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Why extreme black holes?

Two reasons:

» They are observationally relevant:
Many accreting black holes are found to be spinning very rapidly
» They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like



Rapidly spinning black holes
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Abstract

‘The spin of a black hole is an important quantity to study, providing a
window into the processes by which a black hole was born and grew. Further-
more, spin can be a potent energy source for powering relativistic jets and
energetic particle acceleration. In this review, I describe the techniques cur-
rently used to detect and measure the spins of black holes. It is shown that:

m Tiwo well-understood techniques, X-ray reflection spectroscopy and
thermal continuum fitting, can be used to measure the spins of black
holes that are accreting at moderate rates. There is a rich set of other
electromagnetic techniques allowing us to extend spin measurements
to lower accretion rates.

m Many accreting supermassive black holes are found to be rapidly
spinning, although a population of more slowly spinning black holes
emerges at masses above M > 3 x 107 Mg as expected from recent
structure formation models.

m Many accreting stellar-mass black holes in X-ray binary systems are
rapidly spinning and must have been born in this state.

m The advent of gravitational wave astronomy has enabled the detection
of spin effects in merging binary black holes. Most of the premerger



Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly
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SMBH spins as a function of mass for the 32 objects in Table 1 that have available mass estimators. All spin
measurements reported here are from the X-ray reflection method. Lower limits are reported in red, and
measurements that include a meaningful upper bound (distinct from @ = 1) are reported in blue. Following
the convention of the relevant primary literature, error bars in spin show the 90% confidence range. The
error bars in mass are the 1o errors from 'Table 1 or, where that is not available, we assume a 50% error.
Abbreviation: SMBH, supermassive black hole.



Rapidly spinning black holes

Table2 Measurements of black hole spin in dynamically confirmed black hole X-ray binaries from the X-ray reflection

and CF methods®

Spin from Spin from Reference from Reference
Object reflection CF reflection from CF

1C 10 X-1 ND 0.851001 ND Steiner etal. (2016)
M33 X-7 ND 0.84 + 0.05 ND Liu etal. 2008
LMCX 3 ND 0251029 ND Steiner etal. (2014)
LMCX 1 ~0.55 0.9243%7 Steiner et al. 2012) Tripathi et al. (2020)
AO620-00 ND 0.12 £0.19 ND Gou etal. (2010)
Nova Mus 1991 ND 0.637015 ND Chen et al. 2016)
GS 1354-645 ~0.98 ND El-Batal et al. 2016) ND
4U 1543475 0.677033 0.8+ 0.1 Dong et al. (2020) Shafee etal. (2006)
XTE J1550-564 0.33-0.77 0347037 Miller et al. (2009) Steiner etal. (2011)
4U 1630-472 >0.97 ND King etal. 2014) ND
XTE J1650-500 0.79 £ 0.01 ND Miller et al. (2009) ND
XTE J1652-453 045 +0.02 ND Hiemstra et al. 2011) ND
GRO J1655-40 >0.9* 0.740.1 Reis et al. (2009) Shafee et al. (2006)
GX339-4 >0.95 ND J. Jiang etal. 2019 ND
SAX J1711.6-3808 0.6402 ND Miller et al. (2009) ND
GRS1716-249 a> 092 Tao et al. (2019)"

0.92 % 0.06 ND Garcia etal. 2018) ND
Swift J1753.5-0127 0.76+911 ND Reis et al. (2009) ND
MAXI J1836-194 0.88 +0.03 ND Reis et al. (2012) ND
EXO 1846-031 >0.99 ND Draghis et al. (2020) ND
XTE J1908+094 0.75 £ 0.09 ND Miller etal. (2009) ND
Swift ]1910.2-0546 <—0.32 ND Reis et al. (2013) ND
GRS1915+105 0.881‘3:(,’? =0.95 Shreeram & Ingram (2020) McClintock et al. (2006)




