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Scale invariance

A concept that was introduced in the 70’s in high energy physics

Can there be physical systems with no intrinsic energy/length scale?

Need to explain the behavior of e-- nucleon scattering cross-sections

This concept later found many applications in physics, maths, biology, etc.

Phase transitions and
renormalization group
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Scale invariance in a gas of particles

Consider a fluid whose equations of motion, i.e. its action JE dt, are invariant in the following rescaling:

Positions: r — r/A Time: ¢t — /12

N =

v \ ¢ YA

Velocity: v — Ay

Considerable simplification of the study of equilibrium properties and dynamics

Clearly Ey;, — /12Ekin , implying that JEkin dr is invariant

What about interactions? Can we achieve E,  — A’E. . when r — r/A ?



Gases with scale invariant interactions (1): the 1/r” potential

r—r/A Fint — N Eiy
The simplest case: the 1/r* potential V = Z %
i<j "
Calogero-Moser-Sutherland model in 1D Efimov problem in 3D

For such a potential, there is no length scale associated to interactions

Reminder: for a power-law potential g/r", the relevant (quantum!) length scale £ is obtained by
equating kinetic and potential energy

#2 P { Coulomb interaction (n = 1, g = €?): £ = Bohr radius 7*/me?

1/4
Van der Waals interaction (n = 6, g = C¢): £ = van der Waals radius (mC6/h2)

No characteristic length £ forn = 2 !



Gases with scale invariant interactions (2): the unitary case

Collision between two atoms N
. a eik’" k/2 —k/2
- : ik-r
s wave regime (low energy): w(r) ~e ,
1 +1ka r
a . scattering length / N
. eikr
A Feshbach resonance allows one to reach the limita = oo0:  w(r) ~ e*" +i .
r

Unitary limit: the strongest interaction allowed by Quantum Mechanics

For bosons, this unitary 2-body physics comes with subtle 3-body effects (Efimov)

For spin 1/2 fermions, genuine scale invariant system: no length scale associated to interactions




Gases with scale invariant interactions (3)

Contact interaction in a 2D Bose gas: r—r/A go(r) = go(r/A) = A\ g o(r)

Valid only for relatively weak interactions, so that a classical field description (Gross-Pitaevskii
equation) is valid (otherwise, quantum anomaly from the reqularisation of o(r) )

Energy of the gas:  E(v¥) = Fxin(¥) + Eing (V)

h2 h2
Ekin(w) — 5 ‘V¢|2 Eint(w) — %g/ ‘¢|4

- 2m

g . interaction strength

No singularity for the contact interaction at the classical field level

In 3D, ¢ = 4na where a is the scattering length

In 2D, the interaction strength g is dimensionless: no length scale associated with interactions



Outline of the lecture

Time-independent problems

Universality of the equation of state

Solitons in 2D

The Efimov effect

Time-dependent problems

Conformal invariance and the SO(2,1) dynamical symmetry

The breathing mode

Breathers



Scale-invariant equation of state

For a “standard” cold 3D gas, the scattering length a brings the energy scale € = h’lma*

knT
Exemple of an equation of state: n’>=% ( . : ~ ) i.e., a 2-variable function
€ €
. . . 3 H
For a scale-invariant Fermi gas (a = 0 or a = o0), it must read n\’ =g ( ﬁ )
B
Considerable simplification (1-variable function) which leads to PV = EE T.L. Ho, 2004
S|m||ar|y for d 2D Bose gaS: nlz — 56 ( % . g ) g dimensionless Coupling
B




Trapped atomic gases and local density approximation

Gas at equilibrium in a trap with temperature T and chemical potential p

Link between the density at one point in the trap and that of a homogeneous system

Thom. =1 Hhom. — W — V(r)

Validity : mean free path, healing length << size of the gas



The equation of state of the 2D Bose gas ni*=9 ( é , & )

Theory using a classical-field analysis: Prokof’'ev & Svistunov Measurements : Chicago, Paris, Cambridge

Smooth external trapping potential V., () + local-density approximation: u(r) = u(0) — Vtrap(l’)

rap

pu(r)
A single image gives access to the desired function &€: n(r)A*=¢ ( )

kpT
Density (at/pum?2) Drotal
100 | | 60 | | |
a) b) ,
x couples (pno/kT, T) : 50 L T_F P
80 = 0.35-139nK ~
-, AT }SSL;E o L g _ Note the absence of any discontinuity or
o 0.51-86n & e C e
Vol o 058 62K ) cusp: KT transition is of infinite order
L .68 —44n 30 =
P, 8
40 :
20 _
20
10 7 Yefsah et al., PRL 107, 130401 (2011)
0 e 0 = Desbuquois et al., PRL 113, 020404 (2014)
0 20 40 1
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The equation of state of the 3D unitary Fermi gas

Paris (Salomon group), MIT (Zwierlein group)

Ku et al., (2012)
Science 335, 563
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Red solid circles: experimental EoS.
Green solid circles: Ideal Fermi gas.

