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Functioning fat cells are essential

“ Regulates glucose levels in the bloodstream

“ Stores energy - fat provides as much as 80% to 90%
of your body's energy requirements.

“ Acts as our body’s largest endocrine organ.
Produces and secretes key hormones: leptin,
adiponectin, IL6, TNF-alpha, angiotensin, resistin

“ Functioning fat cells prevent diabetes, cardiovascular
disease and cancer (breast, colon, liver)




Adipocytes turnover rapidly all
throughout adulthood

~10% of a person’s fat mass is renewed each year

Adipogenesis occurs continually and controls
the number of cells in adipose tissue.



Three parts

1) Fat or not fat: breaking the code of a key cellular
decision process

2) Controlling tissue size with feedback and stochastic
noise

3) Transcription factor dynamics reveals a circadian
code for cell differentiation
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Adipocyte (fat cell) differentiation is
driven by the expression of PPARG

Signaling inputs Metabolic inputs




Many regulatory factors and connections
have been implicated in adipogenesis

Adipogenic stimuli
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Questions:

1) Is there a distinct terminal differentiation state?

2) If so, what is it and where, when, and how is it created?




Previous assays for differentiation
were often qualitative

Typical fat cell analysis visualizes
lipid droplets 10-14 days after
inducing differentiation

A quantitative analysis and model is needed to
understand such a complex system.




Measuring transcription factor expression and
lipogenesis over the timecourse of differentiation
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Single-cell, multi-parameter,
image-based analysis of the
fat cell differentiation process
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Fat or no fat: breaking the code of a key
cellular decision process
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Park,...,Teruel, Cell Reports 2012



The cells undergo state transitions early in

adipogenesis before lipid accumulation occurs

[PPARY]

Decision process
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Need to have cooperativity and
positive feedback to get two stable states



Cooperativity

Y/ Y = BX

X
Y P .
EC50™ + X™
X Hill equation

Cooperativity filters small signals out,
allowing the system to have a stable off-state



Positive feedback
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Positive feedback + cooperativity

Two stable
states —~—
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Positive feedback: makes it so the system cannot rest in intermediate states

Cooperativity: filters small signals out of the feedback loop, allowing the
system to have a stable off-state




Identification of a positive feedback loop
from PPARY to CEBPf
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The feedback loops are cooperative
and operate at different timescales
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Multiple, consecutive positive feedback
loops make the differentiation decision
robust and prevent accidental triggering
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We developed a quantitative molecular model of
adipogenesis based on cooperative positive feedback

Experimental Data Model Output
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Summary of Part 1

e We found that fat cell differentiation is an irreversible bistable

switch in PPARY levels triggered early in the differentiation
process, well before accumulation of lipid.

* The bistable switch is driven by positive feedback between
PPARYy-C/EBP[3 and PPARy-C/EBPa.

* Using our experimental data, we developed the first quantitative
molecular model showing how cooperative positive feedback
makes adipocyte differentiation robust and irreversible.
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Adult mammalian tissues are regenerating
themselves at very low rates

Cardiomyocytes renew at a rate of ~1% each year
Fat cells (adipocytes)

renew at a rate of
~10% each year

(Spalding et al., Nature 2008)

Too low or too high a rate can cause aging and disease

What enables a constant, low-rate
of cell differentiation in humans?




The conversion of preadipocyte to adipocyte
occurs via a bistable switch
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Preadipocytes differentiate via
a bistable switch in vivo
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Adipocyte precursor cells (preadipocytes)
reside in the fat tissue along the vasculature

....and there are a lot of them!

PECAM SMA PECAM NG2

GFP = preadipocytes
PECAM (red) = endothelial cell marker

~1 preadipocyte to 5 adipocytes

Tang,...Graff, Science 2008



Since fat cell differentiation is a bistable process,
why do only 10% of our fat cells turn over each year?

Shouldn’t all our cells either differentiate or stay
undifferentiated for the same given stimulus?
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What controls the fraction of precursor cells that differentiate?



Computer simulations show that cell-to-cell variation
(noise) controls the number of cells that differentiate
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Noise has to be in the
right range to enable
optimal control of
differentiation.

