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we find spin correlations across the entire disk that alternate in sign 
even up to the largest distance of d =  | d|  =  10, as expected for a state 
with antiferromagnetic long-range order. We determine the tempera-
ture of each sample by comparing the measured nearest-neighbour 
correlator C1 to quantum Monte Carlo predictions at half-filling, which 
gives T/t =  0.25(2) for the lowest temperature (Methods).

As temperature increases, the strength of antiferromagnetic order 
decreases rapidly, until for T/t =  0.64(6) only nearest-neighbour spin 
correlations remain. To quantitatively analyse the spin correlations, we 
plot in Fig. 2b a binned azimuthal average of the sign-corrected spin 
correlator (− 1)iCd as a function of distance d (Methods). For large  
distances (d >  2 sites), the measured correlation functions exhibit an 
exponential scaling with distance, verified by fitting N0exp(− d/ξ) to 
each dataset, with the correlation length ξ and N0 as free parameters (but 
keeping N0 the same across all fits). For our two-dimensional system,  
quantum fluctuations lead to an increase in spin correlations at short 
distances (d ≤  2) above the exponential dependence, most prominently 
visible in the nearest-neighbour correlator26. In Fig. 2d we show the 
experimentally determined correlation length as a function of temper-
ature, which increases markedly at temperatures around T/t =  0.4. For 
the lowest temperature, we find a correlation length of ξ =  8.3(9) sites, 
which is approximately equal to the system size of 10 sites, as expected 
for long-range order.

The long-wavelength and low-temperature behaviour of our system 
is expected to be well described by the quantum nonlinear σ model27, 
which contains three fundamental ground-state parameters: the sub-
lattice magnetization M, the spin stiffness constant ρs and the spin-
wave velocity c. The spin stiffness quantifies the rigidity of an ordered 
spin system upon twisting, and has been calculated to be ρs/t ≈  0.13 for 

U/t =  7, slightly below the Heisenberg model value28. Because the tem-
peratures and correlation lengths are independently determined in our 
experiment, we can obtain an experimental value of ρs directly by fitting 
the dependence in equation (2) to the data. The data show excellent 
agreement with the predicted exponential scaling of ξ with T−1 from 
equation (2). From the fit we determine ρs/t =  0.16(1), which is larger 
than the calculated value, possibly owing to finite-size effects (Methods).

Antiferromagnetic long-range order in solid-state systems is typi-
cally detected by neutron scattering or magnetic X-ray scattering. These 
methods measure the spin structure factor at wavevector q =  (qx, qy) 
and along the z direction, given by
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In a square lattice, antiferromagnetic long-range order manifests as a 
peak in the structure factor at qAFM =  (π /a, π /a), the amplitude of which 
is directly related to the staggered magnetization: = /qm S N( )z z

AFM . 
For cold atom systems, the spin structure factor can be measured from 
noise correlations or Bragg scattering of light14. The site-resolved detection  
in our experiment enables a direct measurement of the spin structure 
factor, which is obtained from averaging the squared Fourier transfor-
mation of individual single-spin images (Methods). The same result is 
obtained when summing over all contributions of the spin correlation 
function (Extended Data Fig. 3).

For the lowest temperature, we observe a sharp peak in the structure 
factor at q =  qAFM, which confirms the presence of antiferromagnetic 
long-range order (Fig. 2c). For increasing temperatures, the amplitude 
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Figure 1 | Probing antiferromagnetism in the Hubbard model with a 
quantum gas microscope. a, Schematic of the two-dimensional Hubbard 
phase diagram, including predicted phases. We explore the trajectories 
traced by the red arrows for a Hubbard model with U/t =  7.2(2). The 
strongest antiferromagnetic order is observed at the starred point.  
b, Experimental set-up. We trap 6Li atoms in a two-dimensional square 
optical lattice. We use the combined potential of the optical lattice and 
the anticonfinement that is generated by the digital micromirror device 
(DMD) to trap the atoms in a central sample Ω of homogeneous density, 

surrounded by a dilute reservoir, as shown in the plot. The system is 
imaged with 671-nm light along the same beam path as the projected  
650-nm potential, and separated from it by a dichroic mirror. c, Exemplary 
raw (left) and processed (right) images of the atomic distribution of single 
experimental realizations, with both spin components present (upper; 
corresponding to the starred point in a) and with one spin component 
removed (lower). The observed chequerboard pattern in the spin-removed 
images indicates the presence of an antiferromagnet.
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of this peak decreases until it disappears for / .!T t 0 64, indicating the 
decay of long-range order. At these elevated temperatures, a broad peak 
with low amplitude remains, which originates from the remaining 
short-range spin correlations. We quantify the ordering strength of the 
antiferromagnetic long-range order by the corrected staggered mag-
netization m T( )z

c , which subtracts uncorrelated contributions and is 
equal to mz in the thermodynamic limit (Methods). Although initially 
small at elevated temperatures, mz

c increases markedly at lower temper-
atures (Fig. 2d). We compare the measured temperature dependence 
to ab initio quantum Monte Carlo calculations of the Hubbard model 
on a 10 site ×  10 site square lattice with periodic boundary conditions 
and no free parameters. We find agreement over the entire range of 
temperatures, with residual deviations possibly caused by the different 
spatial shape of Ω. The largest measured value of = .m 0 25(1)z

c  is more 
than 50% of the theoretically predicted zero-temperature value in the 
Heisenberg model for our system size, obtained from finite-size 
scaling23.

The underlying Hubbard Hamiltonian that describes our system is 
SU(2)-symmetric. In the absence of a symmetry-breaking field, the 
staggered spin-ordering vector =m m m mˆ ( ˆ , ˆ , ˆ )x y z  is expected to point 
in random directions on a sphere between different experimental real-
izations. Consequently, individual measurements of the projection m̂z 
are expected to have large variation. This variation is directly observable  
in our experiment, because we can measure independent values of  
the staggered magnetization operator m̂z  from single experimental 
realizations (Fig. 3a).

The variation of the staggered ordering can be quantified from a 
histogram of all measured values of m̂z across different experimental 

realizations, which corresponds to the full counting statistics of the 
operator m̂z . These statistics are a powerful tool for characterizing 
many-body systems beyond average values29, but so far have not been 
measured for the antiferromagnetic phase. In Fig. 3b we show the meas-
ured histograms of the staggered magnetization along the z direction 
for different temperatures at half-filling, each obtained from more than 
250 images. All of the distributions are symmetric and peak around 
zero, with expectation values 〈 〉m̂z  consistent with zero. In addition, we 
find the same results for spin correlations when measuring along a spin 
direction that is perpendicular to the z axis via a π /2 pulse (Extended 
Data Fig. 4). Both observations are consistent with a randomly oriented 
spin-ordering vector. The width of the distributions is characterized by 
the standard deviation mz defined in equation (1). At the highest tem-
perature, the distribution is consistent with the expectation in the 
infinite-temperature limit, in which the entire finite-size sample of N 
sites is uncorrelated. In this limit, a binomial distribution is predicted, 
with a width of →∞ = / = .m T N( ) 1 0 1125z , which agrees with the 
experimentally measured value of mz =  0.12(2). At lower temperatures, 
the width of the distribution grows substantially and depends sensi-
tively on temperature, but remains peaked around zero. The experi-
mental data are in excellent agreement with ab initio quantum Monte 
Carlo calculations of the Heisenberg model at the experimentally deter-
mined temperatures. These findings show that the lattice thermometer 
based on nearest-neighbour correlations that we use here is correctly 
calibrated and very precise down to fractions of the tunnelling.

Whereas theoretical predictions at half-filling are available down 
to low temperature, this is not the case for doped systems, owing to 
the exponential scaling of the fermion sign problem with inverse 
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Figure 2 | Observing antiferromagnetic long-range order. a, The spin 
correlator Cd is plotted for different displacements d =  (dx, dy) ranging 
across the entire sample for five temperatures T/t. We record more than 
200 images for each temperature (Methods). Correlations extend across 
the entire sample for the coldest temperatures, whereas for the hottest 
temperature only nearest-neighbour correlations remain. b, The sign-
corrected correlation function (− 1)iCd is obtained through an azimuthal 
average. The exponential fits to the data (| d|  =  d >  2 sites) are shown in 
blue, from which we determine the correlation length ξ; the fit of the 
coldest sample is plotted in grey in the other panels for comparison.  
c, The measured spin structure factor Sz(q) −  Sz(0) obtained from Fourier 
transformations of single images. A peak at momentum qAFM =  (π /a, π /a) 
signals the presence of an antiferromagnet. d, The measured correlation 

length ξ (data), fitted to equation (2) (curve), diverges exponentially as a 
function of temperature T/t and is comparable to the system size for the 
lowest temperature. The temperature is varied by holding the atoms in the 
trap for a variable time. The inset is a semi-logarithmic plot of the same 
quantity versus inverse temperature. e, The measured corrected staggered 
magnetization mz

c  (large blue circles) increases markedly below 
temperatures T/t ≈  0.4. We find good agreement with quantum Monte 
Carlo calculations of the Hubbard model (small grey circles). The 
trajectory followed in this figure is shown schematically in the phase 
diagram in the inset. Error bars in d and e are standard deviations of the 
sampled mean; error bars in b (smaller than the markers) are computed as 
in Methods. The figure is based on 2,282 experimental realizations.
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Synthetic three-dimensional atomic structures 
assembled atom by atom
Daniel Barredo1,2*, Vincent Lienhard1,2, Sylvain de Léséleuc1,2, Thierry Lahaye1 & Antoine Browaeys1

A great challenge in current quantum science and technology 
research is to realize artificial systems of a large number of 
individually controlled quantum bits for applications in quantum 
computing and quantum simulation. Many experimental 
platforms are being explored, including solid-state systems, 
such as superconducting circuits1 or quantum dots2, and atomic, 
molecular and optical systems, such as photons, trapped ions or 
neutral atoms3–7. The latter offer inherently identical qubits that are 
well decoupled from the environment and could provide synthetic 
structures scalable to hundreds of qubits or more8. Quantum-gas 
microscopes9 allow the realization of two-dimensional regular 
lattices of hundreds of atoms, and large, fully loaded arrays of 
about 50 microtraps (or ‘optical tweezers’) with individual control 
are already available in one10 and two11 dimensions. Ultimately, 
however, accessing the third dimension while keeping single-atom 
control will be required, both for scaling to large numbers and for 
extending the range of models amenable to quantum simulation. 
Here we report the assembly of defect-free, arbitrarily shaped 
three-dimensional arrays, containing up to 72 single atoms. We use 
holographic methods and fast, programmable moving tweezers to 
arrange—atom by atom and plane by plane—initially disordered 
arrays into target structures of almost any geometry. These results 
present the prospect of quantum simulation with tens of qubits 
arbitrarily arranged in space and show that realizing systems of 
hundreds of individually controlled qubits is within reach using 
current technology.

