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Strongly correlated quantum matter 

Spintronic materials 

Heavy fermion metals 
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High temperature superconductors 

Yttrium Barium Copper Oxide 

Hubbard model 



Use a synthetic quantum 
system of ultracold atoms 
 
- Feynman (paraphrased) 



Interacting systems of ultracold atoms – 
enlarged model for condensed matter physics 

Why ultracold atoms? 

• Understood from first principles 

• Complete control of microscopic parameters 

• Clean systems, no impurities 

• Dynamics on observable timescales 

• Large interparticle spacing makes optical 
imaging/manipulation possible 



Microscopy of ultracold atoms in optical lattices 

Similar fermion microscopes at: Harvard, MIT, MPQ, Toronto, Strathclyde 
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The Fermi-Hubbard model 

U t 

How much of the phenomenology of the cuprates 
does the Hubbard model reproduce? 

Hopping (kinetic energy) On-site interaction 
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Antiferromagnetic spin correlations 

Detection of AFMs with microscopes: 
Parsons … Greiner, Science 353, 1253 (2016) 
Boll ... Bloch, Gross, Science 353, 1257 (2016) 
Cheuk … Zwierlein, Science 353, 1260 (2016) 
 
  
 

Previous work without microscopes: 
Grief … Esslinger, Science 340, 1307 (2013) 
Hart … Hulet, Nature 519, 211 (2015) 
Drewes … Köhl, PRL 118, 170401 (2017) 
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Conventional (weakly 
interacting) 

Unconventional 
(strongly correlated) 



Previous Work 

Mass transport experiments with Fermions 
 
Mesoscopic systems: 
 
Brantut et al. Science 337, 1069 (2012) (ETH Zurich) 
… 
Lebrat et al. PRX 8, 011053 (2018) (ETH Zurich) 
Valtolina et al. Science 350, 1505 (2015) (Florence) 
 
Bulk systems: 
 
Ott et al. PRL 92, 160601 (2004) (Florence) 
Strohmaier et al. PRL 99, 220601 (2007) (ETH Zurich) 
Schnedier et al. Nat. Phys 8, 213 (2012) (Munich) 
Xu et al. arXiv:1606.06669 (2016) (UIUC) 
Anderson et al. arXiv:1712.09965 (2017) (Toronto) 
 



Measurement Protocol 

  

Brown et. al., Science 363, 379 (2019) 
Spin transport: Nichols … Zwierlein, Science 363, 383 (2019)  
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Measurement Protocol 

  

Brown et. al., Science 363, 379 (2019) 



Decaying density modulation 



Decaying density modulation 

Not explained by 
diffusion alone! 
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Decaying density modulation 



Hydrodynamic Model 

Fick’s Law 

“charge” conservation 

• Diffusion (Fick’s Law) 
neglects finite time 
to establish current. 

• D, diffusion constant 
• Γ, current relaxation. 

rate. 
• Crossover from 

diffusive mode to 
sound mode. 



Hydrodynamic Parameters 

  



Compressibility 

  

DQMC 

High-T limit 



Resistivity Versus Temperature 

  

Brown et. al., Science 363, 379 (2019) 



Resistivity Versus Temperature 

FTLM 

  

Brown et. al., Science 363, 379 (2019) 

DMFT 
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• Using a photon, 
excite a particle from 
an interacting 
system 

• Measure the energy 
and momentum of 
the ejected particle 

• single-particle 
excitations of a 
many-body system 

Rev. Mod. Phys. 75, 473 (2003) 

  

Photoemission spectroscopy 



What does ARPES measure? 

• How does an excitation 
propagate in a many-
body system? 

