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Peierls, 1933: Physics in a low dimensional world

Would the usual physical objects like crystals or magnets exist in a 2D world?

At non-zero temperature there is no true crystalline order in dimension 1 or 2
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Generalization by Mermin-Wagner and Hohenberg (1966) for any system with short-range interactions:
no breaking of a continuous symmetry leading to a long-range order in the system (7" % 0)

This result also applies to the case of Bose-Einstein condensation (U(1) symmetry)



Topological order

1973, Kosterlitz & Thouless (prelim: Berezinskii): Ordering, metastability and phase transitions in two-dimensional systems

J.M. Kosterlitz D.J. Thouless F.D. Haldane

IH

In spite of Mermin-Wagner-Hohenberg theorem, “unconventional” phase transitions can still take place in 2D systems

Transition between two different kinds of disordered phases, that are topologically distinct



Outline of this lecture

1. The Peierls argument

2. The ideal 2D Bose gas

3. The Gross-Pitaevskii approach for the interacting 2D gas

4. The Kosterlitz- Thouless argument

5. Investigations with atomic, molecular and optical (AMO) systems

Hadzibabic & Dalibard, Riv. Nuo. Cim. 34, 389 + College de France lectures 2016-17

For superconductors: Benfatto, Castellani & Giamarchi, arXiv 1201.2307



The Peierls argument in 1D, 2D, 3D



Simple argument in 1D: Piling up defects

U(x)
—— 0 — 0 o
0 a 2a 3a a
| X
Zero temperature + no quantum fluct.: ordered chain '
d2U
Non-zero temperature: N k= d,:2
r=a
We fix the position xo of the atom j = 0. The position of atom j =1 can fluctuate:
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Piling up defect (2)
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If (Aj) > a°,ie |2 ﬁ , all information is lost regarding the position of atom j with respect to the crystal period
B

no long-range order

For a more rigorous argument, look at the collective modes of the chains (phonons):
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The 2D case

e The detailed analysis is more complicated because of the two possible
polarizations of the modes: parallel or perpendicular to g

Scaling analysis: phonons g = (g,, q,) with @, = cq for low g
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Logarithmic divergence of ((r; — r — ja)?) with the distance ja with a dominant contribution of ¢ ~ 7/ja

\)(/ X\ “Only logarithmic” in 2D: quasi-long range order




The 3D case

Same type of analysis:
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One then finds that ((rj —r —ja)z) is independent of

Cristalline order can exist over an infinite range

/ SmZ(q ' Rj/z) 43
5 q
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no divergence anymore

ing =0

wikipedia

10



Mermin - Wagner - Hohenberg theorem

For a system with a dimension lower or equal to 2 and short-range interactions,
there is no spontaneous breaking of a continuous symmetry at a non-zero temperature

* If the range is infinite, mean-field theory is valid and standard phase transitions
predicted in this case can occur.

* Continuous symmetry: translation, Heisenberg magnetism, Bose-Einstein
condensation. The theorem does not apply as such to discrete symmetries (Ising).

* At zero temperature the interacting Bose gas is condensed.
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What about graphene?
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A finite size sample may exhibit a crystalline order

 The surface is rippled and the non-linear coupling between the fluctuations of the height and the displacements
parallel to the surface induce an effective long-range component

« Because of the slow increase of log(j) with j, the loss of crystal order appears only on very long length scales

Compatibility with Mermin - Wagner - Hohenberg theorem?
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The 2D ideal Bose gas

13



Einstein’s saturated ideal gas

Bose particles confined in a box at fixed temperature

The number of particles that can be placed in the excited
sates is bounded. Indeed the Bose law

NGXC
1
Np - e(Ep_H)/kBT — 1
is meaningful only if u < Fg =20
N (T 1) — 1 1 |
exc(Ls 1) = Z o(Ep—m)/kpT _ ] < Z B kT _ | obtained for yu — 0
p70 p+#0
T D(E)
Continuum limit using the density of states:  Nexc (T, 1) < /0 E/knT _ ] dE

Does this integral converge in E=0 ?
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Einstein’s saturated ideal gas (2)

™ D(E)
NeXC(T,u)</O it 7 F

The convergence in E = 0 depends on D(E)

e In3D: D(FE)x VE and ! ~ ! _ kel
14 T ) T 1

. kBT/—dE convergesin E = (0 : BEC |

1
* In2D: D(E) is constant and the integral kBT/E dL diverges
0

For a given 7, one can put an arbitrarily large number of particles in the excited states by letting 4 — 0: no BEC

