Instability of Extremal Black Holes in AdS Supergravity

Finn Larsen

University of Michigan

Solvay Workshop on Near Extremal Black Holes

Bruxelles, September 3, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction: Extremal Black Holes are Unstable

Black holes are parametrized by their conserved charges.
 Examples: angular momentum J and electric charge Q.

Extremal black holes: **minimal mass** for given charges.

► Lowest possible energy ⇒ ground state of the system.
Intuition on extremal BH's: particularly stable. Misleading

Better intuition for extremal black holes:

Constituents repel maximally: BH's fall apart easily.

Supersymmetry and Unitarity

A theory with supersymmetry: charges form an algebra.

• Unitarity of quantum states \Rightarrow lower bound on energy.

$$M \geq \sum_i Q_i + \sum_a J_a$$

► **Supersymmetric** states ⇔ unitarity bound **saturated**.

Fact: Supersymmetric black holes are exceedingly rare.

They **do not exist**, unless charges are **fine-tuned**.

Moreover: non-SUSY extremal BHs are classically unstable.

Example: 4D Black Holes in Flat Space

Entropy of Kerr-Newman black holes:

$$S = \frac{A}{4G_4} = \frac{\pi}{G_4} \left[\frac{J^2}{M^2} + \left(MG_4 + \sqrt{(MG_4)^2 - Q^2 - \frac{J^2}{M^2}} \right)^2 \right]$$

Extremality bound:

$$G_4 M^2 \geq rac{1}{2} Q^2 + \sqrt{rac{1}{4} Q^4 + J^2}$$

Black holes solutions exist **only** for these masses.

Supersymmetry: condition in addition to extremality.

$$G_4 M^2 = Q^2 , \quad J = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Instability: Superradiance

• Extremal black holes with $J \neq 0$ are **unstable**.

Naïve emission rate of Hawking quanta:

$$\Gamma(\omega) = \frac{\sigma_{\rm abs}(\omega)}{e^{\beta(\omega-m\Omega)} - 1} \frac{d^3k}{(2\pi)^3}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Ω is the **rotational velocity**.

• The rate **diverges** at sufficiently low energy $\omega \leq m\Omega$.

Physical interpretation: superradiant instability.

Outline of Talk

Part A: Thermodynamic Instability of BTZ Black Holes.
 Spontaneous emission of chiral primaries

▶ Part B: Phase Diagram of of Extremal AdS₅ Black Holes.

Basic thermodynamics and its consequences.

Part C: Superfluidity: the Spectrum of Scalar Fields.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Past and WIP supported by US DoE.

Nizar Ezroura, Zhiquan Lao, Siyul Lee, Billy Liu.

Part A

Thermodynamic Instability of BTZ Black Holes

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Black Holes in AdS₃: SUSY or Not

• CFT₂ with
$$\mathcal{N} = (4, 4)$$
 supersymmetry: $c_{L,R} = 6k_{L,R}$.

The unitarity bound due to supersymmetry:

$$E \ge P + J_L - \frac{1}{2}k_L = E_{\rm BPS}$$

"Angular" momenta: P within AdS₃, $J_{L,R}$ on S^3 .

Black hole solutions exist only when

$$E \geq E_{\mathrm{ext}} = P + rac{1}{2k_L}J_L^2 \geq E_{\mathrm{BPS}}$$

Extremal black holes have $E = E_{ext}$.

Supersymmetry requires: $E_{\text{ext}} = E_{\text{BPS}} \Leftrightarrow J_L = k_L$.

The Unitarity Bound in AdS₃

- Black holes (blue) possible above extremality: dark blue curve.
- ▶ BPS limit (green): linear in J with range $0 \le J \le 2k_L$.
- Red curve and J in broader range: spectral flow.
- Black holes impossible between straight lines and blue region.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thermodynamic Instability: Emission of Chiral Primary

• An (anti)-chiral primary has $\epsilon - p = j_L (\epsilon + p = j_R)$.

Spontaneous emission may increase black hole entropy:

$$TdS = dM - \mu dP - \omega_R dJ_R - \omega_L dJ_L > 0 \quad \Rightarrow \quad \frac{J_L}{k_L} > 1$$

End product: stable BH + gas of chiral primaries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Scenario: Instability of NearExtremal BTZ BH

Initial: BH is above extremality, but not too much.

- Final: BH has less mass and charge, but more entropy.
- Gas of chiral primaries carries negligible entropy.
- Interaction between two phases negligible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamics of Particle Emission

Outward trajectory of a chiral primary: no classical barrier.

Finite radial velocity at the horizon, particle never stops.

