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Extremal and near-extremal
black holes



Definition 1. Extremal black holes have vanishing surface gravity on
the horizon, i.e., their temperature is zero.

Definition 2: There is a maximum charge and angular momentum
for a given mass. When this bound is saturated, we have an
extremal black hole.

Generically, both definitions are equivalent but there are

counterexamples. [Dias, Horowitz, Santos; 2109.14633]

We will only focus on cases where temperature goes to zero.



Universal features of extremal black holes

e Extremal black holes develop an infinitely long throat in the
near-horizon region. The proper distance from horizon to any point
outside the horizon is infinite.

e For a large class of black holes, near-horizon region contains an
AdSz factor. (Kunduri, Lucietti Reall, Figueras, Rangamani; 0705.4214,0803.2998]

e This universal behavior doesn’t survive addition of any finite energy
eXCitation. [Maldacena Michelson, Strominger; 9812073]

e There are several ways to see this: 1. 2d gravity Lagrangian is
topological. So, stress-energy tensor vanishes.

2. Consider 2d dilaton gravity models. Any non-zero stress-energy
tensor implies dilaton diverges near the boundary destroying the
AdS, asymptotics.

3. Even going slightly away from extremality, near-horizon region is
no-longer decoupled from the remaining spacetime. Proper distance
from horizon to any point outside becomes finite.



Universal features of near-extremal black holes

e If this were the whole story, it would be of limited interest since it
like studying just the ground state of a quantum mechanical system
have and no finite energy excitations.

e However, this is not the whole story. For black holes with small
deviations away from extremality, a universal description also
emerges by keeping leading order effect of backreaction. (amneir polchinssi
1402.6334]

e It is obtainted by correcting Einstein-Hilbert action by
Jackiw-Teitelboim (JT) gravity action

L =Cr / d’x\/—gd <R+ 2) (1)

153



e The onshell JT action is given by Schwarzian action [vsiscens, senford, vans

1606.01857]

£ 3 /" 2
b= G [arif) o}, =5 -3 (2) L @
f(7) represents the reparametrizations of boundary AdS, given by
ds? = dp? — <eﬂ/fz + %{f(T),T}eﬂ/f2> dr? (3)

e It also famously captures the low-energy regime of SYK model.

e The Schwarzian action describes a quantum mechanical model that
is exactly solvable. The partition function is one-loop exact (s

3/2
™ 2,5 ~ 6
ZCW: = 7‘-/6 = .
Sch: (6) e ; B 2CSch (4)

Witten '17]
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How does this universal description of near-extremal black holes
manifest in the boundary theory?

In holographic context, there should be a regime of parameters of
the boundary theory that describes the near-extremal black holes
and reproduces their universal features descibed by JT/Schwarzian
theory.

We will refer to this regime as near-extremal regime of the dual field
theory. In this regime, the field theory computation of quantities like
correlation function and partition function should be consistent with
Schwarzian theory.

This regime should involve studying thermal field theory close to
zero temperature amongst other limits.



e We will answer the question of existence of near-extremal limit of
QFTs by looking at QFTs in two dimensions.

e We will consider CFTs, warped CFTs and Carrollian CFTs.

e A common charatersitic of these theories is that there have a
Virasoro factor in their symmetry algebra.



We will answer the question of existence of near-extremal limit of
QFTs by looking at QFTs in two dimensions.

We will consider CFTs, warped CFTs and Carrollian CFTs.

A common charatersitic of these theories is that there have a
Virasoro factor in their symmetry algebra.

Near-extremal CFTs For a large class of 2d CFTs with large
central charge, there exists a regime of parameters, namely, low
temperature and large angular momentum where partition function
and correlation functions are determined by Schwarzian theory. (cro

Maxfield, Turiaci; 1912.07654]

These results are in line with the bulk computations of near-extremal
BTZ.



e Near-extremal Warped CFTs (WCFTs) For a large class of
non-unitary WCFTs with large central charge, there exists a regime
of parameters, where partition function is determined by
warped-Schwarzian theory. It matches the low energy behavior of
complex SYK mode. [aa castro, Detosrnay, Mishimann; 2211 03770]

e These results are also in line with the bulk near-extremal limit of
warped black holes. Based on this we conjectured that only
non-unitary WCFTs have interesting holographic duals. s cocio

Detournay, Miihimann; 2304.10102]

e We also present the exact modular S-matrices of WCFTs that can
be used to obtain density of states of near-extremal WCFTs. (s sinen

to appear]



Near-extremal Carrrollian CFTs (CCFTs): CCFTs also contain a
universal “near-extremal” sector. Partition function is dominated by
vacuum character and looks similar to Schwarzian partition function.