Three-dimensional atomic arrays at half filling have been obtained 
using optical lattices with large spacings12, which facilitate single-site 
addressability and atom manipulation13. As an alternative approach, 
here we use programmable holographic optical tweezers to create 
three-dimensional (3D) arrays of traps. Holographic methods offer 
the advantage of higher tunability of the lattice geometry because the 
design of optical potential landscapes is reconfigurable and only limited 
by diffraction14–16. In our experiment14, arbitrarily designed arrays of 
up to about 120 traps are generated by imprinting a phase pattern on a 
dipole trap beam at 850 nm with a spatial light modulator (Fig. 1a). This 
phase mask is calculated using the 3D Gerchberg–Saxton algorithm, 
simplified for the case of point traps17. The beam is then focused with 
a high-numerical-aperture (0.5) aspheric lens under vacuum, creating 
individual optical tweezers with a measured 1/e2 radius of about 1.1 µm 
and a Rayleigh length of approximately 5 µm. After recollimation with 
a second aspheric lens, the intensity of the trapping light is measured 
using a standard charge-coupled device (CCD) camera. An electrically 
tunable lens (ETL1) in the imaging path allows us to acquire series of 
stack images along the optical axis z, from which we reconstruct the 
full 3D intensity distribution. The imaging system covers a z-direction 
scan range of 200 µm.

Figure 1b–d shows some examples of patterns suitable for experiments  
with single atoms. The images are reconstructed using a maximum- 
intensity projection method18 from 200 z images obtained with the 
diagnostics CCD camera. With about 3.5 mW of power per trap we 

reach depths of U0/kB ≈ 1 mK, where kB is the Boltzmann constant, and 
radial (longitudinal) trapping frequencies of around 100 kHz (20 kHz). 
We produce highly uniform microtrap potentials (with peak inten-
sities differing by less than 5% root mean square) via a closed-loop 

1Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France. 2These authors contributed equally: Daniel Barredo, Vincent Lienhard, Sylvain de 
Léséleuc. *e-mail: daniel.barredo@gmail.com

Fig. 1 | Experimental setup and trap images. a, We combine a spatial light 
modulator (SLM) and a high-numerical-aperture aspheric lens (AL) under 
vacuum to generate arbitrary 3D arrays of traps. The intensity distribution 
in the focal plane is measured with the aid of a second aspheric lens, a 
mirror (M) and a diagnostics CCD camera (d-CCD). The fluorescence of 
the atoms in the traps at 780 nm is separated from the dipole trap beam 
with a dichroic mirror (DM) and detected using an electron-multiplying 
CCD camera (EMCCD). For atom assembly we use moving tweezers 
superimposed on the trap beam with a polarizing beam splitter (PBS). 
This extra beam is deflected in the plane perpendicular to the beam 
propagation with a 2D acousto-optical deflector (AOD), and its focus 
can be displaced axially by changing the focal length of an electrically 
tunable lens (ETL3). The remaining electrically tunable lenses (ETL1 
and ETL2) in the camera paths allow imaging of different planes along 
z. The inset depicts the intensity distribution of the trap light forming a 
bilayer array (red) and the action of the moving tweezers on an individual 
atom (purple). b–d, Intensity reconstructions of exemplary 3D patterns 
obtained from a collection of z-stack images taken with the diagnostics 
CCD camera. The regions of maximum intensity form a trefoil knot (b), 
a 5 × 5 × 5 cubic array (c) and a C320 fullerene-like structure (d). The 
dimensions, Lx, Ly, Lz, of the images are the same in all the examples.
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gradient and the short-scale component of a
superlattice transverse to the tubes (25). Apply-
ing Raman sideband cooling for 500 ms, we
collected fluorescence photons on an EMCCD
(electronmultiplying charge-coupled device) cam-
era to form a high-contrast and site-resolved
image of the atomic distribution (22) (Fig. 1A).
Following our analysis in (25), we estimated the
temperature in the central chains to be 0:51ð2Þ t
or0:90ð3Þ J, which corresponds to an entropy per
particle of 0:63ð2ÞkB (where kB is the Boltzmann
constant).
To investigate the magnetic environment

around a hole, we calculate the conditional three-
point spin-hole correlation function CSHð2Þ ¼
4hŜ z

i Ŝiþ2
z i•i∘iþ1•iþ2

, where the symbols describe
the condition that the correlator is evaluated only
on configurations with the sites i and i þ 2 singly
occupied and the middle site empty (27). The
correlator indeed reveals anti-alignment of the
spins around individual holes [CSHð2Þ < 0], and
Fig. 2A highlights the hole-induced sign change by
comparison to the standard two-point correlator
CðdÞ ¼ 4ðhŜ z

i Ŝiþd
z i•i•iþd

% hŜ z
i i•i hŜ

z
iþdi•iþd

Þof an
undoped spin chain. To obtain unity filling, the
latter was evaluated on a hole-free subset of
the data. The additional condition indicatedby the
filled circular symbols removes the trivial n2 den-
sity dependence of the two-point spin correlator
in the doped case (27) but has no effect at unity
filling. The measured modulus of the correlation
around a hole is jCSHð2Þj ¼ 0:184ð4Þ , consider-
ably larger than Cð2Þ ¼ 0:057ð3Þ and about half
of the next-neighbor value of jCð1Þj ¼ 0:316ð2Þ.
At zero temperature forU=t →1 one expects
jCSHð2Þj ¼ jCð1Þj, as the hole has no effect on
the magnetic alignment of its surrounding spins.
For our interaction strength, the measured dif-
ference agrees with exact diagonalization results
at a temperature0:94ð5Þ J (27). These calculations
take into account the experimental fluctuations
of the magnetization per chain. Because of fi-
nite size effects, the correlation function shows
a small offset at large distances, for which we
correct in the subsequent analysis throughout
this paper (27).
The influence of larger doping on the spin order

is revealed by studying CSHðdÞ as a function of the
number of holes between the two spins; that is,
by evaluating CSH;Nh ðdÞ ¼ 4hŜ z

i Ŝiþd
z i•if∘gNh •iþd

with exactly Nh holes on the otherwise singly
occupied string of length d þ 1. The results of
this analysis, shown in Fig. 2B, reveal a sign
change of CSH;Nh at fixed distance d for each
newly introduced hole and antiferromagnet-
ic correlations versus distance for fixed hole
numberNh. Thus, each hole indeed corresponds
to a flip of the antiferromagnetic parity. In a
thermodynamic ensemble, the hole number be-
tween the two measured spins fluctuates, result-
ing in a weighted averaging over the alternating
correlations for different hole numbers. This di-
rectly explains the suppression of magnetic cor-
relations with hole doping (compare Fig. 3A).
The strong reduction in the amplitude of spin

correlations caused by hole fluctuations does not
imply the absence of magnetic order in the sys-

tem, but rather suggests that it is hidden by the
fluctuations in the position of the atoms. This
situation is similar to the Haldane phase of spin-
1 chains (9, 12–14), where fluctuating j0i spins
hide correlations between the jT1i components,
leading to exponentially decaying local corre-
lators. The intrinsic AFM order is unveiled by
considering a nonlocal correlation function. By
identifying double occupancies and holes with
spin j0i states, one can use the same procedure
to construct a string correlator that probes the

underlying spin order in the doped Hubbard
chain(18):

CstrðdÞ ¼ 4 Ŝ
z
i

 

P
d%1

j¼1
ð%1Þð1%n̂ iþj Þ

!

Ŝiþd

z

+

•i•iþd

*

ð2Þ

This string correlator takes the antiferromag-
netic parity flips into account by a correspond-
ing sign flip for each hole (compare Fig. 1C). The
unique ability to detect the spin and density
locally on single images (25) enables the direct
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Fig. 1. Analysis of a doped Hubbard chain. (A) Experimental spin and density-resolved image
of a single, slightly doped Hubbard chain after a local Stern-Gerlach-like detection. The
reconstructed chain is shown below the picture. (B) Illustration of the magnetic environment
around a hole. For aligned spins (top) the hole cannot freely delocalize because of the magnetic
energy cost J, which is absent for anti-aligned spins (bottom). (C) Illustration of hole-induced
AFM parity flips, squeezed space, and string correlator. Hole doping leads to AFM parity flips
highlighted by the color mismatch between the spins and the background (top). Squeezed space
is constructed by removing all sites with holes from the chain (bottom left). In the string
correlator analysis, the flip in the AFM parity is canceled by a multiplication of –1 for each hole
(bottom right). Comparing either of these analyses to the conventional two-point correlator
reveals the hidden finite-range AFM order in the system.
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Fig. 2. Revealing the magnetic environment around holes. (A) Connected two-point spin
correlation function CðdÞ analyzed on occupied sites only (blue). The finite-range AFM order
without holes asymptotically falls off with an exponential decay length of 1:3ð2Þ sites. The spin
correlations at a distance of two sites switch sign in the presence of a hole as measured by CSHð2Þ
(red diamond) demonstrating an AFM environment surrounding the hole. The solid black line
indicates the finite-size offset (27), the blue line is a guide to the eye, and statistical uncertainties
are smaller than the symbol sizes. (Inset) Comparison of experimental values (red lines) of
CSHð2Þ % Cð1Þ (top) and CSHð2Þ % Cð2Þ (bottom) with finite temperature results from exact
diagonalization (gray curves). The systematic error originating from a finite atom loss rate of up
to 3% during imaging is negligible. (B) Amplitude of the correlation function CSH;Nh

ðdÞ as a
function of distance d and the number of holes Nh between the two spins with the finite-size
offset subtracted. The parity of the AFM order flips with every hole.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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be reduced to its action on these three qubits and simulated
by selecting appropriate subterms, acting on the initial
state jφð0Þi ¼ j111i. The final operator we implement has
the form

UBK
UCCSDðα; βÞ ¼ e−iασ

x
2
σy
4 · e−iβσ

x
2
σy
6 : ð8Þ

Further details of this derivation can be found in
Appendix C 1. The quantum circuit corresponding to
Eq. (8), which acts on subsets of the qubit register, is
shown in Fig. 4(b). We choose to implement it in the
experiment using the circuit shown in Fig. 4(c), which is
based on a refocusing technique [95]. Here, an addressed
π-phase shift between two half-entangling MS gates
effectively decouples the addressed qubit from the two
remaining qubits: These become entangled, while the
phase-shifted qubit does not obtain any correlations with
the rest of the register. Other implementation strategies
range from algorithmic solutions such as spectroscopic
decoupling [92] or sequence recompilation [106] to hard-
ware solutions based on Raman gates [107].

