Instability of Extremal Black Holes in AdS Supergravity

Finn Larsen

University of Michigan

Solvay Workshop on Near Extremal Black Holes

Bruxelles, September 3, 2024

KORK ERKER ADAM ADA

Introduction: Extremal Black Holes are Unstable

▶ Black holes are parametrized by their **conserved charges**. Examples: angular momentum J and electric charge Q.

 \triangleright Extremal black holes: minimal mass for given charges.

► Lowest possible energy \Rightarrow **ground state** of the system. Intuition on extremal BH's: **particularly stable. Misleading**

 \triangleright **Better** intuition for extremal black holes:

Constituents repel maximally: BH's fall apart easily.

Supersymmetry and Unitarity

A theory with supersymmetry: charges form an algebra.

▶ Unitarity of quantum **states** \Rightarrow **lower bound** on energy.

$$
M \geq \sum_i Q_i + \sum_a J_a
$$

▶ Supersymmetric states \Leftrightarrow unitarity bound **saturated**.

▶ Fact: Supersymmetric black holes are exceedingly rare.

They **do not exist**, unless charges are **fine-tuned**.

▶ Moreover: non-SUSY extremal BHs are classically unstable.

KID KA KERKER KID KO

Example: 4D Black Holes in Flat Space

▶ Entropy of Kerr-Newman black holes:

$$
S = \frac{A}{4G_4} = \frac{\pi}{G_4} \left[\frac{J^2}{M^2} + \left(MG_4 + \sqrt{(MG_4)^2 - Q^2 - \frac{J^2}{M^2}} \right)^2 \right]
$$

▶ Extremality bound:

$$
G_4M^2 \geq \frac{1}{2}Q^2 + \sqrt{\frac{1}{4}Q^4 + J^2}
$$

Black holes solutions exist **only** for these masses.

▶ Supersymmetry: condition in addition to extremality.

$$
G_4M^2=Q^2\ ,\quad J=0
$$

Instability: Superradiance

Extremal black holes with $J \neq 0$ are unstable.

▶ Naïve emission rate of Hawking quanta:

$$
\Gamma(\omega) = \frac{\sigma_{\text{abs}}(\omega)}{e^{\beta(\omega - m\Omega)} - 1} \frac{d^3k}{(2\pi)^3}
$$

 Ω is the **rotational velocity**.

 \triangleright The rate diverges at sufficiently low energy $ω < mΩ$.

▶ Physical interpretation: superradiant instability.

Outline of Talk

▶ Part A: Thermodynamic Instability of **BTZ Black Holes**.

Spontaneous emission of **chiral primaries**

 \triangleright Part B: **Phase Diagram** of of Extremal AdS₅ Black Holes.

Basic thermodynamics and its consequences.

▶ Part C: **Superfluidity:** the **Spectrum** of Scalar Fields.

Past and WIP supported by US DoE.

Nizar Ezroura, Zhiquan Lao, Siyul Lee, Billy Liu.

Part A

Thermodynamic Instability of BTZ Black Holes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Black Holes in AdS_3 : SUSY or Not

• CFT₂ with
$$
\mathcal{N} = (4, 4)
$$
 supersymmetry: $c_{L,R} = 6k_{L,R}$.

 \blacktriangleright The **unitarity bound** due to supersymmetry:

$$
E \ge P + J_L - \frac{1}{2}k_L = E_{\rm BPS}
$$

"Angular" momenta: P within AdS₃, $J_{L,R}$ on S^3 .

 \triangleright **Black hole** solutions exist only when

$$
E \ge E_{\text{ext}} = P + \frac{1}{2k_L} J_L^2 \ge E_{\text{BPS}}
$$

Extremal black holes have $E = E_{ext}$.

▶ Supersymmetry requires: $E_{ext} = E_{BPS} \Leftrightarrow J_L = k_L$.