[AA, Bagchi, Detournay, Grumiller, Riegler, Simon; to appear]
However, we do not yet know the bulk interpretation of this
“near-extremal” regime of CCFTs.

The putative bulk is 3d asymptotically flat spacetime. There are no
black holes in 3d in absence of cosmological constant.

There are flat space cosmologies but they only have one horizon.
Nevertheless, this sector does exists from the field theory side. We

also present modular S-matrices of Carrollian CFTs that can be used
to derive the density of states in the near-extremal regime. (ua simon an

Bagchi, Detournay, Grumiller, Riegler, Simon; to appear ]
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universal “near-extremal” sector. Partition function is dominated by
vacuum character and looks similar to Schwarzian partition function.

[AA, Bagchi, Detournay, Grumiller, Riegler, Simon; to appear]

However, we do not yet know the bulk interpretation of this
“near-extremal” regime of CCFTs.

The putative bulk is 3d asymptotically flat spacetime. There are no
black holes in 3d in absence of cosmological constant.

There are flat space cosmologies but they only have one horizon.

Nevertheless, this sector does exists from the field theory side. We
also present modular S-matrices of Carrollian CFTs that can be used
to derive the density of states in the near-extremal regime. (ua simon an
Bagchi, Detournay, Grumiller, Riegler, Simon: to appear | IN- @Il three cases, there is another

universal regime, i.e., Cardy regime.



Near-extremal CFT,
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Near- extremal Carroll CFT,
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making space absolute and time relative; opposite of Gallilean
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e Carroll symmetries arise as the ¢ — 0 limit of Poincare symmetries,
making space absolute and time relative; opposite of Gallilean
symmetries. Lévy-Leblond '65, Sen Gupta '66]

e Carroll symmetries are associated to null hypersurfaces and are thus
relevant for flat space holography. Additionally, they have found
applications in condensed matter systems, hydrodynamics, tensionless
strings, and black hole microstates.

e Carroll symmetries arise on a Carroll manifold defined by the pair
(7", hy) a degenerate symmetric tensor hy,,, and a vector 7/ generating
the kernel of hy,,
I = Ok (5)



e Carroll algebra is generated by the isometries of the Carroll structure,
EgT” = ACghl“, =0.
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e Carroll algebra is generated by the isometries of the Carroll structure,
EgT” = ACghl“, =0.

d—1

e For d—dimensional flat Carroll spacetimes, 7+ = 9; and ds® = Y (dx')?,

1
Conformal Carroll algebra, ccary, is generated by the isometries

ﬁgTﬂ = —/\T#, ['ﬁh/w = 2)\hlw-

(6)

10



e Carroll algebra is generated by the isometries of the Carroll structure,
EgT” = ACghl“, =0.

d—1
e For d—dimensional flat Carroll spacetimes, 7+ = 9; and ds® = Y (dx')?,

1
Conformal Carroll algebra, ccary, is generated by the isometries

Lemh = A", Lehyu, = 2\, (6)

e ccaty, is isomorphic to the (d + 1)-dimensional
Bondi—van der Burgh—Metzner—Sachs (BMS) algebra, bms, 1, which is
the algebra of d + 1 dimensional asymptotically flat spacetimes. (buwal cibbons

Horvathy '14].

