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Black hole thermodynamics

The correspondence between laws of black hole mechanics and laws of thermodynamics

dates back 50 years

δE =
κ

8π
δA+ φδQ+ΩHδJ

Not just an analogy, but deep lesson that drives the progress in quantum gravity

According to General Relativity: black hole is simple object, characterized by M, Q, J. However

SBH is huge

Black hole entropy scales as area, not volume: it shows a

”holographic” behavior.
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Extremal black holes

The existence of a horizon imposes bounds on the charges

J 6M2 |Q| 6M

Violation of this bound results in a naked singularity.

Extremal black holes saturate the bound. They have zero temperature T = 0, while SBH is

nonzero. Absence of symmetry protecting the huge degeneracy of ground states (unless i.e.

there is SUSY)

Non- standard thermodynamic behavior (third law of thermodynamics)
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Extremal black holes

The existence of a horizon imposes bounds on the charges

J 6M2 |Q| 6M

Violation of this bound results in a naked singularity.

Extremal black holes saturate the bound. They have zero temperature T = 0, while SBH is

nonzero. Inner and outer horizons coincide.

• huge degeneracy of ground states at T = 0

• Absence of symmetry protecting it (unless i.e. there is SUSY)
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Extremal black holes

Symmetry enhancement near horizon: Geometry near the horizon develops an AdS2 throat

e.g. for static black holes near horizon geometry is AdS2 × S2. This happens also in spaces

with cosmological constant

The region outside the horizon seems in-

finitely far away
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Puzzle: Kerr black holes near extremality

Close to extremality, the energy accessible to system is [Preskill, Schwarz, Shapere, Trivedi,

Wilczek, ’91]

EBH = 4π2J3/2T 2 =
T 2

Egap

Typical energy of Hawking quantum is

EHawk ∼ T
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Puzzle: Kerr black holes near extremality

Close to extremality, the energy accessible to system is [Preskill, Schwarz, Shapere, Trivedi,

Wilczek, ’91]

EBH = 4π2J3/2T 2 =
T 2

Egap

Typical energy of Hawking quantum is

EHawk ∼ T

Below Egap the energy available to the BH is not sufficient for the emission of a single Hawking

quantum

At E = Egap temperature fluctuations become large compared to T itself
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Puzzle: Kerr black holes near extremality

This issue was tackled in [Iliesiu, Turiaci ’19][Heydeman, Iliesiu, Turiaci, Zhao ’20] for static

charged black holes (and rotating AdS5), showing that the apparent degeneracy at T = 0 is

lifted if there is no susy.

Aim here: compute quantum correction to SBH for rotating black holes, including Kerr BH
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Quantum corrections

We will make use of the throat geometry and its approximate decoupling from far region.

Assumes that relevant part of the BH Hilbert space can be captured by gravitational dynamics

near the throat

Zgrav =
∫
[Dg]e−S[g] g→ g at boundary

Integrate over metrics subject to some boundary

conditions fixed by the ensemble.

→ Use saddle point approximation
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Quantum corrections

At zero temperature Zgrav ∼ e2πJ = eS0 reproduce BH entropy.

The first correction comes from integrating over the quantum fluctuations about the saddle.

This is where subtleties lie: divergencies due to zero modes appearing in the 1-loop compu-

tation [Sen ’08]

We need to compute a functional determinant. Schematically

∫+∞
−∞ e

−λx2
dx =

√
π

λ

∫ ∏
i

e−λix
2
idxi =

√∏
i

π

λi
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Quantum corrections

→ Responsible for lifting the degeneracy of ground states [Iliesiu, Murthy, Turiaci ’22]

Avatar of the fact that backreaction effects in AdS2 spacetimes are very strong [Maldacena,

Stanford, Yang ’16]. Studied in Kerr in [Castro, Godet ’20] [Castro, Godet, Simon, Yu ’21].

