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Plan of the talk

1. Truncated Wigner Approach and the Dirac time-
dependent MF approximation

2. Cluster TWA. 

3. Some applications: diffusion, dynamic structure factor, 
disordered spin systems

4. Fermion TWA



Variational (saddle point) approach to quantum dynamics 

Example: weakly interacting bosons on a lattice (Bose-Hubbard model)

Quench dynamics: interested in some observable: 

Operators to numbers: insert a complete set of coherent - classical -
states (Schwinger-Keldysh path integral)

Take the saddle point (variational) approximation with respect 
to             . Result: Truncated Wigner Approximation  



Standard Truncated Wigner Approximation (TWA)

Classical (mean-field) discrete Gross-
Pitaevski equation

1. Interpretation: many mean-field states evolved in parallel, not one 
like the Dirac time-dependent variational ansatz assumes.

2. TWA is asymptotically exact in the classical limit (large S limit), 
harmonic limit, or long-range (large N) limit

3. Asymptotically exact at short times

4. Easy to simulate if W is positive. Within accuracy of TWA the 
Gaussian approximation for W works.

5. Can extend TWA to arbitrary systems with the classical limit (classical 
Poisson brackets).

6. Many applications: quantum optics, spin systems, cold atoms, 
quantum chemistry



What if the elementary local degree of freedom (site) has 3 
states? E.g. a spin one system.

TWA fails after a short time unless interactions are weak.

Prepare the spin initially 
polarized along z.

TWA fails. No small 
parameter to justify it.
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Idea: fix TWA introducing additional (hidden) variables
(S. Davidson and A.P., PRL 2015)

Go to SU(3) group. Any 3x3 Hamiltonian is a linear combination 
of SU(3) generators.
(Mapping taken from M. Kiselev, et. al. EPL (2013) for LZ problem in a 3 level system)

………



Single site Hamiltonian of Hubbard model: 
interaction and chemical potential

Start from a state polarized along x
3
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FIG. 1. Comparison of the dynamics of hŜxi for a spin-one
particle initially pointed in the x-direction subjected to the
Hamiltonian 1

2 Ŝ
2
z � Ŝz. The dynamics are calculated with

exact diagonalization (solid, blue), SU(3) TWA (dashed, red),
and SU(2) TWA (dotted, yellow). (Color online.)
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Note that in the SU(2) case we chose the spin-one repre-
sentation of the spin operators given by the first three op-
erators of the SU(3) representation. The additional con-
stant term �1/2 in the SU(2) Hamiltonian comes from
(X̂2

k)W = X
2
k � tr(T 2

k )/4. For concreteness we choose
U = 1 and start with the spin pointing along the x-
direction and observe the expectation value of Ŝx as a
function of time. In Fig. 1 we show comparison of the
resulting exact dynamics with SU(2) and SU(3) TWA
approximations. As expected the SU(3) TWA is exact
while the SU(2) semiclassical dynamics are only accurate
at short times. The di↵erence comes from the fact that
any interaction terms in the SU(2) case are represented
by non-linearity while in the SU(3) case they are rep-
resented by additional (hidden) variables, which in turn
have their own quite complex dynamics.

Next let us consider a more complicated setup, where
we deal with a system of interacting spin-one degrees of
freedom such that the Hamiltonian becomes

Ĥ =
X

n

Ĥ
(n)
I + ĤC (11)

where H(n)
I is the local spin-one Hamiltonian (7) describ-

ing n-th spin and

ĤC = �J

X

n 6=m

(Ŝn
x Ŝ

m
x + Ŝ

n
y Ŝ

m
y ). (12)

We have chosen a fully connected Hamiltonian to allow
for comparison of TWA and exact dynamics for larger
system sizes.

The Weyl symbol of the coupling term is the same for
the SU(2) and the SU(3) representations because it does

not involve local nonlinear spin-operators,

(HC)W = �J

X

n 6=m

(Xn
1 X

m
1 +X

n
2 X

m
2 ). (13)

For multi-spin systems we do not use the exact Wigner
function, which is defined and integrated over the coher-
ent state variables. Instead, we use a multivariate Gaus-
sian distribution f

n(Xn
1 , . . . , X

n
N2�1) for each site n and

integrate over the N
2 � 1 SU(N) variables:

h⌦̂(t)i ⇡
Z Y

n

dX
n
f
n( ~Xn)⌦W ( ~Xcl n(t)), (14)

where the mean and covariance matrix for each f is
fixed by the quantum expectation values of the initial
state of the system, hXn

↵ifn = hX̂n
↵i and hXn

↵X
n
� ifn =

h(X̂n
↵X̂

n
� + X̂

n
� X̂

n
↵)/2i (see Supplementary Material for

details). We use this best Gaussian approximation for
two reasons. First, the exact Wigner function will in
general have negative values, so the integration depends
on the cancellation of positive and negative contribu-
tions, which numerically requires more sample points to
converge. Secondly, we numerically found that the best
Gaussian TWA results are consistently more accurate.
Formally this Gaussian scheme is justified if we increase
the spin size (proportional to the conserved value of the
Casimir operator). For an initial correlated (not prod-
uct) state one should use the multivariate Gaussian which
correctly reproduces both local and non-local correlation
functions like hXm

↵ X
n
� i. For observables, instead of Weyl

ordering one can use direct quantum classical substitu-
tion X̂

n
m ! X

n
m because any onsite observable is linear in

X̂ and for linear operators this substitution is exact [10].
In Fig. 2 we show the dynamics of the spin fluctua-

tions hŜ2
z i per site obtained by exact diagonalization, and

SU(2) and SU(3) TWA. The system is initially prepared
with all spins pointing in the x-direction. We compare
the dynamics for a fully connected system for di↵erent
values of the coupling J and for di↵erent system sizes.
As the coupling is lowered and the on-site term in the
Hamiltonian becomes more dominant, the SU(3) TWA
becomes a better approximation, while the SU(2) be-
comes worse. When the on-site term is 5 times as dom-
inant as the coupling term, the SU(3) TWA is indistin-
guishable from exact quantum dynamics. As the system
size increases, and hence each site is connected to more
sites, the SU(3) TWA dynamics approach exact quantum
dynamics. Similarly to the SU(2) case, SU(3) TWA fails
to describe quantum revivals, which occur later and later
in time as the system size increases.
As a more practical example, we model the Bose-

Hubbard model using the e↵ective Hamiltonian [19]
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Exact, SU(3) TWA

SU(2) TWA

SU(3) TWA –
(semi)classical dynamics 
in 8-dimensional phase 
space.

