Self-Interacting Dark Matter

Hai-Bo Yu University of California, Riverside

SOLVAY WORKSHOP: THE DARK SIDE OF BLACK HOLES

April 3, 2019

Dark Matter

Dark matter candidates: WIMPs, Axions, Black Holes...

CDM on Large Scales

works very well, >O(100) kpc

CDM Predictions on Small Scales

• CDM on galactic scales <O(10-100) kpc

Aquarius Project, Springel+(2008)

Universal Density Profile

Aquarius Project, Springel+ (2008)

 ρ_s $r/r_{s}(1 + r/r_{s})^{2}$

the Navarro-Frenk-White (NFW) profile (1996) ρ_s and r_s are strong correlated "the concentration-mass relation"

Specify a halo with one parameter+scatter

CDM-only cosmological simulations

Testing Ground

Core vs Cusp Problem

DM-dominated systems (dwarfs, LSBs)

The Diversity Problem

The Diversity Problem

All galaxies have the same observed Vmax!

See also: McGaugh (PRL, 2005); Kuzio de Naray, Martinez, Bullock, Kaplinghat (ApJ, 2010)

A Big Challenge

Reproduced from the data compiled in Oman, Navarro+(2015)

The diversity is expected if dark matter has strong self-interactions

Self-Interacting Dark Matter

Self-interactions thermalize the inner halo

Spergel & Steinhardt (PRL, 2000)

Review: Tulin & HBY (Physics Reports 2017)

Modelling SIDM Halos

with Kaplinghat, Keeley, Linden (PRL 2014) with Kaplinghat, Linden (RPL 2015) with Kaplinghat, Tulin (PRL 2016) with Kamada, Kaplinghat, Pace (PRL 2017)

Addressing the Diversity Problem

• DM self-interactions thermalize the inner halo

DM-dominated galaxies: Lower the central density and the circular velocity

Isothermal
$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_X/\sigma_0^2}$$
 distribution

High Surface Brightness Galaxies

• DM self-interactions tie DM together with baryons

Thermalization leads to higher DM density due to the baryonic influence

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_{\rm B}/\sigma_0^2}$$

NO cored SIDM profile if the baryonic profile $\sim 1/r^2$

with Kaplinghat, Keeley, Linden (PRL 2014)

- Intrinsic scatter in the halo concentration-mass relation
- Diverse baryon distributions
- SIDM thermalization ties DM and baryon distributions in the RIGHT way

with Kamada, Kaplinghat, Pace (PRL 2017) 30 galaxies $\sigma/m=3 \text{ cm}^2/g$

Tests with Controlled Simulations

CDM w/Strong Feedback vs SIDM

Hydro SIDM Simulations

With Robertson, Massey, Eke, Tulin+(MNRAS Letters, 2018)

- The SIDM distribution is sensitive to the final baryon distribution
- It is robust to formation history due to collisional thermalization

 $ho_0 e^{-\Phi_{\rm tot}/\sigma_0^2}$

Predicted in Kaplinghat, Keeley, Linden, Yu (PRL 2014)

A Much Larger Sample

See Appendix for detailed fits for all galaxies

with Ren, Kwa, Kaplinghat (2018)

The "worst" fit, χ^2 /d.o.f ~44

But, they are also well-organized

Radial Acceleration Relation

$$g_{
m tot} pprox \sqrt{g_{
m bar}g_{\dagger}}$$

when $g_{
m bar} < g_{\dagger}$

MOND, Milgrom's law (1983)

Reproduced, see McGaugh, Lelli, Schombert (PRL 2016)

135 galaxies "Uniformity"

Uniformity in SIDM

SIDM explains both the diversity and uniformity of galaxy rotation curves

SIDM vs MOND

- Both SIDM and MOND fits have the disk mass-to-light ratio peaked around 0.5M $_{\odot}/L_{\odot}$.
- In both cases, we did NOT impose $0.5M_{\odot}/L_{\odot}$ as a prior
- The SIDM fits are either comparable to or much better than the MOND fits. with Ren, Kwa, Kaplinghat (2018)

Properties of the Host Halos

with Ren, Kwa, Kaplinghat (2018)

 $(\rho_0, \sigma_0) \leftrightarrow (\rho_s, r_s) \leftrightarrow (V_{\max}, r_{\max})$

Gray: 20 band predicted in hierarchical structure formation Dutton & Maccio (2014)

 $r_{\rm max} = 27 \; {\rm kpc} (V_{\rm max}/100 \; {\rm km/s})^{1.\bar{4}}$

The origin of the acceleration scale:

$$a|_{r=0} = 2\pi V_{\max}^2 / (1.26r_{\max})$$
$$a|_{r=0} \approx 1.0 \times 10^{-10} \text{ m/s}^2 \left(\frac{V_{\max}}{240 \text{ km/s}}\right)^{0.6}$$

Not a constant

g+ is the average over the sample

SIDM from Dwarfs to Clusters

DM Models with a Light Mediator

Self-scattering kinematics determines SIDM mass

The nightmare scenario is not hopeless!

SIDM is Natural

Tulin & HBY (2017); data from Obloinsk+(2011)

Gravothermal Catastrophe

Dissipative DM self-interactions could seed up "gravothermal catastrophe"

Issues

With Essig, McDermott, Zhong (2018)

Dissipative DM Self-Interactions

• Dissipative DM self-interactions could seed up "gravothermal catastrophe"

• The presence of the density cores constrain the interaction strength

With Essig, McDermott, Zhong (2018)

- SIDM explains both the diversity and uniformity of galaxy rotation curves with only one more parameter (puzzled us for >20 years)
- Our results are robust to baryonic feedback/galaxy formation history due to collisional thermalization
- Novel signatures; "gravothermal catastrophe" (leading to the formation of black holes?)

Dark Matter "Colliders"

Dwarf galaxies

"B-factory" (v~30 km/s)

Observations on all scales

MW-size galaxies

"LEP" (v~200 km/s) Self-scattering kinematics Clusters

"LHC" (v~1000 km/s)

Measure particle physics parameters σ_X, m_X, m_{ϕ}

Thank You!