Approach: making use of the near-extremal configuration, which will act as a regulator for

these divergencies
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Outline

• Kerr black holes

– NHEK and near-extremal limit

– Zero Modes for NHEK

– Lifting of Extremal Zero Modes and log T Corrections to the Entropy

• AdS4 black holes

– extremal and supersymmetric limit

– Corrections to density of states (w inclusion of ϑ-term)

• Conclusions and outlook
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Kerr black hole: near-extremal limit

Describes a black hole with angular momentum J = aM. Metric is

ds2 = −
∆

Σ

(
dt̂− a sin2 θ dφ̂

)2
+
Σ

∆
dr̂2 + Σdθ2 +

sin2 θ

Σ

(
(r̂2 + a2)dφ̂− adt̂

)2

∆(r̂) = r̂2 − 2Mr̂+ a2, Σ(r̂, θ) = r̂2 + a2 cos2 θ.

Singularity cloaked by horizons at

r± =M±
√
M2 − a2

Entropy and temperature given by

A = 4π(r2
+ + a2) T =

1
4πM

√
M2 − (J/M)2

M+
√
M2 − (J/M)2
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Kerr black hole: near-extremal limit

Extremal limit obtained by

M2 = J =M2
0

horizons coalesce r± = r0 =M at and temperature vanishes.

Expansion close to extremality:

M(T , J) = J1/2 + 4π2J3/2T 2 +O(T3)

S(T , J) = S0 + 8π2J3/2T +O(T 2)

Rewritten as

M =M0 +
T 2

Mgap

S = S0 +
2T
Mgap

Mgap =
1

4π2J3/2
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M(T , J) = J1/2 + 4π2J3/2T 2 +O(T3)
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S = S0 +
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Mgap

Mgap =
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Near Horizon Extremal Kerr

Zoom in the near-horizon geometry with change of coords

t̂ =
2r0

ε(T)
t, r̂ = r+(T) + r0ε(T)(coshη− 1), φ̂ = φ+

t

ε(T)
− t , ε(T) = 4πr0T ,

For T → 0 the geometry is the Near Horizon Extremal Kerr (NHEK) geometry

[Bardeen, Horowitz ’99]

ds2 = J
(
1 + cos2 θ

) (
− sinh2 ηdt2 + dη2 + dθ2

)
+ J

4 sin2 θ

1 + cos2 θ
(dφ+ (coshη− 1)dt)2
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Near Horizon Extremal Kerr

The NHEK metric has SL(2,R)×U(1) symmetry with generators

L±1 =
e∓t

sinhη
(coshη∂t ± sinhη∂η + (coshη− 1)∂φ) ,

L0 = ∂t + ∂φ , W = ∂φ.

• Maximal spin allowed for black hole

• It is a solution to the Einstein’s equations

• Extensively studied in the context of Kerr/CFT correspondence [Guica, Hartman, Song,

Strominger ’08]
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Quantum corrections and zero modes

First analytically continue t = −iτ. Regularity at η = 0 requires periodicity τ→ τ+ 2π

Partition function in the NH region is given by integral over metrics, subject to boundary conds

Z =

∫
[Dg]e−I[g] I[g] = −

1
16π

∫
M

d4x
√
gR+ Ibdary

NHEK is saddle point solution

Writing g = g+ hwhere g = gNHEK and expanding action at quadratic order

Z ≈ exp (−I[g])

∫
[Dh] exp

[
−

∫
d4x
√
ghD[g]h

]
.

D is a 2nd-order differential operator. Path-integral computes
∫
[Dh]e[−

∫
d4xhD[g]h] ∼ 1

det(D)
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Quantum corrections and zero modes

We choose a gauge-fixing term

LGF =
1

32π
gµν

(
∇αhαµ −

1
2
∇µhαα

)(
∇βhβν −

1
2
∇νhββ

)

Quadratic fluctuation operator term for Einstein-Hilbert action in NHEK is [Sen ’11]

hαβD
αβ,µν
NHEK hµν = −

1
16π

hαβ

(
1
4
gαµgβν�−

1
8
gαβgµν�+

1
2
R
αµβν

)
hµν
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Quantum corrections and zero modes

