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What is this talk about ?

Deriving Schwarzian dynamics for small BHs \
Identifying the JT mode for near-extremal Kerr \

Comparing the precision in spin measurements, using gravitational waves,
between near-extremal and non-extremal Kerr BHs
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Small BHs vs Schwarzian dynamics
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Universality of Schwarzian dynamics

Regular extremal BHs with isometry R x U(1)9~3 have near horizon
geometry [Kunduri, Lucietti, Reall]

ds? = T(6)[Baas, + db° + 7ap(0)(do + epdt)(dp® + e®pdit)]

Near-AdS; perspective
The AdS; throat can be glued to the full BH, suggesting

r=ry+®&0(t,r), O,(t, r) < ry (+ dimensional reduction)

In simple and symmetric models gz —> [jr + ... [Amheir, Polchinski]

(] LOW energy ~ JT graVity [Maldacena, Stanford, Yang]
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A paradigmatic example

[Ghosh, Maxfield, Turiaci]

AdS3/CFT,

N

BTZ BHs 2d CFT (3,0)

&[ JT gravity ]J

Schwarzian
theory
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Small near-extremal BHs

3 BHs whose area decreases by shrinking a circle direction along 0,

o Close to the horizon r — €r, € =0 = v, ~ Y(0) r?

@ Smoothness requires y(0) = I'(9)

@ near horizon geometry
2 22 2 2 dr? 2
ds® =T(0)| e r*(—dt” + dy°) + p + ds|

locally AdSs
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Broader perspective

UV field theory IR 2d CFT

4 IR L
Aue - 1SAUV _| gap~l/ccrr

OAR~Lo-ccrr/24

Auv Ar=AR(Auv,)))
AdS | CFT AdS | CFT
Gravit Gravit
Sioa~T Near horizon S3d~ Scardy~(ccrr(Lo-ccrr/24)) 2
5Auy ~ccrr T

large (singular) gauge
transformations
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BTZ intuition

Some thermodynamic formulas

ri +r? ryr—

M = — =
8GN£3 4GN£3

Two parameters

o dimensionless horizon size in ¢3 units : % =¢

@ near-extremal parameters : r_ =r. /1 — «
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Small & near-extremal BHs

Triple scaling limit

ek, a1, c— 0

Some relevant scales

SBTZN8C7 M,JN<€2C

Terz ~ea, M—JN(Ea)2C

Sub-AdS scale BHs

; 1
@ Parameterically large M, J = ¢ ~ NG

@ Large entropy = cc > 1
o M—-—J~oa?k1
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2d CFT analysis

FO”OW [Ghosh, Maxfield, Turiaci]

fu= (1 + D)5~ 25> = (1= QB S~ T~ 2 1

5‘BTZ

@ Dominant CFT partition function

sty (2] () oo 575 r 5 (14

@ Fixed J-ensemble

2m)2(c—1) B 3
7 do e’ ( _2 2 g2
J <></ e’ exp [12 + > Zie 2 og (8% +6°)
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CFT saddle

Saddle equation

i — (2rp St Pr—Bi  3Pr—bu
6(ALBr)> 4 2i BrpBL

Large entropy guarantees 2nd term >> 3rd term

-2
c c
Br ~—~ec>1

Bet Br

Same saddle, different regime of parameters :

=0

C
~ 2 —
B~ 2m\[ 547

Evaluation of the saddle

7y~ %5 {(;)3/2 exp ti;” (6733)1/4 oxp [5 (J - 1—12) + 2W\/§:]

3
X ZSchwarzian exp |:_BE0 + SBTZ7§ |Og SRTZj|
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Validity of CFT saddle

Validity of vacuum dominance (individual state h = h — J)
_ xn(2mi/BL) x5(27i/Br)

~ xu(2mi/Br) x1(27i/Br)

~ @y oo [0 (57 (5 )~ )]

requires

hgap 4 1
Be B (2m)? log(BLfr) > 1

1
o 6L ~ C [Ghosh, Maxfield, Turiaci] => O/ "~ %

® h,., ~ O(c) in 3d pure gravity = 7 consistent regime

@ less clear in a generic 2d CFT
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Identifying the JT mode for near-extremal Kerr black holes
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JT mode in near-extremal Kerr

Given a near-extremal Kerr metric, whose near horizon limit

- ot ~ t
?:r++)\r, t= 2 X ¢:¢+r_~_x, A—0
leads to the NHEK geometry
d 4 sin% 0
ds? o = J(1 + cos? ) | —r?dt? + — + d6?| + I o2 d [d¢ + rdt]?

@ how do we identify ®; when spherical symmetry is broken ?

@ how is ®;r compatible with Wald's theorem ?
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How do we identify ¢, ?