AdS> and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS.-like

e Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]
dsZ:Mz[ rdt+di+d92], A= Mr
e Extreme Kerr; NHEK: [Bardeen, Horowitz (1999)]
ds? = 2M2r(6) [ 2d + O 4 do? 4 N(0)2(d¢ + r di) ]
» Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

Kinematics of extremal horizon — scaling symmetry
Einstein equations — SL(2)

» Near-horizon approximations and Exact solutions



“AdS» has no dynamics”

Anti-de Sitter fragmentation
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ABSTRACT: Low-energy, near-horizon scaling limits of black holes which lead to
string theory on AdS, x S? are described. Unlike the higher-dimensional cases,
in the simplest approach all finite-energy excitations of AdS, x S? are suppressed.
Surviving zero-energy configurations are described. These can include tree-like struc-
tures in which the AdS, x S? throat branches as the horizon is approached, as well
as disconnected AdS, x S? universes. In principle, the black hole entropy counts the
quantum ground states on the moduli space of such configurations. In a nonsuper-
symmetric context AdSp for general D can be unstable against instanton-mediated
fragmentation into disconnected universes. Several examples are given.

KEYWORDS: Black Holes in String Theory, Conformal Field Models in String
Theory, Supersymmetry and Duality.



“AdS, has no dynamics”

No dynamics in the extremal Kerr throat

Aaron J. Amsel, Gary T. Horowitz, Donald Marolf and Matthew M. Roberts
Department of Physics, UCSB,
Santa Barbara, CA 93106, U.S.A.
E-mail: amsel@physics.ucsb.edu, gary@physics.ucsb.edu,
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ABSTRACT:  Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum
general relativity whose asymptotic behavior agrees with that of the extremal Kerr throat,
sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We argue that all

such solutions are diffeomorphic to the NHEK geometry itself. The logic proceeds in

two steps. We first argue that certain charges must vanish at all times for any solution
with NHEK asymptotics. We then analyze these charges in detail for linearized solutions.

Though one can choose the relevant charges to vanish at any initial time, these charges are

not conserved. As a result, requiring the charges to vanish at all times is a much stronger
condition. We argue that all solutions satisfying this condition are diffeomorphic to the

NHEK metric.

KEYWORDS: Gauge-gravity correspondence, Black Holes, Space-Time Symmetries



Wider picture on AdS, dynamics

» Backreaction in asymptotically AdS, spacetimes is problematic.

® Q: Starting with a linear solution for a scalar ¢ on AdS, x S?,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A: Not if we insist on an asymptotically AdS, solution.
E.g. if we impose Dirichlet boundary conditions on the AdS, boundary
then backreaction of the scalar on the geometry destroys them.

» Backreaction in asymptotically flat spacetimes makes perfect sense.

® Q: Starting with a linear solution for a scalar ¢ ~ /e on ERN,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A: Yes. Generically the fully backreacted nonlinear endpoint is a
near-extreme RN with Q = M\/1 — O(e). [Murata, Reall, Tanahashi (2013)]

The connection of AdS;, with the asymptotically flat region of BHs allows for
consistent backreaction. How? What are the correct boundary conditions?



1. Anabasis:

Backreaction that destroys the AdS, boundary and builds the
asymptotically flat region of (near-)extreme BHs.

[JHEP 2103, 223] with S. Hadar, A. Lupsasca
[JHEP 2303, 125] with G. Remmen
[WIP] with M. de Cesare, R. Oliveri



Perturbations of Bertotti-Robinson

> Backgound:

2
ds2:M2[—r2dr2+%+dQ2], A = Mr

> Spherically symmetric perturbations (h,., a,.) fully characterized by:
hgg = g + ar + brt + cr <t2 - 1/r2)

Comments:
> hge is gauge invariant under hy, — huy + LeGuo.
> 4-parameter (@, a, b, ¢) family of solutions.
> &, parameterizes overall rescaling M — M + éM with &y = 2M M.
> Focus on the remaining triplet:

® = ar+brt +or (- 1/r2)



SL(2) transformation properties

d>=ar+brt+cr<t2—1/r2>

»> The background is invariant under the SL(2) isometries of AdS;:

H: t—>t+a
D: t—t/8, r—pr
t—y(2—1/r?)
1—27t+72(1‘2—1/r2)

, r—>r[1 — 2yt + 12 (t2—1/r2)]

> & is SL(2)-breaking: (a, b, c) get rotated by the above transformations.