The operatorDNHEK supports an infinite family of normalizable zero modes on NHEK

h(n)µν dx
µdxν =

1
4π

√
3
2

√
|n|(n2 − 1)(1+cos2 θ)einτ

(sinhη)|n|−2

(1 + coshη)|n|
(dη2+2i

n

|n|
sinhηdηdτ−sinh2 ηdτ2)

for |n| > 1

→ They are metric perturbations generated by large diffeomorphisms left unfixed by harmonic

gauge. They obey
h(n) ∝ Lξ(n)gNHEK

with the vector field

ξ(n) = einτ tanh|n| η

2

(
in(|n|+ coshη)

sinhη
∂η −

|n|(|n|+ coshη) + sinh2 η

sinh2 η
∂τ +

i(coshη+ 1 + |n|− n2)

coshη+ 1
∂φ

)

Solvay workshop on near-extremal black holes, September 2024 Chiara Toldo



Quantum corrections and zero modes

The operatorDNHEK supports an infinite family of normalizable zero modes on NHEK

h(n)µν dx
µdxν =

1
4π

√
3
2

√
|n|(n2 − 1)(1+cos2 θ)einτ

(sinhη)|n|−2

(1 + coshη)|n|
(dη2+2i

n

|n|
sinhηdηdτ−sinh2 ηdτ2)

for |n| > 1

→ They are metric perturbations generated by large diffeomorphisms left unfixed by harmonic

gauge. They obey

h(n) ∝ Lξ(n)gNHEK

with the vector field

ξ(n) = einτ tanh|n| η

2

(
in(|n|+ coshη)

sinhη
∂η −

|n|(|n|+ coshη) + sinh2 η

sinh2 η
∂τ +

i(coshη+ 1 + |n|− n2)

coshη+ 1
∂φ

)

Solvay workshop on near-extremal black holes, September 2024 Chiara Toldo



Relation to the Schwarzian

Repackaging these modes

ξ =
∑
n

fnξ
(n)

Defining

f(τ) =
∑
n

fne
inτ

Large η behavior

ξ ≈ −f(τ)∂τ + f
′(τ)∂η + if(τ)∂φ .

Diffeos correspond to boundary time reparameterizations that send τ → τ − f(τ), η → η +

f ′(τ), and φ→ φ+ if(τ)

Modes are parameterized by element ofDiff(S1)/SL(2,R) (n = −1, 0, 1 are isometries hence

h vanishes)
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Recap

• NHEK operator admits an infinite family of zero modes

h
(n)
µν dx

µdxν = 1
4π

√
3
2

√
|n|(n2 − 1)(1 + cos2 θ)einτ (sinhη)|n|−2

(1+coshη)|n|
(dη2 + 2i n

|n|
sinhηdηdτ− sinh2 ηdτ2)

• these modes cost no action and have infinite volume, the one-loop approximation to the

path integral therefore suffers from an infrared divergence

Z ∝
∫

Diff(S1)/SL(2,R)

[Df(τ)] = ∞

• NHEK path integral is divergent and not well defined
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How to fix this

Do not fully decouple geometry, keep O(T) term near horizon [Iliesiu, Murthy, Turiaci ’22]

Use this ”not-NHEK” geometry to regulate the computation

Compute the correction to eigenvalues via perturbation theory
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”Not-NHEK”

Take the linear term in T in the decoupling limit

Zoom in the near-horizon geometry with change of coords

t̂ =
2r0

ε(T)
t, r̂ = r+(T) + r0ε(T)(coshη− 1), φ̂ = φ+

t

ε(T)
− t , ε(T) = 4πr0T ,

Expansion in small T gives

ds2 = gNHEK + T δgµνdx
µdxν
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”Not-NHEK”

Take the linear term in T in the decoupling limit

Full correction to the NHEK metric

δgµνdx
µdxν

4πJ3/2
=(1 + cos2 θ)(2 + coshη) tanh2 η

2
(dη2 − sinh2 ηdτ2)

+ sin2 θ coshη(dη2 + sinh2 ηdτ2) + 2 coshηdθ2

+ 2
sin2 θ

1 + cos2 θ
(coshη− 1)

(
(sin2 θ sinh2 η− 3) − 4

cos2 θ

1 + cos2 θ
coshη(coshη− 1)

)
dτ2

+ 2i
sin2 θ

1 + cos2 θ

(
(sin2 θ sinh2 η− 3) − 8

cos2 θ

1 + cos2 θ
coshη(coshη− 1)

)
dτdφ

+ 8 coshη
sin2 θ cos2 θ

(1 + cos2 θ)2
dφ2 .
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Eigenvalue correction

Expanding everything to first order in T

(D+ δD)(h0
n + δhn) = (Λ0

n + δΛn)(h
0
n + δhn)

h0 = extremal eigenfunctions with eigenvalues Λ0

Isolating O(T) terms, we get

Dδhn + δDh
0
n = Λ0

nδhn + δΛnh
0
n .