Extra variables are like 
hidden variables. 

TWA, solve SU(3) Bloch equation:

Map interacting SU(2) spin to noninteracting (= linear) SU(3)) spin



What did we achieve?

Classical dynamics becomes exact if we go to a higher-
dimensional phase space.

Conventional
Physical 3D 
Space

Hidden (but still physical)
8D space

If we solve classical equations in 8D space and project to 3D 
space we are exact (for a single spin one)



Many-body generalization.

Bose Hubbard model in spin 1 representation (E. Altman 2001)

Treat local interactions exactly by mapping to SU(3) spins. 
Treat NN interactions semiclassically within TWA.

Small hopping or large dimensionality (connectivity) – expect SU(3) TWA to 
work much better than SU(2) TWA. 

Similar in spirit to DMFT (asymptotically correct in high dimensions) and 
DMRG (convert linear Schrodinger equation to nonlinear classical 
equations). Can treat both spatial and time correlations. 



Cluster TWA (CTWA) 2

FIG. 1. A Spin-1/2 chain in a Neel state clustered into 3 size-4 clus-
ters. Intracluster dynamics are exact while intercluster are treated
under TWA

THE CLUSTER TRUNCATED WIGNER APPROXIMATION

In this section we generalize the ideas developed in
Refs. [Shain1, Shain2] to generic clusters with the idea that
local degrees of freedom defining correlation within the clus-
ter are mapped to classical phase space variables or equiva-
lent local density functions, used to build appropriate TWA.
We start with single-cluster dynamics, which always have ex-
act dynamics, then generalize to multiple interacting clusters,
which are treated within the TWA. We then describe an al-
ternate TWA using wavefunction evolution instead of density
function evolution, which gives similar results.

Single cluster TWA

Let us consider a cluster of a finite Hilbert space-dimension
D. For our purposes, consider the cluster as a set of N-Spin-
1/2 degrees of freedom with dimensionality D = 2N . An ex-
amples of a four spin cluster is shown in Fig. 1. Any Her-
mitian operator with the support within a cluster including
the Hamiltonian, density matrix, or any observable can be
uniquely decomposed into a linear sum of coefficients multi-
plying orthogonal operators forming the operator basis:

Ô =
D2

Â
j=1

O jX̂j (1)

The coefficients O j are the Weyl symbol of the operator Ô .
The set of the basis operators X̂ j, j = 1 . . .D2 is not unique.
E.g. in Refs. [Wooters, Rey] the authors used so called
pointer states, which form a complete operator basis. We will
rather consider a basis consisting of an identity operator and
traceless orthogonal operators, generating the SU(D) algebra.
For example for the two-psin cluster there are fifteen traceless
operators and one identity

X̂1 = s1
x ⌦ Î(2), X̂2 = s1

y ⌦ Î(2), ˙

X6 = Î(1)⌦s2
z , X̂7 = s1

z s2
z , . . . , X̂16 = Î(1)⌦ Î(2) (2)

where Î(1,2) is the identity acting on the site l = 1,2. It is
clear that Tr[X̂ j] = 0, 8 j and

Tr[X̂a X̂b ] = Ddab

The orthogonality relation above implies that the coefficients
O j in Eq. (1) can be found by tracing the product of the oper-
ator Ô with the corresponding basis operator.

O j =
1
D

Tr[ÔX̂ j].

The commutators between the traceless basis operators
(X̂1, . . . X̂15 for the two-spin cluster) define the structure con-
stants of the corresponding special unitary group (SU(4) in
our case):

Tr
⇥
X̂g [X̂a , X̂b ]

⇤
= i fgab (3)

Any Hamiltonian with support only on the cluster can be
decomposed linearly into its Weyl symbol h j:

Ĥ = Â
j

h jX̂ j ; h j = Tr
⇥
ĤX̂ j

⇤
(4)

Time evolution of an operator Ô(t) is given by the Heisenberg
equations of motion, shown in operator basis, and phase space
basis given by tracing Tr[X̂i . . . ]:

∂tÔ = i[Ĥ, Ô]$ ∂tOi = h jOk fi jk (5)

This is equivalent to precession of a high-dimensional spin
Ok given some effective magnetic field h j, as fi jk is a structure
function. These equations of motion are formally identical to
classical Hamiltonian equations of motion of points in phase
space if we associate an operator Ô with a linear function
over a phase space ~µ , where ~O is the Weyl symbol of Ô in a
basis {X̂}:

Ô ! O(~µ) = ~O ·~µ (6)

Applying the Heisenberg equations of motion as above, ex-
cept acting derivatives on the basis vectors ~µ using the iden-
tity that full time derivatives are conserved under phase-space
conserving (Poisson) dynamics we find:

dO(µ)
dt

= 0 ! ∂t [Oi]µi =�∂t [µi]Oi (7)

!� fi jkh jOkµi = Oi∂t µi !� fi jkh jµi = ∂t µk (8)

Where in the last step we implicitly differentiated with re-
spect to Ok. These correspond to the classical equations of
motion for coordinates, with the Poisson operator for the clas-
sical Hamiltonian H(µ) =~h ·~µ:

µ̇a = {µa ,Hcl}= fabg
∂Hcl

∂ µb
µg = fabg ab µg (9)

A similar approach is shown in Refs[Yaffe 82, Shain1,
Shain2,...?]. Because the Hamiltonian is always linear within
a cluster, the dynamics are exact and the Poisson operator acts
as unitary linear rotations on the coordinate system.

In order to represent arbitrary observables one has to sup-
plement equations of motion with proper initial conditions as
well as identify correspondence between quantum operators
and phase space functions. There are several ways of doing
this formally. The most common and symmetric way is the
Wigner-Weyl quantization Ref. [Hillery], which can be ex-
tended to spins [AP2009] or more generally arbitrary matrix
models [Shain1] by using e.g. the language of Schwinger

Hilbert space of each cluster is spanned by SU(N) group. N 
– Hilbert Space Dimension. N=16 in the shown example.