10



e We are interested in d = 2, i.e., bmsz or ccary. It consists of semidirect
sum of Virasoro and an abelian algebra. Expanding the generators in
Fourier modes

[Ln, L]l = (n—m) Lpym + CL(n3 — 1) 0ntm,0 (7)
[Lny Mim] = (n—m) My m + CM(”3 = n)dnim,0 (8)
[an Mm] =0 (9)
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Minkowski. ¢, = 0 and cp; # O for Einstein gravity.
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e We are interested in d = 2, i.e., bmsz or ccary. It consists of semidirect
sum of Virasoro and an abelian algebra. Expanding the generators in
Fourier modes

[Ln, L]l = (n—m) Lpym + CL(n3 — 1) 0ntm,0 (7)
[Lny Mim] = (n—m) My m + CM(”3 = n)dnim,0 (8)
[an Mm] =0 (9)

e [,s are superrotations and M,s are supertranslations. Lo, L+1, My, M
generate global subalgebra isl(2,R) coresponding to the isometries of 3d
Minkowski. ¢, = 0 and cp; # O for Einstein gravity.

e The 2d QFTs with these symmetries are Carroll CFT, (CCFT,)—natural
holographic duals to 3d asymptotically flat gravity.

11



Carroll Partition Function,
modular transformations




e We define the partition function of a Carroll CFT, as

chut(/Bcuta otat) = Ty g Pracitifeact , (10)

where (4. is the inverse Carroll temperature, 6.4, is the angular
potential and
H=M,, J=L,. (11)
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e We define the partition function of a Carroll CFT, as

chut(/Bcuta otat) = Ty g Pracitifeact , (10)

where (4. is the inverse Carroll temperature, 6.4, is the angular
potential and
H=M,, J=L,. (11)

e One can obtain Carroll CFT, from a Lorentzian CFT, in the limit of
vanishing speed of light

t—et, ¢— o, e — 0. (12)
Ly=L,—L_p, M, =e(Ln+L_,) (13)

c =c—¢, cm = e(c+ ), (14)
Bert = Bear, Ocrr = €bcar (15)
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e This limiting procedure also provides a way to obtain Carroll modular
transformations. We start with CFT, modular transformations PSL(2,Z),

ar + b
_)

ad —bc=1 with a,b,c,d €Z. (16)
cT+d
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e This limiting procedure also provides a way to obtain Carroll modular
transformations. We start with CFT, modular transformations PSL(2,Z),

N ar + b
cT+d

ad —bc=1 with a,b,c,d €Z. (16)

e The relation between CFT, and Carrollian modular parameters,
0 = iBear/27, p = Ocqr /2, yields the expansion

ac+ b ad — bc 5
= O 17
T U+€p_>ca+d+€p(ca+d)2+ (%), (17)
leading to Carroll modular transformations
ac + b p
- . 18
co+d i (co+d)? (18)

o transforms like 7 and p transforms like imaginary part of 7.

13



e If o is thought of as coordinate on the base manifold, , on which
Carroll modular transformations act, p transforms like a vector in 7, H.
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e Similar to a thermal CFT, defined on upper half plane, it is useful to
think about thermal Carroll CFT, to be defined on the complex upper
half plane and the corresponding tangent space.
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transformations

1
S:0—>—— p— = T:o0—0+1 p—p. (19)
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If o is thought of as coordinate on the base manifold, #, on which
Carroll modular transformations act, p transforms like a vector in 7, H.

Similar to a thermal CFT, defined on upper half plane, it is useful to
think about thermal Carroll CFT, to be defined on the complex upper
half plane and the corresponding tangent space.

The Carroll modular group is generated by composing S and T
transformations

1
S:0—>—— p—)ﬁ T:o0—0+1 p—p. (19)
o

They satisfy the usual identities

=1 (ST =1 (20)

14



Carroll Characters




e The states in a 2d Carrollian CFT are labelled with the eigenvalues of Lg
and Mp:

LolA, &) = AlA,€) Mo|A, §) = €A, €) . (21)
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e The states in a 2d Carrollian CFT are labelled with the eigenvalues of Lg
and Mp:

LolA, &) = AlA,€) Mo|A, §) = €A, €) . (21)

e One can construct highest weight representations by defining primary

states as
Lo|A&)p = My|AE), =0 Yn>0 (22)

e A generic descendant takes the form

W) = Lol gy lg Mo My My |AE),  1jym; >0

15



e There is another type of representation — induced representation, which
is built out of states anihilated by all supertranslations (except for Mp):