B. Results

We first perform a parameter scan to establish a baseline
for the performance of our system before implementing the
VQE algorithm for select points. Moving sequentially over
a section of the two-dimensional parameter space bound by
α ¼ ½1.5; 6%, β ¼ ½2; 5% in a gridlike pattern, we perform
three rounds of projective measurements at each setting

to determine expectation values for each term in the
BK-transformed Hamiltonian: hHli ¼ fZ0; Z1; Z2; Z1Z0;
Z2Z0; Z2Z1; X1X0; Y1Y0; X2X0; Y2Y0; X2X1; Y2Y1g (see
Fig. 12 for data). The results are combined via Eq. (7)
in order to calculate the energy landscape for each
internuclear separation R. An example for R ¼ 1.6 Å is
shown in Fig. 5(a), with the experimentally measured
parameter space superimposed on a theoretical calculation
of the full range.
In order to reconstruct the full potential energy curve of

the electronic ground state from these data, we investigate
two approaches: (1) a two-dimensional quadratic fit to the
energy minimum and (2) a Gaussian process regression
(GPR) fit. The fit minima from all energy surfaces of the
different internuclear separations R finally yield the poten-
tial energy curves in Fig. 5(b), which we again use as an
experiment-based reference.
We now implement an iterative VQE procedure similar

to the one described in the case of H2 above but with an
important modification. Numerical simulations, detailed in
Appendix C 3, and experiments reveal that the previously
observed convergence failure of the bare Nelder-Mead
search algorithm in the presence of noise has a significant
impact on the accuracy of the energies obtained in each
VQE run. To combat this effect, we switch the optimization
to a hybrid algorithm [108] that also incorporates an
element of simulated annealing by introducing random
perturbations, sampled from a distributionD, that are added
to the cost function in Eq. (7). In this way, the VQE
algorithm is forced to continuously sample the
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FIG. 5. LiH results. (a) Energy landscape at internuclear distance R ¼ 1.6 Å. The experimentally scanned parameter range, indicated
by the black box inset, is superimposed on a theoretical calculation. The dashed red lines mark the coordinates of the targeted energy
minimum. Connected white lines show the steps taken by the VQE algorithm, with the starting point marked by a filled red dot and the
terminus by a red square. (b) The theoretical LiH potential energy surface calculated for the minimal basis set (black) is shown in
comparison with experimentally obtained results, offset to overlap at maximum distance R to better illustrate the well-depth differences
in the grid-scan reconstructions. In absolute values, all measured data are above the FCI calculation. The data points result from
sampling the energy landscape hHðRÞiα;β using the VQE algorithm or the parameter scan shown in panel (a) and fitting the explored
space with a GPR-based machine learning algorithm (red dashed line) or a 2D quadratic fit (blue solid line). The error bars are obtained
from the fits with the underlying data weighted by quantum projection noise. The slight “kink” close to R ¼ 3.5 Å is due to the interplay
of rounding errors introduced in the fitting routine, with small deviations originating in our active space approximation.
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Real fermions in the low-temperture regime 
of the Fermi-Hubbard model 

gate electrodes fabricated on the surface of a GaAs/AlGaAs heterostructure (Fig. 1), that selec-61

tively deplete regions of the 85-nm-deep two-dimensional electron gas (2DEG) underneath. The62

outermost dots can be (un)loaded from Fermi reservoirs on the sides, which have an effective63

electron temperature of 72.2(5) mK (6.26(5) µeV). The three gates at the top are used to define64

a sensing-dot channel, the conductance of which is sensitive to changes in the charge state of the65

array and is directly read out using radio-frequency reflectometry.66

The control of Fermi-Hubbard model parameters is achieved by modulation of the potential67

landscape in the 2DEG using the seven bottom-most gate electrodes (Fig. 1). These gates come68

in two flavours. Plunger gates Pi are designed to tune the single-particle energy offsets ✏i of69

individual dots i, allowing us to set an overall chemical potential µ0
= h✏ii and add site-specific70

detuning terms �✏i (see Supplementary Section I). Barrier gates Bij allow for the modulation of71

tunnel couplings tij between the ith and jth dot or �ij between the ith dot and jth Fermi reservoir,72

respectively. The interaction energies are determined by the potential landscape realized to achieve73

this set {µ0, �✏i,tij ,�ij}, and comprise of the on-site Coulomb interaction terms Ui and inter-site74

Coulomb interaction terms Vij . With each dot filled to an even number of electrons, we can describe75

the addition of the next two electrons per dot within an effective single-band extended Hubbard76

picture33, using site-and-spin-specific electronic creation and annihilation operators c†i� and ci� and77

dot occupations ni =
P

� c
†
i�ci�:78

H = �
X

i

✏ini �
X

<i,j>,�

tij(c
†
i�cj� + h.c.) +

X

i

Ui

2

ni(ni � 1) +

X

i,j

Vijninj. (1)
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Fig. 3: (a) The Hofstadter butterfly spectrum for a square grid, showing the density of 
states in color scale (blue is low, red is high). (b) Triangular grid gate pattern from our 
lab. For positive bias, dots are formed below the line crossings, giving a triangular lattice. 
For negative bias, dots are formed in the open spaces, forming a hexagonal lattice. The 
respective unit cell and lattice vectors are shown in red. (c) Kagome shape grid gate. 
 
Interactions and beyond 
 
The physics of correlated electrons starts with electron-electron interactions. The key 
signature of strong interactions in a periodic lattice is the emergence of a Mott gap in the 
energy spectrum [57]. When every site is occupied with two electrons, the first band is 
filled. This is called unit filling. At half-filling, every site is occupied by one single 
electron. In the presence of interactions, the on-site interaction energy U must be 
overcome in order to add one more electron to the lattice. As a result, the first band 
splits into two subbands, separated by a Mott or Hubbard gap [57,38]. We will thus look 
for a Mott gap, demonstrating that both temperature and disorder induced variations in 
the on-site potential are smaller than U. An interesting open question will also address is 
how interactions and the Mott gap affect the Hofstadter butterfly [52,58]. 
 
Even more spectacular would be to see evidence of “spectral weight transfer” as we 
move away from half filling [59]. It means that states are progressively shifted from the 
upper to the lower Mott subband as we reduce the carrier density below half–filling. 
When N-x sites are occupied, the electron finds only N-x states in the upper subband; 
there is no state belonging to the second electron on a site if this site is not already 
occupied by a first electron. These x states have moved to the first subband, since there 
are now x unoccupied sites. We will vary the carrier density in-situ and directly probe 
spectral weight transfer in this artificial system using pulsed capacitance spectroscopy 
measurements (see methods below). 
 
A real breakthrough would be to see pseudo-gap physics [2,60,61] in this engineered 2D 
lattice. The origin and role of the pseudo-gap in high-temperature superconductivity 
remain highly debated [62]. In cuprates and related materials, bulk angle-resolved 
photo-emission spectroscopy (ARPES) measurements [63] and tunneling spectroscopy 
[64] show a suppression in the density of states in the regime in between the 
superconducting phase and the anti-ferromagnetic Mott insulator. The reason for this 
suppression appears to be associated with pairing, with characteristic energy scale t2/U: 
paired electrons do not participate in single-particle tunneling. The main question is 
whether this pseudo-gap is a precursor to superconductivity, or rather competes with it 
[62]. Whether the pseudo-gap physics can be observed in a 2D Hubbard lattice, is rather 
speculative, but it seems possible to reach the parameter regime required to look for it. 
It would therefore be very exciting to look for a suppression in the density of states as 
we explore parameter space in this highly tunable system consisting of a single plane.  
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Capacitance spectroscopy of gate-defined electronic lattices
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Semiconductors form an enticing platform for the realization of quantum lattice physics, as conduction band
electrons allow for electrostatic confinement, readout and control while undergoing an interplay of gauge fields,
band physics and electron-electron interactions. This combination o↵ers the potential to realize a wide host
of quantum phases. So far, attempts at measuring artificial lattices of confined electrons in semiconductors,
whether optically or in transport, were limited by disorder in the material as well as by inhomogeneities
induced by the fabrication. Capacitance spectroscopy provides a technique that allows for the direct mea-
surement of two-dimensional electron systems and enables to reduce e↵ective disorder. Here we present a
measurement and fabrication scheme that builds on capacitance spectroscopy and aims at imposing a periodic
potential modulation on a two-dimensional electron gas. We characterize disorder levels and (in)homogeneity
and develop and optimize di↵erent gating strategies at length scales where interactions are expected to be
strong. A continuation of these ideas might see to fruition the emulation of interaction-driven Mott transitions
or Hofstadter butterfly physics.

Artificial lattice structures have the potential for re-
alizing a host of distinct quantum phases1. Of these,
the inherent length scale of optical platforms allows for
a clean emulation of quantum mechanical band physics,
but also means interactions are weak and going be-
yond a single-particle picture is di�cult2,3. For elec-
tronic implementations in solid-state, interactions can be
made non-perturbatively strong, potentially leading to a
host of emergent phenomena. An example is shown in
graphene superlattices, where not only Hofstadters but-
terfly physics4–7 but also interaction-driven and emergent
fractional quantum Hall states in the butterfly appear8.
The ideal platform would host a designer lattice with tun-
able electron density and lattice strength, allowing to em-
ulate band physics for a wide variety of lattice types and
giving access to the strong-interaction limit of correlated
Mott phases9–13. Semiconductor heterostructures with
nano-fabricated gate structures provide this flexibility in
lattice design and operation, yet inherent disorder in the
host materials as well as the short length scales required
make the realization of clean lattices di�cult14–16.

In this Letter, we demonstrate a novel experimen-
tal platform for realizing artificial gate-induced lattices
in semiconductors, based on a capacitance spectroscopy
technique, with the potential to observe both single-
particle band structure physics such as Hofstadter’s but-
terfly and the interaction driven Mott insulator transi-
tion. We characterize disorder levels and develop and
optimize di↵erent gating strategies for imprinting a two-
dimensional periodic potential at length scales where in-

a)These authors contributed equally to this work
b)Correspondence should be sent to l.m.k.vandersypen@tudelft.nl

teractions are expected to be strong.

