Calcium spiking as a mediator between metabolism and cell fate

- A life and death approach -

What is Life?

- Complex self-organization
- "order from disorder"
- Robust information conservation and replication
- … the coolest thing on the planet

What is Life?

- Complex self-organization
- "order from disorder"
- Robust information conservation and replication
- ... the coolest thing on the planet

Only abstract framework? What's about real (molecular) life?

 \rightarrow Disproportionating enzyms (DPE) use entropy for glycogen metabolism!

What is Life?

- Complex self-organization
- "order from disorder"
- Robust information conservation and replication
- ... the coolest thing on the planet

Only abstract framework? What's about real (molecular) life?

 \rightarrow Disproportionating enzyms (DPE) use entropy for glycogen metabolism!

Life: smart way to use energy for information processing

How Does (Multicellular) Life Work?

"Nothing in Biology Makes Sense Except in the Light of Evolution"

(Theodosius Dobzhansky 1973)

Evolution := mutation × selection \rightarrow heterogeneity × dynamics

"Nothing in Biology Makes Sense Except in the Light of *Cellular Heterogeneity Dynamics* "

Life := noise × regulation \rightarrow energy × information processing

Time

Challenge of Life: balance energy and information processing

ightarrow using energy **for gene-environment adaptation** away from equilibrium

The bright and dark side of Ca²⁺

Complex development of Parkinson's Disease

Genotype Parkin, PINK, DJ-1, α-syn., **LRRK2**, ...

> link to mitochondrial dysfunction

Environment/Lifestyle

Toxins accumulation, drug consume, food, exercise, ...

Physiological
 Phenotype
 → death of dopaminergic in substancia nigra

Clinical Phenotype tremor, rigidity, ...

Complex development of Parkinson's Disease

Genotype Parkin, PINK, DJ-1, α-syn., **LRRK2**, ...

→ link to mitochondrial dysfunction

Environment/Lifestyle

Toxins accumulation, drug consume, food, exercise, ...

mechanism in neurodegeneration

Statistical spiking characteristics

Average interspike interval T_{av} (s)

- linear relation between σ and mean \rightarrow evidence for stochastic process - condition (cell type & stimulation) specific slope

Probabilistic model

T_{stoch} described by:

- time-dependent Poisson process with rate Λ(t) = λ (1 − e^{-ξt})
 λ ⇒ nucleation rate
 - $\xi \Rightarrow$ recovery rate
- probability of a spike at time t:

Features of statistical moments

$$\mathcal{P}_{\xi}(t) = \lambda \left(\mathbf{1} - e^{-\xi t}
ight) \exp \left[- \int_{0}^{t} \lambda \left(\mathbf{1} - e^{-\xi t'}
ight) dt'
ight]$$

ISI consists of 2 parts ...

ξ=0.0015

600

Information content of the environment

Information gain:

$$\mathcal{K}(p_1,p_2)=k\int_0^\infty p_1(t)\log\frac{p_1(t)}{p_2(t)}dt$$

For pure *P*_{poi} & recovery *P*ξ Poisson

$$egin{array}{rcl} \mathcal{K}_{\xi} &=& k \left[\mathcal{H} \left(\lambda / \xi
ight) + rac{1}{\left(1 + \lambda / \xi
ight)} - 1
ight] \ &=& f \left(\lambda / \xi
ight) \end{array}$$

The σ -T_{av} slope $m = g(\lambda/\xi) = CV$ also only depends on λ/ξ \mathcal{K} **1.6** since P_{ξ} leads to first 2 moments: 1.4 HEK 1.2 $T_{\text{stoch}} = \frac{e^{\frac{\lambda}{\xi}} \left(\frac{\lambda}{\xi}\right)^{1-\frac{\lambda}{\xi}}}{\lambda} \left[\Gamma\left(\frac{\lambda}{\xi}\right) - \Gamma\left(\frac{\lambda}{\xi}, \frac{\lambda}{\xi}\right) \right]$ 0.8 0.6 **PLA** 0.4 $\left\langle \mathbf{T}^{2}\right\rangle = \frac{2e^{\frac{\lambda}{\xi}}}{\lambda^{2}} {}_{2}\mathbf{F}_{2}\left[\left(\frac{\lambda}{\xi},\frac{\lambda}{\xi}\right),\left(1+\frac{\lambda}{\xi},1+\frac{\lambda}{\xi}\right),-\frac{\lambda}{\xi}\right]$ 0.2 m 0.7 0.8 0.9 glia

σ (s)

Encoding of information within cells

[Thurley 2014]

Implications for life (of cells)?

