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MOTIVATION
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* The conventional picture of (non-supersymmetric) extremal black holes, viz., one
where there is non-trivial degeneracy at zero temperature, is somewhat curious.

* Not only does this naively violate the third law of thermodynamics, it also poses
challenges for how near-extremal black holes Hawking radiate.
T? T
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Tgap Tgap
* The fact that energy departures from extremality are quadratic, has important
implications: at temperatures below the gap, the black hole is unable to decharge

by emitting even a single Hawking quantum. Preskill, Schwarz, Shapere, Trivedi, Wilczek ‘91

* Various attempts have been made to address this puzzle, eg., black hole pair

production, attractor mechanism, etc.
Hawking, Horowitz, Ross ‘94 Dabholkar, Sen, Trivedi ‘06

* The modern understanding of this situation is somewhat prosaic: the non-trivial
degeneracy is illusory, and in fact near-extremal black holes have a vanishingly
small degeneracy. They behave like a conventional quantum mechanical system
with few low-lying excitations. Ghosh, Maxfield, Turiaci, ‘19 lliesiu, Turiaci ‘20



MOTIVATION

* The essential point is that the semiclassical analysis needs to carried out with care.
While the black hole is a dominant saddle, fluctuations around it are important.

Z ~ det() GIO —|—d€t1 611 SR

* The modification in the low temperature thermodynamics arises from the presence
of zero modes of the extremal geometry localized in the near-horizon region.

T
Z~ T2 exp | So + 51 - c log Sy
) Tgap
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1-loop det of gapless modes classical result

1-loop corrections from Sen "11-"12
gapped and gapless modes |jigsju, Murthy, Turiaci ‘22

* The zero mode contribution can be nicely isolated by examining how they get
gapped in the near-extremal solution.



MOTIVATION

* The fastest way to derive this picture is to appeal to the enhanced SL(2,R)
symmetry of the near-horizon region Kunduri, Lucietti, Reall *07

* One can either use a dimensional reduction down to this AdS, spacetime leading
to an effective JT gravity description, where quantum effects can be understood.
Moitra, Trivedi, Vishal ’18
* Alternately, one can work in the full near-extremal geometry, and deduce that the
spectrum of the quadratic fluctuation operator has an apposite set of zero modes.

* The latter perspective is efficacious in the case of rotating black holes, which
typically have the AdS, factor fibered and warped over compact base manifold,

€.g., the 4d Kerr blaCk hO|e' Rakic, MR, Turiaci '23 Kapec, Sheta, Strominger, Toldo ’23

* Broadly speaking, all of these analysis zoom into the throat and exploit the
homogeneity of the AdS; factor to identify the zero modes in question.

Camporesi, Higuchi ‘94 Sen’11-12
* Once one identifies the zero modes, a nice way to compute their contribution to

the one-loop determinant is to work with a small temperature regulator, however,
still staying within the near-horizon region. liesiu, Murthy, Turiaci ‘22



MOTIVATION

* Can we do better, viz., provide a perspective on the quantum corrections without
referring to the near-horizon geometry directly, but rather working in the full near-
extremal black hole spacetime?

< To be clear, the aim is to not make explicit use of the near AdS, factor at all.
For instance, the original calculation was carried out in the full geometry, but
used a semi-holographic approach, splitting the evaluation into a near-

horizon part and a far zone part. liesiu, Turiaci ‘20

<+ Likewise, the idea here is different from the gravitational computation of the
index in the full geometry, where one works at finite temperature and
identifies a complex Euclidean saddle associated with a particular value of

chemical potential.
Cabo-Bizet, Cassani, Martelli, Murthy ‘18

Kologlu, lliesiu, Turiaci ‘21 Anupam, Athira, Chowdhury, Sen ‘23



RESULTS

* Claim 1: The near-horizon zero modes of the extremal black hole uplift to light off-
shell modes of the quadratic fluctuation operator around the near-extremal black
hole saddle. The eigenvalues of such modes scale linearly with the Matsubara
frequency in the near-extremal regime. Such modes arise from:

% Universal graviton fluctuations that might be identified with the Schwarzian
modes in the AdS, throat.

% Isometries of the background geometry and background gauge fields, both of

which have generically lead to zero modes, though the details depend on the
geometry in question.