> However,
u=b?—4ac is  SL(2)-invariant

> Using SL(2) transformations one may set

b =2r, when p=0,sgn(a+c)=1
S =—\/urt, when p >0

» SL(2)-breaking solutions ® are not asymptotically AdS, x S?



Anabasis perturbations

Bertotti-Robinson arises from two physically distinct
near-horizon near-extremality scaling limits, A — 0, of Reissner-Nordstrom

> Limit #1: Begin with Q = M and put the BH horizonat r =0 (set M = 1):

r
14+ Ar

2 -2
r r
ds? = — dt? ( ) ar? + (1+xr)2dQ?, A=
(1+)\r> + 14+ Ar +(1 40 !
At O(1) we get Bertotti-Robinson in Poincare coordinates

2
ds? = —r2adt? + % +dQ2, A=t

At O(\) we get, by definition, a linear solution around the above.
hgg =2r

This is the SL(2)-breaking 1 = 0 solution ® = 2r —Poincare anabasis solution
Begins to build the asymptotically flat region of an extreme Reissner-Nordstrom

The nonlinear solution obtained from the ;. = 0 perturbation of AdS, x S2,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the extreme Reissner-Nordstrom black hole.



Anabasis perturbations

> Limit #2: Begin with Q = M+/1 — A\2x2 and put the BH horizon at p = 0:

g2 = Plet2e+dmp) o (1)1 4+ 00)? 5
(1 + Ax)(1 + Ap)? plp+ 26 + Akp)

+ (1 + 2&)2(1 + Ap)2dQ?
PR PR AP
A 1T+ X1+ Xp

At O(1) we get Bertotti-Robinson in Rindler coordinates

d 2
ds? = —p(p+2r)dr2 + — P 1 d0%, A, =M(p+ k)
plp + 2k)

At O(X) we get, by definition, a linear solution around the above.

heo = 2(p + k)



Anabasis perturbations

» Rindler to Poincare transformation for the Bertotti-Robinson:

_ 1 2 2
‘r—fﬁln(t 71/r)
p=—r(1+rt)

1 P
A—>A+dN A= -1
AT 2np+2n

Transforms the Rindler anabasis solution to
hog = 2(p + k) = —2krt

This is the SL(2)-breaking /i = 2« solution & = —2krt.

Begins to build the asymptotically flat region of a near-extreme RN
In general, ® = ar + brt + cr(t? — 1/r?) with . > 0, leads to
Rindler anabasis with /o = \/b? — 4ac = 2k

The nonlinear solution obtained from the p > 0 perturbation of AdS, x s?,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the near-extreme Reissner-Nordstrém black hole with Q = My/1 — 1 /4.



The connected AdS, x S2

Definition:
The connected AdS, x S? is defined as the geometry obtained by the
addition of anabasis perturbations to Bertotti-Robinson.

The addition of anabasis perturbations may be thought of as boundary condition for
consistent backreaction calculation in an AdS, x S throat that maintains connection.

> Let's do a matter backreaction calculation in the connected AdS, x S?
BrTher — ¢5(v—v), v=t—1/r.

For ¢ < 1 we may find an O(¢) perturbation around the Bertotti-Robinson that solves
the Einstein-Maxwell equations with this matter source:

2(f_ )2
hg@=¢’O+ar+brt+cr<f271/f2)*%7"(t \;0) 16(V*Vo)

What are the correct boundary conditions?