Taking the inner product with h0
m, using orthonormality

δΛn =

∫
d4x
√
g(h0

n)αβδD
αβ,µν(h0

n)µν .

Therefore corrected one loop determinant? is logZ = − 1
2

∑
n log(Λ0

n + δΛn)
?Modes with nonzero eigenvalues produce subleading corrections T-dependent terms
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Eigenvalue correction

Using

δDαβ,µν = δDαβ,µν
Box + δDαβ,µν

Riemann

where

δDαβ,µν
Box = −

1
16π

δ

(
1
4
gαµgβν�−

1
8
gµνgαβ�

)
δDαβ,µν

Riemann = −
1

32π
δ
(
Rαµβν

)
with gnot-NHEK = g+ δg.

Inserting form of zero-modes∫
d4x
√
g(h0

n)αβδD
αβ,µν
Riemann(h

0
n)µν = −

3n(n2 − 1)T
128J1/2

∫∞
0
dη
[
16(π−2) cothη csch2η tanh2n

(η
2

) ]
∫
d4x
√
g(h0

n)αβδD
αβ,µν
Box (h0

n)µν = −
3n(n2 − 1)T

128J1/2

∫∞
0
dη
[
csch3η sech4

(η
2

) (
(π− 2) cosh 3η+

+(4(n− 2)n+ 7π− 30) coshη− 2(n− 2π+ 4) cosh 2η+ 2n(4n+ 7) + 4π
)

tanh2n
(η

2

) ]
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log T Corrections to the Entropy

After integration it simplifies to

δΛn =
3nT

64J1/2
, n > 2 .

hence correction is

δ logZ = 2 · (−1/2)
∑
n>2

log δΛn = log

(∏
n>2

64J1/2

3nT

)

Using zeta function regularization
∏

n>2
α
n
= 1√

2π
1

α3/2 we obtain

δ logZ = log

( √
27

512
√

2π

T3/2

J3/4

)
=

3
2

log T + ... .

[Kapec, Sheta, Strominger, CT ’23] [Rakic, Rangamani, Turiaci ’23]
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log T Corrections to the Entropy

At low temperatures

Z[T ]Black Hole ∼ T
3/2exp[S0 + 8π2J3/2T ] + ...

Few remarks:

• Approximation is not valid when T3/2 ∼ e−S0. Below this temperature, the partition func-

tion is so small that other saddles will begin competing

• When T ∼ J−1/2 the linear term competes with the leading S0 term: small-T approximation

of the geometry not valid (correction term becomes as large as the NHEK metric).

We find ρ(E) → 0 as E → 0: no exponential ground state degeneracy or thermodynamic

mass gap. Ground states are spread out over a dense energy band above the vacuum.
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Subtleties: the rotational zero mode

In addition to tensor modes there are vector zero modes in the metric arising from isometries

of S2 in the case of static BHs (and U(1) for rotating BHs) [Sen ’11]

hiµ =
1√
2
εij∂

jYml (θ,φ)vµ vµ = ∂µΦn(τ,η)

They are zero modes in a specific ensemble
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Subtleties: the rotational zero mode

In addition to tensor modes there are vector zero modes in the metric arising from isometries

of S2 in the case of static BHs (and U(1) for rotating BHs) [Sen ’11]

hiµ =
1√
2
εij∂

jYml (θ,φ)vµ vµ = ∂µΦn(τ,η)

They are zero modes in a specific ensemble

For Kerr black holes, naive guess does not satisfy the gauge condition and is not a zero mode

of the operator (treated in more detail in [Rakic, Rangamani, Turiaci ’23] and in Mukund’s talk

yesterday!).