MalA, €)1 =0 Vn#0. (23)
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e There is another type of representation — induced representation, which
is built out of states anihilated by all supertranslations (except for Mp):
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e Generic states in induced representation are obtained by acting with
arbitrary combinations of L, generators (not necessarily n > 0) on |A, &)

|) = Ly L. Ly |AE)) (24)
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e There is another type of representation — induced representation, which
is built out of states anihilated by all supertranslations (except for Mp):

MalA, €)1 =0 Vn#0. (23)

e Generic states in induced representation are obtained by acting with
arbitrary combinations of L, generators (not necessarily n > 0) on |A, &)

|) = Ly L. Ly |AE)) (24)

e The highest weight and induced representations turn out to have
identical characters.
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e For non-vacuum states, the Carroll characters are given by

e o—2mi(o F+pH) g2mi(c A+Ep)

(25)

X(CL,C/\//,A,g)(O-7 p) = 77(0_)2

where 7(c0) is the Dedekind eta-function.
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e For non-vacuum states, the Carroll characters are given by

e o—2mi(o F+pH) g2mi(c A+Ep)

X(CL,C/\//,A,g)(O-7 p) = 77(0_)2

where 7(c0) is the Dedekind eta-function.
e For the vacuum (A = 0,£ = 0), we have

627;;'7 e—27ri(o’%+chM)

2mio \2
X(CL,CM,O,O)(Ua p) - 77(0_)2 (1 — e ) .

(25)

(26)
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e For non-vacuum states, the Carroll characters are given by

2mi

e e‘zﬂi(o%'*‘PCTM)eQW’.(UA'FEﬂ)

X(er,em,A,€) (07 P) = 77(0)2 (25)
where 7(c0) is the Dedekind eta-function.
e For the vacuum (A = 0,£ = 0), we have
2nig —277[(0'i+pﬂ)
e 12 e 2 2 e
X(CL,CMyo,O)(U’ p) = 77(0_)2 (1 - 6‘2 )2 o (26)

e The Carroll partition function is then the sum of Carroll characters

chm U P) Z D A § CL,CM,A,ﬁ)(Uv p) . (27)

primaries

where D(A, €) is multiplicity of the primaries with weight (A, &).

17



Summary until now

e Carroll CFT; is a two-dimensional QFT invariant under ccatrp or bmss
symmetries.

e |t can be obtained as a limit of a CFT».

e Thermal CCFT, is invariant under Carroll modular transformations that
act on the upper half plane as well as its tangent space.

e CCFT, partition function can be expressed as the sum of Carroll
characters. These characters are same for both induced and highest
weight representations.

18



Vacuum Dominance and
Universal Carroll Sectors




Are there any universal sectors present in a generic class of 2d
Carroll CFTs?
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two assumptions: A > 0,¢ > 0 for all primaries and that the only
primary state with £ = 0 is the vacuum.
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Are there any universal sectors present in a generic class of 2d
Carroll CFTs?

e We will consider a class of 2d Carroll CFTs that satisfy the following
two assumptions: A > 0,¢ > 0 for all primaries and that the only
primary state with £ = 0 is the vacuum.

e Modular invariance of the 2d Carrollian partition function under the
S- transformation implies

1
Zttat(ga ,D) = Zecar (0_; 0_p2> (28)

e We can thus write the partition function in terms of characters in
the S-dual channel.

1 p
char(aap) = Z X(er,em,A8) <_ ) . (29)

o’ o2
primaries
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e We look for regimes where the vacuum character is the dominant
contribution to the partition function in the S-dual channel

1
Loty 0 (—, pz) 50, VAE#0. (30)
X(CL,CM,0,0) g o
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e We look for regimes where the vacuum character is the dominant

contribution to the partition function in the S-dual channel

X(cL,em,A,€)

X(ct,cm,0,0)

(

1
= p2> 50, VA£#0. (30)

)
g o

e It turns out that there are two regimes/ sectors where this happens

Sector

Physical parameters

1.Cardy

2.Cardy — Near extremal

ﬁcurQ

BcatQ

cav — 0+7 QECItMBCClt < 0

%ﬂt — O_ ? QCCL'C? Bcat < O
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e We look for regimes where the vacuum character is the dominant

contribution to the partition function in the S-dual channel

X(cL,em,A,€)

X(ct,cm,0,0)

(

1
= pz) 50, VA£#0. (30)

)
g o

e It turns out that there are two regimes/ sectors where this happens

Sector

Physical parameters

1.Cardy

2.Cardy — Near extremal

ﬁcurQ

BcatQ

cav — 0+7 QECItMBCClt < 0

%ﬂt — O_ ? QCC"C) Bcat < O

e Carroll temperature is negative for both of the regimes which is in

line with the negative temperature for Flat space cosmologies in the

dual theory.