Park,...,Teruel, Cell Reports 2012



A fundamental problem in maintaining tissue size:
how to obtain the right amount of noise:

no noise tinoise + more noise
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With too little noise, impossible to control by receptor stimulus
the fraction of cells that differentiate.

With too much noise, impossible to create a bistable system that is
irreversibly locked in a differentiated state.



[ PPARG ]

What system architecture are cells using
to maintain tissue size?

A one-feedback loop model dX,
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How are cells solving the optimization problem?
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Over a hundred factors have been implicated
in regulating fat cell differentiation
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How can we systematically identify feedback loops
in a protein network??

Expanded on targeted proteomics methods that
we developed in Abell,...,Teruel, PNAS 2011



Selective reaction monitoring (SRM) using a
triple-quadropole mass spectrometer

Detector
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You need to know what peptides to look for !

Proteotypic peptide should be:

1) Unigue to your protein

2) “Flies” well in the mass spectrometer

3) No posttranslational modifications, chemical-
induced modifications, missed-cleavage




Using SRM mass spectrometry to simultaneously
measure 100 key, but low-abundant, adipogenic
regulators in a single sample
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Protein abundance noise acts within a network of
at least 7 positive feedbacks to permit
preadipocytes to differentiate at very low rates
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Summary of Part 2

 Theoretical noise analysis argues that highly connected multi-
feedback systems can resolve the challenge to control at the
same time low rates of differentiation and also lock
differentiated cells in the differentiated state.

* Using highly-sensitive and quantitative selected reaction
monitoring (SRM) mass spectrometry, we showed that
adipogenesis is driven by at least 7 interconnected positive
feedback loops.

* Together, these results provide a conceptual framework of how
organisms use noise to effectively control low rates of
differentiation without sacrificing the robustness of the
differentiated state.



To control which fraction of a population makes
an all-or-none decision, alot of noise is good

1k

But too much noise can cause cells
to drop out of the differentiated state
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Kovary,...,Teruel, “Expression variation and covariation
impair analog and enable binary signaling control”,
Molecular Systems Biology, May 2018.
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Three parts

Fat or not fat: breaking the code of a key cellular
decision process

Controlling tissue size with feedback and stochastic
noise

3)

Transcription factor dynamics reveals a circadian
code for cell differentiation ’
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Adrenal gland
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Glucocorticoids are secreted in
regular circadian rhythms
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The daily increase in glucocorticoid levels
produces a wake-up signal, turning on
appetite and physical activity.




Stress also induces glucocorticoid secretion...

“Good” glucocorticoid secretion

» After exercise

* In response to cold (i.e. going outside in winter)

* When sitting or standing up (upright posture)
o *To deal with anxiety (help with focusing for a
test, runnlng from a bear, etc)
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How can low rates of adipogenesis be maintained
despite daily oscillations and healthy,
but unpredictable, spikes in glucocorticoid levels?
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The same TOTAL glucocorticoid stimulus given
over 4 days has dramatically different outcomes
depending on how it is applied
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Stimuli longer than 12 hours increase adipogenesis
while oscillatory, circadian inputs are rejected
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The same rejection of oscillating hormone pulses is
observed in 3T3-L1 and primary SVF preadipocytes
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We used CRISPR-mediated genome editing
to tag CEBPB with YFP(citrine)
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CEBPB nuclear expression closely mirrors the
hormonal input stimuli
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We created a live cell sensor for adipogenesis by
tagging endogenous PPARG with Citrine (YFP)
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Live-cell imaging directly shows the existence of
a bistable switch with a threshold in PPARG that
determines whether or not a cell will differentiate
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Pulsing the input stimulus prevents PPARG
from reaching the threshold in most cells
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We were faced with a conundrum:
fast-degrading proteins cannot
increase steady-state levels over days!