FIG. 1. (a) Capacitance spectroscopy layer stack. Apart from
the top gate(s), all layers are GaAs/Al

x

Ga1�x

As, grown by
molecular-beam epitaxy. (b) Bridge set-up for equilibrium ca-
pacitance measurements, where the amplitude ratio and phase
di↵erence between measurement signals on the sample and a
reference capacitor created by a waveform generator (WG)
are set to impose a constant zero voltage at the bridge point
(red dot), which is amplified at di↵erent stages and read out
using a lock-in amplifier. (c)-(d) Di↵erent two-layer gate de-
signs to impose a periodic potential on the 2DEG. Dielectric
spacer is depicted in red.

In our capacitance spectroscopy set-up17–19, a doped
back gate region is tunnel coupled to a two-dimensional
electron gas (2DEG) above, whose density of states
(DOS) modifies the capacitance between the back gate
and a metallic top gate (see Fig 1a). At the limits of zero
or infinite DOS, the system behaves like a simple parallel
plate capacitor, described by the distance between top
gate and back gate or top gate and quantum well, re-
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electron gas (2DEG) above, whose density of states
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Large periodic lattices – disorder 

Capacitance spectroscopy of gate-defined electronic lattices
T. Hensgens,1, a) U. Mukhopadhyay,1, a) P. Barthelemy,1, a) R. F. L. Vermeulen,1 R. N. Schouten,1 S. Fallahi,2

G.C. Gardner,2 C. Reichl,3 W. Wegscheider,3 M. J. Manfra,2 and L. M. K. Vandersypen1, b)
1)QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft,
The Netherlands
2)Department of Physics and Astronomy, and Station Q Purdue, Purdue University, West Lafayette, Indiana 47907,
USA
3)Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
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Semiconductors form an enticing platform for the realization of quantum lattice physics, as conduction band
electrons allow for electrostatic confinement, readout and control while undergoing an interplay of gauge fields,
band physics and electron-electron interactions. This combination o↵ers the potential to realize a wide host
of quantum phases. So far, attempts at measuring artificial lattices of confined electrons in semiconductors,
whether optically or in transport, were limited by disorder in the material as well as by inhomogeneities
induced by the fabrication. Capacitance spectroscopy provides a technique that allows for the direct mea-
surement of two-dimensional electron systems and enables to reduce e↵ective disorder. Here we present a
measurement and fabrication scheme that builds on capacitance spectroscopy and aims at imposing a periodic
potential modulation on a two-dimensional electron gas. We characterize disorder levels and (in)homogeneity
and develop and optimize di↵erent gating strategies at length scales where interactions are expected to be
strong. A continuation of these ideas might see to fruition the emulation of interaction-driven Mott transitions
or Hofstadter butterfly physics.

Artificial lattice structures have the potential for re-
alizing a host of distinct quantum phases1. Of these,
the inherent length scale of optical platforms allows for
a clean emulation of quantum mechanical band physics,
but also means interactions are weak and going be-
yond a single-particle picture is di�cult2,3. For elec-
tronic implementations in solid-state, interactions can be
made non-perturbatively strong, potentially leading to a
host of emergent phenomena. An example is shown in
graphene superlattices, where not only Hofstadters but-
terfly physics4–7 but also interaction-driven and emergent
fractional quantum Hall states in the butterfly appear8.
The ideal platform would host a designer lattice with tun-
able electron density and lattice strength, allowing to em-
ulate band physics for a wide variety of lattice types and
giving access to the strong-interaction limit of correlated
Mott phases9–13. Semiconductor heterostructures with
nano-fabricated gate structures provide this flexibility in
lattice design and operation, yet inherent disorder in the
host materials as well as the short length scales required
make the realization of clean lattices di�cult14–16.

In this Letter, we demonstrate a novel experimen-
tal platform for realizing artificial gate-induced lattices
in semiconductors, based on a capacitance spectroscopy
technique, with the potential to observe both single-
particle band structure physics such as Hofstadter’s but-
terfly and the interaction driven Mott insulator transi-
tion. We characterize disorder levels and develop and
optimize di↵erent gating strategies for imprinting a two-
dimensional periodic potential at length scales where in-
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teractions are expected to be strong.

FIG. 1. (a) Capacitance spectroscopy layer stack. Apart from
the top gate(s), all layers are GaAs/Al

x

Ga1�x

As, grown by
molecular-beam epitaxy. (b) Bridge set-up for equilibrium ca-
pacitance measurements, where the amplitude ratio and phase
di↵erence between measurement signals on the sample and a
reference capacitor created by a waveform generator (WG)
are set to impose a constant zero voltage at the bridge point
(red dot), which is amplified at di↵erent stages and read out
using a lock-in amplifier. (c)-(d) Di↵erent two-layer gate de-
signs to impose a periodic potential on the 2DEG. Dielectric
spacer is depicted in red.

In our capacitance spectroscopy set-up17–19, a doped
back gate region is tunnel coupled to a two-dimensional
electron gas (2DEG) above, whose density of states
(DOS) modifies the capacitance between the back gate
and a metallic top gate (see Fig 1a). At the limits of zero
or infinite DOS, the system behaves like a simple parallel
plate capacitor, described by the distance between top
gate and back gate or top gate and quantum well, re-

ar
X

iv
:1

70
9.

09
05

8v
1 

 [c
on

d-
m

at
.m

es
-h

al
l] 

 2
6 

Se
p 

20
17

Capacitance spectroscopy of gate-defined electronic lattices
T. Hensgens,1, a) U. Mukhopadhyay,1, a) P. Barthelemy,1, a) R. F. L. Vermeulen,1 R. N. Schouten,1 S. Fallahi,2

G.C. Gardner,2 C. Reichl,3 W. Wegscheider,3 M. J. Manfra,2 and L. M. K. Vandersypen1, b)
1)QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft,
The Netherlands
2)Department of Physics and Astronomy, and Station Q Purdue, Purdue University, West Lafayette, Indiana 47907,
USA
3)Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
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Semiconductors form an enticing platform for the realization of quantum lattice physics, as conduction band
electrons allow for electrostatic confinement, readout and control while undergoing an interplay of gauge fields,
band physics and electron-electron interactions. This combination o↵ers the potential to realize a wide host
of quantum phases. So far, attempts at measuring artificial lattices of confined electrons in semiconductors,
whether optically or in transport, were limited by disorder in the material as well as by inhomogeneities
induced by the fabrication. Capacitance spectroscopy provides a technique that allows for the direct mea-
surement of two-dimensional electron systems and enables to reduce e↵ective disorder. Here we present a
measurement and fabrication scheme that builds on capacitance spectroscopy and aims at imposing a periodic
potential modulation on a two-dimensional electron gas. We characterize disorder levels and (in)homogeneity
and develop and optimize di↵erent gating strategies at length scales where interactions are expected to be
strong. A continuation of these ideas might see to fruition the emulation of interaction-driven Mott transitions
or Hofstadter butterfly physics.

Artificial lattice structures have the potential for re-
alizing a host of distinct quantum phases1. Of these,
the inherent length scale of optical platforms allows for
a clean emulation of quantum mechanical band physics,
but also means interactions are weak and going be-
yond a single-particle picture is di�cult2,3. For elec-
tronic implementations in solid-state, interactions can be
made non-perturbatively strong, potentially leading to a
host of emergent phenomena. An example is shown in
graphene superlattices, where not only Hofstadters but-
terfly physics4–7 but also interaction-driven and emergent
fractional quantum Hall states in the butterfly appear8.
The ideal platform would host a designer lattice with tun-
able electron density and lattice strength, allowing to em-
ulate band physics for a wide variety of lattice types and
giving access to the strong-interaction limit of correlated
Mott phases9–13. Semiconductor heterostructures with
nano-fabricated gate structures provide this flexibility in
lattice design and operation, yet inherent disorder in the
host materials as well as the short length scales required
make the realization of clean lattices di�cult14–16.

In this Letter, we demonstrate a novel experimen-
tal platform for realizing artificial gate-induced lattices
in semiconductors, based on a capacitance spectroscopy
technique, with the potential to observe both single-
particle band structure physics such as Hofstadter’s but-
terfly and the interaction driven Mott insulator transi-
tion. We characterize disorder levels and develop and
optimize di↵erent gating strategies for imprinting a two-
dimensional periodic potential at length scales where in-
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the top gate(s), all layers are GaAs/Al

x

Ga1�x

As, grown by
molecular-beam epitaxy. (b) Bridge set-up for equilibrium ca-
pacitance measurements, where the amplitude ratio and phase
di↵erence between measurement signals on the sample and a
reference capacitor created by a waveform generator (WG)
are set to impose a constant zero voltage at the bridge point
(red dot), which is amplified at di↵erent stages and read out
using a lock-in amplifier. (c)-(d) Di↵erent two-layer gate de-
signs to impose a periodic potential on the 2DEG. Dielectric
spacer is depicted in red.

In our capacitance spectroscopy set-up17–19, a doped
back gate region is tunnel coupled to a two-dimensional
electron gas (2DEG) above, whose density of states
(DOS) modifies the capacitance between the back gate
and a metallic top gate (see Fig 1a). At the limits of zero
or infinite DOS, the system behaves like a simple parallel
plate capacitor, described by the distance between top
gate and back gate or top gate and quantum well, re-
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Probe:	  capacitance	  spectroscopy	  
(density	  of	  states)	  

2

spectively. The capacitance is read out using a bridge
design with a reference capacitor, where the voltage at
the bridge point is kept constant (Fig 1b) by changing
the amplitude ratio and phase di↵erence of AC signals
applied to each capacitor (see SupA for experimental de-
tails). To impose a periodic potential in the 2DEG, we
pattern the metallic gate into a grid shape and add a sec-
ond non-patterned top gate on top of the grid gate. From
a capacitance spectroscopy perspective, this double-gate
structure can be made with two di↵erent designs. In the
first design, the second (top) gate is separated from the
other gate by a thick dielectric layer, rendering its capac-
itance to the other (grid) gate negligible. If so, we can
ignore the second gate from an AC perspective altogether
(Fig 1c). Alternatively, we can minimize the separation
between the two gate layers, such that the capacitance
between the two top gates exceeds the sample capaci-
tance. As seen in AC, the two gates then e↵ectively form
a single gate (Fig 1d).

FIG. 2. (a) Bridge equilibrium phase as function of back gate
voltage and measurement frequency. (b) Global gate capaci-
tance as function of bias voltage and measurement frequency.
(c) Landau fan diagram: device capacitance as function of
bias voltage and magnetic field, showing onset of accumula-
tion, integer quantum Hall levels and exchange splitting. (d)
Charge addition spectrum derived from the low field regime of
(c), allowing us to assess disorder from Landau level visibility.
The gaps at filling factors ⌫ = 4 and ⌫ = 8 are indicated. At
lower fields, the small Landau level spacing leads to aliasing
in the image.