Nevertheless, the 3/2 log T correction is universal, ensemble-independent
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AdS4 black holes
[w.i.p. with M. Heydeman]
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AdS4 black holes: extremal and supersymmetric limits

Exist AdS4 black holes that preserve susy [Romans ’92] [Kostelecky, Perry ’94].

Work with minimal N = 2 gauged supergravity, S = − 1
16πG

∫
d4x
√
g
(
R+ 6 − F2

)
, arising from

M-theory on S7 with ABJM dual

1/4 BPS rotating black holes: Electric Kerr-Newman BH, no static limit

1/4 BPS ”twisted” black holes: Dyonic, magnetic charge flux fixed. Can switch off rotation.

Microstate counting achieved via computation of superconformal index [S. Kim et al, ’19] and

topologically twisted index [Benini, Hristov, Zaffaroni ’16]
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Strategy

Aim: Computing (quantum-corrected) density of near-BPS states

[Boruch, Iliesiu, Heydeman, Turiaci ’22]

→ Give prediction for ABJM ground state degeneracy and gap, assuming that the throat com-

putation provides the dominant effect at low T

Find dimensional reduction to 2d in NH region, which has SU(1, 1|1) symmetry. Theory de-

scribing excitations over extremality is N = 2 JT gravity. Path integral computation is one-loop

exact and known from previous works [Stanford, Witten ’17] [Mertens, Turiaci, Verlinde ’17]

Need to input parameters coming from gravity: expansion of IBH around its BPS values
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Rotating, electric BHs

Work in mixed ensemble: one charge j = J+ R4 fixed

Chemical potential

α =
β

4πi
(4Φ4 −Ω− 1) αsusy =

1
2

Perform sum over configurations with the same boundary conditions: α→ α+ n

1-loop partition function:

Z = e4πiαR∗
∑
n∈Z

einϑ
(

2 cos(π(α+ n))

π(1 − 4(α+ n)2)

)
e
S∗+ 2 π2

βMGAP
(1−4(α+n)2)

,

Input from gravity: BH thermodynamics (expansion of on-shell action)

IME(β, j,α) = −S∗ − 4πiαR∗ −
2π2

βMGAP

(
1 − 4α2

)
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Rotating, electric BHs

Work in mixed ensemble: one charge j = J+ R4 fixed

Chemical potential

α =
β

4πi
(4Φ4 −Ω− 1) αsusy =

1
2

Perform sum over configurations with the same boundary conditions: α→ α+ n

1-loop partition function:

Z = e4πiαR∗
∑
n∈Z

(
2 cos(π(α+ n))

π(1 − 4(α+ n)2)

)
e
S∗+ 2 π2

βMGAP
(1−4(α+n)2)

,

Input from gravity: BH thermodynamics (expansion of on-shell action)

IME(β, j,α) = −S∗ − 4πiαR∗ −
2π2

βMGAP

(
1 − 4α2

)
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Corrections to entropy

Extract form for the density of states via Laplace transform

ρ(α, j,E) = e4πiαR∗eS∗

δZSch,0 +
∑
ZSch∈Z

(e2πiαZSch + e2πiα(ZSch−1))

sinh

(
2π
√

2(E−Egap)
MGAP

)
2πE

Θ(E− Egap)


Egap =

MGAP

8

(
ZSch −

1
2

)2
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Corrections to entropy

In terms of field theory variables: Schwarzian energy related to the scaling dimension ∆

∆ = ∆BPS + E+ (R− R∗) = ∆BPS + E+ ZSch

and

R = R∗ + ZSch

Density of states

(a) susy

mass gap present

eS0 matches SCI
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Corrections to entropy

In terms of field theory variables: Schwarzian energy related to the scaling dimension ∆

∆ = ∆BPS + E+ (R− R∗) = ∆BPS + E+ ZSch

and

R = R∗ + ZSch

Density of states

(b) non-susy

density → 0 for

extremal BH
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Dyonic twisted solutions