@ Expand NHEK & work at linear order in perturbation 5
g = 8uex +

in some specific gauge

@ Study sphere harmonics in detail & compare with gauge invariant
quantities, such as Weyl scalars Wy, W, used in gauge invariant
Teukolsky formalism
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Axisymmetric NHEK perturbations

ds® = J (1 + cos? 0 + e (x, «9)) [gabdx"dxb + d92]
sin 6

14 cos?6 +ex(x,0)

At linear order in €, h is determined by

sin36 cos® f X
Dax + cos 080 (sin3089 <cos «9) =0

Eigen-mode expansion
x(x,0) = sin®6 Z Se(0)xe(x) ,
¢

+4J (dg + Asdx? 4 eA)? + O(e?)

@ S; ~ associated Legendre polynomials with ¢ > 2
@ x(x) satisfy the AdS, wave equation

Daxe = (€ + 1)xy
Tower of AdS> modes with A =/¢4+1>3
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¢ > 2 modes

Matching ingoing/outgoing modes in Teukolsky formalism

6g in IRG [ingoing radiation gauge] <= HertZ pOtential WHO
Using (17, n?) Newman-Penrose tetrads

@ Relating x(x,6) and Wy, for £ > 2
x(x,0) = —sin20 171°V ,V , Wy (x, 6)
o Inversely, if Wy (x,0) = 350 Up(x)Se(0)

4

Ur(x) = — (— 1)L +1)(¢+2)

nanbvavb)(g(x)

Conclusion : Normalizable £ > 2 modes in one—to—one correspondence
with ingoing/outgoing modes in Teukolsky formalism
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Where is ¢, ?

@ There are no associated Legendre polynomials with ¢ = 0,1. However,
these values are allowed by the AdS, Breitenlohner-Freedman bound
@ More precisely, 35,(0) for £ =1,0
» non-normalizable on the 2-sphere
» have conical-like singularities at either north/south poles

@ Both Wy and W, diverge at these singularities = infinite energy flux

Observation

Require the energy flux to vanish, while keeping the £ = 1,0 modes

@ /=1:WVyg=WV,; =0 + AdS, wave equation implies
VaVpx — gap Uox + gabx =0 JT equations !!

e /=0:Vyg=V¥, =0 + AdS, wave equation = zero mode

v
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What about the singularity ?

¢ =1 modes with vanishing Vo = W, = 0 = x1(x) satisfies JT eqgs

@ our NHEK perturbation remains singular

Hint & Suggestion

@ /1 was written in a particular gauge
@ can we apply a diffeo to describe /7 as an smooth perturbation ?

» can we find a singular diffeomorphism that allows to remove the
singularity in our gauge ?
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Balancing the conical-like singularity
@ Since ¢ is periodic, any diffeomorphism of the form
€
5“(X7 97 QS) = §¢ Cu(Xv 0)

will be non-single valued (generating a conical-like singularity)
@ Requiring the action of the diffeo to be axisymmetric

Op(Legnmex) =0 = ((x,0) Killing
@ Killing vector fields of metrics (including gxuex)
ds? = N(0)(gaas, + dB?) + T(0)(d¢ + A,dx?)?
are of the form

(= PVp®0s + (P +ePAVD)Iy  with bc =+ O
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Balancing the conical-like singularity

O Killing vectors ( are in one—to—one correspondence with a scalar field
&, (x) solving the JT equations of motion (¢ = 1 mode) and a
constant zero mode ¢, (¢ =0 mode).

» &1 (x) is non-dynamical (it is a Killing vector field !!)
» however, the diffeomorphism ¢ is physical, it generates a conical-like
singularity carrying energy !!

© Tuning the diffeomorphism, i.e. choosing

1
X(x,0) = ®yp(x) + 5(1 + cos” 0) co)

gives rise to smooth £ = 1,0 perturbations
g = 8wurx + h+ ﬁchm:y\

where the scalar controlling the perturbation satisfies the JT eqs
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Consistency with Wald’s theorem

Wald’s theorem

Smooth §g in full Kerr with vanishing Weyl scalars must satisfy

5§:5Mg+5jg+€££§

In 2102.08060, we proved

@ all such finite perturbations correspond in the A — 0 to our smooth
¢ =10,1 NHEK perturbations (up to diffeos)

1
X(x,0) = ®5r(x) + 5(1 + cos® 0) co)

@ the identification crucially depends on 6M ~ A" ¢

@ singular £ = 0 NHEK perturbations give rise to Taub-Nut and/or
C-metric deformations

e 36uyg =40,8=0and £§~g = 0 Kerr diffeos, but not a NHEK one
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Precision in spin measurements using gravitational waves
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Precision in spin measurement

Before the lockdown, | was asked

© Can the spin of a near-extremal Kerr black hole (BH) be measured
with higher accuracy than for non-extremal BHs using gravitational
waves 7

@ Either way, can you (ideally quantitatively) explain why ?
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Context

Binary black hole (BH) system with masses M >> 1 (n = u/M < 1)

@ Approximate the motion of the secondary BH (i) as a point particle

inspiraling towards the primary BH (M) with outer horizon (EMRI)

n=M1+Vi-@)=M1+e) a-a/M
o Consider circular orbits (absence of radiation)

