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Outline & Motivations

(Near-)Extremal black holes in de Sitter spacetime

Study deviations away from extremality for RNdSy and
Kerr-dS, BHs

Characterise the differences between BHs in de Sitter
(A > 0) versus AdS (A < 0) and Minkowski (A = 0)

— more extremal limits & richer phase space of solutions

Charged and rotating dS BH; dimensional reduction and
gravitational perturbations. Are they described by JT?

Review of Reissner-Nordstrom dS and presentation of
Kerr-dS
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De Sitter black holes

Solutions of Einstein’s equations with a positive Cosmological

Constant (A > 0).
Presence of A has qualitative and quantitative repercussions on
our understanding of black holes:

> adds a cosmological horizon, r.

» Thermodynamics at the cosmological horizon 77 Gibbons,

Hawking]|[’22 Banihashemi, Jacobson, Svesko, Visser]
dM = —T,dS + ®.dQ + Q.d.J

— to what extent can we treat the cosmological horizon as
a thermal entity?
» New (near-)extremal limits & near horizon geometries

BHs suffer modifications due to the surroundings, de Sitter BHs
ideal lab to epxlore and quantify these differences.
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(Near-)Extremality

Extremality: two or three horizons coincide

>

>

Temperature at the extremal horizon vanishes

— T, =0 . :
Asymptotically flat region

in Minkowski, Extremal BHs have minimum
value of mass, given a fixed value of charge:
M=Q

Geometry develops a throat, near horizon
region completely decouples from far away
region:

AdSs factor NH geometry = enhancement of
symmetry

AdS,xS?

Near-extremality: the horizons are slightly separated from each
other

> The system acquires a little temperature: 7)., # 0

» Mass increases, 6M ~ T?

5S ~ T,

Th’

» Finite distance separates the NH region from the far away region
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Reissner-Nordstrom black holes in de Sitter

Charged BHs with spherical symmetry:

_ 1 4 — . . %
S_167rG/dx\/ g(R—2A—F, F'"),

dr? 2M  Q*> A
2 _ 2 2 1092 _ 2
ds ——V(T‘)dt +V(’I“)+T dQQ, V(T)—].—T‘i‘ﬁ_gr
» Three horizons as solutions of V(r) =0 at r = {r_,ry,r.}
RNdSy

l Decoupling limit

» Three different extremal limits: Cold, Nariai, Ultracold
» Near horizon geometries are of the form My x S?

My = {AdS,, dS,, Minks }

— We build the effective gravitational theory on S?
[’22 A. Castro, FM, C. Toldo|
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Phase space of RNdS,

» Main difference with AdS and Minkowski BHs: finite region
of admitted physical solutions & naked singularities outside
of it

Ql
Cold

Nariai
(*) ultracold
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Thermodynamics of RNdS,

» Thermodynamics of Cold and Nariai at fixed charge, Q) = 0:

Ty ~ON\), M= M.+ L g, = 54258 ppeeta
+ ) = Mext,c ceey 4+ = D¢ , p
Mgyap Myap gap
17 2T, -
T. ~ O()\), M = Mewt,n + c 4.  S.=8,— ¢ , Ml\éamaz <0
Mgap Mgap gap

» Thermodynamics of Ultracold is different and present some

subtleties
0Q #0, 65, ~ b,

Change in entropy driven by a change in chemical potential rather
than a change in temperature — infinite specific heat!

1 /dT
—1 _ = ar
CS T (dS) ’Q_const

— reminiscent of flat 2D gravity [’19 Afshar, Gonzalez, Grumiller|[’19 Vassilevich]
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Effective two-dimensional theory

Dimensional reduction of Einstein-Maxwell theory on
S? .