The Unitarity Bound in AdS_3

- \triangleright Black holes (blue) possible above extremality: dark blue curve.
- ▶ BPS limit (green): linear in J with range $0 < J < 2k_L$.
- \triangleright Red curve and J in broader range: **spectral flow**.
- ▶ Black holes *impossible* between straight lines and blue region.

Thermodynamic Instability: Emission of Chiral Primary

An (anti)-chiral primary has $\epsilon - p = j_L$ ($\epsilon + p = j_R$).

▶ Spontaneous emission may **increase** black hole entropy:

$$
TdS = dM - \mu dP - \omega_R dJ_R - \omega_L dJ_L > 0 \Rightarrow \frac{J_L}{k_L} > 1
$$

 \triangleright End product: stable BH $+$ gas of chiral primaries.

Scenario: Instability of NearExtremal BTZ BH

 \blacktriangleright Initial: BH is above extremality, but not too much.

▶ Final: BH has less mass and charge, but more entropy.

 \triangleright Gas of chiral primaries carries negligible entropy.

▶ Interaction between two phases negligible.

Dynamics of Particle Emission

▶ Outward trajectory of a chiral primary: **no classical barrier**.

 \triangleright Finite radial velocity at the horizon, particle never stops.

 \blacktriangleright Eventually: stable remnant and then emitted chiral primaries acquire circular orbits far from the central BH.

 \blacktriangleright The final gas is dilute because AdS has large volume.

▶ Upshot: BH shed finite mass and charge, increased entropy.

Part B

Phase Diagram of AdS₅ Black Holes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Black Holes in $AdS_5 \times S^5$: Quantum Numbers

▶ Symmetry of theory: $SO(2, 4) \times SO(6) + SUSY$.

- \triangleright $SO(2, 4)$ representation of fields: **Conformal weight** E and **angular momenta** $J_{a,b}$.
- ▶ SO(6) representation of fields: **R-charges** Q_1 ($I = 1, 2, 3$).
- \triangleright So asymptotic data of black holes in AdS₅: Mass $M = E$, 2 Angular momenta $J_{a,b}$, and 3 R-charges Q_l .
- \blacktriangleright The mass of **supersymmetric** black holes:

$$
M_{\text{SUSY}} = Q_1 + Q_2 + Q_3 + J_a + J_b
$$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + + E + + E + + O + O + + E + + O + + C + + + + +

This talk:
$$
\frac{\pi}{4G_5}\ell_5^3 = \frac{1}{2}N^2
$$
 and $\ell_5 = 1$.

The Constraint on Charges

 \triangleright Supersymmetric black holes in AdS₅ impossible satisfy the quantum numbers of all constraint:

$$
\left((Q_1Q_2+Q_2Q_3+Q_1Q_3)-\frac{1}{2}N^2(J_a+J_b)\right)\left(\frac{1}{2}N^2+(Q_1+Q_2+Q_3)\right)+\frac{1}{2}N^2J_aJ_b-Q_1Q_2Q_3=0
$$

 \blacktriangleright For example, **rotation is mandatory** $J_{a,b} \neq 0$.

 \triangleright Extremal BHs that violate the constraint have excess mass.

$$
M-M_{\rm SUSY}\geq 0
$$

The Mass Excess: Above the BPS Bound

 \triangleright Extremal BHs that violate the constraint have excess mass.

 $M - M_{\text{SUSY}} > 0$

 \blacktriangleright It is favorable to shed the excess mass.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Instability Criterion of $AdS₅$ BH from the First Law

▶ Hypothesis: extremal nonSUSY BHs are **unstable**.

 \blacktriangleright The first law of black hole thermodynamics:

$$
TdS = dM - 2\Omega dJ - 3\Phi dQ
$$

=
$$
\underbrace{d(M - 2J - 3Q)}_{\text{mass excess}} + 2(1 - \Omega)dJ + 3(1 - \Phi)dQ
$$

▶ Emission of a **BPS particle:**

 $dJ < 0$ and $dQ < 0$ and mass excess preserved.