In order to assess disorder levels, we first measure de-
vices with a single uniform top gate. We measure the
capacitance at frequencies below and above the rate at
which electrons tunnel between the 2DEG and the doped
back gate region as a function of bias voltage and mag-
netic field. Having measured the capacitance at low

and high frequencies, we calculate the equilibrium DOS.
There are essentially two unknown parameters in this
conversion, namely the distance from top to bottom gate
and the relative location of the 2DEG itself. The former
can be directly inferred from the capacitance at high fre-
quency, the latter by using either the known e↵ective
mass or the Landau level splitting with magnetic field as
benchmarks (see SupB for details on this conversion).

As a magnetic field is turned on, we see the onset
of Landau level formation. For larger magnetic fields,
the exchange enhanced Zeeman splitting becomes visi-
ble as well, indicating the non-perturbative e↵ect of the
Coulomb interaction on increasingly confined electrons
(Fig 2c). We focus on the low-field data (Fig 2d) and in-
fer disorder levels from the density of states data (Fig 2e).
Gaussian fits to the Landau levels yield typical widths
ranging between 0.4-1 meV at densities above 1011 cm�2.
The Landau levels themselves (aliased at low fields in in
Fig 2d) become visible above fields of roughly 0.25 T,
corresponding to densities per Landau level of 1.2⇥1010

cm�2 and cyclotron gaps of 0.43 meV. The Landau level
width did not depend on small changes in temperature or
excitation voltage and was consistent across fabrication
schemes, but did vary with the wafer used. Therefore, we
consider it a heuristic metric for the achievable disorder
levels on a particular wafer. We have tried to optimize
wafer design to minimize this disorder, whilst allowing
for the imposition of a periodic potential. All in all, over
twenty di↵erent wafers were measured (see SupC for con-
siderations and an overview of used heterostructure de-
signs). Whereas changing layer thicknesses was found
to have only a little e↵ect, decreasing (increasing) the Al
content in the tunnel (blocking) barrier led to substantial
reductions in measured disorder levels.

We next fabricate devices with grid and top gates
based on both designs of Fig 1c-d to assess the imparted
periodic potential. Square grid metallic gates are fab-
ricated at pitches of 100-200 nm using electron beam
lithography and evaporation in a standard lift-o↵ pro-
cess (Fig 3a-b). In the first design, both gates are made
of Ti/Au(Pd) and separated by > 200 nm layer of ox-
ide, such as plasma-enhanced chemical vapor deposition
grown SiO

x

or plasma-enhanced atomic layer deposition
grown AlO

x

. The top gates are electrically isolated from
one another, with a stray capacitance between them of
several pF typically. In the second design, both gates are
made of Al, and an oxygen (remote) plasma oxidation
step is used after depositing the first step to ensure suf-
ficient electrical isolation between the two layers. In this
design, we measure resistances exceeding 1 G⌦ over sev-
eral V and capacitances of several hundred pF between
the two metallic layers (see SupD for a description of
di↵erent designs and fabrication details).

The strength of the imparted periodic potential de-
pends both on the gate design and on the maximum
voltages that can be applied. These maximum voltage
di↵erences arise for instance because of the onset of leak-
age through the heterostructure or the accumulation of

3

FIG. 3. (a)-(b) Electron micrograph of a 200 nm periodic 20
nm Al grid gate layer. (b) Similar, for a 100 nm periodic gate
layer. (c)-(d) Electrostatic simulations of imparted potential
in the 2DEG in both designs, with a 200 nm periodic 20 nm
wide square grid gate, and using denoted gate voltages. For
(c), we use a 350 nm SiO2 dielectric and flat top gate. For
(d), we use a 5 nm spacer dielectric separating the two top
gates. Voltages used are roughly half of the empirical maxi-
mum voltage we can set for both designs, Vgrid = �0.5 V for
both. The thin-dielectric design clearly allows for imposing a
stronger periodic potential.

charges in the capping layer, and as such depend on het-
erostructure details, such as Al concentration and layer
thicknesses. Electrostatic simulations indicate that, as
is to be expected, significantly larger top gate voltages
are required in the first design as compared to the sec-
ond one, in order to achieve a sizable periodic potential
in the 2DEG (Fig 3c-d). Furthermore, we note that the
screening induced by mobile charges in the back gate re-
gion has both a positive and a negative e↵ect. To under-
stand this, we recognize that the screening of potential
modulations is length dependent. On the positive side,
disorder in the heterostructure as well as imperfections
in the fabrication represent the shortest length scales and
as such are screened the most strongly. On the negative
side, electron-electron interactions and the imposed po-
tential modulation itself are screened as well, and more
so as the lattice dimension is reduced.

For measurements of two-layer gate devices of both de-
signs (Fig 4), we keep the grid gate potential fixed, given
that it serves as the gate voltage of the first transistor in
the amplification chain, and map out the remaining two
gates over as large a range as possible. Initial devices
of both designs indeed show accumulation as function of
the two gate voltages. The direction perpendicular to
the onset of accumulation indicates homogeneous filling
of the 2DEG, whereas the periodic potential modulation
builds up in the direction parallel to the onset of accu-
mulation. At voltages where we expect a flat periodic
potential, and for our final set of devices, we can still
distinguish well-defined Landau levels, indicating that

FIG. 4. (a) Capacitance as function of back gate and top
gate voltages for a device with a 200 nm periodic square grid
gate and a 360 nm SiO2 dielectric separating the two gate
layers (see inset and Fig. 3a). (b) Derivative of capacitance
data. (c)-(d) Similar data taken for a device with aluminum
overlapping gates (see inset) at 1 T. No clear e↵ect is seen on
the onset of accumulation, although at finite field we see the
that as the top gate voltage is made more positive than the
grid gate voltage, Landau levels (aliased in topgate voltage)
get blurred out.

the added fabrication steps themselves do not severely
increase the disorder levels (Sup D). For the first gate
design, we find a saturation to the e↵ect of the top gate
in gating the 2DEG at gate voltages exceeding 20 V in
absolute value. This could be a sign of charges building
up at the capping layer to dielectric interface or in the
dielectric itself that screen the top gate, and limits the
potential we can impose on the 2DEG. For the second
gate design, a maximum voltage di↵erence of roughly 2
V can be set between the back gate and the surface gates
before leakage starts to occur.
Using either gate design we find both gates to influ-

ence the accumulation of charges in the quantum well as
expected, but neither shows clear evidence of a lattice
potential imposed on the 2DEG (Fig 4). At zero mag-
netic field, a lattice potential would lead to minibands
that manifest as periodic modulations in the density of
states (and capacitance) with a period corresponding to
two electrons per lattice site, or 5⇥109 cm�2 for a 200
nm square grid. Expressed in mV on the backgate, this
corresponds to a period of 6 mV. At finite magnetic field,
Landau levels are expected to show structure due to Hof-
stadter butterfly physics15,20, with the largest gaps ex-
pected around k ± 1/4 of a flux quantum �

0

threading
each lattice plaquette (with k an integer; this corresponds
to 52k±13 mT for a 200 nm grid). Furthermore, a strong

Disorder masks 
minibands and 
Mott gap 

Hensgens	  et	  al,	  
J.	  Appl.	  Phys.	  2018	  
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Fig. SEM photos of quadruple quantum dots:
Device A (left) and Device B (right). A Co MM is placed on top. (Tarucha)

Vandersypen:
4-qubit experiment:
We have cooled down a 4-quantum dot linear array, integrated with 4 readout dots (we won't 
need all readout dots). Before cooling down this sample, we upgraded our RF detection system. 
Previously, the performance of our RF-readout system was limited by the achieved matching 
attained by the RLC circuit formed by an inductor, the resistance of the QPC/SD and the 
parasitic capacitance. Due to the limited range of suitable commercial inductors we were not 
able to get proper matching at the most sensitive point of the QPC (~50 kOhm) or SD (~125 
kOhm). Furthermore, the internal resistance of the commercial inductors gives rise to losses. As 
a solution we made nanofabricated superconducting inductors (NbTi) on quartz substrates with 
inductances in the range of 10 nH to 8000 nH. They are mounted on the PCB sample board. 
These inductors allow us to achieve matching for a large range of parasitic capacitances, which 
should significantly enhance our measurement bandwidth, and thereby our spin readout 
fidelities.  
Two superconducting inductors have been incorporated on our 4-dot experiment pcb for 
matching at 125 kOhm. 
The parasitic capacitance of just the inductor has been estimated to be approx. 0.07 pF for an 
inductance of 3070 nH. Placing the inductors closer to the sample in the future will allow higher 
centre frequencies (beneficial for a.o. multiplexing involving many lines).

3-qubit experiment:
We went back to trouble shooting the leak in the dilution unit of the fridge used for this 
experiment (after an interruption of the activities due to the PhD defense of the student working 
on the experiment). The simple patches didn't work, so we completely disassembled the lowest 
section of the dilution unit (mixing chamber plus heat exchangers). We are in contact with 
Oxford Instruments about sending the piece back, in case we don't manage to fix the leak in a 
last attempt. 
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[113] and an inverse hopping rate of (100 µeV/h)-1 ~ 4 ps, an optimistic upper bound for 
phase coherence is a few hundred sites.  
 
Few and Universal 
 
Here we will precisely set the properties of each dot and tunnel barrier by adjusting local 
gate voltages that define the quantum dots in the 2DEG. Thereby, the influence of 
disorder is completely compensated for by the gate voltages, allowing us to make arrays 
with highly uniform tunnel couplings and on-site energies. Since the properties are 
tunable in-situ, it is also possible to create arrays with alternating bond strengths, or to 
rapidly switch the properties to study quantum quenches.  
 
An important experimental challenge is to efficiently search through the parameter space 
to find the right set of gate voltages for obtaining exactly one electron in each dot with 
the desired inter-dot tunnel couplings and with aligned electrochemical potentials. While 
most experiments on quantum dots have been done with single and double dots, in the 
last two years rather sophisticated experiments were done on triple dots as well 
[95,114], also in our group [35], and initial measurements on linear arrays with four and 
five dots have been reported too [115]. Figure 8 shows an image from our lab with four 
dots in a row, as well as two ways to go beyond 1D arrays shown by other groups. Even 
though nothing is trivial in this field, I am convinced that such structures can be 
successfully used for initial explorations of quantum magnetism. Of course we next wish 
to go well beyond a handful of dots and build say triangular spin ladders of ten, twenty or 
more dots. In order to make this possible, we are beginning to try and accelerate the 
time-consuming tuning of multi-dot devices by computer-assisted tuning methods. 
Furthermore, moving to undoped devices should allow faster tuning through reduced 
background disorder. 
 