* Claim 2: Zero modes associated with rotational isometries appear to be subtle,
especially in Ricci flat spacetimes. In particular, the oft used harmonic gauge
breaks down in the near-horizon region, leading to misleading conclusions about

the existence of the said zero modes (case in point: the rotational zero mode of
Kerr is not smooth in harmonic gauge). Rakic, MR, Turiaci 23



OUTLINE

* Analytic eigenmodes in near-extremal BTZ geometry

* Numerical eigenmodes for Reissner-Nordstrom-AdS..

* Rotational zero modes in general & issues in Ricci-flat geometries
* Ensemble choices: near-horizon vs full geometry

* The curious case of the rotational mode in BTZ and its lessons




Fxhibit 1: The BTZ geometry
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* Consider 3d gravity with a negative cosmological constant (counterterms
suppressed)
J /d3az\/§<R+L) S yﬁd%ﬁff
167 G 8 Gy
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* Work in the grand canonical ensemble fixing asymptotic thermal period and
introduce a chemical potential for rotation. The saddle point configuration is the
rotating BTZ geometry with line element
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* To investigate the fluctuations we will look at perturbations of the spin-2 fields.

~ 1
Juv —7 Guv =+ h,uu huyw = hpy — igpwh

* To investigate the fluctuations we will look at perturbations of the spin-2 fields. We
pick a suitable gauge condition (harmonic gauge)
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gauge fixing term ghost action

* The quadratic action is governed by the spin-2 Lichnerowicz operator, which maps
symmetric two-tensors to symmetric two-tensors
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ENMODES

e e e e

* In the near-horizon of the extremal BTZ geometry, which is AdS, fibered over a
circle, one has set of Schwarzian zero modes, associated with the AdS, factor.

* These modes are in the kernel of the spin-2 Lichnerowicz operator. We wish to
know what they correspond to in the full spacetime.

* The eigenvalue problem turns out to be easy to solve analytically, on the space of
transverse traceless spin-2 fluctuations V*h,, = h*, =0

T T
S (1= Inl—m) n € Z\{0,£1}
TL + TR Ty + 1R )

4

(ALh),LW

—n

* The temporal dependence of the eigenmodes is fixed in terms of the Matsubara

frequencies (parameterized by n). w, = 27N

B

* They have some radial profile in terms of elementary functions and the rotational
Killing field of the background remains an isometry of the perturbed (off-shell)

geometry.
Datta, David '11 Castro, Keeler, Szepietowski ‘17



log(r/7+)

T
* The norm of these modes gets concentrates inside the throat as we approach
extremality.

Lo.s 10

* The actual wavefunction profiles beautifully match with those of the Schwarzian
modes down the throat.

* The constant mode in time, and modes with one unit of Matsubara frequency are
not normalizable, and hence excluded (thus, constrains allowed eigenmodes).



IMPLICATIONS

* We verity the existence of a single discretuum of modes at low temperature

(ALh)w = A by A ~aln|T,  neZ\{0,£1}

* These modes give a power-law contribution to the one-loop determinant which
become important at the gap scale

1—loo n 3 T . 24
lo ngraVltgnD__n;,%:illog(lGﬂ'GN) =§log (Tq)—i_ ) Tq— ?

* This is the only family of eigenfunctions of the spin-2 Lichnerowicz operator with

low eigenvalues near-extremality. In particular, the geometry does not appear to
entertain modes associated with the rotational Killing field.

* This result is consistent with the boundary CFT calculation in the grand canonical

ensemble. Assuming a twist gap, the vacuum Virasoro block precisely predicts only

the Schwarzian contribution. Chosh. Vsl Turieet, 12

0
1-1 1
log Zgra(zfcl)‘g)on log H2 ( — 6—47T2TLn)(1 — 6—47TQTR77J) Pal, Qiao '23
n—
3
~ 24T, + 5 log 17,

Shift of extremal energy  Schwarzian mode



FExhibit 2: The Reissner-Nordstrom AdS geometry




REISSNER-N ORPSTROM ADS 'BLACK HOLES

* Consider 4d Einstein-Maxwell theory with a negative cosmological constant

1 6 1
F=— d? R+-— —F F"| — d3 K4+T
167TGN/ x\@( TE T ) SWGN7§ ZV/YE A Tody

* The electrically charged RN-AdS, black holes are spherically symmetric solutions
with charge chemical potential. For simplicity we assume the absence of charged
matter (to suppress superradiance).

2 2
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* Near-horizon analysis reveals three families of zero modes in the extremal solution:
< The Schwarzian modes from gravitons (associated to large diffeos in AdS))
<+ The U(1) gauge modes (associated to large gauge transformations in AdS»)

<+ An SO(3) family of modes associated with rotations on the transverse sphere.