20



e The partition function in the Cardy regime is well-approximated by

7 o,p) & ex {27r2{ L + w }} : !
ccar(0, p) P V| [ ey
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e The partition function in the Cardy regime is well-approximated by

7 o,p) & ex {27r2{ L + w }} : !
ccar(0, p) P V| [ ey

e In the Cardy-Schwarzian regime, the partition function is

2 2
___4mt
2) 1 — e TBcarQcarl

chat(U; P) ~ Zc(clc)xt(o'» P) (32)

n(ﬁtﬂ%gfﬂr )
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e The partition function in the Cardy regime is well-approximated by

7 o,p) & ex {27r2{ L + w }} : !
ccar(0, p) P V| [ ey

e In the Cardy-Schwarzian regime, the partition function is

2 2
___4mt
2) 1 — e TBcarQcarl

chat(U; P) ~ Zc(clc)xt(o'» P) (32)

n(ﬁtﬂ%gfﬂr )

e In both of the regimes regimes, one finds BMS-Cardy formula for the
entropy to the leading order excluding generically small corrections

s~ s® R:4772< T ) . »
cear ceav [/ et RN (r) 2| )
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Near-extremal sector of CCFT,




e There is a subsector of the Cardy-Near extremal regime that leads to
a “Schwarzian-like" partition function. In this subsector
BearQear > 1 in addition to BqcQ2,, — 0.
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e There is a subsector of the Cardy-Near extremal regime that leads to
a “Schwarzian-like" partition function. In this subsector
BearQear > 1 in addition to BqcQ2,, — 0.

e The partition function in the Near-extremal regime is given by ja»

Bagchi, Detournay, Grumiller, Riegler, Simon; to appear]

27‘(’)5 ,3 Q CL71/6 (oY
2~ { wwzwz[ n .
cear (Bccntha'c)3 P 12 |Bcathat| |ﬁcatQ%at|
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e The partition function in the Near-extremal regime is given by ja»

Bagchi, Detournay, Grumiller, Riegler, Simon; to appear]

27‘(’)5 ,3 Q CL71/6 (oY
2~ { wwzwz[ n .
cear (Bccntha'c)3 P 12 |Bcathat| |ﬁcatQ%at|

e The prefactor indicates the contribution of six zero modes
corresponding to six global generators My 41, Lo +1.
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There is a subsector of the Cardy-Near extremal regime that leads to
a “Schwarzian-like" partition function. In this subsector
BearQear > 1 in addition to BqcQ2,, — 0.

The partition function in the Near-extremal regime is given by (s

Bagchi, Detournay, Grumiller, Riegler, Simon; to appear]

27T)5 ,3 Q CL71/6 (oY
e ex{ ‘““+27r2{ n .
cear ¥ 3 Qeae)® Pl 12 BearQear] ' 1Bear@y]

The prefactor indicates the contribution of six zero modes
corresponding to six global generators My 41, Lo +1.

This is in contrast to the 3 zero modes of Schwarzian theory.
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Summary of near-extremal
Carrollian CFTs




e A generic class of 2d Carroll CFTs has two universal sectors—Cardy
and Cardy-Near extremal.
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Cardy-Near extremal regime has a subsector that leads to a
“Schwarzian-like" partition function.

e They require negative Carroll temperatures which is in line with the
thermodynamics of Flat space cosmologies.
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A generic class of 2d Carroll CFTs has two universal sectors—Cardy
and Cardy-Near extremal.

Both of these sectors reproduce BMS-Cardy entropy while
Cardy-Near extremal regime has a subsector that leads to a
“Schwarzian-like" partition function.

They require negative Carroll temperatures which is in line with the
thermodynamics of Flat space cosmologies.

