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® flux attachment and the Laughlin state
® non-commutative geometry

® emergent geometry and metric of flux-
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® FQHE occurs in “flat” Landau levels in a clean
enough system so the repulsive two-body
interaction dominates the (inhomogenous) one-
body (potential) energy, but is small compared
to the energy gaps separating partially-filled
Landau levels from filled and empty ones

“bandwidth” . _ band gaps
(Landau level << interaction-energy << (between

broadening) Landau levels)

® The same idea was applied to make “toy model”
Bloch band “fractional Chern Insulator” systems

in which exact numerical diagonalization revealed
FQHE-like states

Neupert et. al and many others (Regnault, Sheng,....)




® so there is a proof in principle that zero-field lattice
systems can show Laughlin-like FQHE states.

® How does this fit in with the Laughlin picture of

FQHE in a Landau level? > B
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® according to conventional wisdom the
holomorphic structure of the Laughlin state has
something to do with “being in the lowest
Landau level”: how can this translate to the
lattice of a Chern insulator?



® |n fact, the “holomorphic” structure of Laughlin
and other “conformal block model wavefunctions”
has nothing whatsover to do with “being
in the lowest Landau level”

® |nstead, it derives from the non-commutative
geometry of the “guiding centers” of Landau
orbits, without any relation to the shape of those
orbits around the center.

(R*, RY] = —il%



® thirty years after its experimental discovery and
theoretical description in terms of the Laughlin
state, the fractional quantum Hall effect remains a
rich source of new ideas in condensed matter
physics.

® The key concept is “flux attachment” that
forms “composite particles” and leads to
topological order.

® Recently, it has been realized that flux attachment
also has interesting geometric properties




® the kinetic energy of electrons bound to a 2D
surface through which a uniform magnetic
flux passes undergoes Landau quantization
into macroscopically-degenerate Landau levels

pl H= Zg i — eA(ry))

empty one state in each level
| @ccecceo  partially-filled per London quantum of

00000000 completely-ﬁlled magnetic ﬂUX




® |n momentum space, the
electrons move on closed
contours of constant energy,
similar to motion in phase
space

® Their residual real-space
degree of freedom is the
center of their circular orbit,
called the “guiding center” R

R=%—{(eB) "‘f X (—ihV — eA)

The origin ambiguity of R is also a gauge ambiguity

Dy, Dy| = theB
(2 +o2)
e(p) = o

quantized Landau orbit
around guiding center

origin
(arbitrary)



® |andau quantization of the orbital motion
of the electrons leaves a residual problem
of non-commutative geometry of the
guiding centers of the orbits in a partially-
filled Landau level.

H=Y V(R - R;) [R®, RY] = —il3,
i<j dynamics comes from

no kinetic energy! non-commutative geometry!

)2 — “quantum area” through which one analogous to
~ London quantum of magnetic flux passes Planck area!




® VVhere can we tind hon-commutative
geometry on a lattice?

® A topologically-non-trivial bandstucture
must have at least two orbitals in the unit
cell, but if we project into that band, there
is only one independent state per unit cell

® The overlap matrix between orbitals is
then rank-deficient, with a kernel of null
eigenvalues

Orbitals are
i . : renormalized
{Cia C;} = Sij = <Z‘PU> after projection
' so that
Projection into band (2| Pliy =1

{ci,cl} =1



{Ci, (;} — Sij
® Because of this, an “onsite” Hamiltonian

H = Z Ein; + Z Vijnmj

i<j
will have non-trivial dynamics

® band topology is encoded in the complex
phase of 5j, and geometry in the quantum
distance measure
dij =1 — |Si]
® 517 define the fuzzy “quantum lattice” that
generalizes the classical lattice 5;; = d;;



® A basis of orthogonal states of the
projected band is obtained as the non-zero
eigenstates of S ,

- -
Z Sz-juj)\ = S\U;i\ Cx, — \/5)\ Zi:uZ)\Ci
J

® For the basis of coherent (Gaussian) Landau
level states, this leads to the holomorphic
states, which are the non-zero eigenstates of

1 pake T Ik .7 2
S(QZ,ZE/)IG 3(272=22"2"+2"2") [y



H=Y V(Ri-R;) [R°RY|=—il}

1<J

® The interaction potential is very smooth
because the short-distance singularity of
the Coulomb interaction is smoothed out
by the Landau orbit “form factor”

The expansion of V(r) about any point is absolutely convergent.