1 | W
- V=0 — 9Ny — F P
Iip = TorG / d'rv/=g (R 4 )

P
ds? = gWakg” = —Ogabdxadxb + ®? (d6? sin? 0dg?
4 gl d

F = Fgx* A 2
Lp = / d?zr/ g% [ RP) + — 2A4 - EF Il
ST o,

> & = dilaton, scalar field parametrizing the size of the
2-sphere

» [, purely electric

» The 2D system that we obtain shares many features with
JT gravity
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Effective two-dimensional theory

Link between 4D and 2D language:
Extremal NH background = constant IR background:

(I)(I):(I)Oy Gab = Gab » Aa:Aa-

®(x) = &g means:

» Constant radius of the 2D sphere

» Constant curvature of the 2D manifold Mo:

o ) ) Df < 55 = AdSy
Ry’ =—7a :—@(1—2/\4@3) OF > 5= = dSy
2 0 ®} = 54 = Mink,

Near-Extremal NH configuration = perturbations IR
background

(I)(QZ) = q)o—i_)‘y(x) ) gab:gab+)\hab ) Aa :Aa"i_)\Aa .
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Effective two dimensional theory

» Solutions to the equations of motion of this 2D JT-like
system are solutions of the 4D system as well
Strategy:

» Solve 2D equations for the three different near-extremal
systems (Cold, Nariai & Ultracold) and compute 2D
on-shell action (Cold & Ultracold)

> Match 2D and 4D thermodynamic behaviour
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Cold

IR backaground is the locally AdSs solution, in radial gauge
Japdada’ = dp?® + yrpdT? | ypr = — <06(T)€”/£A + 5(T)6—P/€A)

has a horizon at ypr(p = pn) = 0 — 2D black hole with
associated temperature and entropy:

1
Top = %ap\/’?bzphv Sap = 7T(I)( )horzzon = 7T(I)(2)+27—‘—(I)0>\3)(‘T)‘hori"“”’b

Contact with 4D thermodynamics:

Upon identification of ®y = ¢ and Mggéd =1/27204 9 ,

A

T, = ) 7ep, Sy =5p
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Ultracold

IR background is Minks, in Eddington-Finkelstein coordinates
Gapdztdz® = =2 (P(u)r + T (u)) du® — 2dudr .

We specify to static solutions, along the lines of [Godet, Marteau

‘21][Grumiller, Ruzziconi, Zwickel ‘22],

P(u)="Po, T(u)="To.

» Dilaton independent from background metric at fixed
charge, different from AdSs case. Strange interplay between
deformations of dilaton and heating up Minky. Same
solutions found from [21 Godet, Marteau] in CGH .S models,
we impose the same boundary conditions for the JT field
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Holographic renormalization

2D renormalized on-shell action for constant Py and 7y:
Lpuyc = —21PoboA + Igiopar’

We extract the entropy

ol
Sop = — | -1 = Sp=-I
oD = f (35> 2D 2D,UC
= The temperature does not affect the on-shell action! In
agreement with the 4D behaviour found for ultracold.

llglobal is the value of the integral evaluated at the horizon.
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Kerr black holes

Characterized by a more complicated metric, no spherical
symmetry

Kerr BHs in 341d Minkowski: JT gravity description of
near-extremal dynamics
[’19 U. Moitra, S. K. Sake, S. P. Trivedi, V. Vishal]
[’20 V. Godet, C. Marteau]|
[’20 A. Castro, V. Godet]

[’21 A. Castro, V. Godet, J. Simén, W .Song, B. Yu]
Can we extend the analysis also to Kerr-de Sitter?

Anti de Sitter: NH geometry, perturbations above
extremality and holographic renormalization



Kerr black holes in de Sitter

Rotating BHs in a spacetime with a positive cosmological
constant (A > 0):

_ 1 4
= 167TG/d xv/—g(R —2A),

A, 2 0
ds® = —— (du — —gin 9d¢) + 2dudr — &drdqb
p =

—

2 A 2 2 2
+ 267 + 20620 (adu — 2% a4
A@ p2 =

—

» Horizons at A, =0 = r ={r_,rqy,r.}

» Three extremal solutions: Cold, Nariai, ultracold
[2009 T. Hartman, K. Murata, T. Nishioka, A. Strominger]|
[’10 D. Anninos, T. Anous]
[’10 D. Anninos, T. Hartman]|
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Kerr-dS,