15



Momentum distribution of the ideal 2D Bose gas

Quantum statistics still play a role, even in the absence of condensation:

Particles accumulate in the region of small momenta

Varying phase space density from <1 to > 1

10° | I/ 2
A = :
T T thermal wavelength
D =0.1,0.3,1,3,10 D = p)\; : phase space density
& 10'[ : g
z
3| ~ = - =
10 | | | h 2m 47T B
0 2 4 6 8
pAT /T
1 kT S
N(p) = T 1 Y Lorentz distribution
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Spatial coherence of the ideal 2D Bose gas

Characterized by the one-body correlation function

Gi(r,r") = (r|p1|r’) :Fourier transform of the momentum distribution

Lorentz momentum distribution

— Exponential G;
G1(r,0) oc e /¥

The coherence length £ increases with &

T/AT
An exponential decay is by essence “fast” (even if £ can be large): no emergence of quasi-long range order at this stage...
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The Gross-Pitaevskii approach for the interacting 2D gas

Contact interactions described

strong harmonic by the 3D scattering length a

confinement along z
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The 2D Gross-Pitaevskii energy

Description of the state of the gas by the classical field w(x,y): FE = Ei;, + Fint

h2 2 712
Ekin — — ‘V¢| d T

G = /St a Dimensionless parametfer descr.ibing
(ho the strength of contact interactions
4
Eing = — g /‘w |
. | B N
Ground stateinabox LX L: ¥ (1) = +/po po= 73

At non-zero temperature, phase and density fluctuations:

Freezing of density fluctuations

L i0(r) due to repulsive atomic interactions, R ~ /o Ai0(7r)
Il \/,0(7“) € valid for large phase space densities Qﬂ(’l“) ~ VPO EC
D > 1 D = po)>2 A7 il
=>> = —
pO r I kaT

The interaction energy is a constant: only the kinetic energy is relevant for the dynamics



Phase coherence in an interacting 2D Bose gas

U(r) ~ v/po "
FEiin = L / V= d°r - Fin & e (VO)® d2r
1n I, kin zTn/ﬁ@
Fourier expansion of the phase 6(r) = Z cq €T phonon excitations (no vortex!) cf. Peierls
’ )
. 2
At thermal equilibrium:  {|cq|®) oc kgT —  (|oF) - 600)|") ~ gln(l”//lT) D = poly
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A uniform 2D gas in the lab

Frozen motion along the vertical direction z

w,/2m = 4kHz

Initial confinement in the xy plane:

Box-like potential with arbitrary shape

<

>

50 um

density up to 100 atoms/um?

Uniform gas with ~105 atoms

PhDs: R. Saint-dalm, E. Le Cerf, B. Bakkali-Hassani, J.-L. Ville, C. Maury, G. Chauveau
Postdocs: M. Aidelsburger, P.C.M. Castilho, Y.-Q. Zhou Pls: S. Nascimbene, J. Beugnon, J. Dalibard



Accessing the correlation function G(r, r’)

Investigation via a “Young slit” experiment

Initial state

a k
) ) e 110
solate two slits using : Interference after time-of-flight » : } ’,}
4

a shaped laser beam reveals the coherence between the slits

The algebraic decay of G| holds at low temperature,
but is replaced by a faster, exponential decay at higher T .

Murthy et al., PRL 115 010401 (2015)

10 100
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A game changer: vortices

Consider two points A and B between which there exists a significant phase
coherence if one restricts to phonon excitations

If an isolated vortex has a significant probability to appear in the vicinity
of the AB segment, the relative phase will strongly fluctuate:

6 — Pt ' 1

0.5 14

| o

If isolated vortices have a spatial density p, , one can expect that

any phase ordering will be lost over a distance ~ p !/~

23
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The Kosterlitz- Thouless argument
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Velocity field of a vortex

Example of a vortex inr = 0: U(r) = /p(r) ¥ or)=¢ | \ 0
———— ‘---~“\
gy 1 Ty :
v(ir) = —V0 = —u | | o | . v(r) -dr = 2m—
(r) = — —u, Ll () m
N A
Density profile close to the vortex location
p(r)| T
1

§ = = Healing length
V29p

----- : modelling with
a step function g : Dimensionless interaction parameter

X 3D scatt. length / thickness




Energy of a vortex

Kinetic energy (vortex at the center of a disk of radius R ):