Blue solid squares: diagrammatic Monte
Carlo calculation for density

Solid green line: third-order Virial
expansion.

Open black squares: self-consistent T-
matrix calculation.

Open green circles: lattice calculation

Orange star and blue triangle: critical point
from the Monte Carlo calculations.
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Outline of the lecture

Time-independent problems

mmdp Solitons in 2D
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Solitons for the Gross-Pitaevskii equation

Look for a stationary wave function y solution of the variational problem o [E(l//)] = ( for an attractive
non-linearity g < 0

gt =5 [(190]" + & lw]*) @

Relevant in optics, atomic physics, condensed matter...

. . . . E(Z) 1 N|g]
Dimensional analysis for a wave packet of size ¢ ~
N £? P

Crucial role of dimensionality D

13



Solitons in 1D, 2D, 3D

E(7) I Nig|

Wave packet of size £ in dimension D : ~
N L2 P
In 1D: Stable solution for any NV-and any g In 3D: Dynamically unstable extremum
Size £« «x 1/N
E(Z) 8] * E(Z) Size 7. x N|g|
5 f*
i In the context of cold atoms: In the context of cold atoms:
Salomon and Hulet's groups (2002) BoseNova: Cornell-Wieman group (2001)

2D is a critical dimension: Stationary solutions can be obtained only for discrete values of N | g |



2D: the Townes soliton Ely] =—J(‘Vw‘2+g M“) d2r

Chiao, Garmire & Townes, 1964

1 l//(r) | | |
Radially symmetric, node-less solution of —5 Vzl// + gl//3 = Uy ij‘z — N
Such a solution exists only if (Ng)TO T 5.85... _ :
\%%
lthas E=0 and u <0 - | |

r [arb.un.]

Once a particular solution is known, scale invariance provides a continuous family of solutions

¢(r) = Ay(4r) My = A%u A real

No particular length scale for the Townes soliton when it exists

However: Instable with respect to a change in shape or in Ng



Observation of Townes soliton with cold atomic gases

Purdue group: Phys. Rev. Lett. 127, 023604 (2021), use of a Feshbach resonance with 133Cs
Paris group:  Phys. Rev. Lett. 127, 023603 (2021), use of a two-component gas with 87Rb

ny(r) A

ny(r) N

/’/
/\ component2
\/

component 1

Each fluid is described by a 2D Gross-Pitaevski equation and is stable: g;; > 0 fori = 1,2

® Component 1 extends to infinity with the asymptotic density n__

® Component 2 contains /V, atoms

The two fluids are (slightly) non-miscible: g, > \/811822

16



The weakly-depleted bath

. size

h2
A /\ component 2 g I[/tz 1/12 — ( 2m Vz + g12n1 + g22n2) l/jz
nOO
N\ 72
Bath=component 1 'Ml WI - 2m Vz T gllnl + g12n2 W1 //tl — gllnoo
1
Bath healing length &, =
\/2811’%0

Assume that n, < n; = n_, everywhere (weak depletion of comp. 1) and that £ > & (large extension of comp. 2)

Thomas-Fermi approximation for the bath (component 1):

M1 = 811 T 81011 > ny = Ny, n,

17



The minority component

\ size
/\ component 2
g 2
) B h 2 B 812
~_ N, oY = 5 T 8127 + 8207 | Y1 ny = Ny, )
m 811
Bath=component 1
>

Simple equation for the component 2:  py, =

_ g C e L
H = Hy = 8121 8ot = &0 = Non-miscibility criterion:
811 ,
\ 812 > 811822 < et < 0
Bare Interaction mediated by the bath:
Interaction * always attractive

(repulsive) * independent of the bath density 18



Our experimental setup (rubidium)

Frozen motion along the vertical direction z

w,/2m = 4kHz

Initial confinement in the xy plane:
Box-like potential with arbitrary shape

50 um

< >

Uniform gas with up to 10> atoms
Density up to 100 atoms/pum?