1-2/F+a/F/
V1 - 3/F +2a/32

E(F,a)=p with 7= r/M

@ Due to energy conservation (E + Eqw = const)

dE dr
P

= “iiawv
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Perturbative expansion

Define E = E/pu, = t/M, the inwards spiral trajectory

1. -
_EEGW(H 3) = —Paw,

o Eoyw ~ O(n?) is energy rate carried away by gravitational waves

» Computed by first principles solving Teukolsky's equation in the
presence of the source (1)

o = PGWNO(T])

@ Spiral trajectory contains two pieces of information
© kinematic : geodesic information _(8;@)
@ dynamic : Teukolsky's equation [Eqw(F, a)]
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Fisher matrix for gravitational waves

The spin precision Aa is given by

h(F)I2
Aa=/(T"1),, with T, :4/df|aashﬂ

(f)
@ h(f) is the Fourier transformed of the amplitude in the gravitational
wave
O = X h(t) ~ 30 27 in(mtt
t) = t) ~ ~— sin(mS2t),
- " - mQD

@ S,(f), power spectral density (PSD) : describes the LISA noise.
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Estimating the Fisher matrix

@ Assume S,(f) =~ Sp(f) (standard in relevant literature) and use

Parseval
|020(8)1> = > (Dahm)> +2 Y Dahyp Oahim

m n<m

@ Consider "diagonal terms”

Oahm(t) = |hin(t)| {sin(mS3E) B + (mE0.82) cos(m2) }

0.E>® 9,

Bn= "2 — =2
2Ec Q
| hml?

(9ahm)® = =5 { (mi 0.0 + (Bn)?
+cos(2mS2t) [(mt 9,0)% - (Bm)z]
+251n(2m %) By (mE 0,0)} -
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Approximation

@ EMRI physics = Pgw ~n <1 =f~p !
Dominant contribution from the O(%?)

@ More precisely, we assume (numerically checked)

a Eoo2
f EOOQ

< 9.9

@ the time integral is over long periods = oscillatory terms would be
subleading (anyway)

@ similar arguments hold for off-diagonal terms
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Fisher matrix estimation
Since Q1 = ¥3/2 4+ 3, it follows
9,0 = -2 (1 + g\/?aa?>

Hence,

16M feut o - =i 3 = . 2
I'aaN mﬁ Cl’tEOOQ (Qt) <1+§\/;83r)

to

or, in radial coordinate (using the spiral equation)

Feut

164 /?o PPN, ( 3 - N>2
Moo —=——— | dF(RE) (17 Q)? (14 ZVFOLF) .
B S ) F(0:E) (17 Q) +2\ﬁ F
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Spin dependence on the trajectory
Define u = 0,7

@ Remember the inwards spiral equation
d¥
dt

o Apply %, taking into account explicit and implicit dependence

HE(F,a) -5 = —Pew(F, a)

d . - - ,
SO = (O2E) u+ 0%E

dP,
% = (87‘PGW) U+63PGW.
@ Using
du _ dud?
di  d¥dt’

one derives a linear ODE

du (a%é B 8;PGW> L C%RE | 0aPaw

_ _ arN
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Two cases to keep in mind
© Near-extremal and close to the extremal horizon x =7 -1 < 1

PGW =1 CX [Gralla, Porfyriadis, Warburton]

@ Non-extremal (generic Finn-Thorne parameterisation)
32 . :
Pow = EUQIO/?’g

£ relativistic corrections (computed numerically)

.1 ) . OE
8ar:é<ko—/Qdaloder), 0=zt

with a source term allowing the decomposition

HE (agFE 0.E 10~>
-+ =0

Q0,log Q =

QuBe\xE & 3

» First and third terms are kinematic, i.e., driven by geodesic physics
» Second term is dynamical, i.e., driven by the energy flux
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Brief comparison

Let

@ ¢ be near-extremal parameter

@ 7 — Fyo ~ 0 coordinate distance to ISCO

Analytic estimates

1 moderate spins

2/3

0,F o< _
Soter)ye near-extremal spins

suggest the spin dependence in near-extremal Kerr is larger
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Ratio of Fisher matrices

Ignoring angular velocity variation and including all modes

tcut dEOO - .
Mo~ 18L cth / (192 (9.7)2.

(nD)? Sy( ndt
Ratio of spin precisions

@ Numerical evaluation (single Fisher parameter)

ext

Frod ~ 500

confirms our analytic estimates
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Conclusions

Small near-extremal BHs with sub-AdS scale local AdS3 geometries may
still be controlled by Schwarzian dynamics

@ J ¢ =1 smooth irrelevant AdS, perturbations satisfying JT equations
of motion

@ When glued to asymptotically flat Kerr, it corresponds to a mass
perturbation, in agreement with Wald's theorem

@ Similar statements hold for £ = 0 marginal AdS, deformations

@ Analytic techniques to estimate Fisher matrices in EMRI set-ups

@ Near-extremal Kerr BHs expected to have 2 orders of magnitude
increase in the precision of spin using gravitational waves within an
EMRI set-up compare to moderate spin ones

o’
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