However, since there are no black holes in 3d Einstein gravity with
A = 0, the bulk interpretation of the Schwarzian sector is unclear.
Can't be tied to near-extremality.
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Near-extremal density of states
from modular S-matrices




e Now, we will see the appearance of “Schwarzian” in the
near-extremal desnity of states using modular S-matrices.

24



e Now, we will see the appearance of “Schwarzian” in the
near-extremal desnity of states using modular S-matrices.

e Given an S-modular transformation 7 — 7/, modular S-matrices S; ,
relate characters in the original (7) and modular (7") channels, i.e.

Xi(7') =D Siym xm(7) - (34)
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e Now, we will see the appearance of “Schwarzian” in the
near-extremal desnity of states using modular S-matrices.

e Given an S-modular transformation 7 — 7/, modular S-matrices S; ,
relate characters in the original (7) and modular (7") channels, i.e.

Xi(7') =D Siym xm(7) - (34)

i(7) = / dP S, p xp(7) (35)

for continuous spectrum.
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CFTs/ Virsoro modular S-matrix

e Modular S-transformation:

5:7'—>—1 (36)
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CFTs/ Virsoro modular S-matrix

e Modular S-transformation:

.‘5:7’—)—1 (36)

e Using Liouville parametrization, let

c—1_. 5 c—l_

h_24"6

Q?, Q=:b+bl. (37)

Then, characters of Virsoro algebra are

. p2
e27TITP

) (1 —=96vacq), q:=e"" (38)

5 1, for vacuum
' 0, otherwise

The vacuum character is different due to the presence of null states. 25
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CFTs/ Virsoro modular S-matrix

e Modular S-transformation:

5:7'—>—1 (40)
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CFTs/ Virsoro modular S-matrix

e Modular S-transformation:

.‘5:7’—)—1 (40)

e Using Liouville parametrization, let

c—1_. 5 c—l_

h_24"6

Q?, Q=:b+bl. (41)

Then, characters of Virsoro algebra are

. p2
e27TITP

n(7)

xp(7) = (1—96vacq), q:= i (42)

5 1, for vacuum
' 0, otherwise

The vacuum character is different due to the presence of null states. 26

(43)



e We define the Virsoro modular S-matrix as

xe (1) = [ sy,

T

— 00

(44)
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e We define the Virsoro modular S-matrix as

T

xe (1) = [ sy,

— 00

S(P’; P) = 2V/2 cos [4nPP'] .

for non-vacuum characters.

(45)
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e We define the Virsoro modular S-matrix as

xe (1) = [ sy,

T —E39

S(P’; P) = 2V/2 cos [4nPP'] .

for non-vacuum characters.

S(1; P) = 4v/2sinh (2wbP) sinh (2rb~ 1 P)

for vacuum character.

(45)

(46)
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e We define the Virsoro modular S-matrix as

1 < dP
e (1) = [ SPiPa(r), (44)
T o 2
[ )
S(P"; P) = 2v/2cos [4TPP'] . (45)
for non-vacuum characters.
[ )
S(1; P) = 4v/2sinh (2bP) sinh (2rb~ 1 P) (46)

for vacuum character. This is the Plancherel measure for the
continuous principal series representations of the quantum group
Z/[q(5/2). Ponsot, Teschner; '99]
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e One can use S(P; 1) to find the Schwarzian desity of states as
follows.

e Since CFT partition function can be approximated by (left) vacuum
characters in the S-transformed channel

Zorr~a (<2) = [P s@Pe) @)
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follows.

e Since CFT partition function can be approximated by (left) vacuum
characters in the S-transformed channel

Zorr~a (<2) = [P s@Pe) @)

e In near extremal limit, c > 00 = b—0, B ~c— b2
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xp(1) ~ e PP ez (48)
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One can use S(P; 1) to find the Schwarzian desity of states as
follows.