Eventually: stable remnant and then emitted chiral primaries acquire circular orbits far from the central BH.

The final gas is dilute because AdS has large volume.

Upshot: BH shed finite mass and charge, increased entropy.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Part B

Phase Diagram of AdS₅ Black Holes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Black Holes in $AdS_5 \times S^5$: Quantum Numbers

Symmetry of theory: $SO(2,4) \times SO(6) + SUSY$.

- SO(2,4) representation of fields:
 Conformal weight E and angular momenta J_{a,b}.
- ▶ SO(6) representation of fields: **R-charges** Q_I (I = 1, 2, 3).
- So asymptotic data of black holes in AdS₅: Mass M = E, 2 Angular momenta J_{a,b}, and 3 R-charges Q₁.
- The mass of supersymmetric black holes:

$$M_{\rm SUSY} = Q_1 + Q_2 + Q_3 + J_a + J_b$$

This talk:
$$\frac{\pi}{4G_5}\ell_5^3 = \frac{1}{2}N^2$$
 and $\ell_5 = 1$.

The Constraint on Charges

Supersymmetric black holes in AdS₅ impossible satisfy the quantum numbers of all constraint:

$$\left(\left(Q_1 Q_2 + Q_2 Q_3 + Q_1 Q_3 \right) - \frac{1}{2} N^2 (J_a + J_b) \right) \left(\frac{1}{2} N^2 + (Q_1 + Q_2 + Q_3) \right) \\ + \frac{1}{2} N^2 J_a J_b - Q_1 Q_2 Q_3 = 0$$

For example, rotation is mandatory $J_{a,b} \neq 0$.

Extremal BHs that violate the constraint have excess mass.

$$M - M_{\rm SUSY} \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Mass Excess: Above the BPS Bound

Extremal BHs that violate the constraint have excess mass.

 $M - M_{\rm SUSY} \ge 0$

It is favorable to shed the excess mass.

Instability Criterion of AdS₅ BH from the First Law

Hypothesis: extremal nonSUSY BHs are unstable.

The first law of black hole thermodynamics:

$$TdS = dM - 2\Omega dJ - 3\Phi dQ$$

= $\underbrace{d(M - 2J - 3Q)}_{\text{mass excess}} + 2(1 - \Omega)dJ + 3(1 - \Phi)dQ$

Emission of a BPS particle:

 $dJ \leq 0$ and $dQ \leq 0$ and mass excess preserved.

• Thermodynamically **favorable**: dS > 0 if $\Omega > 1$ or $\Phi > 1$.

Instability Criterion: Extremal Black Holes

Three types of extremal black holes in AdS₅:

• BPS: constraint satisfied and $\Phi = \Omega = 1$.

• Reissner-Nordström-like: constraint **positive** and $\Phi > 1$.

• Kerr-Like: constraint **negative** and $\Omega > 1$.

Conclusion: all nonBPS extremal BHs are unstable.

Stability bound above the extremality bound:

 $M_{
m stability} \geq M_{
m ext} \geq M_{
m BPS}$

Phases of Extremal Black Holes in AdS₅

Instability near axes: superradiance/superconductivity.

(日) (四) (日) (日) (日)

They extend all the way to the BPS line.

The BPS line is a **phase boundary**.

Pause

Part C

Superfluidity

Instability: the Breitenlohner Freedman Bound

• Model: free scalar field with mass m^2 in AdS_{d+1} .

The wave equation reduces to the Schrödinger equation:

$$-\frac{d^2\psi}{dz^2} + \left[\vec{k}^2 + \frac{1}{z^2}(m^2\ell^2 - \frac{1-d^2}{4})\right]\psi = \omega^2\psi$$

Bound states in 1/r² potential if coefficient is too negative.

Instability: this corresponds to exponential time dependence.

The Breitenlohner-Freedman bound:

$$m^2\ell_{d+1}^2\geq -rac{1}{4}d^2$$

Scalars in AdS₅

$$\blacktriangleright \mathcal{N} = 4 \text{ SYM} \quad \Leftrightarrow_{\text{AdS/CFT}} \quad \mathcal{N} = 8 \text{ SUGRA in bulk.}$$

▶ 42 Scalars fields in **vacuum** of $\mathcal{N} = 8 \text{ AdS}_5$ supergravity:

• t in 20' of $SU(4)_R$: $m^2 = -4 \leftrightarrow \Delta = 2$

•
$$\varphi$$
 in $\mathbf{10}_c$ of $SU(4)_R$: $m^2 = -3 \leftrightarrow \Delta = 3$

 $\blacktriangleright \ \Lambda \ \text{in} \ \mathbf{1}_c \ \text{of} \ SU(4)_R: \qquad m^2 = 0 \quad \leftrightarrow \quad \Delta = 4$

The BF stability bound in AdS₅:

$$m^2 \ell_5^2 \ge -\frac{1}{4} d^2 = -4$$

The *t* scalars are at the BF bound in AdS_5 .