                              
Fig. 8: Scanning electron microscope images of (a) a linear quadruple dot array from our 
group, (b,c) a triangular triple dot, used to look at charge frustration rather than spin 
frustration [116] and (d) four dots forming a plaquette [117]. 
 
For this work, we can take full advantage of the toolbox we developed for realizing spin 
qubits. Using constrictions or additional quantum dots adjacent to the dots under study, 
we can accurately measure the number of charges on each dot [118]. We have pioneered 
methods to read out multiple spins in a magnetic field in single-shot mode with high 
precision and to study arbitrary correlations between them [70,36]. Both at zero field 
and in finite magnetic field, we can use the Pauli exclusion principle to probe whether 
neighboring spins are in a singlet or a triplet configuration [69,33,]. Furthermore, by 
applying microwave excitation on resonance with the spin splitting to one of the gates, 
we can drive coherent single-spin rotations [71,72,92,100,101]. Finally, the exchange 
coupling can be pulsed on sub-ns timescales, kick-starting free evolution under the 
exchange Hamiltonian [33,36,95,98]. 
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gate voltages that define the quantum dots in the 2DEG. Thereby, the influence of 
disorder is completely compensated for by the gate voltages, allowing us to make arrays 
with highly uniform tunnel couplings and on-site energies. Since the properties are 
tunable in-situ, it is also possible to create arrays with alternating bond strengths, or to 
rapidly switch the properties to study quantum quenches.  
 
An important experimental challenge is to efficiently search through the parameter space 
to find the right set of gate voltages for obtaining exactly one electron in each dot with 
the desired inter-dot tunnel couplings and with aligned electrochemical potentials. While 
most experiments on quantum dots have been done with single and double dots, in the 
last two years rather sophisticated experiments were done on triple dots as well 
[95,114], also in our group [35], and initial measurements on linear arrays with four and 
five dots have been reported too [115]. Figure 8 shows an image from our lab with four 
dots in a row, as well as two ways to go beyond 1D arrays shown by other groups. Even 
though nothing is trivial in this field, I am convinced that such structures can be 
successfully used for initial explorations of quantum magnetism. Of course we next wish 
to go well beyond a handful of dots and build say triangular spin ladders of ten, twenty or 
more dots. In order to make this possible, we are beginning to try and accelerate the 
time-consuming tuning of multi-dot devices by computer-assisted tuning methods. 
Furthermore, moving to undoped devices should allow faster tuning through reduced 
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Fig. 8: Scanning electron microscope images of (a) a linear quadruple dot array from our 
group, (b,c) a triangular triple dot, used to look at charge frustration rather than spin 
frustration [116] and (d) four dots forming a plaquette [117]. 
 
For this work, we can take full advantage of the toolbox we developed for realizing spin 
qubits. Using constrictions or additional quantum dots adjacent to the dots under study, 
we can accurately measure the number of charges on each dot [118]. We have pioneered 
methods to read out multiple spins in a magnetic field in single-shot mode with high 
precision and to study arbitrary correlations between them [70,36]. Both at zero field 
and in finite magnetic field, we can use the Pauli exclusion principle to probe whether 
neighboring spins are in a singlet or a triplet configuration [69,33,]. Furthermore, by 
applying microwave excitation on resonance with the spin splitting to one of the gates, 
we can drive coherent single-spin rotations [71,72,92,100,101]. Finally, the exchange 
coupling can be pulsed on sub-ns timescales, kick-starting free evolution under the 
exchange Hamiltonian [33,36,95,98]. 
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From real gate voltages to virtual gates 

3

FIG. 1. Device design and tuning principle. (a) Scanning electron micrograph of a device nominally identical to the one
used in the experiment. The scale bar measures 500 nm. The circles indicate the intended positions of eight quantum dots
(QDs) that define a Qubyte register and of two additional dots that are used for charge sensing. For the linear array, the
designed dot-to-dot pitch is 160 nm. The plunger gates connected to high frequency lines are marked with blue triangles. The
squares indicate the position of the Fermi reservoirs. Two on-board tank circuits for RF reflectometry readout are connected
to each of the sensing dots. (b) Charge stability diagram of a sextuple dot formed between barrier gates B1 and B7. The sum
of the di↵erential demodulated voltages of both sensing dots is plotted. The dashed lines highlight charge transitions of each
of the six QDs (the numbers refer to the labels in panel (a)). (c) Illustration of the potential landscape of a double QD. Gates
P4 and B4 are used to form a third QD. Capacitive cross-talk, indicated by the capacitor symbols, has not been compensated
for. Thus, these gates influence the potential of the other QDs as well (to avoid clutter, we did not draw any other capacitor
symbols). (d) A double QD is extended to a triple QD using the virtual plunger VP4 and barrier VB4. Due to cross-capacitance
compensation these parameters only act locally on the potential landscape.
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For convenience, we set the diagonal entries to 1 (dimen-
sionless), disregarding the lever arm. This implies we ex-
press virtual gates in units of Volt, similar to the physical
gates. Furthermore, since we do not include cross-talk ef-
fects on tunnel barriers, the o↵-diagonal matrix elements
relating the physical gate voltages to virtual barrier gates
are set to zero. The inverse matrix expresses the linear
combination of physical gate voltages that is needed to
sweep a virtual gate. We note that the diagonal entries
of the inverse matrix do not need to be equal to 1.

We now turn to the five steps in the n + 1 method.
In step 1, we form QD2, QD3 and the left sensing dot
using conventional methods. The resulting charge sta-
bility diagram is shown in Fig. 2(a). The matrix A1 at
this point is simply the identity matrix (this matrix and
the matrices produced in subsequent steps are shown in

the supplementary information). For step 2, the ma-
trix entries for QD2, QD3 and the left sensing dot are
determined by recording how much an addition line for
QDi in a Pi scan is displaced when stepping any of the
other plunger (barrier) gates P

j

(B
j

) by an amount �V
(see Supplementary Fig. S1). The ratio of the shift of the
charge transition line of QDi in the Pi scan and �V yields
the corresponding entry in the cross-capacitance matrix.
We do this for all eight plunger and nine barrier gates of
the linear array, as well as for the plunger gates of both
sensing dots. The resulting matrix is A2.

The e↵ectiveness of the cross-talk compensation can be
seen by recording a charge stability diagram in the virtual
gate space, i.e. using VP2 and VP3 as sweep parameters
(see Fig. 2(b)). Ideally, addition lines of QD2 and QD3
appear as orthogonal (horizontal and vertical) lines. In
practice, the compensation is not always perfect because
we extrapolate each cross-capacitance from just two data
points (see Supplementary Fig. S1), but it is usually good
enough.

To add the next QD (step 3), here QD4, we form a
new tunnel barrier using the neighbouring virtual bar-
rier gate, VB4. The pinch-o↵ values determined in DC

Nowack	  et	  al,	  Science	  2011	  
Hensgens	  et	  al,	  Nature	  2017	  



Efficient formation and loading of  
quantum dot arrays 

 
  

No crosstalk 
compensation 

Compensation using 
virtual gates 

Adding a  
neighboring dot  

Central idea:  
Add dots while preserving existing dots 

C.	  Volk,	  A-‐M.	  Zwerver	  et	  al,	  	  
arXiv:1901.00426	  



 
  

Real-time tuning of dot arrays 
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Hensgens	  et	  al,	  Nature	  2017	  
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Hamiltonian engineering 



Hamiltonian engineering 

Set	  local	  potenVals	   Determine	  interacVon	  energies	  Set	  tunnel	  rates	  
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Dialing in individual terms or combined terms 

Hensgens	  et	  al,	  Nature	  2017	  



Automating Hamiltonian engineering 

van Diepen et al. APL 2018 

Example: setting interdot tunnel coupling 
2

II
measure

tunnel coupling accept predict & adjust
voltages

calculate
virtual gates

target
tunnel coupling

I
measure & t
anti-crossings no

yesyes500 nm

VRF,SD

D1

(a) (b)

RSLS D2

P1 P2 P3

FIG. 1. (a) A scanning electron microscopy image of a device nominally identical to the one used for the measurements. The
three smaller dashed circles indicate the positions of the dots in the array. The larger dashed circle indicates the location of
the sensing dot. Squares indicate Fermi reservoirs, which are connected to ohmic contacts. (b) A flowchart of the automated
tunnel coupling tuning algorithm. The dashed boxes indicate the two parts of the algorithm.

for the formation of three quantum dots in a linear con-
figuration, which are indicated with three white dashed
circles in the bottom part of Fig. 1(a) and one additional
dot, indicated with the larger white dashed circle in the
upper part. We refer to this additional dot as the sensing
dot (SD), because it is operated as a charge sensor, uti-
lizing its capacitive coupling to the three other quantum
dots. One of the SD contacts is connected via a bias-
tee to a resonator circuit, permitting fast read-out of the
charge configuration in the bottom dots, by measuring
the SD conductance with radio-frequency reflectometry.
To optimize the sensitivity of the charge sensor, we op-
erate the SD half-way on the flank of a Coulomb peak.
Automation on the tuning of the sensing dot for read-out
was already shown in Ref. 10. One of the bottom gates,
P2, is connected to a microwave source, used for PAT
measurements.

As starting point for our algorithm, we assume that
the device is tuned near an inter-dot charge transition.
Such a starting point can be obtained from a computer-
automated tuning algorithm10. We also require a rough
estimate of the electron temperature for the modelling
of charge transition line widths. For the PAT measure-
ments, we calibrated the microwave power such that we
only observe single-photon lines.13

Part I of the algorithm, see Fig. 1(b), determines
the virtual plunger and barrier gates by measuring the
cross-capacitance matrix (see supplementary material
II), which describes the capacitive couplings from gates
to dot chemical potentials. To determine this matrix we
measure charge stability diagrams with charge sensing
and fit the avoided crossing with a classical model (sup-
plementary Fig. 1). The fitting of the anti-crossings is
based on finding the minimum of the sum over all pix-
els of the difference between the processed data and a
two-dimensional classical model of the avoided crossing
(see supplementary material III). From the fit of the anti-
crossing, we obtain the slopes of all five transition lines:
four addition lines, where an electron moves between a
reservoir and a dot, and the inter-dot transition line,
where a charge moves from one dot to the other. We fit
the anti-crossing to charge stability diagrams measured
for any combination of Pi, Pi+1 and Di over a range of
40mV around the starting point, to fill in the entries of
the cross-capacitance matrix. From the inverse of this

matrix we obtain both the virtual barrier, eDi, and the
virtual plungers, ePi and ePi+1. The effectiveness of this
basis transformation in voltage-space becomes clear from
the right angles between addition lines in the charge sta-
bility diagram in the 2D-scan of ePi and ePi+1 in Fig. 2(a).
The anti-crossing fit also provides the voltages at the
center position on the inter-dot transition line, indicated
with the white dot. The white dotted line indicates the
detuning axis, which will be used as a scanning axis in
the second half of the algorithm.