Classical equations of motion

Initial conditions. Choose a Gaussian factorized distribution

This choice can be justified from the short time expansion. Alternative 
discrete sampling: W. Wooters et. al. 2004; works by A.M. Rey et. al. 



Example: four sites

Some operators 
are correlated

Treat local correlations (entangled degrees 
of freedom) as independent variables 

Alternative choice:



Equations of motion

Number of independent variables 2N+1 (not 4N). Need one extra ancilla spin.



Schwinger boson TWA 

Need to solve D=2N equations

Can almost satisfy initial conditions with 
the Gaussian state. Works very well. 

Reduction from D2 operators to D Schwinger bosons is like 
reduction from the density matrix to the wave function. 

Make a product ansatz

Dirac mean field equations
are identical to classical equations. TWA is like a statistical 
mixture of many mean fields. This does make a difference!



Application: diffusion

Central object

Defines the spectral function (dynamic structure factor), spin susceptibilities, 
diffusion constant, fluctuation-dissipation relation (key indicator of 
thermalization),...

This work – focus on infinite temperatures

Model (motivated by discussions with F. Pollmann): XXZ chain

Choose



Expected long time behavior

Can be used to extract diffusion constant (D. Luitz and Y. Bar Lev, 2016, 2017)

Main challenges: small system sizes amenable to ED can be too small to 
see asymptotic diffusive behavior.

Approximate methods (DMRG, mean field, TWA, ...) do not preserve time 
translational invariance, fail at long times. 



Numerical Results

longitudinal transverse

Follows from conservation 
of Z-magnetization 



Longitudinal correlations, comparison with mean-field dynamics

CTWA

MF

CTWA respects time-translation invariance: correct noise. MF fails, increasing 
cluster size makes things even worse due to ETH. Non-equilibrium initial state: 
MF is expected to fail completely.  



Extracting diffusion constant

CTWA, N=64

ED, N=16

MF, N=64

MF fails, ED gives a wrong diffusion constant



Excellent convergence to diffusive profile for all cluster sizes  

Very slow saturation of the diffusive constant with the cluster 
size (strong quantum renormalization).

Much faster saturation if we remove Z-conservation law. MF 
(classical) dynamics gives very accurate diffusion constant. 



Can reproduce well the whole dynamical structure factor

Small frequency tail

indicates asymptotic diffusive 
behavior. Only visible for 
N>32.

High frequency (exponential) 
asymptotes are quantum and 
can not be recovered from 
hydrodynamic approaches.

CTWA captures both!



Less favorable example: MBL in a disordered Heisenberg spin chain

Staggered magnetization Entanglement entropy

Long time-diffusion, but can see the evidence of localization.
Higher entanglement in the classical limit



Disordered 2D XY chain (=hard core bosons). Preliminary results 

Very small dependence on the cluster size. Evidence for a subdiffusive
behavior, very strong (exponential) scaling of decay time with disorder.



Group structure

For N species of fermion, these are the algebras for the generators of the lie

groups

U(N) = {Ê↵
� } (12)

SO(2N) = {Ê↵
� , Ê↵� , Ê

↵�}. (13)

3 Example model

We use the 2D Hamiltonian

Ĥ(t) =
X

ij


!(t)

⇣
b̂†$ij b̂$ij + b̂†lij b̂lij

⌘
� J

⇣
ĉ†ij ĉi+1j + ĉ†ij ĉij+1 + h.c.

⌘
(14)

�g(t)
⇣
b̂†$ij ĉij ĉi+1j + b̂†lij ĉij ĉij+1 + h.c.

⌘�
, (15)

where b̂$ij (b̂lij) is a boson living on the horizontal (vertical) link between

fermions at sites ij and i+ 1j (ij + 1).

So that the system starts in a fermi sea with no boson occupation, the

functions are chosen as

!(t)/J = 5� 20t/tmax, (16)

and

g(t)/J =

⇢
(1� cos(5⇡t/tmax))/2, !(t) < �1

1, !(t) � �1.
(17)

Numerics for the case of a 3⇥3 lattice beginning with full fermion occupation

(i.e. nine fermions) are displayed in Fig. 1.
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Fermions. No obvious classical limit.

Treat string variables as SO(2N) nonlocal spin degrees of freedom. Phase 
space dimensionality ~ 2N2 (instead of 2N).

Non-interacting system. Hamiltonian is linear. TWA is exact. 

1 TWA with closed group

If we are dealing with quantum operators with closed algebra

[X̂↵, X̂� ] = if↵��X̂, (1)

then we can approximate the time evolution of the expectation value of these

quantum variables by

hX̂↵i ⇡
Z

d ~XW ( ~X)Xcl
↵ (

~X, t), (2)

where W ( ~X) is the approximate Wigner function (defined below), and Xcl
↵ (

~X, t)
is the classical path of the classical analogue of the quantum variable with intial

conditions ~X which satisfies

Ẋ↵ = �f↵��X�
@HW

@X�
, (3)

where HW is the Hamiltonian written with classical variables in place of the

quantum variables.

The approximate Wigner function is a multivariate normal distribution with

has been fitted to the initial density matrix ⇢0 such that

Z
d ~XW ( ~X)X↵ = tr(⇢̂0X̂↵) (4)

and Z
d ~XW ( ~X)X↵X� = tr(⇢̂0(X̂↵X̂� + X̂�X̂↵)/2). (5)

2 Lie algebra of bilinear fermion terms

Following [1], we define operators

Ê↵
� = ĉ†↵ĉ� � 1

2
�↵� , Ê↵� = ĉ↵ĉ� , Ê↵�

= ĉ†↵ĉ
†
� . (6)

They have the properties

(Ê↵
� )

†
= Ê�

↵, Ê↵� = �Ê�↵, Ê↵�
= �Ê†

↵� . (7)

They obey the lie algebras

[Ê↵
� , Ê

�
� ] = ���Ê

↵
� � �↵�Ê

�
� , (8)

[Ê↵
� , Ê��] = �↵�Ê�� � �↵�Ê��, (9)

[Ê↵� , Ê��] = �↵�Ê
�
� + ���Ê

↵
� � �↵�Ê

�
� � ���Ê

↵
� , (10)

