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1. Background



Spatiotemporal Behavior of Microbial Systems

▪ Most microbes evolved and exist in environments with 
both temporal and spatial variations

▪ Spatial heterogeneities allow the development of 
unique metabolic niches critical to system function
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Multispecies Communities Important in Human Health

Images from www.microbiologysociety.org, Filkins & O'Toole, PLOS Pathogen, 2015
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Multispecies Biofilms

▪ Bacteria naturally grow as multispecies 
biofilms

▪ Chemical gradients create metabolic 
niches in the biofilm

▪ Slow and fast growing species naturally 
coexist 

▪ Evolution has optimized different natural 
communities for specific environments
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Effect of Nutrient Gradients in Multispecies Biofilms

Engineered E. coli 
biofilm

In vitro chronic 
wound biofilm

Bernstein et al., J. Biotechnology, 2012; James et. al., Wound Repair Regen., 2008



Biofilm Metabolic Models

▪ Multispecies biofilms are 
highly complex systems with 
a broad array of species and 
community level machinery

▪ Biofilm models focused on 
metabolic mechanisms are 
most tractable

▪ Biofilm metabolic models can 
account for:

• Spatial organization

• Nutrient competition

• Byproduct cross feeding

• Growth inhibition by toxins
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2. Modeling Framework



Spatiotemporal Metabolic Modeling

▪ Basic components
• Substrate uptake kinetics based on local 

extracellular metabolite concentrations

• Genome-scale reconstructions of 
metabolism

• Transport equations describing 
spatiotemporal variations of the 
extracellular environment

Evaluate nutrient 
uptake kinetics

Solve species 
metabolic models

Solve extracellular 
equations

Uptake 
rates

Intracellular 
fluxes

Extracellular 
concentrations

▪ Several methods have been proposed

• Table lookups of precomputed FBA solutions 
(Jayasinghe et al., Biotechnol. J., 2014) 

• Lattice based descriptions of nutrient diffusion 
(Harcombe et al., Cell Reports, 2014)

▪ Based on assumption that intracellular dynamics 
are fast compared to extracellular dynamics



Intracellular Metabolism

• Pseudomonas 
aeruginosa

• Staphylococcus 
aureus

• Clostridium difficile
• Bacteroides

thetaiotamicron
• Faecalibacterium

prausnitzii
• Escherichia coli
• Clostridium 

phytofermentans
• Geobacter

sulfurreducens

Thiele & Palsson, Nature Protocols, 2010; Milne et al., Biotechnology Journal, 2009



Flux Balance Analysis (FBA)

Figure courtesy for Krishna Mahadevan, U. Toronto; Price et al., Nature Reviews Microbiology, 2004



Biofilm Spatiotemporal Modeling Framework
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Microbial 
system

Time & spatial 
variations

Spatiotemporal 
modeling

Spatial 
discretization

DFBAlab: MATLAB code 
for dynamic flux 
balance analysis

Dynamic 
simulation

Genome-scale
metabolic 

reconstructions

Linear program solution

Chen et al., BMC Systems Biology, 2016; Gomez et al., BMC Bioinformatics, 2014
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Current State of Modeling Effort

▪ Nutrient-dependent uptake kinetics

▪ Metabolite-dependent diffusion

▪ 1-D and 2-D spatial variations

▪ Nutrient competition

▪ Byproduct cross feeding

▪ Inhibitor secretion and diffusion

▪ Chemotaxis of motile species

▪ Biofilm expansion and erosion

▪ Antibiotic treatment



Current Research Projects
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3. Application to Inflammatory 
Bowel Disease



The Human Gut Microbiome

▪ A highly complex community consisting 
of approximately ~1,000 species in a 
typical human host

▪ Critical for fiber digestion and immune 
system function

▪ Commensal species normally provide 
resistance to colonization by gut 
pathogens

