

Lifting the Index

ROBERTO EMPARAN ICREA+ICCUB

NEAR-EXTREMAL BLACK HOLES @ SOLVAY/ULB

4 SEP 2024

WITH JAN BORUCH
LUCA ILIESIU
SAMEER MURTHY

TO APPEAR

Counting states

A basic problem in any quantum system

Counting with different weights:

$$\operatorname{Tr} e^{-\beta H}$$
, $\operatorname{Tr} e^{-\beta (H-\mu Q)}$, $\operatorname{Tr} (-1)^F e^{-\beta H}$, ...

Counting states

$$Z(\beta) = \operatorname{Tr} e^{-\beta H}$$
: governs thermodynamics

$$N_B - N_F = \text{Tr}(-1)^F e^{-\beta H}$$
: in susy systems,

independent of β & protected

Witten

Counting states

Euclidean path integral w/ appropriate periodicity conds

One-loop trace counts states

Black holes are quantum systems

Counting states?

Black holes are quantum systems

Counting states with Euclidean path integral

Gibbons+Hawking

$$Z(\beta) = \int_{g(0)=g(\beta)} \mathcal{D}g \, e^{-I_E[g]}$$

Trace without trace

$$Z(\beta) = e^{-\beta F} \approx e^{-I_E[g_{cl}]}$$

$$\to S = \frac{A_H}{4G}$$

From classical saddle point: no one-loop trace

More traces without trace?

$$Index = Tr (-1)^F e^{-\beta H}$$

Of interest for susy (BPS) black holes

Protected: must match weak-coupling counting

More traces without trace?

$$Index = Tr (-1)^F e^{-\beta H}$$

Can it be computed with the GPI?

Can it reveal properties of holography, or dual quantum theory?

Gravitational Index

FINITE-T SUPERSYMMETRY & MULTI-CENTER SOLUTIONS

Charged BPS Black Holes

Index
$$(\beta, Q) = \text{Tr}_Q(-1)^F e^{-\beta H}$$

= $(N_B - N_F)e^{-\beta M_{BPS}}$

Index: finite T & periodic fermions

Euclidean Reissner-Nordström?

- Finite T & smooth horizon \rightarrow contractible τ -circle, periodic fermions are singular
- Extremal RN: finite $T \rightarrow$ horizon cusp & wrong index

Hawking+Horowitz+Ross

$$\operatorname{Tr}_Q(-1)^F e^{-\beta H}$$

$$(-1)^F = e^{2\pi i J} = e^{\beta \Omega J}$$

$$\text{w/ } \beta \Omega = 2\pi i$$

$$\operatorname{Tr}_Q(-1)^F e^{-\beta H}$$

$$(-1)^F = e^{2\pi i J} = e^{\beta \Omega J}$$

$$\text{w/ } \beta \Omega = 2\pi i$$

$$= \operatorname{Tr}_{Q} e^{-\beta(H-\Omega J)} \Big|_{\Omega=2\pi i/\beta}$$

$$= Z_{grav}\left(\beta, \Omega = \frac{2\pi i}{\beta}, Q\right) \approx e^{-I_E\left(\beta, \frac{2\pi i}{\beta}, Q\right)}$$

Cabo-Bizet+Cassani+Martelli+Murthy, Choi+Kim²+Nahmgoong, Cassani+Papini, Bobev+Crichigno, Larsen+Lee, Iliesiu+Kologlu+Turiaci, Heydemann et al, Boruch et al ...

Add rotation: Kerr-Newman

BPS bound: M = Q

Lorentzian is singular

Euclidean is OK if
$$\Omega_E = -i\Omega = \frac{2\pi}{\beta}$$

Euclidean Kerr-Newman $\Omega = 2\pi i/\beta$

Cycles

$$(\tau,\phi) \sim (\tau+\beta,\phi+i\beta\Omega_E)$$
: contractible at horizon $\sim (\tau+\beta,\phi+2\pi)$

$$(\tau, \phi) \sim (\tau + \beta, \phi)$$
: non-contractible

Correct conditions for fermions in index:

$$\Psi(\tau,\phi) = -\Psi(\tau + \beta,\phi + 2\pi) = +\Psi(\tau + \beta,\phi)$$

Euclidean Kerr-Newman $\Omega = 2\pi i/\beta$

$$I_E=\beta Q-\pi Q^2$$
 Index $(\beta,Q)=(N_B-N_F)e^{-\beta M_{\mathrm{BPS}}}pprox e^{-I_E}$ $N_B-N_Fpprox e^{\pi Q^2}=e^{S_{BH}(\Omega=0)}$

Justifies comparing $S_{BH}(\mathrm{ext})$ to weak-coupling index

General BPS solution* in N=2 Sugra: Israel-Wilson-Perjés (IWP)