[Ê↵� , Ê��] = 0. (11)

1

Main idea: use bilinear strings as dynamical variables. Non-
locality is crucial
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fermionic Hamiltonians through Hubbard operators was
applied to analyze various strongly correlated systems of
fermions [17]. However, the general success of the ap-
plications of Hubbard operators was rather limited as
they have to satisfy constraints, which one can usually
implement only in mean-field limits. Such constraints
are, however, automatically preserved in time and thus
do not represent conceptual di�culty in simulating dy-
namics. We emphasize that the new variables are fluc-
tuating and thus we go beyond a mean-field approxima-
tion where one neglects fluctuations around the classical
path. As with any other semiclassical method it is ex-
pected that its accuracy is relying on existence of slow
e.g. hydrodynamic degrees of freedom. Here, we assume
that fermionic bilinear operators play this role. While
we cannot present a formal estimate of the error at the
moment we demonstrate for a particular model that the
method is very accurate for quenches and ramps as long
as the system is not very close to the ground state. We
are not aware of any other existing methods which can
lead to a comparable accuracy.

Fermionic TWA. For bosons, the Wigner-Weyl cor-
respondence provides a unique map between any func-
tion of operators and a function over classical phase
space [3, 6]. Any quantum dynamical problem corre-
sponds to a problem of propagating the Wigner function
in time. In general, time evolution of the Wigner function
is hard to handle as the action for its propagator contains
highly non-linear terms [18]. However, near the classical
limit one can use the so-called truncated Wigner approx-
imation (TWA) [5, 6], where the Wigner function, like a
classical probability distribution, is conserved on classical
trajectories. In [11] it was demonstrated how to gener-
alize this procedure to non-canonical phase-space. To
summarize, if we have operators X̂↵ which satisfy com-
mutation relations of some algebra [X̂↵, X̂� ] = if↵��X̂� ,
where f↵�� are the structure constants, then the classical
paths in the corresponding phase space are given by

Ẋ
cl
↵ = f↵��

@HW

@X
cl
�

X
cl
� , (1)

and we can approximate the dynamics of observables by

h⌦̂(t)i ⇡
Z

d ~X0W ( ~X0)⌦W ( ~Xcl(t)), (2)

where W denotes the Wigner function and ⌦W is the
Weyl symbol of ⌦̂. Moreover, within the accuracy of
TWA, instead of exact Wigner function it su�ces to
use a Gaussian distribution, with mean and variance
fixed by initial conditions such that hX↵(t = 0)i and
hX↵(t = 0)X�(t = 0) + ↵ $ �i are correctly reproduced
by averaging respectively X↵ and 2X↵X� over W .

Unfortunately these results do not directly transpose
to fermionic problems since fermionic operators satisfy
canonical anti-commutation relations rather than com-
mutation relations. However, as a consequence of the

same anti-commutation relations, physical observables
(that commute with the parity operator) always have to
contain an even number of fermionic operators. The sim-
plest physical fermionic operators are therefore bilinears
of creation and annihilation operators.
We denote the fermionic bilinears by E↵� = c↵c� ,

E
↵� = c

†
↵c

†
� = �E

†
↵� and E

↵
� = 1

2 (c
†
↵c� � c�c

†
↵) = (E�

↵)
†,

and consider a system of N fermionic modes. The label
↵ can represent the number of lattice sites for spinless
fermions or twice the number of lattice sites for spin-
ful fermions; it can also represent the number of single-
particle momentum modes or number of single-particle
orbitals in atoms or molecules. Each mode is described
by creation (annihilation) operators c

†
↵(c↵) fulfilling the

canonical anti-commutation relations [c↵, c
†
� ]+ = �↵� .

The bilinears obey the Lie algebras of so(2N) [19]:

[Ê↵
� , Ê

µ
⌫ ]� = ��µÊ

↵
⌫ � �↵⌫Ê

µ
� , (3a)

[Ê↵
� , Êµ⌫ ]� = �↵⌫Ê�µ � �↵µÊ�⌫ , (3b)

[Ê↵�
, Êµ⌫ ]� = �↵⌫Ê

�
µ + ��µÊ

↵
� � �↵µÊ

�
⌫ � ��⌫Ê

↵
µ , (3c)

[Ê↵� , Êµ⌫ ]� = 0, [Ê↵�
, Ê

µ⌫ ]� = 0. (3d)

Using the group structure of fermionic bilinears, we
can use [11] to do TWA with fermionic variables, which
we will refer to as fTWA.
We can treat the bilinears as the classical phase space

variables:

⇢↵� =
⇣
Ê

↵
�

⌘

W
, (4)

⌧↵� =
⇣
Ê↵�

⌘

W
, ⌧

⇤
↵� = �

⇣
Ê

↵�
⌘

W
. (5)

⇢ is a Hermitian matrix and ⌧ is anti-symmetric, so the
classical phase-space is made up of N(N�1) unique com-
plex variables, and N real variables [20]. Note that these
variables are maximally non-local: this is the price we
pay for representing fermions in a classical phase space.
The idea of using bilinears is of course more generally
applicable and e.g. bosonic bilinears have for example
been used in Ref. [21] as independent degrees of freedom
to address the polaron problem.

The exact Weyl symbol of non-linear operators, as well
as complicated operators like the density matrix, are in
general non-trivial to compute. There are formal ways
to define the Wigner-Weyl transform for arbitrary Lie
groups (see e.g Ref. [22]); however, in this paper, to sim-
plify further discussion of Weyl symbols, we will only
consider Hamiltonians and observables, when written in
terms of operators with classical counterparts, are either
linear in operators or made of products of commuting op-
erators: in this case, the Weyl symbol is found by simply
replacing the operator by its classical counterpart.

Due to the many constraints on the structure of the
density matrix (expressed by the Casimir operators of
the Lie algebra), the exact Wigner function will in gen-
eral have negative values. Even apparently simple states,

New non-local phase space variables

These variables satisfy canonical Poisson bracket relations, e.g. 

Poisson brackets (commutation relations). Encode locality



Equations of motion

Initial conditions: exact Wigner function is too complicated. Use the best 
Gaussian (alternatively discrete sampling A. M. Rey group).

