al. (2012) $V$ 0.4-4.0 19403 $H < 27.8, K < 25.6$ <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Hill et al. (2010) <i>ugriz</i> 0.0033-0.1 2437-3267 <18-21 MGC/UKIDSS/SDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>   |
| <i>YJHK</i> 1589-1798 <17.5-18 0 Model K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |
| Dahlen et al. (2005) UBR 0.1-2 18381 $R < 24.5$ GOODS-HST/CTIO/ESO Scheef er fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ··· ·      |
| $J = 0.1-1 = 2768 = K_s < 23.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          |
| Jones et al. (2006) $b_j r_f$ <0.2 138226 $b_j r_f < 15.6, 16.8$ 6dFGS/2MASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          |
| JHK JHK <14.7 /SuperCOSMOS $\widehat{c}$ -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Bell et al. (2003) $ugriz < 0.1$ 22679 $r < 17.5$ SDSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1          |
| $K$ 6282 $K < 15.5$ 2MASS $\circ$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          |
| Kashikawa et al. (2003) $BK'$ 0.6-3.5 439 $K' < 24$ Subaru Deep Survey $D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _          |
| Stefanon & Marchesini (2011) JH 1.5-3.5 3496 $K_s < 22.7-25.5$ MUSYC/FIRES/FIREWORKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Pozzetti et al. (2003) $JK_s$ 0.2-1.3 489 $K_s < 20$ K20 Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |
| Feulner et al. (2003) $JK'$ 0.1-0.6 500 $K' < 19.4-20.9$ MUNICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -          |
| Eke et al. (2005) $JK_s$ 0.01-0.12 16922,15664 $JK_s \gtrsim 15.5$ 2dFGRS/2MASS $-6 = 0.0081\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 -        |
| Code et al. (2001) $JK_s$ 0.005-0.2 7081,5683 $JK_s \gtrsim 15.5$ 2dFGRS/2MASS $M = 500000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6          |
| Since $t = 1.00000$ K 0.01-0.3 40111 K < 17.9, r < 17.6 URIDS-LAS/SDSS $\alpha = -1.17 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3          |
| Saracco et al. (2000) $R_s$ 0.001-4 265 $R_s < 24.9$ HDS/FILES $N = 12.25$ $N = 12.25$ $N = 12.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          |
| $\begin{array}{ccccc} \text{Roccane et al. (2001)} & \text{R}_{s} & 0.005 - 0.05 & 4192 & \text{R}_{20} < 15.55 & 2005 / 0.12 / 0.20 & 0.005 - 0.05 & 4192 & 0.005 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & $ |            |
| Huang et al. (2003) A $0.001-0.57$ 1050 A $< 15$ 207/AAO $-24$ $-22$ $-20$ $-16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Arributs et al. (2007) R $0.2-2$ 21200 $m_{3.6mic} < 21.5$ SWIRE/VVDS $M_{0.1i} = 5\log_{10}h$<br>/UKIDSS/CFHTLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Cirasuolo et al. (2010) $K$ 0.2-4 $\sim$ 50000 $K < 23$ UKIDSS/SXDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Babbedge et al. (2006) $L_{3.6\mu m} M_{4.5\mu m}$ 0.01-0.6 34281 <20.2 SWIRE/INT WFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Dai et al. (2009) $L_{3.6\mu m} M_{4.5\mu m}$ 0.01-0.6 4905,5847 $LM < 19, I < 20.4$ IRAC-SS/AGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |

A. Kashlinsky

## **Reconstructing CIB from observed counts**



#### COMPARISON of MEASUREMENTS by remaining shot noise (depth)



 $P_{SN}$  shown in nJy nW/m<sup>2</sup>/sr

A. Kashlinsky

## Cross-correlating CIB with CXB (Cappelluti et al 2013, 2017)

- Have constructed unresolved CXB maps using several Msec deep Chandra and Spitzer data
- There exists highly statistically significant crosspower (>5-sigma)
- **CXB-CIB** coherence is  $C = |P_{X-IR}|^2 / P_X / P_{IR} \gtrsim 0.15$
- Indicates at least  $\sqrt{C}$ ~ 35% of the CIB sources are correlated with accreting sources (BHs), proportion far higher than in the present-day populations.



#### **CIB-CXB** cross-power/fluctuations

Kashlinsky Α.

### Observational motivation established with Spitzer, AKARI + Chandra data:



 Spitzer and AKARI measurements uncovered source-subtracted CIB fluctuations significantly in excess of those by remaining known gals. Power consistent with high-z LCDM

 There exists CXB-CIB crosspower in Spitzer+ Chandra data exceeding at >5σ significance the cross-power from known sources and indicating high BH proportion (>1:5) among the CIB sources.