THE QMADRAT!C FLUCT ION ANALYSIS

* The analysis of the quadratic fluctuations around the RN-AdSs black holes requires
some groundwork, because

% gravitons and photons are coupled

% the Euclidean action is not sign definite.

* Latter is dealt with in Einstein-Hilbert theory by integrating the conformal mode
along an imaginary direction. In Einstein-Maxwell this is no longer effective and
has not been addressed hitherto.

< Our proposal is to integrate the Maxwell field along the imaginary direction.

* We need to also ensure fluctuations are physical. Else one has to independently
compute the eigenspectrum of the ghost operators.

* To address these issues, we work with a physical gauge choice  Marolf, Santos 22 (+ Liu '23)
- 1 1
V'uh'uy — §F]/M CLM—I—AV §V“au =0 v'ua,u — 0.

* Working in symmetry sectors, we obtain self-adjoint quadratic fluctuations
operators which we diagonalize.



RESULTS 1: SCHWARZIAN
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RESULTS 2:
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* Examining the norm defined on the space of fluctuations, we can see that the
fluctuations are nicely concentrated in the near-horizon region.

* The plots above are for the rotational modes, but similar features can be seen in
the other sectors.



MPLICATIONS OF THE LIGHT MODES

* The existence of these light off-shell modes implies that the 1-loop determinant
around RN-AdS, has a low-temperature contribution which scales as

310 L 2310, L 1, T
—log — + = log — + —log —
DR LT T

log Zl—loop D)

Schwarzian Rotation gauge U(1)

* This is the expected behaviour about a single saddle. To obtain the answer in the
grand canonical ensemble, we should sum over suitable integral shifts of the
gauge and rotational chemical potentials

Bu v Bu+ 2min, L — O+ 2mim,

* The result in the grand canonical ensemble gets contribution from all the saddles,
each of which will have a different saddle point answer, but a similar temperature
scaling.

* After Legendre transforming to the canonical ensemble, the near-horizon analysis
suggests only a contribution from the Schwarzian zero modes.



Rotation zero mode Joecu[iariu’es




* The analysis in the near-horizon geometry of extreme Kerr black hole, where one

expects a single rotational zero mode, revealed a puzzle. The putative mode was
was not smooth in harmonic gauge. Rakic. MR, Turiaci '23

* A similar analysis in Kerr AdS4 or the Kerr-Newman solution reveals the expected
zero mode within harmonic gauge (and Lorenz gauge for the Maxwell field).

* The issue in the case of Kerr is breakdown of harmonic gauge which is defined in
terms of the functional

1
GF, = V* (hu,, — = G h)
* A zero mode exists if it is generated by a large diffeomorphism which satisfies the

auge condition.
IS hpw =2V (80

* This is the case for the Schwarzian mode, but not so for the rotational zero mode in
the aforementioned geometries, which is to be generated using

|7 ]

_ _ _inT y__l 2
§=H(r,y) 0y H(r,y)=e (y_|_1)



* A perturbation that doesn't satisfy the gauge condition of choice can be fixed up
by a compensating diffeo, which has to satisfy an inhomogenous elliptic equation

Pl = Bl A Vo - Vo G (6%, V2 + R*) ¢, = —GF,

* Failure of the gauge condition is equivalent to the elliptic operator appearing in
the |lhs having a non-zero kernel.

* For Ricci flat backgrounds like Kerr this is the case; one can construct a 1-form
from the well-known eigenmodes of the scalar Laplacian on AdSs.

* Equivalently, one can also see that that the ghost kinetic operator in harmonic
gauge has a zero mode.

* We believe (but have not yet checked) that there will be similar issues with
harmonic gauge in the full near-extremal Kerr geometry.

* This issue persists for all Ricci flat rotating black holes, but does not infect solutions
like BMPV, where one can indeed find the zero modes in question while remaining
in harmonic gauge.



FEnsemble choices
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Near-horizon with SL(2,R) symmetry

Full spacetime geometry

* AdS, asymptotics requires that we fix
the physical charges and not the
associated holonomies. E.g.,

A ~ (,unor + an T) dt
Sen '08-09

* The zero modes only exist in the
canonical ensemble: fixed thermal

period and charges.

* In asymptotically flat or AdSqwith d>4

the physical boundary conditions
involve fixing holonomies, and not the

Qnor
A ~ (,unon —|— rrd_g dt

Marolf, Ross ‘06

charges,.g.,

* The light off-shell modes described
herein exist for fixed holonomies.