19



Our approach to Townes soliton creation

* Prepare a uniform 87Rb gas in the internal state | 1)

ffffff
- ~
~
= ~

Atoms in |25

Townes profile with
very good precision

density (xm-2)

Atoms in | 1) are still here,
but not imaged

» Look at the evolution of this “bubble” of atoms |2) immersed in a bath of | 1)

a11=100.9 ag 2D g11=0.160 2
3D | 812
scattering { @12=100.4 ag > coupling g12=0.159 > 8otf = 820 ~ — 0.0076
h
lengths a22=94.9 a9 SHrengts g22=0.151 511
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Observation of a Townes soliton

8122
811

For our parameters, the threshold Ny e | €] = 5.85 corresponds to Nyynes & 770

Here we print the Townes pattern with a given size 6, = 5.7 ym, but with different atom numbers

N = 250 N =720 N = 1200 '
. . O N = 250
0 0.8 ms lo N = 720
10 \ 020ms ||
40 ms
\

m /N = 1200




Scale invariance of Townes soliton

Expansion factor
d &
2
X —(r
7 t( )

0 400 300 1200 1600

The stable shape is always obtained for &~ the same atom number, irrespective of the size

PRL 127, 023603 (2021) see also PRL 127, 023603 (2021) by Chen & Hung
22
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Outline of the lecture

Time-independent problems

=l The Efimov effect

Fonseca et al, 1979

Efimov, 1970

We look here at the 3-body problem “Heavy + Heavy + Light”

. No direct interaction “Heavy-Heavy”

g Heavy-Light contact interaction with
scattering length a

Limit a — o0 : no two-body bound state “Heavy + Light”

25



m
The relative motion of the heavy particles M‘/\‘ 4= 09
M

Motion in the 1/R? potential created by the heavy-light resonant interaction:

- V2YR) — 2 WR) = EV(R) —th—z We look for E < 0
7 3 — g = - e look for
Q=057
. . du p
Radial wave equation (£ = 0) for u(R) = RW(R) : T T R u(R) = eu(R) B o M/m

For / > 1/4, there exists solutions with negative energies (i.e. bound states of the trimer system)

Scale invariance of g/R?: if ¥(R) is a solution for energy E, then ®(R) = W(AR) is solution for A*E .

Continuous spectrum from E = — ocoto E =07

Need for some type of boundary condition at short distance (e.q. hard core)



The relative motion of the heavy particles (2) M‘/\ 4=
M

Impose a hard core in R = R,

—p Breaks the continuous scale invariance

—> Keeps a discrete scale invariance: infinite sequence of bound states E, = E,/A*" where 1 depends on M/m

YR) & E
®(R) = Y(AR) & A°E

plot for

/ | M1 12
A=e" with s5=[—€Q ——
so~ 1.9

2m 4

Q=0.57---

10! R/R, (logarithmic scale)

27



Efimov physics in a M-m-M system

Many beautiful experiments with cold gases, starting with pioneering work at Innsbruck on Cs (20006)

For M — m — M systems, Chicago and Heidelberg (2014) with Cs - 6Li -Cs (A4 =~ 5 instead of & 23 for equal masses)

Scattering length a [a]

3 4 3 5 4
i i . : 1 1
2 1I(I)IIII | 3|OO 1QIIII | | 10 1_04 :2” | (I)II | | |
L (@) L (b) § AL @7 p
! /
[ 1st Efimov o2 © [ ond Efimov,” B i 39 Efimov _/ _2 — 5 1 2
- state 4 - [ (@) ] [ ) ! state / 1 — .
5 1.5 1 1 125 state ® 1 q.02r L ) I a;
I3 [ _ [ _ _
% 6(0 ¢ 1 T - ¢ /l - o\ _‘Ccé ¢/®
c R o4& @@ T - 3" Efimov 3 / 1 i <b‘ Q e
S B (A9 i " state . #27\ ,7) T [ B 904
..% 1 _ \‘ O(,)O })..,/ | 1.10® /Q q\o/ i 1 _ , 7 I _ a3
o S . : Y LD 1.4y - : E‘>¢71.O6n......—r- — =4.8(7)
C_U \ a T L Q & oF CS 9 7 i \ / : CS ? ]
» ‘ ! - i &O% . od-' [ Vo ! ?E o | az
051 [ ¢ 1 o95f 1.061 06/5 11 098 il 1oty o2°
b | @ 9ll 16 el
- ) - i | & -
- t ] : 098r6o”  (d) [ . 0.96 ?c:@ (e)]] , , :
of 1 osolk 843 844 |  o096F | YR ARTERE Predicted ratio for Li-Cs-Cs: 4.88
T T T T I T TR S TR NN T : ) ) ] ) ) ) ) ] ) ) TR N N T T N T T T R
842 847 852 843 844 842.7 842.9 843.1