Alternatively exact discrete sampling (Wooters, A.M. Rey in progress)

Example: initial free Fermi sea, indexes –momentum modes 

3

such as Slater determinants, will have a complicated
Wigner function. For the Slater determinant state, its
complicated structure is apparent from Wick’s theorem
which constrains all the moments of the Wigner function.
However, as we already mentioned (c.f. Ref. [11]) within
the accuracy of TWA one can approximate the initial
Wigner function with a Gaussian by only constraining
the first and second moments. Numerically this has a
huge advantage, as propagating the Wigner function now
amounts to solving equation of motion (1) for random ini-
tial conditions ⇢ and ⌧ , drawn from a normal distribution
with mean and covariance matching that of the quantum
operators. Any expectation value can be calculated by
averaging over these initial conditions.

Note that on the Gaussian level the Wigner function
always factorizes: W (⇢, ⌧) = W (⇢)W (⌧), because the
correlations between ⇢ and ⌧ must vanish. Moreover,
even pure states, such as ground states, in general have
non-zero covariance matrix. For example, consider an
initially non-interacting fermion state characterized by
the single-particle density matrix ⇢

0. Let us choose the
basis where ⇢0↵� is diagonal: ⇢0↵� = (n↵�1/2)�↵� and n↵

is the orbital occupation number. Then the correlations
function are

h⇢↵�i = �↵�(n↵ � 1/2), h⌧↵�i = 0,
⌦
⇢
⇤
↵�⇢µ⌫

↵
c
=

1

2
�↵µ��⌫ (n↵ + n� � 2n↵n�) , (6)

h⌧⇤↵�⌧µ⌫ic =
1

2
(�↵µ��⌫ � ��µ�↵⌫) (1 + 2n↵n� � n↵ � n�) .

If the initial distribution corresponds to the equilib-
rium Fermi-sea then the noise on ⇢ can be understood as
originating from particle hole excitations. Whenever the
Fermi-sea is either full or empty there is no room for these
excitations so the covariance of ⇢ vanishes. In contrast
there is always noise on ⌧ as it represents two-particle
fluctuations, for which there is room in any state.

Model. To illustrate how the general idea works
we consider the Hamiltonian representing fermions res-
onantly coupled to a bosonic molecular state:

H =
X

i

µBb
†
i bi � J

X

�<ij>

⇣
c
†
�ic�j + h.c.

⌘

+ g

X

i

⇣
bic

†
"ic

†
#i + h.c.

⌘
, (7)

with bosons satisfying [bi, b
†
j ]� = �ij and fermions satis-

fying [c�i, c
†
�0j ]+ = ���0�ij . This Hamiltonian describes

very well interacting fermions near the Feshbach reso-
nance (see e.g. Ref. [23]). For large positive (negative)
chemical potential the molecular state can be integrated
out (provided that it is not populated) and this Hamilto-
nian reduces to the attractive (repulsive) Hubbard model.
This model also describes the BCS-BEC crossover as one
gradually tunes µB from a positive to a negative value.

Close to mean-field regimes where the bosonic field con-
denses, this model is amenable to various analytic treat-
ments [23, 24], but far from the mean-field limit and far
from equilibrium it essentially cannot be simulated with
existing numerical or analytical tools.

We express this Hamiltonian in terms of the ⇢↵� and
⌧↵� where ↵ and � label the site component and the spin
index. As a first demonstration, we look at a system of
two sites. In Fig. 1, we compare exact quantum dy-
namics to those using classical equations of motion. The
initial quantum state is a vacuum for fermions and a co-
herent state for bosons on each of the two sites with a
mean number of bosons of Ni = 9 per site. The Wigner
function for the bosons is thus a product of two Gaussians
(see e.g. Ref. [6]):

W (bi, b
⇤
i ) = 2 exp[�2|bi �

p
Ni|2]

and the Wigner function of the bilinears is also approxi-
mated by the products of Gaussians according to Eq. (6).
We deliberately choose rather large initial boson occu-
pation number per site to be in the regime where the
method is expected to be nearly exact. We quench to
µB = 1 and g = 1/3, and show the corresponding rise in
the average number of fermions.
For the classical dynamics, we show both mean-field

(MF) initial conditions (where we calculate only one clas-
sical path, with each classical variable determined by the
average of the corresponding quantum operator) along
with the full fTWA (where we integrate over many di↵er-
ent initial condition determined by the Wigner function).
Even though in this example one can naively expect MF
approximation to be rather accurate it is clear that the
fTWA gives far better results, because we include the
correct initial correlations. We even predict the satura-
tion to the correct final steady state, which agrees with
the quantum diagonal ensemble (dashed line). So in this
case the method does not have typical short time limita-
tions [6]. Qualitatively this can be understood from the
fact that at long times the system goes to a highly ex-
cited (and highly entangled) classical state, where quan-
tum fluctuations are small.
To further demonstrate the method on a larger 2D sys-

tem, we compare fTWA results with the exact case on
a nine site 3 ⇥ 3 lattice with periodic boundary condi-
tions. Here we start in the ground state of the Hamil-
tonian with µB = 0 and g = 0, with no bosons and a
Fock state of fermions in momentum space filling up the
five lowest energy modes. Note that this is the worst
regime for the bosonic TWA, as TWA approximations
generally get better with higher particle number, i.e. the
TWA is a 1/N expansion. Unlike the previous two-site
example, there is no obvious small parameter here. We
then ramp the chemical potential and the coupling, with
µB(t) = �10(1� e

�(t/⌧ramp)
2

) and g(t) = 1� e
�(t/⌧ramp)

2

.
By controlling the ramp time, we control the final diag-
onal entropy of the state. This allows us to investigate

Normal variables: no fluctuations at zero or unit filling.
Superconducting variables – always fluctuate.



Interaction blockade. Fermion expansion with NN and long-range hopping

Long range hopping + interactions leads to stronger localization



Non-local correlations: cluster vs. fermion TWA for XY chain  

Accuracy of TWA depends on the choice of basis operators!

Integrability is seeing as emerging asymptotically from CTWA with 
increasing cluster size.



Conclusions
Can incorporate (short-distance) quantum fluctuations 
into TWA by adding more degrees of freedom. 

CTWA - cluster degrees of freedom; fTWA – fermionic
bilinears as degrees of freedom. In general need a 
closed set of commutation relations to define Poisson 
brackets..