 \blacktriangleright Thermodynamically **favorable**: $dS > 0$ if $Ω > 1$ or $Φ > 1$.

Instability Criterion: Extremal Black Holes

 \blacktriangleright Three types of **extremal** black holes in AdS₅:

► BPS: constraint **satisfied** and $Φ = Ω = 1$.

► Reissner-Nordström-like: constraint **positive** and $\Phi > 1$.

► Kerr-Like: constraint **negative** and $Ω > 1$.

▶ Conclusion: all nonBPS extremal BHs are unstable.

 \triangleright Stability bound **above** the extremality bound:

 $M_{\text{stability}} > M_{\text{ext}} > M_{\text{BPS}}$

KID KA KERKER KID KO

Phases of Extremal Black Holes in AdS₅

Instability near axes: superradiance/superconductivity.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

 \blacktriangleright They extend all the way to the BPS line.

The BPS line is a **phase boundary**.

Pause

K ロ K K d K K B K K B K X B K Y Q Q Q

Part C

Superfluidity

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Instability: the Breitenlohner Freedman Bound

 \blacktriangleright Model: free scalar field with mass m^2 in AdS_{d+1} .

 \triangleright The wave equation reduces to the Schrödinger equation:

$$
-\frac{d^2\psi}{dz^2} + \left[\vec{k}^2 + \frac{1}{z^2}(m^2\ell^2 - \frac{1-d^2}{4})\right]\psi = \omega^2\psi
$$

Bound states in $1/r^2$ potential if coefficient is too negative.

Instability: this corresponds to exponential time dependence.

▶ The Breitenlohner-Freedman bound:

$$
m^2\ell_{d+1}^2 \geq -\frac{1}{4}d^2
$$

KELK KØLK VELKEN EL 1990

Scalars in $AdS₅$

$$
\triangleright \mathcal{N}=4 \text{ SYM} \quad \underset{\text{AdS}/\text{CFT}}{\Leftrightarrow} \quad \mathcal{N}=8 \text{ SUGRA in bulk}.
$$

▶ 42 Scalars fields in **vacuum** of $\mathcal{N} = 8$ AdS₅ supergravity:

 \triangleright t in 20' of $SU(4)_R$: $m^2 = -4 \leftrightarrow \Delta = 2$

$$
\blacktriangleright \varphi \text{ in } \mathbf{10}_c \text{ of } SU(4)_R: \quad m^2 = -3 \leftrightarrow \Delta = 3
$$

 \triangleright A in $\mathbf{1}_c$ of $SU(4)_R$: $m^2 = 0 \Leftrightarrow \Delta = 4$

 \blacktriangleright The BF stability bound in AdS₅:

$$
m^2 \ell_5^2 \geq -\frac{1}{4}d^2 \quad = \quad -4
$$

The t scalars are at the BF bound in AdS_5 .

Kerr-Newman AdS as a Supergravity Solution

 \blacktriangleright Here the environment is an AdS₅ black hole, not the vacuum.

▶ Kerr-Newman-AdS solves Einstein-Maxwell-AdS theory.

Now: reinterpret it as a solution to supergravity.

▶ $\mathcal{N}=8$ SUGRA has $SU(4)_R$ symmetry \Rightarrow 15 vector fields.

 \triangleright Pick **background** vector field as the unique linear combination that permits constant scalars.

Fluctuating Matter Fields in $AdS₅$

- ▶ Fluctuations around black hole: supergravity fields expanded to quadratic order around background.
- ▶ Symmetry breaking pattern: $SU(4)_R \rightarrow SU(3) \times U(1)$.
- \triangleright Generally: matter fields are **charged** with respect to "the" gauge field in the black hole background.
- \triangleright Also: **degeneracy** remains due to $SU(3)$ global symmetry.