The connected AdS, x S2

erf(t—v)? -1

— O(v — v
5 g ( 0)

hgg = g + ar + brt + cr <t2 - 1/r2)

> |f this AdS, x S? was connected to extreme RN for v < vq then
we need the Poincare anabasis:

hgg =2r, for v<y.
Then after the pulse, for v > vy, we get

2(+ 271
h09:2r7£w

5 p , for v>yy.

This solution after the pulse is a ;1 = 4€ solution which may be
mapped to the Rindler anabasis hgy = 2(p + ) with

K=

Throwing a pulse of energy ¢ <« 1 into the extreme RN, Q = M, “shifts the
horizon” and the black hole becomes near extreme with Q = My/1 —e. v




Deriving the connected AdS, x S? via MAE [WIP]

> Consider ERN or BR in the Einstein-Maxwell-Scalar theory with ¢ = O(+/€) and
solve for the O(¢) perturbation in both cases.

» Impose the boundary conditions in ERN, e.g.

REEN / dr

» Ensure the scalar is matched, in Fourier space, using the method of Matched
Asymptotic Expansions for low energy, Aw < 1, ERN modes

M/dv(a o=N)(OrgF ) | =0, for v — —oo.

Static: w < r < 1/(\w)
Near: r < 1/x . " Farir>1/A

N
A

r=0 r=oo

» Observe that this leads to

BR _ pERN
hge = Mg |near — 27, for v — —oo.



Summary

Anabasis: Backreaction that destroys the AdS, boundary and builds the
asymptotically flat region of (near-)extreme BHs.

Connected AdS,: The geometry obtained by the addition of anabasis

perturbations < Boundary condition for consistent backreaction calculation
within the throat.

Remarks

> Q: What is the dual of anabasis in AdS/CFT?
A(?): Following inverse RG, from IR to UV, along an irrelevant deformation of the
boundary field theory that does not respect AdS boundary conditions (e.g. the
single-trace TT deformation of CFT, studied by [Giveon, Itzhaki, Kutasov, et al 2017~ ]).
Q: What is it for AdS, though? A: No idea
> Q: What about JT gravity?
A: & = o7 solves the JT eom V, V., 7 — gur V2O 1 + g @y = 0 0n AdS,.
n = ADM mass of the 2D black holes in JT gravity.
Connected AdS; is a “nearly-AdS,” with SL(2) broken to maintain connection



2. Accidental Symmetry:

Coordinate transformation that acts on the perturbative
solutions of Einstein equation near extreme black hole horizon

[JHEP 2203, 107] with G. Remmen
[WIP] with A.Banerjee, G. Remmen



The linearized Einstein equation

Schematic notation:
> Background geometry g —the Bertotti-Robinson spacetime
» Metric perturbation h  —the & solution
> The linearized Einstein equation as a linear differential operator

£(g,h) =0
Consider a finite diffeomorphism
(t.1) = (60 + 2 (€160, €7 )

which transforms both g — g(X) and h — h(X).

By general covariance, for arbitrary A and £#, we have:
£(9(A),h(N)) =0

Expanding in A, we have

£(9(0), h(0)) + /\%5(50\), h(0)) + /\%5(57(0), h(A)) +O(>3?) =0



Accidental symmetry: definition

Starting with a solution to the linearized Einstein equations around the original
background, £(g(0), h(0)) = 0, we have

lim [OAE(G(N). h(0)) + DrE(E(0), ()] = O 1)

> 13t term: hold perturbation fixed, act with a linearized diffeo on the background
» 2" term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any &.

What if we impose the strong requirement that each term in (1) vanishes individually?

Anjoakg(g(O),h(A)) =0 (2)

» Trivial solutions: Isometries of the background g(\) = g(0)
» Other solution: accidental symmetry —transforms solns h among themselves



Accidental symmetry: electrovacuum case

£ : linearized Einstein-Maxwell equations (electrovacuum)
9(0) : Bertotti-Robinson
h(0) : & = ar (u = 0 solution)

the solution of limy_,0 9x£(9(0), h(\)) = 0 is given by

e——lan+ 20 4 tem(t)} & + {re’(t) - e”’(t)i| o,

2r2 re 2r
where €(t) is an arbitrary cubic polynomial in t,
e(t) = ey + et + ext? + e3t’.