Before describing part II of the algorithm let us first
explain the two methods we use to measure the tunnel
coupling. The first method is PAT, see Fig. 2(b) and (e),
which is based on the re-population of states induced by
a microwave field. We can observe the re-population us-
ing the sensing dot, when the different states correspond
to different charge configurations. While varying the fre-
quency of the microwave source, we observe resonance
peaks when the frequency is equal to the energy difference
between two states. By scanning over the detuning axis
and finding the resonance peaks we perform microwave
spectroscopy to map out (part) of the energy level dia-
gram, from which we determine the tunnel coupling. We
obtain the tunnel coupling by using a fitting procedure
that consists of three steps. First we process the data
per microwave frequency, mainly subtracting a smoothed
background signal taken when the microwave source is
off. Second we find the extrema in this processed signal
per microwave frequency and last we fit the curve(s) that
connects the extrema using a model of the energy level di-
agram. For the PAT measurement with a single electron
as shown in Fig. 2(b), we model the system in terms of
two levels with energies as shown in Fig. 2(c). The reso-
nance curve is then described by hf =

p
"2 + 4t2, where h

is Planck’s constant, f the applied microwave frequency,
t the inter-dot tunnel coupling and " the detuning, which
is given by ↵(� ePi � � ePi+1), with ↵ the lever arm, a con-
version factor between voltage and energy scales.13 If
two electrons occupy the two dots at zero magnetic field,
there are three relevant energy levels, two corresponding
to singlet states and the other to threefold degenerate
triplet states, see Fig. 2(f). This level structure results
in three possible transitions,2 with corresponding energy
differences between singlet and triplet states described by
hf = ± "

2 + 1
2

p
"2 + 8t2, indicated with respectively the



First proof-of-principle experiment 

Classical	  Coulomb	  blockade	  

CollecVve	  Coulomb	  blockade	  



Collective Coulomb blockade transition 

T. Hensgens et al., Nature 2017 

Finite size analogue of the Mott insulator transition 

Spin qubit experiments 
(1 electron per dot, t ~ 1-10 µeV) 



Collective Coulomb blockade transition 

T. Hensgens et al.,  
Nature 2017 

Red circles:  
numerically simulated based  
on measured parameters 

Simulations: Xiao Li and  S. Das Sarma 

Up to U/t ~ 7, t/kT ~ 50 



Probing the (collective) Coulomb blockade 
gap via non-equilibrium transport 



Quantum	  dots	  
plaqueie:	  
B.	  Wunsch,	  	  
M.	  Rudner,	  	  

LMKV,	  	  
E.	  Demler	  
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Ferromagnetism in a Narrow, A&most Half-Filled s Band*
YOSUKE NAGAOKAf

DePartment of I'hysics, University of California, San Diego, La Jolla, California
(Received 17 January 1966}

We consider conduction electrons in a narrow s band with a strong repulsive potential which acts when
two electrons are at the same atomic site. It is assumed that the electron-transfer matrix elements are
nonvanishing only between nearest-neighbor sites, and that the band is almost half-filled, or ~$—X,~(&lV,
E and E, being, respectively, the number of atoms and electrons in the crystal. Then it is proved quite rigor-
ously that, if the repulsive potential is suKciently strong, the ferromagnetic state with the maximum total
spin is the ground state for simple cubic and body centered cubic structures as well as for face centered
cubic and hexagonal closed packed structures with N, )N, and is not the ground state for face centered
cubic and hexagonal closed packed structures with N, &N. For the former case, it is also shown that it
is not the ground state if the repulsive potential is weaker than some critical value which is of the order
(bandwidthl Xi'/ [fir—X.~.

1. INTRODUCTION
HE problem of metallic ferromagnetism has been
long investigated by many authors, ' ' and

various models and approximations have been proposed
for it. It should be said, however, that so far we have no
definite answer to the question what is essential for the
appearance of ferromagnetism in metals. Therefore, it
still has some meaning to study a simple model in
detail and to examine whether it can be ferromagnetic
or not.
Hubbard, ~ Kanamori, s and some other authors4'

studied a simple model of a ferromagnetic metal such
that conduction electrons in a narrow s band interact
with one another by a strong repulsive potential of the
8-function type. The model may be best explained by
writing down the Hamiltonian:

H =P P t;,c;.tc,.+I g rs, tI;t,

+ifr City Citr )

where ci,t and ci, are, respectively, creation and anni-
hilation operators for an electron of spin a- in the atomic
state at the ith lattice site, t,, is the matrix element of
the electron transfer between the states at the ith and
jth sites, and I is the repulsive potential which acts
only when two electrons are at the same site. The model
is interesting in some aspects, one of which is its sim-
plicity. Because of its simplicity we can treat it in a
rather rigorous way for some limiting cases.

*Research supported by U. S.Air Force Grant No. AF-AFQSR-
610-64, Theory of Solids.
f Qn leave of absence from Research Institute for Fundamental

Physics, Kyoto University, Kyoto, Japan. Present address: De-
partment of Physics, Nagoya University, Nagoya, Japan.

~ Some of the recent works are: D. C. Mattis, Physics 1, 183
(1964};T. Moriya, Progr. Theoret. Phys. (Kyoto) 33, 157 (1965).
Qther references are cited in these papers.' J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963);
281, 401 (1964).

~ J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).
4 M. C. Gutzwiller, Phys. Rev. Letters 10, 159 (1963); Phys.

Rev. 134, A923 (1964); 13?, A1726 (1965).' J. Callaway and D. M. Edwards, Phys. Rev. 136, A1333
(1964};J. Callaway, ibid. 140, A618 (1965).

To study the model, Hubbard' used the Green's-
function method and introduced an approximation
which is exact in the limit t,;—+ 0. Though he obtained
some reasonable results, the validity of his approxima-
tion is quite obscure for finite t;;. On the other hand,
Kanamori' used the Brueckner approximation' for
nuclear matter which is valid in the low-density limit.
Therefore his theory is applicable to the case where the
band is almost vacant or almost filled.
There is another interesting limiting case to which

Kanamori s theory is inapplicable, i.e., the case where
the band is almost half-filled. The purpose of this paper
is to study this case in some detail, and to see whether
the ground state of the system is ferromagnetic or not. '
It is easily shown that, when the band is exactly half-
filled, the ferromagnetic state with the maximum total
spin, 5, , can never be the ground state. What is
interesting now is the role of holes or excess electrons in
an almost half-filled band.
We introduce here the following assumptions:

(a) The band is almost half-filled, or

where

e=E—E,)
X, and E being, respectively, the number of electrons
and atoms in the crystal.
(b) t;, is nonvanishing only between nearest-neighbor

sites, which is denoted by t((0)
(c) The bandwidth is narrow enough compared with

the repulsive potential, or

'K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955)~
'Thouless LD. J. Thouless (private communication); Proc.

Phys. Soc. (London) 86, 893 (1965)j studied the same case quite
independently by a different method, and obtained the same
results as obtained here. Though his method is simpler than ours
on some points, his proof seems to be incomplete as far as the
present author knows it.

The preliminary report of this work was given by Y.Nagaoka,
Solid State Commun. 8, 409 (1965).
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We discuss the spontaneous magnetism of electrons constrained to the corners of a
square plaquette, with a view to applications in molecular physics and nanotechnology.
The special cases of three or five electrons have a ground-state level-crossing in strong-
coupling, U > 18t, where the ground-state of maximal spin (S = 3/2) overtakes that of
minimum spin (S = 1/2).

Keywords: Level crossing; molecular states; nanomolecule; Hubbard model.

1. Introduction

Consider a simple but nontrivial system, that of a few electrons constrained to the
four corners of a plaquette but capable of tunneling from corner to corner (no di-
agonal hops). Of the Coulomb interactions, only the principal (on-site) interactions
are retained. Assuming just one available orbital state per corner, the exclusion
principle allows for a maximum of eight electrons on such a plaquette. Fortunately
we need to consider only n = 0, 1, 2, 3, 4 electrons, as hole–particle symmetry maps
n electrons onto 8 − n holes; except for a shift in chemical potential. In this model
these have the identical set of eigenvalues as 8 − n electrons.

This model may have practical applications to nanotechnology. Imagine that
on the surface of an insulator — sapphire is a good example — one deposits four
quantum dots of an intrinsic semiconductor (such as silicon), each of radius b, on
the corners of a square as in Fig. 1. Each dot is connected to its neighbors by a
nanotube of radius a < b and length l. Thus the sides of the square are l + 2b. The
uncertainty principle carries the following consequence: if a is sufficiently smaller
than b, electrons must reside primarily on the quantum dots at the corners of the
square but may tunnel from one corner to the next.

Finally, the plaquette is covered by a thin insulating film with a metallic contact
on top. A variable number of electrons can be capacitatively injected into the silicon
structure by means of the MOSFET mechanism, i.e., by simply applying a potential
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n electrons onto 8 − n holes; except for a shift in chemical potential. In this model
these have the identical set of eigenvalues as 8 − n electrons.

This model may have practical applications to nanotechnology. Imagine that
on the surface of an insulator — sapphire is a good example — one deposits four
quantum dots of an intrinsic semiconductor (such as silicon), each of radius b, on
the corners of a square as in Fig. 1. Each dot is connected to its neighbors by a
nanotube of radius a < b and length l. Thus the sides of the square are l + 2b. The
uncertainty principle carries the following consequence: if a is sufficiently smaller
than b, electrons must reside primarily on the quantum dots at the corners of the
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Nagaoka Ferromagnetism 

4 µeV gap expected 



Mukhopadhyay,	  	  
Dehollain	  et.	  al.	  	  