This is needed for a function of non-commuting variables to “make sense”



original 1/, ()
‘/ (not smooth)

Ildentical quantum particles 7
(fermions or bosons )

We now have the final form of the problem:

® The potential V,(x) is a very smooth (in fact entire)

function that depends on the form- factor of the partially-
occupied Landau level

® The essential clean-limit symmetries are translation and

inversion:
Ri — a Rz




H=Y V(R -R;)  [R"RY=-if}

i<
This is a strongly interacting model with no
free-particle limit! How can we study it?

Numerical solution with a finite number N
of particles has been the only quantitative
source of information

We can treat the rotationally-invariant case
most easily V(r) = V(|r|)

in 1983, Laughlin studied the N=3 case and
was led to a remarkable model
wavefunction



® The Laughlin state (Nobel 1998)

Landau level filling factor v = 1/m

o< [T = )™ [Le 4%

) 1

® rotationally invariant, lowest Landau level, z = = + 1y

® m = 1 is the uncorrelated Slater-determinant

filled lowest Landau level, m > 1 is a highly
correlated topologically-ordered state.



® |aughlin thought of his state as a Lowest Landau
Level (LLL) wavefunction, using the fact that in the
symmetric gauge, and with rotational symmetry, a
LLL one-particle wavefunction has the form

P(z,y) = f(2)e 37 /5
N2 holomorphic function

® |t also has no obvious continuously-variable
parameter (m must be an integer)

® In fact, as we will see, both these
commonly-held beliefs are incorrect!




N (CE ) e

1<J
® The Laughlin state was soon shown to be the exact ground
state of a “toy model” short-range interaction, and a very

good approximation to the ground state of the Coulomb
Interaction

® |t has been interpreted in terms of “flux attachment”,
(composite bosons and composite fermions) and its
excitations identified as obeying (Abelian) “fractional
statistics”’ and exhibiting “topological order”

® |ts holomorphic part was recognized as a “conformal block”
of an (Abelian) conformal field theory correlation function,
leading even more interesting non-Abelian model states,
which could be used for “topological quantum computing”



H=) V(Ri—R) /|¢\

[R®, RY] = —il% '

® The only parameter in this model is the
interaction, no explicit mention of the
Landau level (lowest or otherwise)

® Non-commutative geometry is intrinsically
“fuzzy”, so has no valid “Schrodinger” real-
space wavefunction formalism, just a
Heisenberg Hilbert-space picture

needed for

/] <m‘33/> — () Schrodinger, but fails
| Q / <— N Non-commutative
L # £ quantum geometry

Schrodmger Heisenberg



H=>Y V(R;— R;) [R®, RY] = —ib2,
i<j

® so what is the actual meaning of the

“Laughlin wavefunction™?

® choose any unit-determinant
(“unimodular”) metric gap

® diagonalize [ = 22 R*R® = L(a'a + aal)
B

UL (9)) = [J(al —al)™j0)  @:il0) =0

Ll e
/ T @i, aj] = by
/ Heisenberg form of the (unnormalized) Laughlin state

® for m > 1 (but not m = 1), the metric is a
hidden parameter of the state



® The original form of the Laughlin state is a finite-size droplet of N
particles on the infinite plane.

® Somewhat confusingly, in this droplet state the metric parameter
fixes both the shape of the droplet state and the shape of the
correlation hole around each particle formed by “flux attachment”:
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® to remove the edge, compactify on the torus with Ny flux
quanta:

® An unnormalized holomorphic single-particle state has
the form

N(I) N<I>
¥) = [Igta" —wilo), D wi=0
i=1 1=1
generalized Weierstrass sigma function
3 i (> is an “almost
glz) = — ¢2027", H (1 — —) +3(1) holomorphic
L#0 modular invariant”

Filled Landau level N = Ng

independent of choice of metric, after normalization

[WhieaLL) = 0(_;a; HU |0>

1<




This is the entire problem:
nothing other than this matters!

® H has translation and
Inversion symmetry

(R + R3), (R — R3)] =0

[H> ZzRZ] =0

° geneér of translations and
electric dipole moment!