> £p,1,2: SL(2) Killing vectors of AdS,

1
60:7(170)7 51:7(1‘77”)7 62:7(t2+r*2:72rt)

> £3: non-trivial accidental symmetry

&=— (t3+%,%—3rt2)



Accidental symmetry: electrovacuum equations

Question: What does &3 do?

Answer: Relates = 0to 1 # 0. Indeed, we have

Ap = —4alic = —12X\e3a°

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one p orbit to another.



Accidental symmetry: electrovacuum equations

Question: What does &3 do?

Answer: Relates = 0to 1 # 0. Indeed, we have

Ap

—4alc = —12\e3d”

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one p orbit to another.

In spherical symmetry the electrovacuum solutions are constrained by Birkhoff’s
theorem to the non-propagating degrees of freedom that we have discussed so far.

Can accidental symmetries also turn on propagating d.o.f.?



Accidental symmetry: adding matter

lim AE(@(0),h(\) = T @

Source T must satisfy equations of motion. We consider Klein-Gordon scalar Cl¢p = 0
s.t. the most general spherically symmetric solutionis (u=t—1/r,v=t+1/r)

6 =1.(v) +1-(v)

Can get solution to (3) from the electrovacuum ¢ = r using the transformation

é- 2iF Ff,(u)] S [FU) — F ()

A [ ]
3//1‘f (t+1 (77)??

g =r[Fi(v) = FL(u)] = [F{(v) + FZ(u)],

where F"’(v) = [, (v)]? and F""(u) = [f"_(u)]?.



Accidental symmetry as on-shell large diffeo of AdS»
Putting on-shell the large diffeomorphisms of AdS, in JT gravity
> The large diffeomorphisms of AdS,, in FG gauge, are given by

217 (1) (1)? 4r2f ()2 — 1/(t)?

t s 1(t) + — WIO"
IOt mree— e T T ame

Sch(f, 1)\ dr? v(t
dsg — —r? (1+ Cz(r2 )> A+ =5 and d>—>¢0(t)r+—(r),

with ¢o(t) = [a+ bf(t) + cf(t)2]/f (t) and v(t) = —[¢} (t) + Sch(f, )po(1)]/2.
> For arbitrary f, this source satisfies the Schwarzian equation of motion

1/ (Foo) \'T
[7 (( o) ) ] —0
f! f!
> If one imposes that ¢ (t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f(t) = t + €(t), the Schwarzian eom reduces to

EHN(t) — O

with its cubic solution e(t) = eg + et + eyt + e3ts.



Accidental symmetry as on-shell large diffeo of AdS»
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> For arbitrary f, this source satisfies the Schwarzian equation of motion

1/ (Foo) \'T
[7 (( o) ) ] —0
f! f!
> If one imposes that ¢ (t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f(t) = t + €(t), the Schwarzian eom reduces to

EHN(t) — O

with its cubic solution e(t) = ey + et + ext? + e3t. v



Summary

Accidental Symmetry. Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

> Electrovacuum egs: turn on deviation from extremality

v

Adding KG matter: turn on arbitrary KG source

v

May be thought of: on-shell large diffeomorphisms of AdS,

> What's next? WIP: Work out analogous statement in pure gravity for NHEK.
New feature: turn on axisymmetric gravitational waves in NHEK.



Summary

Accidental Symmetry. Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

> Electrovacuum egs: turn on deviation from extremality

v

Adding KG matter: turn on arbitrary KG source

v

May be thought of: on-shell large diffeomorphisms of AdS,

> What's next? WIP: Work out analogous statement in pure gravity for NHEK.
New feature: turn on axisymmetric gravitational waves in NHEK.

The end
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