Work in truncation of M5-branes wrapping hyperbolic manifolds Σ3. The 7d internal space is

an S4 fibered over Σ3, and the resulting 4d sugra

S = −
1

16πG

∫
d4x
√
g
(
R+ 6 − F2

)
+
iϑ

8π2

∫
F∧ F (1)

whose duals are class R-theories. Susy solution:

ds2 = V(r)dτ2 +
dr2

V(r)
+ r2(dθ2 + sinh2 θdφ2) V(r) =

(
r−

1
2r

)2

−
Q2

r2

F =
Q

r2
dτ∧ dr± 1

2
sinh θ

Expansion around BPS limit: read off MGAP = 2
√

2G4
π2 and S∗ = π

2G4
(g − 1), which are input

parameters for the quantum corrected action
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Corrections to entropy

Read off density of states

ρ(α,E, ϑ) = eS∗

 ∑
ZSch∈Z, |ZSch−

ϑ
2π |<

1
2

cos(
ϑ

2
)(−1)ZSche2πiαZSch

+
∑
ZSch∈Z

(e2πiαZSch + e2πiα(ZSch−1))

sinh

(
2π
√

2(E−Ẽgap)
MGAP

)
2πE

Θ(E− Ẽgap)


with redefined Schwarzian charge Ẽgap =

MGAP
8

(
ZSch −

1
2 −

ϑ
2π

)2
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Corrections to entropy

• Supersymmetric limit obtained for α = 1/2. With ϑ angle there are cancellations due to

additional phase, matching [Choi,Gang,Kim’20] [Benetti Genolini ’21]

I[H3;Σg] = Z[H3;Σg](β,α =
1
2
) =

1
2

(
eS∗+i

ϑ
2 + eS∗−i

ϑ
2

)
= eS∗ cos

(
ϑ

2

)
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Corrections to entropy

• Supersymmetric limit obtained for α = 1/2. With ϑ angle there are cancellations due to

additional phase, matching [Choi,Gang,Kim’20] [Benetti Genolini ’21]

I[H3;Σg] = Z[H3;Σg](β,α =
1
2
) =

1
2

(
eS∗+i

ϑ
2 + eS∗−i

ϑ
2

)
= eS∗ cos

(
ϑ

2

)

• Density of states for ϑ = π diverges at the ori-

gin due to a single gapless set of multiplets

Similar behaviour found in N = 2 SYK with odd number of fermions [Stanford, Witten ’17].

Same found in black holes with 11d uplift!

Solvay workshop on near-extremal black holes, September 2024 Chiara Toldo



Corrections to entropy

• Supersymmetric limit obtained for α = 1/2. With ϑ angle there are cancellations due to

additional phase, matching [Choi,Gang,Kim’20] [Benetti Genolini ’21]

I[H3;Σg] = Z[H3;Σg](β,α =
1
2
) =

1
2

(
eS∗+i

ϑ
2 + eS∗−i

ϑ
2

)
= eS∗ cos

(
ϑ

2

)

• Density of states for ϑ = π diverges at the ori-

gin due to a single gapless set of multiplets

” mixed ’t Hooft anomaly ”: Partition function is initially invariant under α → −α (time

reversal) and α→ α+ 1. For generic ϑ, time reversal anomalous

To be continued...
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Conclusions and perspectives

Provided a framework where quantum corrections to near extremal black hole entropy can be

computed. They predict lifting of the ground state degeneracy of extremal non-supersymmetric

black holes (such as Kerr) and a mass gap for susy ones.

Open questions & further directions:

• How to account for superradiance? In NHEK or needs full geometry?

• AdS setups, how to reproduce answer via dual field theory?

• Different asymptotics (i.e. de Sitter black holes)?
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the end. Thank you!
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Additional slides

Classical contribution:

logZtree = S0 + 2π2J3/2T

1-loop contribution (T-dependent)

logZ1−loop =
1

180
(2nS − 26nV + 7nF + 154) logS0 +

3
2

log

(
T

J3/2

)
Total free energy (neglecting logS0 terms)

−βF = logZtree + logZ1−loop = log(Ztree ∗ Z1−loop) = S0 + 2π2J3/2T +
3
2

log

(
T

J3/2

)
Hence

Ztot ∝ T3/2exp[S0 + 2π2J3/2T ]
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