Tod

$$ds^2 = \frac{1}{V\tilde{V}}(dt + \omega)^2 + V\tilde{V}dx^2$$

$$V, \tilde{V}$$
 harmonic in \mathbb{R}^3
$$\nabla \times \omega = \tilde{V} \nabla V - V \nabla \tilde{V}$$

Euclidean: imaginary electric field + magnetic dipole

imaginary rotation

* w/ timelike Killing spinor

Single-center IWP

$$V = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_0|}$$
 $\tilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_0|}$ $\omega = 0$

→ Extremal Reissner-Nordström

Two-center IWP

$$V = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_N|}$$

$$\tilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

North-South line in \mathbb{R}^3 is minimal S^2 in full space

Fixed point-set of $\partial_t + \Omega_E \partial_{\phi}$: bubbling

Boruch+Iliesiu+Murthy+Turiaci

Two-center IWP

$$V = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_N|}$$

$$\tilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

 S^2

Regularity: no-conical + no Dirac strings

- $\Rightarrow |\mathbf{x}_N \mathbf{x}_S|$ and Ω_E fixed in terms of β , Q
- ⇒ 2-center IWP = Euclidean Kerr-Newman index geometry

From Black hole to Index geometry

Boruch+Iliesiu+Murthy+Turiaci

Black hole: single center IWP

Index: split into two centers

- Impose regularity (no-conical + no Dirac strings)
 - \rightarrow solution fixed in terms of β , Q
- Dipoles generated, not independent

BPS 4D Black Holes

AND THEIR UPLIFTS TO 5D

In N=2 pure Sugra: extremal RN Black hole

In N=2 Sugra + vector supermultiplets

- Eg from type II_A in CY₃
- General solution: Shmakova

General solution (Shmakova)

$$ds^2 = -\frac{1}{\Sigma(x)}dt^2 + \Sigma(x)d\mathbf{x}^2$$

$$A, B, C = 1, \dots, n_V$$

$$\Sigma(x) = \sqrt{Q^3H^0 - (LH^0)^2}$$
: entropy function

$$L = -H_0 + \frac{D_{ABC}H^AH^BH^C}{3(H^0)^2} - \frac{H^AH_A}{H^0} , \quad Q^{\frac{3}{2}} = \frac{1}{3}D_{ABC}y^Ay^By^C, \quad D_{ABC}y^Ay^B = \frac{D_{ABC}H^AH^B}{H^0} - 2H_C$$

Simpler for $n_v = 1$

Harmonic $H^0 = h^0 + \frac{p^0}{m}$ etc $(H^0, H^A, H_A, H_0) \leftrightarrow (D6, D4, D2, D0)$

$$= h^0 + \frac{p^0}{}$$
 etc

charge

modulus

 $n_V = 3$: 4-charge black holes in 4D

D0-D4³: wrap D4 on 4-cycles intersecting over point

D2³-D6: wrap D2 on 2-cycles intersecting over point; D6 on CY

4 equal charges: RN bh 3+1 charges: $n_V = 1$ black holes

→ Non-zero entropy BPS black holes

Known microscopic state counting of index. Agrees with BH entropy

Uplift to 5D (11D M-theory on CY₃)

D0-D4³ / W-M5³
intersect over line→string

4D

5D

5D Black string
3-charge + P

Uplift to 5D (11D M-theory on CY₃)

4D 5D 5D Black string D0-D4³ / W-M5³ 3-charge + P intersect over line→string 5D Black hole D23-D6 / M23-KKm 3-charge + nut

Euc Taub-NUT

Decompactify $R_5 \rightarrow \infty$

Decompactify $R_5 \rightarrow \infty$

Euclidean Taub-NUT

$$p^0 = 1 \qquad r = \frac{\hat{r}^2}{4R_5} \qquad R_5 \to \infty$$

$$ds^{2} \rightarrow -dt^{2} + d\hat{r}^{2} + \frac{\hat{r}^{2}}{4} \left((d\psi + \cos\theta \ d\phi)^{2} + d\Omega_{2} \right)$$

$$\mathbb{R}^{4}$$

4D/5D lift

Gaiotto+Strominger+Yin $M2^3$ -KKm Unit nut charge $R_5 \rightarrow \infty$ 5D Black hole in 5D Asymp Flat Taub-NUT Black hole

4D/5D lift

Metric changes under change in R_5 . Index should be invariant

Index (D2
3
-D6) = Index (M2 3 in TN) = Index (M2 3)

4D AF BH

5D AF BH

4D/5D lift

Lift: need one scalar for 5D circle radius = KK dilaton

N=2 pure Sugra: no scalar ⇒ cannot be lifted

Need at least N=2 Sugra + 1 vector supermultiplet

Lifting the index

TWO-CENTER 4D TO 5D

4D/5D lift for index

Rotating non-extremal bh in N=2 Sugra + vectors

∃ 4D "5-charge Kerr-Newman" w/3 vectors (Chow+Compère)