AN

H=)> U(R;- R;)
i<j
[R*, RY] = —il3
A
Iikelphase-space,
has Heisenberg
uncertainty principle

want to avoid
this state

(RS - R3), (RY — RY)] = —2if%,
® relative coordinate of a pair of

particles behaves like a single
particle

—

e
—
e S

two-particle energy levels
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® Solvable model! (“short-range pseudopotential™) E2 symmetric 14, p)
( ) B ('r*12)2 antisymmetric )B
T12 202
U(Tlg) (A + B ( )) € = O rest all ()

® [aughlin state
® m=2: (bosons): all pairs

avoid the symmetric state

N m .
up) =] (al —af) " f0) | =7

i<j
4 R;I? _1_ [Hy
, e =
a’z,|0> =0 o V205 ® m=3: (fermions): all pairs
avoid the antisymmetric
EL:O [alqa]_éu state E; = 4B

maximum density null state




® the essential unit of the |1/3 Laughlin state is the
electron bound to a correlation hole corresponding
to three “units of flux”, or three of the available
single-particle states which are exclusively occupied
by the particle to which they are “attached”

® |n general, the elementary unit of the FQHE fluid is a

“composite boson” of p particles with q “attached
flux quanta”

® This is the analog of a unit cell in a solid....



® Flux attachment is a gauge condensation that removes the
gauge ambiguity of the guiding centers, giving each one a
“natural” origin, so they define a physical electric dipole
moment of the “composite particle” in which they are
bound by the “attached flux”.

® This is analogous to how the “the vector potential
becomes an observable” (in a hand-waving way) in the
London equations for a superconductor.

(fuzzy) region from which
particles other that those making
up the “composite particle” are
excluded




® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)



® |n Maxwell’s equations, the momentum
density is

- S i
mi = ejxD' By, D" = €0 E; +P

® The momentum of the condensed matter is

p=dxB
X

electric dipole moment

® in 2D the guiding-center momentum then is
Do = €Begp6R?

® The electrical polarization energy of the dielectric
composite particle then gives its energy-momentum
dispersion relation, with no involvement of any
“Newtonian inertia” involving an effective mass




® The Berry phase generated by
motion of the “other particles”
that “get out of the way” as the
vortex-like “flux-attachment”
moves with the particle(s) it
encloses can be formally-
described as a Chern-Simons
gauge field that cancels the
Bohm-Aharonov phase, so that
the composite object propagates
like a neutral particle.




® |f the composite particle is a boson, it condenses into the
zero-momentum_(zero electric dipole-moment)
inversion-symmetric state, giving an incompressible-fluid
Fractional Quantum Hall state, with an energy gap for
excitations that carry momentum or electric dipole
moment (“‘quantum incompressibility”’, no transmission of
pressure through the bulk).

® AIIFQH states have an elementary unit (analogous to the unit
cell of a crystal) that is a composite boson under exchange.

® |t may be sometimes be useful to describe this boson as a a
bound state of composite fermions (with their own preexisting
flux attachment) bound by extra flux (Jain’s picture)
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® momentum /ik of a quasiparticle-quasihole pair is

_ b
proportional to its electric dipole moment pe hkq = €ay Bp,

gap for electric dipole excitations is a MUCH stronger
condition than charge gap: fluid does not transmit
pressure through bulk!



® Anatomy of Laughlin state

lect ith “fl : ’ [
EIGEERON It i Chiral edge mode with chiral anomaly

attachment” .
to form a “composite and Virasoro anomaly

boson”

geometric
edge dipole moment
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fractionally-charged
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(Abelian) fractional
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Topological and geometric bulk properties
revealed by entanglement spectrum of cut



® the essential unit of the |1/3 Laughlin state is the
electron bound to a correlation hole corresponding
to “units of flux”, or three of the available single-
particle states which are exclusively occupied by the
particle to which they are “attached”

® |n general, the elementary unit of the FQHE fluid is a

“composite boson” of p particles with q “attached
flux quanta”

® This is the analog of a unit cell in a solid....



® The Laughlin state is parametrized by a unimodular metric:
what is its physical meaning!?

correlation holes
In two states with
different metrics

PR
‘. ’l
2 40= |2
e "ee

® Inthe v =1/3 Laughlin state, each electron sits in a

correlation hole with an area containing 3 flux quanta.
The metric controls the shape of the correlation hole.