Two current models successfully explain the measurements: 1) direct-collapse-BHs (DCBHs, Yue et al 2013) and 2) primordial LIGO-type BHs making up dark matter (Kashlinsky 2016).

A. Kashlinsky

#### CIB at 2-5 micron: established key properties

- Two components: shot-noise at small scales and clustering component
- Shot noise is from remaining galaxies, but clustering component indicates new pops
- Large-scale component cannot be accounted for by remaining known galaxies
- SED consistent with  $\lambda^{-3}$  from hot Rayleigh-Jeans sources
- Angular spectrum to 1 deg consistent with high-z LCDM-distributed population
- Fluctuations are coherent with unresolved soft-X band (0.5-1keV) CXB indicating at least ~25-40% of sources are accreting BHs
- The clustering component does yet appear to start decreasing as the shot noise is lowered from 7.8 hr/pix to > 21 hr/pix exposures
- No coherence between CIB and unresolved CXB at harder (>1 Kev) X-bands
- The measured coherence cannot be explained by remaining known populations
- Diffuse maps do *not* correlate with either removed sources or extended mask

#### Summary of current CIB measurements: 2-5 micron (Spitzer and AKARI)



The integrated ("quasi-bolometric") excess CIB flux fluctuation from data, w  $\sqrt{P_{\lambda}} \propto \lambda^{-3}$ :

$$\delta F_{2-5\,\mu\mathrm{m}}(5') = \int_{AKARI}^{\mathrm{IRAC}} \left(\frac{q^2 P_{\lambda}}{2\pi}\right)^{1/2} \frac{d\lambda}{\lambda}$$
$$= \delta F_{4.5\,\mu\mathrm{m}}(5') \left(\frac{(4.5/2.4)^{\alpha} - 1}{\alpha}\right)$$
$$\simeq 0.09 \text{ nW m}^{-2} \text{ sr}^{-1}$$

The sources producing these CIB fluctuations should have contributed

 $F_{CIB}(2-5\mu m) \sim 1 \ nW/m^2/sr$ 

A. Kashlinsky

#### Can this CIB be produced by high-z sources?

(Kashlinsky et al 2015, ApJ, 804, 99)

- The net CIB fluctuation integrated between 2 and 5  $\mu$ m is  $\delta F_{2-5\mu m} = 0.1 \ nW/m^2/sr$
- The net "bolometric" flux produced by sources at high  $z_{eff}$  emitting radiation at efficiency  $\epsilon$ :

$$F_{\text{tot}} \simeq \frac{\epsilon f}{z_{\text{eff}}} \frac{c}{4\pi} \rho_{\text{bar}} c^2 \simeq 9.1 \times 10^5 \frac{\epsilon f}{z_{\text{eff}}} \frac{\Omega_{\text{bar}} h^2}{0.0227} \text{ nW m}^{-2} \text{ sr}^{-1}$$

• If P3 then  $\epsilon \sim 0.007$ , if P2 then  $\epsilon \sim 0.0007$ , if BH then one can reach  $\epsilon \sim 0.2$ 

BH emissions:

• Hence to produce the measured  $\delta F_{2-5\mu m} \sim 0.1 \ nW/m^2/sr$  with relative amplitude  $\Delta_{5'} \sim 0.1 \ around 5'$  one needs:

Pop 3 (massive \*s): 
$$f_{P3} \sim 1.4 \times 10^{-3} \left( \frac{z_3}{10} \right) \left( \frac{\Delta_{5'}}{0.1} \right)^{-1}$$

**Pop 2 (normal IMF \*s):** 
$$f_{P2} \gtrsim 0.01 \left(\frac{\epsilon}{7 \times 10^{-4}}\right) \left(\frac{z_3}{10}\right) \left(\frac{\Delta_{5'}}{0.1}\right)^{-1}.$$

$$f_{\rm BH} \sim 5 \times 10^{-5} \left(\frac{z_3}{10}\right) \left(\frac{\Delta_{5'}}{0.1}\right)^{-1} \left(\frac{\epsilon}{0.2}\right)^{-1}$$

These small "reasonable" fractions possibly appear "unreasonable" in "standard" model

A. Kashlinsky

Brussels

Apr 2019

## Formation of 1<sup>st</sup> \*s and CIB in "standard" DM cosmology



## **PBHs and extra fluctuation power**

- If LIGO BHs were PBHs making up DM, there number density would be  $n_{\rm PBH} = \frac{1}{M_{\rm PBH}} \Omega_{\rm CDM} \frac{3H_0^2}{8\pi G} \simeq 10^9 \left(\frac{M_{\rm PBH}}{30M_{\odot}}\right)^{-1} \left(\frac{\Omega_{\rm CDM}h^2}{0.1}\right) \rm Mpc^{-3}.$
- They would then be present before  $z_{eq}$  and contribute
- Poissonian isocurvature component with the extra power at z:

$$P_{\rm PBH}(z) = \frac{9}{4} (1 + z_{\rm eq})^2 n_{\rm PBH}^{-1} [g(z)]^{-2} \simeq 2 \times 10^{-2} \left(\frac{M_{\rm PBH}}{30M_{\odot}}\right) \left(\frac{\Omega_{\rm CDM} h^2}{0.13}\right) \left(\frac{1}{g^2(z)}\right) \,\mathrm{Mpc}^3$$