TWA goes beyond mean field. Fluctuations in initial 
conditions are crucial for recovering non-equal time 
correlation functions and correct hydrodynamic behavior.

Can dramatically improve accuracy of TWA by using 
better degrees of freedom.



Application: two channel model (cartoon for gauge theories)

Large positive (negative)        – attractive (repulsive) Hubbard model 

Two-site model, near mean-field regime. Fermion vacuum, coherent state 
for bosons with N=9 per site. Quench to 

• MF – only short times

• fTWA nearly exact 
including long time 
limit (but no revivals)

• Hilbert space is 
sufficiently large to 
thermalize.
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Same model. Initially no bosons, half filling of fermions. No 
obvious small parameter 3x3 system.  

3

such as Slater determinants, will have a complicated
Wigner function. For the Slater determinant state, its
complicated structure is apparent from Wick’s theorem
which constrains all the moments of the Wigner function.
However, as we already mentioned (c.f. Ref. [11]) within
the accuracy of TWA one can approximate the initial
Wigner function with a Gaussian by only constraining
the first and second moments. Numerically this has a
huge advantage, as propagating the Wigner function now
amounts to solving equation of motion (1) for random ini-
tial conditions ⇢ and ⌧ , drawn from a normal distribution
with mean and covariance matching that of the quantum
operators. Any expectation value can be calculated by
averaging over these initial conditions.

Note that on the Gaussian level the Wigner function
always factorizes: W (⇢, ⌧) = W (⇢)W (⌧), because the
correlations between ⇢ and ⌧ must vanish. Moreover,
even pure states, such as ground states, in general have
non-zero covariance matrix. For example, consider an
initially non-interacting fermion state characterized by
the single-particle density matrix ⇢

0. Let us choose the
basis where ⇢0↵� is diagonal: ⇢0↵� = (n↵�1/2)�↵� and n↵

is the orbital occupation number. Then the correlations
function are

h⇢↵�i = �↵�(n↵ � 1/2), h⌧↵�i = 0,
⌦
⇢
⇤
↵�⇢µ⌫

↵
c
=

1

2
�↵µ��⌫ (n↵ + n� � 2n↵n�) , (6)

h⌧⇤↵�⌧µ⌫ic =
1

2
(�↵µ��⌫ � ��µ�↵⌫) (1 + 2n↵n� � n↵ � n�) .

If the initial distribution corresponds to the equilib-
rium Fermi-sea then the noise on ⇢ can be understood as
originating from particle hole excitations. Whenever the
Fermi-sea is either full or empty there is no room for these
excitations so the covariance of ⇢ vanishes. In contrast
there is always noise on ⌧ as it represents two-particle
fluctuations, for which there is room in any state.

Model. To illustrate how the general idea works
we consider the Hamiltonian representing fermions res-
onantly coupled to a bosonic molecular state:

H =
X

i

µBb
†
i bi � J

X

�<ij>

⇣
c
†
�ic�j + h.c.

⌘

+ g

X

i
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bic

†
"ic

†
#i + h.c.

⌘
, (7)

with bosons satisfying [bi, b
†
j ]� = �ij and fermions satis-

fying [c�i, c
†
�0j ]+ = ���0�ij . This Hamiltonian describes

very well interacting fermions near the Feshbach reso-
nance (see e.g. Ref. [23]). For large positive (negative)
chemical potential the molecular state can be integrated
out (provided that it is not populated) and this Hamilto-
nian reduces to the attractive (repulsive) Hubbard model.
This model also describes the BCS-BEC crossover as one
gradually tunes µB from a positive to a negative value.

Close to mean-field regimes where the bosonic field con-
denses, this model is amenable to various analytic treat-
ments [23, 24], but far from the mean-field limit and far
from equilibrium it essentially cannot be simulated with
existing numerical or analytical tools.

We express this Hamiltonian in terms of the ⇢↵� and
⌧↵� where ↵ and � label the site component and the spin
index. As a first demonstration, we look at a system of
two sites. In Fig. 1, we compare exact quantum dy-
namics to those using classical equations of motion. The
initial quantum state is a vacuum for fermions and a co-
herent state for bosons on each of the two sites with a
mean number of bosons of Ni = 9 per site. The Wigner
function for the bosons is thus a product of two Gaussians
(see e.g. Ref. [6]):

W (bi, b
⇤
i ) = 2 exp[�2|bi �

p
Ni|2]

and the Wigner function of the bilinears is also approxi-
mated by the products of Gaussians according to Eq. (6).
We deliberately choose rather large initial boson occu-
pation number per site to be in the regime where the
method is expected to be nearly exact. We quench to
µB = 1 and g = 1/3, and show the corresponding rise in
the average number of fermions.
For the classical dynamics, we show both mean-field

(MF) initial conditions (where we calculate only one clas-
sical path, with each classical variable determined by the
average of the corresponding quantum operator) along
with the full fTWA (where we integrate over many di↵er-
ent initial condition determined by the Wigner function).
Even though in this example one can naively expect MF
approximation to be rather accurate it is clear that the
fTWA gives far better results, because we include the
correct initial correlations. We even predict the satura-
tion to the correct final steady state, which agrees with
the quantum diagonal ensemble (dashed line). So in this
case the method does not have typical short time limita-
tions [6]. Qualitatively this can be understood from the
fact that at long times the system goes to a highly ex-
cited (and highly entangled) classical state, where quan-
tum fluctuations are small.
To further demonstrate the method on a larger 2D sys-

tem, we compare fTWA results with the exact case on
a nine site 3 ⇥ 3 lattice with periodic boundary condi-
tions. Here we start in the ground state of the Hamil-
tonian with µB = 0 and g = 0, with no bosons and a
Fock state of fermions in momentum space filling up the
five lowest energy modes. Note that this is the worst
regime for the bosonic TWA, as TWA approximations
generally get better with higher particle number, i.e. the
TWA is a 1/N expansion. Unlike the previous two-site
example, there is no obvious small parameter here. We
then ramp the chemical potential and the coupling, with
µB(t) = �10(1� e

�(t/⌧ramp)
2

) and g(t) = 1� e
�(t/⌧ramp)

2

.
By controlling the ramp time, we control the final diag-
onal entropy of the state. This allows us to investigate

fTWA works very well except for very slow ramps. Can not 
predict correctly strongly-correlated GS. Works very well for 
short and intermediate time ramps. 