Extremal solutions still have 3 different NH geometries:
ds® = T(0) (gabdm“da:b + a(a)d92> +~(0) (do + krdu)’

—r2du® + 2dudr, cold —  AdS
Qabdxadxb = { —du? + 2dudr, ultracold —  Minks
r2du?® + 2dudr, Nariai —  dSe

» Similar phase-space diagram (M, J) with a finite region of
admitted physical solutions as RNdSy

» Similar thermodynamics as RNdSy, with My, for Cold and
Nariai
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Thermodynamics and phase-space diagram
[AL(rn)| _ 7y — a® + 2r, /0

T = = ,
4rr? 2mry (13 + a?)
Fixed angular momentum: 6J = 0:
T2 2T,
Megla = Mo+ —2= 4+, Mg >0, S =S+ ——= + -
Mga%)d gap Mgold
T2 2T,
MnNariai = My —i—Mn + Mg, < SnzSc+Mn +--
gap gap
J
M

16 /22



Gravitatational perturbations of Kerr-dS,

Goal:

» Understand whether a JT mode is responsible for
deviations away from extremality also for Kerr-dS, BHs

Strategy:

» Consider gravitational perturbations around extremal
NHEK background (Cold, Nariai, Ultracold)

» Solve linearized Einstein’s equations

> See if one of the modes perturbing the NH geometry
satisfies a JT-like equation
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Linearized Einstein’s equations

Perturb the background extremal metric by looking at higher
orders contributions in the NH geometry 20 v. Godet, C. Marteau]:

Dec. limit_ _

ds¥... Guv NHEKAZH AT + Nhyydat da? + - -

» hydatdz” is the O(X) contribution to the NH geometry

» We will perturb the extremal metric with an ansatz that is
motivated by the NH geometry:

as® = (T(0) + ex(u, ) ( (5% + 1P (w) + T(w) du® + e(u, r)du? + a(0)d0°

1+ e®(u,r)

+ (20(0) + en(u,r) sin® 0) dudr + T(0)v(0) (W

) (dep + krdu + eA)?
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Linearized Einstein’s equations

Ansatz for the perturbed metric, motivated by geometric
considerations 20 v. Godet, C. Marteau]:

ds® = (F(@) + ex(u, r)) ( (51 + 7P (u) + T(w)) du® + ep(u, r)du® + a(G)d02)

+ (20(0) + en(u, ) sin® 0) dudr + T'(0)~(0) (%ﬁ%) (dep + krdu + eA)?
-1, cold
K= 0, ultracold
+1, Nariai

» Perturbations parametrized in terms of the fields y, n, ®
and ¢ and the Gauge field A:

A(UJ T? 6) = Au(u7 7,7 a)du + Ar(U, T, G)d'f'

» Dynamics is however dictated solely by the dilaton field ®
if we impose conditions to avoid conical singularities:

xx®, nox® orid
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Linearized Einstein’s equations
Look for solutions of linearized Einstein’s equations:
Ry — Mgy =0, Ru=RY+RY), guw=9g0+9)

From R,(flz — Ag,(fy) = (0 — solutions for the modes and for the
Gauge field:

®(u,r) = ro1(u) + do(u)
Laox = —2rx

[y = Laplacian on the 1+1d metrics
Japdzda’ = (m“2 +rP(u) + T (u)) du® + 2dudr

From Ri J_A E;) = R,g? Ag]EE) 0 — JT equations:

’ (VaVp — gap) @ — kgap® = 0‘
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Conclusions & future outlook

» Our work shows that the dynamics of de Sitter black holes
is classically described by JT gravity
— For RNdS,4 dimensional reduction and analysis of 2D
system
— For Kerr-dS, gravitational perturbations around
extremal 4D metric

» Generalization to Kerr-AdSy & holographic renormalization
(work in progress)

» Introduction of quantum corrections
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Thank you!
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