® |nhthe v =1 filled LL Slater-determinant state, there is no

correlation hole (just an exchange hole), and this state
does not depend on a metric



but no broken symmetry
® similar story in FQHE:

® “flux attachment” creates
correlation hole

~ @ defines an emergent
geometry

® potential well must be
strong enough to bind
electron

® continuum model, but
similar physics to Hubbard ® new physics: Hall viscosity,

model geometry............



® composite boson: if the central T2 ) = H ((J — (1];> 0)
orbital of a basis of eigenstates of i< j |
L(g) is filled, the next two are empty L{g)|v

® this correlation hole is equivalent to
“attachment of three flux quanta” or
vortices that travel with the particle,
generating a Berry phase that cancels
the Bohm-Aharonov phase and
transmutes Fermi to Bose exchange
statistics.

different

e this shape of the corelation hole - and METrICS

hence its correlation energy - varies
with the metric gu



® Origin of FQHE incompressibility is analogous to origin
of Mott-Hubbard gap in lattice systems.

® There is an energy gap for putting an extra particle
in a quantized region that is already occupied

¢ On the lattice the “quantized
region” is an atomic orbital with a

fixed shape

¢ In the FQHE only the area of
the “quantized region” is fixed. SRETRY Gy P
additional electrons

The shape must adjust to from entering the

minimize the correlation energy. region covered by the
composite boson




1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
i, has inversion symmetry
: about its center

- -
------

It has a “spin”

1 3 5
2 2 2
- |
11010 | ----- L—§
_[IT 11 .8
—3' 3’ 3 ooooo L 2
s = —1

the electron excludes other particles from a
region containing 3 flux quanta, creating a
potential well in which it is bound



2/5 state

P = / d?r r®r®8p(r) = s€5 g

second moment of neutral
composite boson
charge distribution

1 3 5
2 2 D
11110(0(0 [ =2
2l2z[2[2T2].... —L=5
51 51 5|5 | 5

§ =—3



hopping of a “composite fermion” (electron + 2 flux quanta)




® The composite boson behaves as a neutral
particle because the Berry phase (from the
disturbance of the the other particles as its
“exclusion zone” moves with it) cancels the

Bohm-Aharonov phase

® |t behaves as a boson provided its statistical spin
cancels the particle exchange factor when two
composite bosons are exchanged

p particles

q orbitals (—=1)P9 =

(—1)P4 = (—1)? fermions
1 bosons



L

® The metric (shape of the composite boson) has a } ‘
preferred shape that minimizes the correlation energy, -

but fluctuates around that shape ,‘ \ ,
OFE o (distortion)

® The zero-point fluctuations of the metric are seen as
the O(¢*) behavior of the “guiding-center structure

factor” (Girvin et al, (GMP), 1985)

® |ong-wavelength limit of GMP collective mode is
fluctuations of (spatial) metric (analog of “graviton™)

FDMH, Phys. Rev. Lett. 107, [ 16801 (2011)

2



® Furthermore, the local electric charge
density of the fluid with v = p/q is
determined by a combination of the
magnetic flux density and the Gaussian
curvature of the intrinsic metric

Topologically quantized “guiding center spin” Gaussian curvature of the metric



® |n fact, it is locally determined, if there is an
inhomogeneous slowly-varying substrate
potential

H=) v,(R))+ ) Vu(Ri— R;)

1<J

deformation
fJ near edge

_’x




® “skyrmion”-like “cone’-like structure
moves charge away from quasihole by
introducing negative Gaussian curvature

fluid density

' 9 distance
from center

in an effective theory,
core of quasihole may collapse
into a cone singularity of the metric.



(pe)?

® cffective bulk action: 71 = ———

U(1) Chern-Simons field

S = /d2xdt Lo—H U(1) condensate field

‘

spin connection’
Bw,0,w of the metric

-I-Jé‘ (R(Ou™— b, — Swy,) + peA,)

H = /g (e(v,B) —U(g, B, P) — (E, + €av"B) P%)

/ A

kinetic energy metric-dependent
of flow correlation energy




® |n the standard incompressible FQH
states, the bulk interior of the fluid is
described by a gapped topological field
theory (TQFT).

® The gapless edge degrees of freedom are a
direct sum of unitary representations of
the Virasoro algebra.

® Can there be continuous second order
transitions between FQH states at which
the bulk gap collapses?