= L
* The Schwarzian mode is universal, and gives a 1’2 contribution to the 1-loop det.

* The 1-loop contribution from the gauge and rotation modes is computed in the
regulated near-horizon geometry by passing to the fixed holonomy ensemble,
summing over shifts, and then Legendre transforming back. A direct computation

would be, of course, much more satisfactory.

* The upshot is that their contribution in the fixed charge ensemble is T

independent.



The curious case qf the rotational mode in BTZ




ROTATIONAL L1

* Let us return to the extremal BTZ solution, whose near horizon, as mentioned is a
fibration of AdS, over a circle

2

d
ds? = (y? — 1) dr?+ yzy_ -+ (dg +i(y — 1)dr)?

* In this geometry, there is in addition to the Schwarzian modes, a zero mode
associated with the angular isometry (contrary to an earlier claim in Rakic, MR, Turiaci 23 )

huw =2V (u€0) ) nl

. y—l
H(r,y)=¢€""7 (
§=H(r,y)0p+ V'HO,, ac€{rr} y+1

* This is extremely curious for we now appear to have one too many zero modes.
* First of all, these modes do not appear to extend into the full spacetime.

* Second, and more importantly, in this case, we can use holography to predict
the 1-loop determinant in both the canonical and grand canonical ensembles,

. 3
and learn that it scales as 1 2.



LOW TEMPERATURE, HIGH SPIN UNIVERSALITY

* Asymptotic high spin density of states in a 2d CFT has a nice universal limit that

can be recognized as the Schwarzian contribution. | -
Ghosh, Maxfield, Turiaci, ‘19

* Consider a 2d CFT with Virasoro symmetry (no conserved currents), with a modular
invariant partition function that has a character decomposition:

ZCFT (7_7 ?) — Xvac Xvac _|_ Z Xh

c—1 ]_ = q
p— 24
Xvac (7_) q 77(7_)

* The limit of interest is low temperatures and fixed angular momentum:

T ~ (’)(c_l), J ~ 0(03), c>1
& 1 T C
exXp [27’(’\/%J—B<J—1—2)—|—ET]

* The temperature dependence is the same in the grand canonical ensemble.
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ED ZERO MODES
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* We have thus far assumed that turning on a small temperature regulator lifts the
near-horizon zero modes, with action scaling as 1'/1j,.

* The coupling, or equivalently the thermal scale at which these modes are
activated, is set by the susceptibility

1
42
Schwarzian scale set by specific heat 1q =4m @|
T |Q
. . 1 Y
Gauge field: charge susceptibility )M = =, K = % :
T=0
Rotation: angular momentum S S Y
susceptibility ¢ T K’ G

* A mode will contribute only if the scale 1 is non-vanishing, should it vanish then
the mode remains strongly coupled.



* An extremal BTZ black hole is rotating at the speed of light, and its angular velocity
is fixed to be unity in AdS units (it approaches the superradiant limit from below).

* The angular momentum susceptibility blows up, and suggests that the rotational
zero mode of the near-horizon geometry is non-normalizable.

* The end result is that there is only the Schwarzian zero mode, both in the near-
horizon and in the full geometry. The former computes the grand canonical 1-loop
determinant, while the latter computes the canonical 1-loop determinant. Both
give a contribution of T3/2 which is consistent with the holographic result.

* Discarding the rotational zero mode also gives the correct log Sp contribution.

* Implication: the asymptotically flat Reissner-Nordstrom geometry has a divergent
charge susceptibility, suggesting that the gauge zero mode does not contribute to
the 1-loop determinant.

* We are attempting to check this from our numerical analysis, by taking the flat
space limit. It seems plausible that the gauge zero mode does not extend into the
full geometry.



Summary & Open Questions




* The near-horizon zero mode of extremal black holes uplift to light off-shell modes

in a near-extremal geometry. Verified in several examples: BTZ, RN-AdS,
hyperbolic AdS black holes.

* The computation in the full geometry clarifies some issues for rotational and
gauge zero modes.

* The results obtained from the semiclassical gravity path integral can be shown told
hold in semiclassical string theory, i.e., the result is robust to finite string length

corrections. Ferko, Murthy, MR ’24

* Our analysis here involved off-shell modes of the (complex) Euclidean black hole

saddle.

* The one-loop determinant around black holes has been argued to be given by a

beautiful formula in terms of on-shell quasinormal modes. Bene il Sehelen G2

* How does the near-extremal result arise from the quasinormal modes?

wip w/ Hewei F Jia

JIE RS M Kolanowski