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t/τramp

fe
rm
io
n
fil
lin
g

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t/τramp

fe
rm
io
n
fil
lin
g

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

t/τramp

<n
↑
>

(�) (�) (�)



Same as in the previous slide but for 10x10 lattice

Emergence of a very unusual (ring-type) state of fermions.  
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Comparison with the normal variable representation 



Application to MBL experiment (M. Schreiber et. al.). Same 
parameters, same number of dublons. L=40 

the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =
Ne �No

Ne +No

, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

Ĥ =� J

X

i,�

⇣
ĉ
†

i,�
ĉi+1,� + h.c.

⌘

+�
X

i,�

cos(2⇡�i+ �)ĉ†
i,�

ĉi,� + U

X

i

n̂i,"n̂i,#.

(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ

†

i,�
(ĉi,�) denotes the creation (annihilation) operator for a fermion

in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ

†

i,�
ĉi,� is the local number operator

(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed

2

fTWA works qualitatively well for at least intermediate times 
and better than CTWA. Long times – tendency to decay. 

Hamiltonian

H = �t

X

i,j,�

(c
†
i�cj� + c

†
j�ci�) + U

X

i

ni"ni# (1)

1 Momentum

H = �t

X

p,q

cos(2⇡p (2)

2 Slave bosons

Introduce operators

b0i, b2i, f"i, f#i, (3)

where f are fermion operators and b are boson operators.

Then we can write fermion ops as

c
†
i" = f

†
"ib0i + b

†
2if#i (4)
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†
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†
2if"i (5)

Can write Hubbard
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3 Slave Boson Hard Core

H = �t

X

<i,j>,�

f
†
�if�j(s

+
0js

�
0i � b

†
2jb2i) + �f

†
�if

†
�0j(b0ib2j + b2ib0j) + h.c.+ U

X

i

(s
z
2i + 1/2) (8)

with algebra
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4 Two-channel

We can also use the fact that really whats going on is Feshbach resonance to think about the Hubbard model as the Two

Channel model
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With random, it would be
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I’m going to assume that the relation between the Hubbard model and TC goes something like

U ⇠ g
2

µB
. (15)

(16)
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FIG. 1. Growth of coherence length during a quench and ex-
perimental sequence. a, Numerical calculation of the evolution
of the coherence length ⇠ when ramping from a strong interaction
(U/J)i in the Mott insulating regime (MI, right) over the critical
point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-
mogeneous 1D system. The colors indicate the quench velocity, from
fast (dark red) to the infinitely slow adiabatic limit (light red). b,
Experimental sequence for scattering length a (in units of the Bohr
radius a0), lattice depth Vlat, and U/J . During (I) we prepare a
large central Mott insulator with unity filling. The different scat-
tering length values a chosen in (II) lead to different initial (U/J)i
and final (U/J)f values for the final lattice ramp in (III), performed
in variable time tramp. In 1D (2D), only one (two) lattice directions
are reduced in the final lattice ramp. The horizontal dashed line in-
dicates the critical (U/J)c, separating the superfluid from the Mott
insulating regime. c, Recorded time-of-flight absorption images for
(U/J)f = 3.2 ((U/J)i = 110) in 2D for several ⌧ramp (main text).

are able to probe this phase transition experimentally in one-,
two-, and three-dimensional systems (1D, 2D, 3D), as well
as for negative absolute temperature states [24]. We compare
our measurements in the 1D case with a numerical analysis
and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started
by (I) loading a large n = 1 Mott insulator of 39K atoms in a
3D optical lattice of depth Vlat = Vi = 19Er at U/J � 250

close to the atomic limit of having a product state with ex-
actly one atom per site. Here, Er = h2/(2m�2

lat) denotes
the recoil energy with Planck’s constant h, the atomic mass
m, and the lattice wavelength �lat = 736.65 nm. The on-site
interaction energy of the Bose-Hubbard Hamiltonian [24] is
denoted by U and the tunnelling matrix element by J . In the
deep lattice (II), the scattering length was then tuned within
a wide range of values via a Feshbach resonance at a mag-
netic field of B = 402.50G [25], resulting in different values
of the initial interaction strength (U/J)i in the deep lattice.
We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-
tor, the state at this point can be assumed to be the ground
state of the system (Supplementary Section G). Following this
state preparation, the Mott to superfluid phase transition was
crossed (III) by linearly ramping down the lattice depth along
the horizontal x-direction to V x

lat = Vf = 6Er in variable times
tramp (Vlat(t) = Vi + (Vf � Vi) · t/tramp), resulting in a smaller
interaction strength (U/J)f in the final shallow lattice. For
experiments in 2D and 3D, we simultaneously ramped down
the lattice depth along both horizontal directions or all three
directions, respectively.

After the ramp, we immediately switched off all trapping
potentials and recorded absorption images along the vertical
z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).
From the width of the interference peaks, we extracted the
coherence length of the system, i.e. the characteristic length
scale of an exponential decay of correlations, by calculat-
ing the expected time-of-flight profiles for various coherence
lengths and fitting them to the experimental data (Fig. 2a and
Methods). We measure the number of tunneling times during
the ramp by defining a dimensionless ramp time ⌧ramp = tramp ·
2⇡J̄/h ⇡ tramp · 0.93/ms. Here, J̄ =