Since CFT partition function can be approximated by (left) vacuum
characters in the S-transformed channel

Zorr~a (<2) = [P s@Pe) @)

In near extremal limit, c - 00 = b—0, B, ~c — b2

2

xp(1) ~ e PP ez (48)

Thus, the above integral is dominated by P ~ b

S(P;1) ~ sinh(27b~*P) (49)
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e Density of states D(P) is defined as

z= /dP D(P)xe

(50)
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e Density of states D(P) is defined as
7= / dP D(P)xr

So, in the near extremal limit D(P) ~ S(1; P) ~ sinh(27b~!P)
P ~ h ~ \/Energy

(50)
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Near-extremal Carrollian DoS from modular S-matrices

e Using a Liouville inspired parametrization, let
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Near-extremal Carrollian DoS from modular S-matrices

e Using a Liouville inspired parametrization, let

e The modular S-matrix is defined as

X(P!.PL,) <—,2) :/_ - | AP S(PL, Py Pr, Pm)x(p,,py) (0, p)
(52)
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Near-extremal Carrollian DoS from modular S-matrices

e Using a Liouville inspired parametrization, let

e The modular S-matrix is defined as

1 P o dPM o
X(P[,Pl,) <—,2) = /_OO > /) AP S(PL, Py Pr, Pm)x(p,,py) (0, p)
(52)

e |t is given by

Pyl Pu . P; P
S0P Bl Py 1P _olPul Pu o (Pup, 4 Pup]
( Ly v 7L M) ‘PM|2 P//\/[ sin | 27 P L+ P//\// L
(53)

for non-vacuum characters. (aa, simon; to appea
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e For vacuum characters

Pu . fem Pr Py Q-2
S(1; P., Py) = 8——— sinh |27 —_
( L M) |PI\/I‘2 [ ( 2 Py CM/2 2

7TPM
C/\/]/2.

sinh? (54)



e For vacuum characters

Pu . fem Pr Py Q-2
S(1; P, Py) = 8—— sinh |27 ML
( L M) |PI\/I‘2 [ ( 2 Py CM/2 2 >‘|

P
sinh? =M (54)
C/\/]/2

e This is possibly Plancherel measure of some quantum deformation of
iso(2,1) which might be obtainable by Igndnii-Wigner contraction of
modular double of Uq(sh).
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e For vacuum characters

Pu . cv PL Py Q-2
S(1; Pr, Py) = 8= sinh |2m [ (/M EL 4
( L M) |PI\/I‘2 [ ( 2 PM CM/2 2 >‘|

P
sinh? =M (54)
C/\/]/2

e This is possibly Plancherel measure of some quantum deformation of
iso(2,1) which might be obtainable by Igndnii-Wigner contraction of
modular double of Uq(sh).

e Density of states in the near-extremal regime turns out to be (aa o,

Detournay, Grumiller, Riegler, Simon; to appear

P [ c (2
2FMm L M M
~ == 2 — —2)) .
D ~ 8 o exp {277 Pr > } exp <m (Qc )> (55)
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For vacuum characters

Pu . cv PL Py Q-2
S(1; Pr, Py) = 8= sinh |2m [ (/M EL 4
( L M) |PI\/I‘2 [ ( 2 PM CM/2 2 >‘|

P
sinh? =M (54)
C/\/]/2

This is possibly Plancherel measure of some quantum deformation of
iso(2,1) which might be obtainable by Igndnii-Wigner contraction of
modular double of Uq(sh).

Density of states in the near-extremal regime turns out to be (aa sasen,

Detournay, Grumiller, Riegler, Simon; to appear

P P [c P
o g2l o =) by _
D =~ 8r o, &P {277 P\ 2 } exp <m (Qu 2)) . (55)

P — 0 and P; /Py doesn't diverge as 1/Py; in the near-extremal
regime. So, DoS indeed goes to zero as Py ~ VE — 0 (E being
"energy above extremality”). The behavior is similar to Schwarzian



Summary and future directions




We observed that three different two-dimensional QFTs have a
universal near-extremal sector different from the universal Cardy
sector of these theories.

Common characteristics of these theories that lead to the
near-extremal sector: Modular symmetry, atleast one copy of
Virsoro, and two dimensions.

Can one find such sectors in other QFTs, particularly in higher
dimensions?

There should be a mechanism for this to happen since higher
dimensional near-extremal blackholes also show the Schwarzian
behavior and their putative duals are higher dimensional QFTs.
Cardy in higher dimensions?
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Thank youl!
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