Take one to be KK-monopole: uplift+decompactify

⇒ 5D "3-charge Kerr-Newman": index geometry

4D/5D lift for index

Multi-center approach (index as split black hole)

4D Israel-Wilson-Perjés ∈ N=2 sugra

⇒ cannot be uplifted+decompactified

Need "IWP multicenter" for N=2 sugra + vector supermultiplets

General multi-center solution: Bates-Denef

$$ds^{2} = -\frac{1}{\Sigma(x)}(dt + \omega)^{2} + \Sigma(x)d\mathbf{x}^{2}$$

$$\Sigma(x) = \sqrt{Q^3 H^0 - (LH^0)^2} \qquad *d\omega = \langle dH, H \rangle$$

Harmonic $(H^0, H^A, H_A, H_0) \leftrightarrow (D6, D4, D2, D0)$

$$H^0 = h^0 + \sum_i \frac{p_i^0}{|\mathbf{x} - \mathbf{x}_i|}$$
 etc

General multi-center solution: Bates-Denef

$$ds^{2} = -\frac{1}{\Sigma(x)}(dt + \omega)^{2} + \Sigma(x)d\mathbf{x}^{2}$$

$$\frac{\text{Majumdar-Papapetrou}}{\text{Shmakova}} = \frac{\text{IWP}}{\text{Bates-Denef}}$$

$$\frac{\text{pure sugra}}{\text{sugra+vectors}}$$

Reproduces IWP for pure Sugra

W/ one vector, uplifts to general (timelike) solution of 5D minimal sugra

Gauntlett+Gutowski+Hull+Pakis+Reall

5D index from lifted two-center

Single-center D2³-D6 w/unit D6 charge

Split two-center:
$$\frac{D2^3 D6}{2} |_N + \frac{D2^3 D6}{2} |_S$$

Generate imaginary DODO, D4D4 dipoles, rotation

Uplift:
$$\frac{M2^{3}KKm}{2}|_{N} + \frac{M2^{3}KKm}{2}|_{S}$$

Uplifted geometry

$$ds_{5D}^2 = -\frac{1}{Q^2} \left(dt + \omega + L \left(d\psi + A^0 \right) \right)^2 + Q ds_{4D}^2$$
(TaubNUT)

$$ds_{4D}^2$$
(TaubNUT) = $\frac{1}{H^0} (d\psi + A^0)^2 + H^0 d\mathbf{x}^2$

with Q(H) and L(H) as before.

If nut charge $p^0 = 1$ then can decompactify to 5D AF multicenter

Two-center lifted geometry

At asymptotic infinity it satisfies the correct periodicities for index

Near horizon (non-extremal) it is smooth

Halved KK monopoles?

½ nut charge is usually problematic

Dirac strings would be observable

Not a problem since line between monopoles is S^2 "Dirac surface", which can't be shrunk to an observable string

5D index geometries

5D black hole index with two vectors first found as "3-charge rotating black hole" (Cvetic+Youm) in BPS limit with imaginary rotation

Anupam+Chowdhury+Sen

We've verified that the lifted two-center Bates-Denef solution with $n_v=3$ is the same solution as in Anupam+Chowdhury+Sen

5D index geometries

Lifted multi-center allows to construct 5D index geometries that are not known otherwise, eg, with arbitrary number of vectors

5D Black Ring from 4D

Elvang+RE+Mateos+Reall Gaiotto+Strominger+Yin Bena+Kraus+Warner

5D BPS black rings (and black Saturns etc) can be constructed as lifts of 4D BPS two-center solutions (∉ Shmakova)

5D Black Ring index

5D BPS black rings (and black Saturns etc) can be constructed as lifts of 4D BPS two-center solutions

Splitting the black ring, the index is a

4-center solution

5D Black String index

With zero total D6 charge, we can obtain index of MSW string.

 $M5^3+W$ from index of $D4^3+D0$

Uplift w/out decompactification

5D Black String index

 $M5^3+W$ has an AdS_3 throat

Its index can be computed from a non-extremal AF geometry with arbitrary β that does not have an AdS₃ throat *anywhere*

 \Rightarrow MSW CFT₂ index from a nowhere-AdS₃ AF geometry (!)

Outlook

LIFTING INDICES

- Susy indices consistently computed in gravity
- Non-trivial test that the Gravitational Path Integral is sensible,
 versatile and powerful
- Supersymmetric finite-temperature saddles are necessary
- Why is gravitational index β independent?
- 4D/5D lift of indices works and gives novel index geometries
- More precise tests of gravitational index vs micro index

Thank you

JAN BORUCH LUCA ILIESIU SAMEER MURTHY