1 h
Eyin = Em JP(F ) v3(r) d°r v(r) = —
mr
1 A? JR Lo
N —mp—- — rQar
2 pm2 : r2
— th hl(R/f) Prefactor : robust
o m Inside the log : depends on the model for the core

Diverges with system size

Interaction energy: one must create a hole of size ¢ in the fluid €0~ — < E.
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s the existence of an isolated vortex likely? D = pAr o= T
< 218 . Number of independent « boxes » to place the vortex: W = R?/E£?
Probability for a vortex to exist in such a box: p =~ e~ Fxin/ke !
Ekin o 1 7Th2p B D
] - D/2
Probability for a given box: p =~ exp _—g log (?) — (%)
_24D/2 Renormalization:
Total probability: Wy (S T~
otal probability: P = Wp = R energetic term p, D — ps, Dy
entropic term superfluid component
Large D, Ds =4 small D,
° o o ° T t
No isolated vortices, I Proliferation of isolated vortices, SHTIpEratire

quasi-long range order loss of quasi-long range order 29



What about vortex pairs?

Superposition of the velocity fields created by each vortex

14

@ @ | |

Magnetic analogy: Field created by
parallel wires with opposite currents

Dipolar field: Decreases as L c < < e e e e A A A e
1/7* at infinity instead of 1/7 L4« o« xR OR A A A AT 5 s s
for an isolated vortex S e N
v, — \[ AU S S S T/’ o a o
0l v ooy R (I S S S R v -
. l\ _S 0 N N /l o
Finite energy even for an infinite sample: T A S T S A
always present at non-zero temperature L s >y 7 A A AR R Y e e e 0 s
A > > > k4 E A A A [ » ¥ A < < « 4L
| | | | |




Vortices and superfluidity

Current in a ring, corresponding to a phase winding 27V of the field w(r)

Is this current metastable ?

If isolated vortices exist in the ring, they may cross it:

N — N -

Fluctuations of the current,

-1

which will thus be damped

and will tend to

Zero

Isolated vortices destroy the superfluidity

A pair of vortices of opposite charges
has no effect on the current

Vortex pairs do not destroy the superfluidity
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To summarize

The BKT transition occurs between two different types of states

Universal law for the critical value of the superfluid density:

Superfluid state

a =1/D,
)
Oo®
®5
&

Normal state

Dy, =0

5 ( ) w7 Temperature
1\7") X €
(@)
e° ° oo
o © ® ©
o o o
[
® O
o (@)
¢ o ® o0 ©
Ds,crit — Qerit = 1/4

Total (superfluid+normal) phase-density at the critical point:

g : Dimensionless interaction parameter

Dtotal ~ In (

Prokofev and Svistunov

330

~

)

) >
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First experimental evidences

Superfluidity of liquid helium films Bishop and Reppy, 1978
Torsion © e —
pendulum £ S S [

D —
c :
55 |
adsorbed cS e
. O i
He film S

Also 2D superconducting films, colloidal particles, arrays of tunnel junctions,...

What about atomic, molecular and optical (AMO) systems?

33



Investigation with AMO systems

Observation of vortices
Superfluidity

Sound and superfluid jump

34



Direct observation of vortices 1—n (S~

Observation of phase defects |
Paris group, Nature 441 1118 (2000)

>
Temperature

Observation of density holes in the cloud

Boulder, NIST-Gaithersburg, MIT, Cambridge,
Chicago, Palaiseau, Amherst, Hamburg,Villetaneuse,
Heidelberg, Tokyo-Stantord, Heidelberg, Melbourne,...

Group of J.-l. Shin (Seoul),
PRL 110, 175302 (2013)
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Investigation with AMO systems

Observation of vortices

—

Superfluidity

Sound and superfluid jump

36



Testing superfluidity with a Rb atomic gas

LASER

Does a moving impurity “heat” the sample?