Magnetic field B [G]

Tung et al, PRL 113, 240402 (2014), Chin’s group
see also Pires et al, PRL 112, 250404 (2014), Weidemuller's group



Outline of the lecture

Time-dependent problems

Conformal invariance and the SO(2,1) dynamical symmetry

The breathing mode

Breathers
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Niederer, 1972-73

From scale to conformal invariance et & Rosch 1997

In addition to the standard Galilean transformations (translations, rotations), there exist 3 types of transformations
that leave the unitary 3D Fermi gas or the 2D Bose gas invariant:

Dilatations: r—r/\ t— t/)\2
7 <\
Time translations: r— T t— 1+t "
0 N\ e S\
“Expansions”: .y + L
vt + 1 vt + 1

3-parameter group: dynamical symmetry associated with the SO(2,1) two-dimensional Lorentz group

Can be extended to a harmonic trap, with a slight modification of the transformations

30



The SO(2,1) symmetry in a nutshell

(Hkm + Hmt _ [:—’pot)

1
ZZ T pj—l—p] )
J

A 2
A B P;
Hkin — ' % 1nt — Z V
J Z#J
A 1
- Ly = T
Define the three operators: 2 Lo =
A 1
- Ly = —
> Yhw
Commutation relations: [i)l, i}z] = —ihlAlg

Close to an angular momentum (SO(3)), but not quite

The invariant is here:

(Lo, Ls] = ikl4 (L, L]

(Hkin =+ Hint =+ Hpot)

L:+ L5 — L3

— ihLo

A 1 A
Hpot — Z §mw2r
J

(total Hamiltonian)



Linking various time-dependent solutions

(1)
\'\_//

scaling A(7)

Conformal invariance allows one to link the solution of the N-body Schrodinger equation in
a trap of frequency @, to the solution in a trap with frequency w, for the same initial state.

@ may possibly depend on time, and even be zero (untrapped case)

& &0
The scaling parameter A(?) is the solution of the Ermakov equation: 472 F (1) A1) = ,13(0)
t [

Pitaevskii & Rosch, 1997; Kagan et al 1997; Castin & Dum 1997 ;
Castin & Werner, 2004-06 ; Son et al, 2006-07; Nishida & Tan, 2008



Outline of the lecture

Time-dependent problems

mmp- The breathing mode

Pitaevskil & Rosch, 1997

33



A smoking gun of SO(2,1) symmetry: The breathing mode

Pitaevskil & Rosch, 1997|

* Prepare an arbitrary shape forthe gasat ¢t =0

* Let the atoms evolve in a 2D harmonic potential of frequency @ in the presence of interactions

. Measure (r?) (ﬁpot) after an evolution time ¢ : Perfectly periodic evolution with frequency 2w

Direct consequence of the commutation relations, using Heisenberg picture:

Vo N

) 1 /- . . A 1 o A H
Ly = 2hw (Hkin + Hing — Hpot) "2 = 1 EJ: ("“j SRR .rj) = 2hw
di’l l AA -
dt h dzzl 2%
) > FQw) L, =0
dL2 l A A - dtz |

out-of-phase oscillation of E. + L. . and Epot

34



A smoking gun of SO(2,1) symmetry: The breathing mode

Pitaevskil & Rosch, 1997|

* Prepare an arbitrary shape forthe gasat ¢t =0

* Let the atoms evolve in a 2D harmonic potential of frequency @ in the presence of interactions

. Measure (r?) (ﬁpot) after an evolution time ¢ : Perfectly periodic evolution with frequency 2w

A 2D experiment:

1

(r¥ (1))

[arb. un.]

0.5}

0.4!

0.3} )

—>

il

0.2

0.1+

0.0

3 4

Oscillation at 2w

0

20

40 60 80

100

120 1 [ms]

&

Saint-dalm et al,
Phys. Rev. X 9, 021035 (2019)

—» |n 2D, the scale invariance holds only at the classical field level. What about quantum corrections?