APL	  2018	  
	  

See	  also	  
Thalineau	  et	  al,	  	  

APL	  2013	  	  
	  

Quantum dot plaquette 



Experimental procedure 
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Adiabatic to diabatic transition,  
and equilibration 

 
  

Dehollain,	  Mukhopadhyay,	  et.	  al.,	  unpublished	   



Test 1: Change topology 
Tr
ip
le
t	  f
ra
cV
on

	  
0.
3	  

0.
5	  

0.
7	  

[19, 15, 17, 19] µeV [16, 8, 20, 19] µeV [18, 0, 21, 21] GHz  

Tr
ip
le
t	  f
ra
cV
on

	  
0.
3	  

0.
5	  

0.
7	  

Tr
ip
le
t	  f
ra
cV
on

	  
0.
15
	  

0.
30
	  

0.
45
	  

Magnetic GS disappears for a linear chain (consistent with Lieb-Mattis) 
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Test 2: Introduce Aharonov-Bohm  
phase (B-field) 

Weak B-field destroys magnetization 

Dehollain,	  Mukhopadhyay,	  et.	  al.,	  unpublished	   



Test 3: Offset local potentials 

 
  Magnetic ground state survives potential offsets exceeding hopping 
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FIG. 6. Adiabatic and diabatic passage measurements with point N purposefully redefined to have a ±50 µeV o↵set on each of
the 4 dots. Panels correspond to o↵sets in dots 1 to 4, clockwise from the top-left. Insets show numerically calculated spectra
for the same experimental condition.

the ‘exchange-like’ oscillations that arise when pulsing
diabatically between two di↵erent regions of the spec-
trum [31]. As can be seen in Fig. 1, the splitting be-
tween the ferromagnetic and unpolarised states can be
maximised to ⇠ 8 µeV by increasing the tunnel cou-
pling to ⇠ 65 µeV. This, in combination with lower
electron temperatures–which can be achieved with im-
proved cryogenics hygiene–would allow further studies of
relaxation dynamics in the system. Furthermore, with
even higher tunnel couplings the phase transition can be
observed. The highest tunnel coupling that we could
reach in this work is limited by the ability to identify
the interdot transitions in the charge stability diagrams,
which get smeared out by the broadening as the tun-
nel coupling is increased. Improvements in measurement
sensitivity–such as increasing the bandwidth of the sens-
ing dot plunger to allow fast compensation–will result in
cleaner charge stability diagrams with more visible inter-
dot transitions at higher tunnel couplings. Higher tunnel

couplings would also allow further exploration of experi-
ments involving external magnetic fields, as it will reduce
the relative contribution of the Zeeman e↵ect to the en-
ergy scales. Additionally, the use of a vector magnet
will enable a more thorough analysis of the contributions
from each mechanism. Finally, in this work we showed
a flavour of the capabilities for studying the sensitivity
to disorder, and these experiments already revealed some
surprising e↵ects, when we found that the Nagaoka con-
dition can still be observed after o↵setting a local energy
by amounts much larger than the tunnel coupling. This
can readily be studied in further detail, along with other
possibilities for exploring the e↵ects of disorder, which
could bring insights into e.g. the stability of the ferro-
magnetic state.
DISCUSS: shorten the second paragraph of the discus-
sion, then add another paragraph with broader perspec-
tive (e.g. itinerant magnetism).

[1] W. Heisenberg, Z. Phys 49, 619 (1928). [2] E. C. Stoner, P. Roy. Soc. Lon. A 165, 372 (1938).



What can we do in the time domain? 

 
  

•  Time dynamics 
•  Quenches 
•  Variational quantum eigensolvers 
•  Digital quantum simulation 
•  … 
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Coherent superexchange between  
“distant” spins 

Short range exchange 
(nearest neighbours) 

Long range exchange 
(next-nearest neighbours) 

Baart, Fujita, et al, Nature Nano 2016 

Spin coupling at a distance mediated by  
virtually occupied intermediate level 

t2/U 

t4/U3 



Materials impact on coherence time 

Electron confined in QD 
Si/SiGe GaAs/AlGaAs 

hyperfine coupling ‘Small’  hyperfine  coupling 

No nuclear spin free isotopes Isotopic purification Natural:   5% Si29 

‘No’  hyperfine  coupling 

Veldhorst et al. Nat. Nano. (2014) 
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No nuclear spin free isotopes Isotopic purification Natural:   5% Si29 

‘No’  hyperfine  coupling 

Veldhorst et al. Nat. Nano. (2014) 

𝑻𝟐
∗~𝟏𝟎𝐧𝐬 

𝑻𝟐𝐇𝐚𝐡𝐧~𝟎. 𝟓𝛍𝐬 𝑻𝟐𝐇𝐚𝐡𝐧~28  ms 

𝑻𝟐
∗~𝟏𝟐𝟎μs 

(MOS tech.  Si29 800ppm) 

𝑻𝟐
∗~𝟏µμ𝒔 

𝑻𝟐𝐇𝐚𝐡𝐧~𝟕𝟎𝛍𝐬 

GaAs Si 28Si 

T2
* ~ 10 ns T2

* ~ 1 µs T2
* ~ 100 µs 

Petta et al,  
Science 2005 

Kawakami, Scarlino, et al,  
Nature Nano 2014 

Veldhorst, et al,  
Nature Nano 2014 

T2
DD < 0.2 ms T2

DD > 0.5 ms T2
DD ~ 28 ms  



A programmable two-qubit Si/SiGe device 
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Supplementary Fig. S6. Simulation of the Deutsch-Josza alogorithm with decoherence due to static noise. Two-spin
probabilities as a function of the sequence time during the (a) Deutsch-Josza algorithm and the (b) Grover search algorithm for
each of four possible functions. The solid lines show the outcome of the simulations which include decoherence due to charge
noise and nuclear spin noise.

Bell state fidelity: 85-89% 
Concurrence: 73-80% 

Implemented all instances of the  
Deutsch-Jozsa and Grover algorithms 

Watson et al., Nature 2018  

See also Zajac et al, Science 2018 
Huang et al, arXiv:1805.05027 
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Figure 2: Strong spin-photon coupling. (A) Transmission as a function of two gate voltages that
control the potential of the two dots. At the four bright lines, the electron can move between the
dots. The dashed lines connecting the short lines indicate alignment of a dot with a reservoir
electrochemical potential. Labels indicate the electron number in the two dots. (B) Transmis-
sion as a function of ✏ (along the full white line in panel A) and f

p

. At large |✏|, we measure
the bare resonator transmission (square symbol). Near ✏ = 0, the DQD charge qubit interacts
dispersively with the cavity frequency, leading to a characteristic frequency shift (triangle sym-
bol). (C) Transmission as a function of B

ext

and f
p

. When B
ext

makes the spin spitting resonant
with the resonator frequency (star symbol), a clear avoided crossing occurs, which we attribute
to the strong coupling of a single spin and a single photon. The dotted line shows the expected
spin splitting for a spin in silicon. (D) Line cut through panel C at the position of the green
vertical line (red data points) and line cut at 110 mT (blue points). The red data shows clear
vacuum Rabi splitting. (E) Similar to C but with the DQD misaligned, so the electron cannot
move between the two dots. The spin-photon coupling is no longer visible. (F) Schematic rep-
resentation of the transmission resonance of the superconducting cavity. The bare transmission
resonance (square) is shifted dispersively by its interaction with the charge qubit (triangle), and
splits when it is resonant with the spin qubit (star).
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Strong spin-photon coupling 

Samkharadze, Zheng, et al., Science 2018 
 
Materials: Scappucci, Theory: A. Blais 

See also: X. Mi et al., Nature 2018 
Landig, Koski, et al., Nature 2018 

Supplement to: Strong spin-photon coupling in silicon

N. Samkharadze,1 G. Zheng,1 N. Kalhor,1 D. Brousse,2 A. Sammak,2

U. C. Mendes,3 A. Blais,3, 4 G. Scappucci,1 and L. M. K. Vandersypen1

1QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
2QuTech and Netherlands Organization for Applied Scientific Research (TNO), Stieltjesweg 1 2628 CK Delft, The Netherlands

3Institut quantique and Départment de Physique,
Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

4Canadian Institute for Advanced Research, Toronto, ON, Canada
(Dated: November 3, 2017)

DEVICE FABRICATION

The device was fabricated on a Si/SiGe heterostructure grown by reduced-pressure chemical vapour on a n-type
Si(100) substrate. The Si/SiGe heterostructure comprises a 900 nm thick linearly graded Si1�x

Ge
x

layer, followed
by a 300 nm thick relaxed Si0.7Ge0.3 layer, a 10 nm thick strained natural Si quantum well, a 30 nm thick Si0.7Ge0.3
spacer, and a 1 nm thick Si cap. To insulate the gates used to define the quantum dots, 20nm of Al2O3 was grown in
the dot region with atomic-layer-deposition. Subsequently, the gates were fabricated using electron beam lithography,
evaporation and a lift-o↵ process of 25 nm of Al. The nanowire resonator, coplanar waveguide feedline and ground
planes were fabricated by sputtering 14 nm thick layer of NbTiN, followed by reactive ion etching in a SF6/He plasma.
The gate oxide is removed in the superconductor region prior to reactive ion etching to reduce dielectric loss. We
estimate a sheet inductance of LS ⇡ 9.1 pH/⇤ for the film.

A

500µm

FIG. S1: (A) Optical micrograph showing a microwave feed line (top), superconducting resonator (center), a double quantum
dot with bond pads (right and bottom) and a line to apply a DC bias to the resonator (left). Dark grey areas are NbTiN, light
grey the exposed Si surface, and yellow Au pads and lines. (B) Scanning electron microscope (SEM) image of a finished device
with Co micromagnets. Micromagnets are 220 nm thick, 360 nm wide, and separated by 500 nm. (C) Angled SEM image of
the device showing the position of the micromagnets with respect to the dot accumulation gates. (D) Image of the device with
typical voltages applied to the gates in single electron regime.



Coherent electron spin shuttling 

Protocol: separate spin singlet and try to bring back together 

Fujita et al, npj Q Info 2017 
See also Flentje et al, Nature Comm 2017  



Si quantum dots made in Intel 300mm cleanroom 

R.	  Pillariseiy	  	  
et	  al.,	  	  

IEDM	  2018	  

100 nm 

Future: Crossbar architecture 

Li et al. Sci. Adv. (2018) 

B1 B2 B3 B4 

28Si 

P1 P2 P3 



Summary and outlook on  
analog quantum simulation 

Opening up a new platform 
for simulation 
-  Fermi-Hubbard physics 
-  Quantum magnetism 
-  Many-body localization? 
-  Topological states 
-  … 

Collective Coulomb blockade transition 
Hensgens et al, Nature 2017 

Nagaoka ferromagnetism 
Dehollain, Mukhopadhyay, ea, unpublished  
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