• Momentum resolved 
density of states 

• ARPES particle current 
gives access to 
emission 

Remove hole 
(injection) 

Remove particle 
(emission) 

Emission only 

Emission + injection 
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• Fermi gas, 
excitations have 
definite momentum 
and energy 

• BCS, pairing 
appears as a gap 

• Dispersion exhibits 
“backbending” 

The BCS limit 

  

Fermi gas 



  

  

BCS 

The BCS limit 

• Fermi gas, 
excitations have 
definite momentum 
and energy 

• BCS, pairing 
appears as a gap 

• Dispersion exhibits 
“backbending” 



Pseudogap reviews: 
Low Temp. Phys. 41, 319 (2015) 
Rep. Prog. Phys. 80, 104401 (2017) 

3D Fermi Gas 

Stewart … Jin, Nature 454, 744 (2008) 
Gaebler … Jin, Nature Phys. 6, 569 (2010) 

Feld … Kohl, Nature 480, 75-78 (2011) 

2D Fermi Gas 

Pseudogaps 
• Depression in the spectral 

function at the Fermi energy. 

• Cold atom experiments: 
backbending in dispersion 
above 𝑇𝑐. 

• Observed in High-𝑇𝑐  
superconductors and unitary 
Fermi gas 

• HTSC, PG origin controversial: 
precursor to SC or indicative of 
a competing order. 



• Accessible model: on a 
lattice and no DQMC 
sign problem. 

• BEC-BCS crossover 
with interaction 
strength.  

• Temperatures near 
state-of-the-art for 
experiment 

Eur. Phys. J. B.  2, 30 (1998) 

Pseudogap in the attractive 
Hubbard model 



ARPES with a QGM 

rf probe Hubbard 
system 

• Radiofrequency photon transfers to non-interacting state 
but preserves momentum 

• Band mapping transforms quasimomentum to real 
momentum 

• 𝑇
4  expansion in harmonic trap maps momentum space to 

real space (similar to time-of-flight measurement) 
• Freeze atoms in deep lattice and detect 
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Eur. Phys. J. B.  2, 30 (1998) 

ARPES data: increasing interaction strength 



  

𝜀𝑘 

ARPES data: increasing 
interaction strength 

 Expt 
𝑈 𝑡 = −4 
𝑇 𝑡 = 0.5 

 
 

DQMC 

• Determine 𝑈 𝑡 , 𝑇 𝑡 , and 
𝜇 𝑡  from fitting correlators 
to equilibrium DQMC 

• Spectral weight shifts to 
lower energy (𝑈 < 0) 

• Spectral peak shifts away 
from 𝜇 at stronger 
interaction 

 

 

 

 



  

𝜀𝑘 

ARPES data: increasing 
interaction strength 

 Expt 
𝑈 𝑡 = −6 
𝑇 𝑡 = 0.5 
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ARPES data: increasing 
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ARPES data: increasing interaction strength 



  

𝜀𝑘 

ARPES data: increasing 
temperature 

 Expt 
𝑈 𝑡 = −8 
𝑇 𝑡 = 0.44 

 
 

DQMC 

• Determine 𝑈 𝑡 , 𝑇 𝑡 , and 
𝜇 𝑡  from fitting correlators 
to equilibrium DQMC 

• Second branch emerges with 
increasing temperature 

• Lower branch: doublons 

• Upper branch: singles 

 

 

 

 

 



  

𝜀𝑘 

ARPES data: increasing 
temperature 

 Expt 
𝑈 𝑡 = −8 
𝑇 𝑡 = 1.0 
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ARPES data: increasing 
temperature 
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𝑈 𝑡 = −8 
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• Determine 𝑈 𝑡 , 𝑇 𝑡 , and 
𝜇 𝑡  from fitting correlators 
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• Second branch emerges with 
increasing temperature 

• Lower branch: doublons 

• Upper branch: singles 

 

 

 

 



  

𝜀𝑘 

ARPES data: increasing 
temperature 

 Expt 
𝑈 𝑡 = −8 
𝑇 𝑡 = 5.0 

 
 

DQMC 

• Determine 𝑈 𝑡 , 𝑇 𝑡 , and 
𝜇 𝑡  from fitting correlators 
to equilibrium DQMC 

• Second branch emerges with 
increasing temperature 

• Lower branch: doublons 

• Upper branch: singles 

 

 

 

 



• ARPES of repulsive model: further 
cooling is a key challenge. 
 Entropy redistribution. 
 Immersion in bosonic baths. 
 Floquet engineering of t-J 

models. 
• Dynamical observables 

• More challenging for theory 
• Test approximations 
• Toolkit small compared with 

materials 
 

Challenges and opportunities 
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