Impurity: focused laser beam that repels the atoms

—  105-
N
For given T, we stir for 200 ms and ‘GC',’

measure the slight increase of temperature = 100-
g

& _

Desbuquois et al., 9 95
Nature Physics 8 645 (2012) ©

= 90- . .
Related experiment in Seoul (2015, Yong-Il Shin’s group) stirring velocity

00 05 10 15 (mm/s)
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The critical velocity in 2D

Critical velocity measured for various u, T

NORMAL SUPERFLUID

critical velocity

v, ~ 0.3 to 0.6 cg

Ve |mm/s]
0.57 1J ¢, :sound velocity g=0.1
O, 1 1 1 " I I J
-0.2 -0.1 0 0.1 02 03 04 0.5

p/ksT

Critical u/kpT in excellent agreement with classical field simulations (Mathey’s team)

Desbuquois et al., Vijay Pal Singh et al.,
Nature Physics 8 645 (2012) Phys. Rev. A 95, 043631 (2017)
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Testing superfluidity with boson molecules

Hamburg 2015 (Moritz’s group): strongly interacting 6Li2

- 1.0r @ superfluid g 1

z\go O thermal

% 0.9 °

_qgs s Weimer et al.

g Phys. Rev. Lett.
333 0.7'_ 114 095301 (2015)

0.0 1.0 20 30 40 50 6.0 70 80 9.0 10.0

Stirring velocity v [mm/s|

Here also excellent agreement with classical field simulations (Mathey’s team)
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Superfluidity of polariton fluids

Hybrid objects in 2D, partly photon, partly exciton (electron-hole pair in a quantum well)

Bragg mirror
Bragg mirror

Quasi-condensation

Kasprzak et al.,Nature 443 409 (2006)

* Very low effective mass

* |nteractions due to the exciton part

Flow around a static defect

low dens: 1 um2  large dens: 40 um-2

Amo et al., Nat. Phys. 5 805 (2009)
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Investigation with AMO systems

Observation of vortices

Superfluidity

—’ Sound and superfluid jump

41



Propagation of sound waves in a 2D gas

0 100 200 300
Modulation of the atomic , , P tion ti
. . Density modulation ropagation time (ms)
density for a short period , o
right after the excitation _
(20 ms) on one edge Multiple bounces of the wave packet

Sound velocity 2mm/s

J.-L. Ville et al., Phys. Rev. Lett. 121, 145301 (2018)
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The sound velocity in our 2D gas
J.-L. Ville et al., Phys. Rev. Lett. 121, 145301 (2018)

Observation of “second sound”, .
related to the superfluid component 87Rb, g = 0.15

(a)
1L
0.8} Line: prediction by Ozawa and Stringari,
- based on the equation of state calculated
% 0.6 . by Prokofev and Svistunov
0.4}
0.2 :
O . | !
0 0.5 1 1.5

3
\
3
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London Tisza

The two-fluid model (both 3D and 2D)

The essence of the model: superfluid + normal components

P = Ps T Pn j:psvs+pnvn

Total density Total current

* The entropy of the fluid is attributed entirely to the normal fluid

* The superfluid flow is irrotational, except for quantized vortices (which are not relevant for sound waves)

Propagation of a weak perturbation with a low frequency w

 Superfluid hydrodynamics: w << u/h (i.e., wavelength >> healing length)

 Normal hydrodynamics: o <1 (i.e., wavelength >> mean free path)

coll

0? 0?3

Leads to two wave equations: 8—155 = VP Pl Ps 22T g Two types of sound waves
Pn
P : pressure S : entropy/unit mass

Bi-square equation for the speed of sound: ¢* — ac? + f = 0 with a, 8 functions of p./p, h



Observation of the two sounds

Cambridge : Hadzibabic group (Nature, 2021)

39K, § = (.64
c/ CBogoliubov
15t —O—"-
A
- # Q- ¢—¢— —o—
1.0 f B
0.5
0Ff o
0.50 0.75 1.00 1.25 1.50
I/ Tcrit

0? 5

— P _\2p

3 V
0°5 Ps ~2 2
— = —35 T
ot pn v

12 1

Superfluid phase space density

“universal” jump -

0.5 1.0 5 2.0

1
2 total /' D

crit
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Summary

From Peierls to Berezinskii - Kosterlitz - Thouless

R. Pelerls 1907-95 "senezo J.M. Kosterlitz
No breaking of a continuous symmetry in a 2D system at 7 # 0O

BKT : A non conventional phase transition is still possible

Superfluid transition

D.J. Thouless
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The role of AMO systems

Quantum fluids with atoms, molecules, photons, polaritons, have
provided a unique insight in several aspects of BKT physics

» Superfluid behavior and critical point
* Visualisation of vortices

* Sound propagation

» Evidence for algebraic decay: G(r) o< r @

o ~ 1/4 at the critical point (Oxford 2022)

Current and future developments

 Influence of disorder

* Dynamics across the phase transition: revisiting the Kibble-Zurek mechanism
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