® The (fermion) “Gaffnian” model (Steve Simon et al)
® This is a model 2/5 state that (a) is an exact
zero-energy state of a (three-body)
interaction (b) has a non-unitary
representation of the Virasoro algebra on its
edge and (c) as a consequence is believed to
have bulk gapless neutral excitations (Read).

® |tis a Jack polynomial with a “root
configuration exclusion statistics rule” of
“not more than two particles in five
consecutive orbitals”



® The “Gaffnian” interaction penalizes three-
body states

(21 — 22) (22 — 23) (23 — 21) 11100
(21 — 22)(22 — 23)(23 — 21) X ((::1 =2y k(2= 28) ¥ (25— ::1)2)) I l OO I

H = Vy P11 + VaPrioo1



® On the torus, the 2/5 Gaffnian zero-energy
states has a 10-fold degeneracy
corresponding to the two sets of 5 “motifs”

11000 01100 00I10O 000!l 1000
10100 01010 00101 10010 OIOQO}I

T lowest weight (most to left)

® A degeneracy beween two internal states
of the 2/5 “composite boson” with different

parity.



In higher Landau levels the “10100” pattern
may replace | 1000 as the stable 2/5 pattern
because of competition between the
“vacancy potential” that favors putting the
second particle in the second orbital, and
repulsion from the first particle, which
pushes it outwards

I 0 | 0 0
-+

= —3 \dlfferent parltles/ 5= -

different intrinsic spin



® Domain wall between states with different Wen
Zee term carries momentum density (electric
dipole moment) but no chiral modes (no U(1) ¢

Virasoro anomaly)
negative weight primary field

.—of non-unitary CFT 222

® gapless bulk if domain wall
energy is zero or negative

transmits pressure!

® sliding of domain wall attachment point removes
momentum from edge (non-unitary virasoro on edge)



® Many open questions about the gapless
critical state (e.g. what is the dynamical
critical exponent z (lor 2?7))

® does charge gap exist for all ratios of the
two parameters!’

® develop a Full interpretation of the non-
unitary Virasoro representation.



® The composite particle may also be a Py
fermion. Then one gets a Fermi surface in empty
momentum-space = electric dipole space, il
and a gapless anomalous Hall effect which is :

quantized when the Berry phase cancels the \
Bohm-aharonov phase. (HLR-type state)

Dz

\

® There must be a distribution of dipole
moments (or momentum) of the composite
fermions, centered at the inversion-symmetric
zero-moment state which has lowest energy.
These are quantized by a pbc, and no two
composite fermions can have the same diople
moment.



® Fermi surface quasiparticle formulas for
anomalous Hall effect (FDMH 2006)

e in 2D:

Berry phase for
moving a quasiparticle around

Integer determined
8 Fermi surface (arc)

at edge



® holomorphic representations of guiding-
center states
R(I
V205

= w%' + wa la,a'] =1

(wa)*wa — %(gab E3 ieab) We = gabwb detg =1

® This is the Girvin-Jach formalism, except they implicitly assumed the
metric g,» was the Euclidean metric of the plane. In fact, it is a
free choice, not fixed by the any physics of the problem.




® Then,once a metric (i.e.,a complex
structure) has been chosen, a one-particle
state can be described as

T) = f(a")|0)  al0) =0

holomorphic

e Both the “vacuum” |0) and the function f(z) vary as the metric is changed
(a Bogoliubov transformation)

® Normalization/overlap:

dz Ndz* .

(01 |0,) = / f1(2)* fa(2)e™"

271



® When compactified on the torus with flux
No , the modular-invariant formulation is

Ng
f(z)ocHaz—wz ZwZ—O
i=1

Bravais lattice in complex plane

/

5(2l{L}) = e2* WD (2|{L})

N\

“almost holomorphic modular Weierstrass sigma function
invariant” (Eisenstein series)



® In the Heisenberg-algebra reinterpretation

P
=[]z} —w)o) > wi=0 o]r\mfe_p?rticle

® The filled Landau level is
S e | filled Level
= H0<ai - aj)a(ziai) 0) N = Ng

1<]J

® The Laughlin states are v = L Laughlin state
. Ng = miV

- (Haa;‘a})m) [15(Sial - wilo) D we=0

<2 k=1



® A previously unknown (7) identity that |

recently guessed and found was indeed
true, and which dramatically transforms
calculations on torus (e.g., orders of
magnitude Monte-Carlo speedup)

271

l

B 1 / = {mL1+nL2}
"N

(W (W) = /D S f1(2)* fa(z)e™* 2

(No )2 points
replace integral over
fundamental region by a
modular-invariant finite sum



® with Ed Rezayi, | found a remarkable clean
composite Fermi liquid model state on the flat
torus, inspired by a construction by Jain on the
sphere.