R Vf

Vi
J(V ) dV/(Vf � Vi)

denotes the average tunneling rate during the ramp. We focus
on the short and intermediate ramp time regime, where mass
transport is negligible and the dynamics is governed by the be-
haviour of the homogeneous system at the multi-critical tip of
the Mott lobe [7]. This experiment captures for the first time
the physics of essentially homogeneous quantum systems en-
tering a critical phase. In contrast, previous work [26] investi-
gated the generic transition through the side of the Mott lobe,
which is typical for inhomogeneous systems and is dominated
by mass transport, studied the inverse superfluid to Mott insu-
lator transition [27], the vacuum to superfluid transition [28]
or the transition of spinor Bose-Einstein condensates to a fer-
romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-
plays several distinct dynamical regimes. For very fast ramps,
the evolution can be approximated as being sudden, and the
measured coherence length ⇠ essentially equals that of the ini-
tial Mott insulator ⇠i. The latter is significantly below one
lattice spacing dlat = �lat/2 and increases for smaller (U/J)i
closer to the critical point at (U/J)c ⇡ 3.3 in 1D [30]. For
larger ⌧ramp, ⇠ quickly increases up to several lattice spacings.
For ⌧ramp & 2 � 5, the fitted ⇠ starts to decrease again due
to the influence of the trap: Contrary to a homogeneous sys-
tem, the equilibrium distributions of both density and entropy
density in a trapped system depend strongly on the interac-
tion strength. While strong interactions result in a large Mott
insulating core with constant density, surrounded by a super-
fluid or thermal shell at lower density, a weakly interacting
superfluid is described by a parabolic Thomas-Fermi distri-
bution. Intuitively speaking, the density distribution cannot
equilibrate during fast and intermediate lattice ramps and re-
sults in gradients in the chemical potential, which give rise to
dephasing between lattice sites that increases over time and
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Check correlation length in the SF state as a function of ramp rate
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FIG. 3. Power-law increase of coherence length. a, Power-law
fits to experimental data in 1D. The fit function �(�ramp) = (�4

i +
(a � b

ramp)
4)1/4 heuristically includes the initial coherence �i (Supple-

mentary Section C) and is applied to all ramp times up to �max
ramp = 1.0.

The dotted line shows the pure power-law �(�ramp) = a � b
ramp for the

above fitted parameters. b, Exponents b for experiment (blue) and
DMRG (red), extracted via identical fitting procedures. The error
bars include the effect of various fitting ranges as well as the fit-
ting uncertainties (Supplementary Section C). The red dotted line
guides the eye. The vertical dashed line indicates the critical value
(U/J)c � 3.3 for the Mott-superfluid transition and the horizontal
dotted lines indicate the predictions b = 1 and b = 1/4 [41] of a
typical Kibble-Zurek (KZ) model at the tip or side of the Mott lobe,
respectively (main text and Supplementary Section G).

tary Section G). Due to the rather small resulting coherence
lengths, we can also rule out finite-size effects as the origin
for this behaviour, as further corroborated by numerical sim-
ulations on systems of various sizes (Supplementary Section
E). The simulations also show that the trap cannot be the rea-
son for the (U/J)f-dependence of the exponents, since the
homogeneous model considered in the numerics and the ex-
perimental data agree extremely well and the influence of the
trap is only visible for ramp times ⌧ramp � 1 (Supplemen-
tary Section D). An inhomogeneous Kibble-Zurek scaling has
recently been analysed for a classical phase transition in ion
chains [3, 4] and for quantum [26] as well as thermal [44, 45]
phase transitions in ultracold atom systems. In contrast, the
agreement between the inhomogeneous experiment and the
numerics for the homogeneous system shown here proves that
we effectively probe the multi-critical quantum phase transi-
tion of the homogeneous Bose-Hubbard model, not influenced
by trap effects.

Fig. 4 shows the results of corresponding experiments for
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FIG. 4. Emergence of coherence in higher dimensions and for
negative absolute temperature. a, Experimental data for 1D, 2D,
and 3D for various (U/J)f. b, Exponents for the 2D and 3D case, ex-
tracted from power-law fits to the experimental data with the identical
fitting procedure as in Fig. 3. The dotted lines indicate the Kibble-
Zurek predictions b = 0.4 and b = 1/3 for the tip of the Mott lobes
in the 2D and 3D case, respectively. c, Experimental data for the
2D case for positive and negative absolute temperature for various
(U/J)f. The insets in the left panel show TOF images for both cases
at �ramp = 2.2.

the 2D and 3D Bose-Hubbard model, which are inaccessible
to analytical models as well as current numerical tools. After
having verified that the observed quantum dynamics in 1D in-
deed agree with the homogeneous Bose-Hubbard model, the
experiments in 2D and 3D can be regarded as analogue quan-
tum simulations in a regime out of reach of classical simula-
tion using known methods. Interestingly, the data for higher
dimensions show similar power-laws as the 1D case, even
though any critical scaling analysis would strongly depend
on dimensionality. Thus, we again find that the dynamics
of the Mott to superfluid phase transition shows complex be-
haviour on the studied intermediate timescale, that simple ap-
proaches based on the critical exponents alone, such as KZM,
cannot fully capture. While the extracted exponents for the
most part increase for decreasing interaction strength, they
start to decrease again for (U/J)f � 2 in all dimensions (Fig.
4b). Furthermore, the full coherence dynamics for ⌧ramp � 1

appears to be almost independent of dimensionality and is
mainly governed by the final interaction (U/J)f. Therefore,
in the regime where ⇠ has increased only up to a few dlat,
the influence of dimensionality on the spreading of correla-
tions is marginal. Higher-dimensional systems continue the
power-law behaviour for longer ramp times than in lower di-

Figure 1: Comparison of experimental (top) and simulated (below) coherence

lengths (the axis are all the same). In the simulated case, the correlation is

calculated between all pairs of sites, and then the average correlations are fitted

to e
��x/⇠

to find the correlation length.

In the numerical simulations, we use an initial state of a product of Fock

states with one boson on each:

| ii = ⌦N |n̂ = 1i , (3)

where N is the number of sites. For the 3 dimensional case, we use a cubic

lattice with periodic boundary conditions, with a length of 11 sites, and thus a

total number of N = 11
3

= 1331 sites. For the 2 dimensional case, we use a

square lattice with periodic boundary conditions, with a length of 33 sites, and

thus a total number of N = 33
2

= 1089 sites.

In Fig. 1 we compare the plots for the fitted correlation length versus ⌧ramp

for di↵erent (U/J)f. The experimental values and simulated ones are similar. In

Fig. 2, we compare the fitted power law exponent; the simulation agrees within

error estimates for 3D.

4 Kibble-Zurek mechanism

Standard scaling theory says that

⇠eq ⇠ |�� �c|�⌫
(4)

and

⌧eq ⇠ |�� �c|�z⌫
. (5)

2

Experiment vs. SU(3) TWA



2D simulation (uncorrelated disorder), 8x8 lattice (quick run)

Reliable for the time scales shown.
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