Mitochondria activation

I. Dissecting crosstalk for metabolic decoding

by interdisciplinary approaches

Starting from computational model

7 variables, 3 conservation laws, 16 flux expressions and 58 parameters.

Deterministic model based on previous work

Impact of mitochondrial substrate on Ca²⁺

Decreasing mitochondrial substrates leads to decreasing cytosolic ATP and increasing frequency of Ca²⁺ signals.

"Reality" in C8-D1A astrocytic cell line

Ca²⁺ - Energy Metabolism Crosstalk

Effect of mitochondrial substrate limitations

To observe effect "energy buffers" (like glycogen) have to be depleted

Decreasing mitochondrial carbon inputs decrease cellular ATP levels, increase Ca²⁺ frequency and glutamine uptake

Effect of Ca²⁺ frequency on energy metabolism

How does Ca²⁺ spiking affect enzyme activity and substrate uptake?

Impact of Ca²⁺ Periods on the Energy Metabolism

Glucose & glutamine uptake rates increase with decreasing Ca²⁺ periods

Metabolic Decoding of Ca²⁺ Spikes

C8-D1A cells

Integration of Ca²⁺ triggering activity

Enzyme Activity

ctivity

Metabolic fluxes

Indicates further importance of stochastic dynamics

Frequency (min⁻¹)

2. Cellular dynamics in PD

PD @ single cell RNAseq resolution

Cellular heterogeneity and gene characterization

Indicate faster dopaminergic (mDA) neuron development

Cell cycle (and stemness) and mito genes differ most at day 10 and 14

Branching analysis for development

Ordering based pseudotime as a prior of developmental stage

Pseudotime/Developmental Stage

What's about calcium and LRRK2?

mitochondrial activity and aging ...

(Flemming lab)

0

10

Interspike interval (s)

30

40

3. Epithelial to mesenchymal transition

EMT triggered by Ca²⁺ dynamics signalling

mesenchymal

[Ca²⁺]

imaging

epithelial

computer

controlled

perfusion

system

Synchronized cells by perfusion system

30

Downstream analysis @ single cell resolution Stimulated

Control

mesenchymal and epithelial cells

Branching analysis with dynamic clustering

Applying dynamic clustering (Monocle 2)

Core network insights

Most 200 correlated genes

 → Regulation of mitochondria related genes
 → Apoptosis induction

1200 most absolute correlated genes

Functional network

Moment based cell state decoding

Stochastic spiking supports EMT

- CADM3 ↓ epithelial marker

- EPCAM epithelial marker

- CD63 mesenchymal marker
- FST ↓ epithelial marker
- FXYD3[↑] epithelial marker, insufficient for EMT(involved in E cell polarity)
- JUP↓ epithelial marker
- LAMB3↓ epithelial marker
- TMSB4X facilitate cell motility(EMT)

... and increases cellular heterogeneity – to be followed up

general code of *life* still lacking

 \rightarrow using energy for gene-environment adaptation away from equilibrium

Integrative multiscale approaches

Final Commercials

Bioinformatics: Systems Biology

CaSiAn: a Calcium Signaling Analyzer tool

Α

Intensity

D

AMP

Intensity

Peak value

SW threshold

Nadir value

Mahsa Moein¹, Kamil Grzyb¹, Teresa Gonçalves Martins¹ Francesca Peri³, Alexander Crawford¹, Aymeric Fouguier Alexander Skupin^{1,4}*

Free, easy to use and GUI based analysis tool for (Ca²⁺) spiking

- background removal
- spiking times
- amplitudes

http://r3lab.uni.lu/web/casa

Τ., (s) ATP Concentration (µM)

ISI (s)

Acknowledgements

Huang lab (ISB, USA)Mark Ellisman (UCSD)Finkbeiner lab (Gladstone, USA)Daniela BoassaDudley and Galas labs (PNRI, USA)Eric BushongFalcke & Prigione labs (MDC, Germany)Guy Perkins