Kerr-Newman AdS as a Supergravity Solution

Here the environment is an AdS₅ black hole, not the vacuum.

Kerr-Newman-AdS solves Einstein-Maxwell-AdS theory.

Now: **reinterpret** it as a solution to supergravity.

▶ $\mathcal{N} = 8$ SUGRA has $SU(4)_R$ symmetry \Rightarrow 15 vector fields.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pick background vector field as the unique linear combination that permits constant scalars.

Fluctuating Matter Fields in AdS₅

- Fluctuations around black hole: supergravity fields expanded to quadratic order around background.
- Symmetry breaking pattern: $SU(4)_R \rightarrow SU(3) \times U(1)$.
- Generally: matter fields are charged with respect to "the" gauge field in the black hole background.
- ▶ Also: degeneracy remains due to SU(3) global symmetry.

▶ 20' scalars $t \Rightarrow 8$ neutral t_- and 12 t_+ with charge $e = \pm 2$:

$$\mathbf{20'} \ \rightarrow \mathbf{8}_0 \ \oplus \left(\mathbf{3}_2 \oplus \mathbf{\bar{3}}_2 \oplus \mathbf{3}_{-2} \oplus \mathbf{\bar{3}}_{-2}\right)$$

Attractor Flow

- The radial dependence in BH background: attractor flow.
- Very well developed in ungauged supergravity.
- Complicating factors in current context:
 - AdS vacua in gauged supergravity.
 - **Rotation**, or else supersymmetry is **not possible**.
 - **General extremal** case, not necessarily supersymmetric.
- Upshot: an effective mass in near horizon AdS₂ region (with squashed S³ fibre).

Light Scalars in KNAdS Background

► The BF-bound in AdS₂:

$$m^2 \ell_2^2 = -4 \frac{\ell_2^2}{\ell_5^2} \ge -\frac{1}{4} d^2 = -\frac{1}{4}$$

The fate depends on the BH parameters via the AdS₂ radius.

Large unstable region includes many BPS black holes.

(日) (四) (日) (日) (日)

Non-Minimal Couplings

All of the 20' scalars have non-minimal couplings.

Kinetic terms for vectors in supergravity:

$$\mathcal{L} \sim -\mathcal{N}(\phi) \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u}$$

Kinetic function $\mathcal{N}(\phi)$ depends on the scalar field.

In AdS₂, this Pauli Coupling is an effective mass:

$$m_{
m Pauli}^2 = -p\cdotrac{1}{4}F_{\mu
u}F^{\mu
u}$$

The coupling p = +2 for t_+ and p = -2 for t_- .

Moreover, 8 neutral t₋ mix with 8 fluctuating gauge fields a₋.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Physics of Minimal Couplings

Minimal coupling to the background vector field:

 $|(D_{\mu} + ieA_{\mu})\phi|^2$

For the 12 t_+ fields, the $U(1)_R$ charge is e = 2.

In AdS₂, the coupling gives an effective mass

$$m_{
m minimal}^2 = e^2 g^{\mu
u} A_\mu A_
u$$

It is **negative** in an electric background.

Superfluidity

- The background electric potential gives charged scalars an expectation value.
- This is superfluidity
- Holographic superconductivity was much studied, but not embedded in full supergravity.
- Superconductivity applies when the BH is underrotating.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Fate of the Lightest Scalars: Charged Sector

▶ 12 charged t_+ also have Pauli couplings to $\mathcal{F}_{\mu\nu}$.

The coupling p = 2 > 0 compensates the minimal coupling.

• On balance: the t^+ scalars are **stable** for BPS black holes.

Also stable in Reissner-Nordström: no superconductivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Pseudo Scalars φ_1 Condense

- ▶ 10_c fields φ have $m^2 \ell_5^2 = -3$: easily stable in AdS₅ vacuum.
- ▶ In KN-AdS₅ background: two components φ_1 have $e = \pm 3$.
- This large minimal coupling drives superconductivity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

• Charges of **supersymmetric** BH's must satisfy a **constraint**.

▶ NonSUSY extremal black holes are classically unstable.

► AdS₃: **spontaneous** emission of chiral primaries.

► AdS₅:

► overrotation ⇒ **superradiance**

► overcharging ⇒ **superconductance**