▶ 20' scalars $t \Rightarrow 8$ neutral $t_-\$ and 12 $t_+\$ with charge $e = \pm 2$:

$$
\mathbf{20'}\ \rightarrow\mathbf{8_0}\ \oplus\left(\mathbf{3_2}\oplus\mathbf{\bar 3_2}\oplus\mathbf{3_{-2}}\oplus\mathbf{\bar 3_{-2}}\right)
$$

KORKAR KERKER SAGA

Attractor Flow

- ▶ The radial dependence in BH background: **attractor flow**.
- \triangleright Very well developed in **ungauged** supergravity.
- ▶ Complicating factors in current context:
	- \blacktriangleright AdS vacua in **gauged** supergravity.
	- **Rotation**, or else supersymmetry is **not possible**.
	- \triangleright General extremal case, not necessarily supersymmetric.
- \triangleright Upshot: an effective mass in near horizon AdS₂ region (with squashed S^3 fibre).

Light Scalars in KNAdS Background

 \blacktriangleright The BF-bound in AdS₂:

$$
m^2 \ell_2^2 = -4 \frac{\ell_2^2}{\ell_5^2} \ge -\frac{1}{4} d^2 \quad \equiv_{d=1}^{\infty} -\frac{1}{4}
$$

 \triangleright The fate depends on the BH parameters via the AdS₂ radius.

▶ Large unstable region *includes* many BPS black holes.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Non-Minimal Couplings

▶ All of the 20' scalars have non-minimal couplings.

 \blacktriangleright Kinetic terms for vectors in supergravity:

$$
\mathcal{L} \sim -\mathcal{N}(\phi) \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}
$$

Kinetic function $\mathcal{N}(\phi)$ depends on the scalar field.

 \blacktriangleright In AdS₂, this **Pauli Coupling** is an effective mass:

$$
m_{\text{Pauli}}^2 = -p \cdot \frac{1}{4} F_{\mu\nu} F^{\mu\nu}
$$

The coupling $p = +2$ for t_+ and $p = -2$ for t_- .

▶ Moreover, 8 neutral $t_$ mix with 8 fluctuating gauge fields $a_$.

KID KA KERKER KID KO

The Physics of Minimal Couplings

▶ Minimal coupling to the background vector field:

 $|(D_\mu + i\epsilon A_\mu) \phi|^2$

For the 12 t_{+} fields, the $U(1)_{R}$ charge is $e = 2$.

 \blacktriangleright In AdS₂, the coupling gives an effective mass

$$
m^2_{\rm minimal}=e^2g^{\mu\nu}A_\mu A_\nu
$$

It is **negative** in an electric background.

Superfluidity

 \triangleright The background electric potential gives **charged scalars** an expectation value.

 \blacktriangleright This is superfluidity

▶ Holographic superconductivity was much studied, but not embedded in full supergravity.

 \triangleright Superconductivity applies when the BH is **under** rotating.

The Fate of the Lightest Scalars: Charged Sector

▶ 12 charged t_+ also have Pauli couplings to $\mathcal{F}_{\mu\nu}$.

The coupling $p = 2 > 0$ compensates the minimal coupling.

 \triangleright On balance: the t^+ scalars are stable for BPS black holes.

▶ Also stable in Reissner-Nordström: no superconductivity

The Pseudo Scalars φ_1 Condense

- ▶ 10_c fields φ have $m^2 \ell_5^2 = -3$: easily stable in AdS₅ vacuum.
- In KN-AdS₅ background: two components φ_1 have $e = \pm 3$.
- ▶ This large minimal coupling drives superconductivity.

Summary

▶ Charges of **supersymmetric** BH's must satisfy a **constraint**.

▶ NonSUSY extremal black holes are classically unstable.

 \blacktriangleright AdS₃: **spontaneous** emission of chiral primaries.

 \blacktriangleright AdS₅:

▶ overrotation \Rightarrow superradiance

▶ overcharging \Rightarrow superconductance