Adipogenic
(DMI) stimuli
\ | CEBPB, CEBPA, and PPARG
Differentiated :
CEBPB —>PPARG — picei | protein and mRNA degrade
— rapidly (in < 3 hours)
Continuous 48hr DMI Q40
| 3
1000 : > 08|
— & |
3 S e
T ® ——t_=1hr
S = 500 5 12
Z 0 2 04 ——t,=3hr
§E§ | 5 02 —t =12 hr
=0 0 % . | _1:1/2=36hr
€ 01220 40 60 80 100

Time (hr) Time (hr)



There needs to be a slow regulator
of PPARG in the system!
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FABP4 is an example of a slow-degrading PPARG
regulator that can mediate a slow increase in
PPARG expression during adipogenesis
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A slow feedback partner could both
slow PPARG activation AND keep
PPARG amplitude below threshold
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A signaling circuit with a fast and a slow positive feedback
can trigger differentiation for continuous stimuli
while rejecting daily oscillations
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Flattening circadian glucocorticoid oscillations in
mice resulted in significantly increased body weight
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to continuously flatten circulating levels.
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However, increasing glucocorticoid peak amplitudes
even 40-fold had no effect on body weight!

Corticosterone Injection
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Circulating
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Corticosterone was injected daily at 5PM to increase daily peak levels
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Fat mass doubled in mice when circadian glucocorticoid
oscillations were flattened for 21 days
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A general temporal control principle for cell differentiation,
as well as a new therapeutic strategy to reduce fat mass?
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Why fat piles on when the body’s daily cycles are
in disarray

Teming of hormane fluctuarions influenc

Changes in the of hormane production

ight cause weight gain

when circadian rhythms are disr

Hoemanes called ghacocorticoids stimwlate the production

cells. In husmans, glucocorticoid levels naturally rise in the

in the evening, but stress can also elevate them.
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&Por qué las personas aumentan de peso por
el estrés ?

Nuevo estudio proporciona la primera comprension molecular de por qué las personas aumentan de
peso debido al estrés cronico

Redaccion EC

Investig;

-

es de la Universidad de Stanford (California)

determinaron que el control del ritmo de los glucocorticoides,

comiinmente conocidos como las hormonas del estrés, reduce el
aumento de peso, segiin un gstudio publicado en la revista
especializada Cell Metabolism.
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Disrupting normal hormone cycle spurs fat cells o
At a Glance In this Edition
« In mice, interfering with the natural cycle of a certain hormone spurs development of more fat cells. Lingering feelings over daily
« This finding may help explain why stress and conditions associated with abnormal sterokd hormone levels can cause stresses may impact long-term
obesity health

Study suggests way to improve flu
vaccines

Your body has a natural, daily rhythm. Certain needs

eep, wake up, eat
eep, wake up, eat, Disrupting normal hormone cycle
and go to the bathroom every day—are patterned around a repeating 24- spurs fat cells

hour cycle. Horm

es rise and fall at certain times of the day to prompt the

bo

/ to do these things at the right time. When you go against these natura
“circadian” rhythms—by forcing yourself to stay up too late, for example Connect with Us

our health may suffer. Disrupted circadian rhythms have been linked to

sity, sleep disorders, depression, and other health problems.

Previous studies have shown that steroid hormones known as glucocorti

E) rss Feed
K racebook

£ email us

hormones, which drive adipocyte (fat cell) production from precursors, are

secreted on a 12-hour cycle, Disrupting this cycle is linked to obesity. In

addition to this natural daily rhythm, your body also secretes glucocortic

during stressful situations. Some people have diseases, such as Cushing's

ng Address:
arks G www.google.com -.. — PubMed home [ Technik & Architekt EaMsN i B mi i

Don’t blame the ice cream: stressed-
out cells are making you fat

Tom Whipple

CHRIS RYANIGETTY IMAGE

Being stressed doesn't just make you reach for the tub of ice cream, it also

changes what your body does with that ice cream when you eat it,

The link between stress, sleeplessness and weight gain is long established. Now
a study in the US has shown that part of this is due to effects at a cellular level.
‘When hormones associated with stress are disrupted, it means more cells are

converted to fat.

Mary Teruel, from Stanford University, began the research because of curiosity



Overall summary

* Fat cell differentiation involves a switch between two distinct
populations of cells - undifferentiated and differentiated -
and thus requires single cell approaches to understand.

* Control of low rates of differentiation requires noise in
expression of regulators and multiple positive feedbacks

* Natural hormone signals oscillate. A striking characteristic
of the fat cell differentiation system is that it filters out
circadian glucocorticoid oscillations while equally strong
continuous stimuli trigger differentiation.

* Circadian filtering requires fast and slow positive feedback
to PPARG.

* Our results suggests a new therapeutic strategy to reduce fat
mass by controlling timing of hormonal signaling.
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