 $2\pi/k$  (h<sup>-1</sup>Mpc) 10.0 0.1 1.0 100.0 1000.0 10 This extra power will z = 20dominate the small 10<sup>°</sup> (h<sup>-3</sup>Mpc<sup>3</sup>) scales responsible for collapse of 1<sup>st</sup> minihaloes  $(\underline{x})^{10^{-2}}$ where 1<sup>st</sup> sources form!~ The resultant CIB 10 for  $M_{PBH} = 30M_{\odot}$ would change dramatically. 10<sup>10</sup> 10<sup>12</sup> 10<sup>16</sup> 10<sup>18</sup> 10<sup>20</sup> 10<sup>8</sup> 10<sup>14</sup>  $10^{22}$  $M(2\pi/k)$  $(M_{\odot})$ A. Kashlinsky Brussels Apr 2019

## 1<sup>st</sup> minihalo collapse in presence of DM PBHs



#### FUTURE: Euclid (2013-2031)

#### **LIBRAE** – Looking at Infrared Background Radiation Anisotropies w Euclid

A NASA-selected cosmic infrared background (CIB) study to measure what were the 1<sup>st</sup> sources - Pop 3 stars, BHs, and in what proportions, when and how many - as well as probe IGM and BAOs at 10<z<20.



- Launch in ~2022 for 6-yr mission at L2
- One visible band VIS around 0.6 mic
- Three NIR bands from 1 to 2 micron
- Instantaneous FOV ~  $0.5 \text{ deg}^2$
- Wide survey ~ 35-45% of sky to AB~26
- Deep survey covers 40 deg<sup>2</sup> to AB~28
- LIBRAE was selected to complement the main goal of measuring Dark Energy evolution w weak lensing and BAO
- The project will measure all-sky CIB fluctuations with sub-percent stat accuracy
- Measure cross-power with all-sky CXB (eROSITA+) and CMB (S4+) maps
- Determine the epochs (Lyman break) of the populations
- Determine the SED of these (new) populations
  - A. Kashlinsky



## LIBRAE – Looking at Infrared Background Radiation Anisotropies with Euclid

https://www.euclid.caltech.edu/page/Kashlinsky%20Team

#### The planned science:



PI – A. Kashlinsky

A. Kashlinsky



#### LIBRAE: probing source-subtracted CIB and its Lyman break



- Because fluctuation in visible bands are significant compared to the remaining sourcesubtracted CIB one needs to remove sources to AB  $\gtrsim$  25 to probe reliably any Lyman-break in the CIB fluctuation.
- Euclid will remove sources in VIS deep enough to comfortably probe the Lyman break of the source-subtracted CIB fluctuation.
- The large area will enable probing it with sub-percent statistical accuracy

٠



Remaining known gals (Wide/Deep Surveys)

A. Kashlinsky



#### LIBRAE + eROSITA/Athena: probing 1<sup>st</sup> BHs



10 2π/q (arcmin) • CXB fluctuation implied by new pops consistent w high-z origin

• Its amplitude is such that the CXB due to these sources is hard to probe directly



 eROSITA and Athena in conjunction with Euclid will be able to probe this CXB signal w. high fidelity between 1' and ~2°

Kashlinsky et al. 2019, ApJ(Letters), 871, L6



A. Kashlinsky

 $1.2 \times 10$ 

es/bi 6.0×10<sup>-1</sup> (b)<sup>802</sup> 4.0×10<sup>-1</sup> 2.0×10<sup>-1</sup>

1.0×10 sc/cm<sub>2</sub>/sec/cm 8.0×10

100

## Summary of LIBRAE prospects for PBH-DM

#### Where we are now

#### Where LIBRAE can be



A. Kashlinsky

# Summary

- Current measurements with Spitzer established CIB fluctuations well in excess of those from known galaxies.
- There appears a high coherence between unresolved CIB & CXB implying a high fraction of the sources in black holes.
- The extra power implied by the source-subtracted CIB may be indicative of the PBH-DM collusion, which is further supported by the CIB-CXB coherence.
- There are now preparations for LIBRAE@Euclid which will resolve this CIB signal with <1% accuracy and identify the nature and epochs of the sources producing it.
- eROSITA/Athena will be critical for CIB-CXB probe w LIBRAE.

## • STAY TUNED!