▪ Dysbiosis of the community is 
associated with gut infections, 
inflammatory bowel disease, obesity 
and diabetes

▪ Formation of multispecies biofilms has 
been demonstrated in germ-free mice 
and is likely in humans

Images from Scientific America and Science News



Inflammatory Bowel Disease (IBD)

▪ Severe reduction in butyrate-
producing obligate anaerobes 
from the phylum Firmicutes 
(e.g. Faecalibacterium
prausnitzii)

▪ Large increase in facultative 
anaerobes from the phylum 
Proteobacteria (e.g. 
Escherichia coli)

▪ Bacteroides have been shown 
to be nanoaerobes

▪ “Oxygen hypothesis” - chronic 
inflammation of intestine 
results in increased release of 
hemoglobin carrying O2 and 
ROS species into the lumen

Images from www.khanacademy.org and www.annenberg.net



Minimal Species Model for IBD Progression

Henson & Phalak, BMC Systems Biology, 2017



Multispecies Biofilm Metabolic Model

▪ 3 metabolic 
reconstructions

▪ Uptake kinetics 
for 15 nutrients

▪ 25 extracellular 
balances

▪ 40 m fixed 
thickness

▪ 20 spatial node 
points

▪ 1440 LPs
▪ 520 nonlinear 

ODEs
▪ Efficiently solved 

in MATLAB with 
DFAlab

Henson & Phalak, BMC Systems Biology, 2017



Discovery of Putative Crossfeeding Relationships

Enhance species growth Essential for community stability

Henson & Phalak, BMC Systems Biology, 2017
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Oxygen Induces Dysbiosis Dynamics

Henson & Phalak, BMC Systems Biology, 2017



Higher Oxygen Levels Increase Dysbiosis

Henson & Phalak, BMC Systems Biology, 2017



Oxygen Sensitivity Depends on Diet

Henson & Phalak, BMC Systems Biology, 2017



Host-Microbiota Feedback Leads to Slow Dysbiosis

Henson & Phalak, BMC Systems Biology, 2017



4. Application to Clostridium 
difficile infection

Image from www.epainassist.com



Clostridium difficile Infection (CDI)

Image from Lawley et al., PLoS Pathogens, 2012; Advance Healthcare Network; CDC



C. difficile Metabolism and Treatment

▪ Nutritional capabilities
• Versatile carbon source utilization (e.g. 

glucose, fructose, xylose, succinate, etc.)

• Requires 6 amino acids (cysteine, 
isoleucine, leucine, proline, tryptophan, 
valine)

▪ Biofilm formation has been 
demonstrated in vitro and observed 
in germ-free mice

▪ Estimated that 3-15% of healthy 
adults are asymptomatically 
colonized with C. difficile

▪ Oral vancomycin is commonly used 
for moderate to severe infections 

Images from CDC; Dawson et al., PLoS One, 2012; Scripps Research Institute



Multispecies Biofilm Metabolic Model

Phalak & Henson, submitted, 2018



Predicted Crossfeeding Relationships

Phalak & Henson, submitted, 2018
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Healthy State: No Host-Microbiota Perturbation

Phalak & Henson, submitted, 2018



Glucose & Amino Acid Perturbations Induce Dysbiosis

Phalak & Henson, submitted, 2018



Additional Nitrate Perturbation Increases E. coli

Phalak & Henson, submitted, 2018



C. difficile Expansion Requires Formate & Succinate

Phalak & Henson, submitted, 2018



5. Concluding Remarks



Key Points

▪ Our biofilm metabolic modeling 
framework provides predictions 
of species interactions in 
heterogeneous environments

▪ Available genome-scale 
metabolic reconstructions can 
be incorporated directly

▪ Putative crossfeeding
relationships can be discovered 
rather than assumed a priori

▪ Prediction of both temporal and 
spatial behavior can be 
computationally expensive



Future Direction – More Complex Communities

Henson & Phalak, submitted, 2018
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