—> Are there shapes that lead to a fully periodic motion (i.e. all moments (") are periodic) ?
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Olshanii, Perrin, Lorent PRL 105, 095302 (2010)

Quantum anomaly for (r*)(¢)
Hofmann, PRL 108, 185303 (2012)

In 2D, the scale/conformal invariance holds only at the classical field level

The necessary regularization of the 5(2D)(rl- — rj) function for a quantum field treatment breaks this symmetry

Recent investigations wit a 2D Fermi gas close to the unitary point:

2.05 ' | ' | ' | ' | ' | ' | '
L 2.20 . :
A} o [1> - [2> Mixture
2.04 1 o [1>-|3> Mixture | |
203 F 2.00f—>—ep=
. U ‘ | M. Holten et al,

. ———— . Sl PRL 121, 120401 (2018)
£ L ARERARRRARAR) E 3 201} ‘Jochim’s group, Heidelberg]
bf 60 .. , | | ‘;-. 20 iio -
< ! : o 200 p-=-=====~
S | ? 19 ¢
= 57| % J
E 5 {203 1.99 |
e o N O
< o4 In(k.a,)=195|4 40~ '

- . | . | . | . | . 1.98 : ' ' ' ' ' ' ' ' ' ' ' '
200 220 240 260 280 300 -8 -6 -4 -2 0 2 4 6
Hold time, t (ms) 4BEC In(k a_) BCSH

F—2D

see also T. Peppler et al, PRL 121, 120402 (2018) [Vale’s group, Swinburne] 36



Outline of the lecture

Time-dependent problems

sl Breathers

Are there shapes that lead to a fully periodic motion at 2w (i.e. all moments (r") are periodic) ?
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The equilateral triangle in the hydrodynamic (Ng > 1) regime

Experimentally, in a harmonic trap of frequency w:

t =0.5 ms

t=4.0 ms

t =8.0 ms

t=12.0 ms

t=16.0 ms

Sai

Phys. Rev. X 9, 021035 (2019)

.

: 3

Y

t="T/4

F

Numerically, solution of the Gross-Pitaevskii equation on a 1024x1024 grid:

v

¥

-

nitial state

A

1//1) uniform filling of the triangle

A

v

Overlap with wave function at 7/2:

Does not seem to occur for any other polygonal shape!

nt-dalm et al,

period T/2 with T = 2xn/w

[{biliy)| > 0.995
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Do such breathers also show up for other 2D systems with SO(2,1) symmetry?

|
A simple test: Classical particles interacting with V(r) — potential V(r/A) = A*V(r)
r
Simulation with
4000 particles
_06l i —0.6| | | | | t g T/8 . 0.6}
1 S | | | | |
\x\\\\\
2 \‘:1\
=¥ IS .
g 09 B N \\\\\
S —— Nat=100000 |_
S 08 40000 [N
= 20000
5 — 10000
£ —— 4000
g 07 e —— 2000 7
T 1000
l l l l l l
0 5. 102 0.1 0.15 0.2 0.25 0.3 0.35



Two recent theoretical insights

Shi, Gao & Zhai, Phys. Rev. X 11 041031 (2021): “Ideal-Gas Approach to Hydrodynamics”

“There exist situations that the solution to a class of interacting hydrodynamic equations with certain initial
conditions can be exactly constructed from the dynamics of noninteracting ideal gases”

In the proof, scale invariance appears as a necessary, but not sufficient, condition

Specific shapes : the overlap area of two homothetic equilateral triangles is always of the same shape

3D tetrahedron: YES

Olshanii et al, SciPost Phys. 10, 114 (2021): “Triangular Gross-Pitaevskii breathers and Damski-Chandrasekhar shock waves”

The shock wave created by the initial density jump does not induce further catastrophes in the hydrodynamic equations



Other examples of breathers? Only one so far: Disk

0.01

Period 27 with T=271t/w

(for triangles, the period was 77/2)

L= [{4(0) |4 (27))]

0.003 |-

Thomas-Fermi

limit

0.001

2.5 10

30

R/¢

100
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Summary

Conformal invariance: example of a dynamical (or hidden) symmetry y

Transformations that leaves the equations of motion invariant

%

Valid either at the quantum-field level (3D unitary gas) or at the classical-field level (2D Bose gas)

A situation valid in any dimension: the 1/r? interaction potential

Can this potential be simulated for a many-body quantum gas,
besides the now well-understood Efimov effect?
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