® On the torus, the state is precisely equivalent to
the usual treatments of the Fermi gas with a pbc.

® |t is very accurate as compared to exact
diagonalization of the Coulomb interaction, and
amazingly “almost” (99.99%) particle-hole
symmetric at v = |/2.



1
m

® Composite Fermi liquid (HLR-like) at v =

gives Chern\‘Simons gives bf? /| Z2
f({z:}) Ha Zi— %) (m’ 2)det]\/f&‘,l—[ (>L:2 —Wk)
1< k=1 m N
Z: d; = Nd

a=1

Fermi (Bose) for m even (odd)

Mm({zk}, {dk} —3 Jzz/mH o — Zj — d; + d)

X ki
|

a set Of d|PO|e moments dz - %/(particle number, not flux)




® There are vastly more possible choices of
dipole “occupations” than independent
states: The “good” ones are clusters that
minimize " |d; — d|?

Computing ph symmetry

(with Scott Geraedets)

model state is numerically very close

to p-h symmetry when ks are clustered

# Z_{COM} overlap with PH-conjugate
overlap

0 0.999998870263 1.1297367517e-06

1 0.999999369175 6.3082507884e-07

2 0.99999860296 1.39704033186e-06
0.99999860296 1.3970403312e-06

0.999999369175 6.30825078063e-07
0.999998870263 1.12973675237e-06
0.999999369175 6.30825079173e-07
0.99999860296 1.39704032942e-06
0.
0.

99999860296 1.39704032909e-06

3
4
9
6
7
8
9 0.999999369175 6.30825078507e-07



® particle-hole symmetry, and Kramers Z;

structure (Scott Geraedts and Jie Wang)

| | * | | I |
L ] 15} L ] [ L]
L ] =] L I [ @ L [ [ o  J [ L ] L ] L
@ ® a ® e ® [} ® [ @ ® ] L] ®
@ ® @ ® a L ] @ L ] L ®
©
ED AE 0.0 | ED AE 0.000404 | ED AE 0.000268 | ED AE 0.005555 | ED AE 0.0
overlap 0.981955 | overlap 0.736717 | overlap 0.992142 | overlap 0.226429 | overlap 0.276141
AE 0.000446 | AE 0.001419 | AE 0.000531 | AE 0.009271 | AE 0.011863
(- 6.81819e-06 | (1 - (H} 6.5675e-06 | (1% {1} 4.88251e-06 | (s - {1}’ 1.58755e-05 | (1 b ()}’ 3.72072e-05
PH symmetry 0.993543 | PH symmetry 0.987538 | PH symmetry 0.995312 | PH symmetry 0.856664 | PH symmetry 0.964223




A many-body

ansatz for

Berry phase

we confirmed

a) b) c)
o -0 o e -0
oo 0@ R E o' o @
e e 0 0 o e o o' e o o
o0 o e e o
b 1 Y b
a) b): »: | i) d) e)
100+ | *00% [ +0O * Q9@+ | OO+
©000 00000000 0000 0000
e b el £ g onilgtl Ly o X 8 s I |
Q...fﬁl...ﬁ,ﬁ..... 0000 "-.....'
* 9@ * | 0O+ [ OO @ @ * > 90 *
_.*-‘_/
=1 et =1 * =1 = et =—1

all paths are real, by Kramers

These are ED

results on exact
Coulomb interaction
states, with the exact
particle hole symmetry,
with occupation
patterns obtained by
finding the model states
they have high overlap
with



® s there an analog of Dirac cone point !

State with the quantum numbers of
- an inversion symmetric Fermi sea
) - 5 with a single hole at the center (has
an even number of particles)
A state on the Torus with

these quantum numbers is
a parity doublet

® as a hole is moved into the bulk, the ansatz
must fail as if goes through the inversion-
symmetric point!



