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Spinor gases and fluids
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The existence of the spin provides a new degree of freedom, 
as well as a source for new types of interactions



3

The richness of spinor physics

Spin squeezing & entanglement 

Coherent spin oscillation, spin mixing, dynamical instabilities
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used to induce a negative quadratic Zeeman shift (Bookjans,
Vinit, and Raman, 2011).

Spinor Bose-Einstein condensates display other instabil-
ities as well. Returning to the single-mode energy functional
for the F ¼ 1 system [Eq. (68)], the energy extremum
defined by ! ¼ 0 [dubbed the ‘‘phase-matched state’’ in
Matuszewski, Alexander, and Kivshar (2008)] and "0 ¼
½1# q=ð2cð1Þ1 nÞ&=2, which exists for jqj< j2cð1Þ1 nj, is an en-
ergy maximum under antiferromagnetic interactions [denoted
by the black line in Fig. 5(c)]. Awave-mixing analysis shows
that this stationary state is also subject to modulational
instability (Matuszewski, Alexander, and Kivshar, 2008)
that can produce intricate spin domain structures
(Matuszewski, 2010). Modulational instability was observed
experimentally in a similar system (the transversely magne-
tized F ¼ 2 87Rb spinor condensate) generating spin domain
structures with a periodicity controlled by the quadratic
Zeeman shift (Kronjäger et al., 2010) (Fig. 18).

C. Quantum quench dynamics and the Kibble-Zurek
mechanism

Considering the jmz ¼ 0i energy extremum for the ferro-
magnetic F ¼ 1 single-mode spin energy, we observed a
transition from dynamical stability to instability coincident
with the state’s transition from an energy minimum to a

maximum, i.e., with a second-order zero-temperature phase
transition. The evolution of systems prepared initially
at the extremal state thereby exemplifies the dynamical re-
sponse of a system quenched rapidly across a phase transi-
tion, evolving from a state of unbroken symmetry [here SO(2)
axisymmetry] toward a manifold of broken-symmetry ground
states.

In classical systems rapidly quenched across a finite-
temperature phase transition, symmetry breaking occurs
inhomogeneously, with different portions of the system
adopting different symmetry-broken phases. Such a process
was considered by Kibble (1976), in the context of symmetry
breaking in the early Universe, and by Zurek (1985), in the
context of low-energy laboratory experiments on material
systems. Their treatment, known as the ‘‘Kibble-Zurek
mechanism,’’ translates the phenomenology of critical scaling
of equilibrated systems near phase transitions into predictions
regarding the typical size of the symmetry-broken phases.
Their theory also discusses the types of topological defects
produced in such a quench, their initial density (related to the
aforementioned typical size), and their subsequent evolution.
Laboratory experiments have explored aspects of the Kibble-
Zurek mechanism, e.g., using liquid crystals (Chuang et al.,
1991; Bowick et al., 1994), pressure-quenched 4He (Hendry
et al., 1994), neutron-bombarded 3He (Bauerle et al., 1996;
Ruutu et al., 1996), and Josephson junctions (Carmi,
Polturak, and Koren, 2000; Monaco, Mygind, and Rivers,
2002).

Given theoretical progress in understanding quantum
phase transitions, and experimental progress in preparing
isolable low-temperature quantum systems, the Kibble-
Zurek idea was naturally extended to the quench of a system
across a quantum phase transition (Dziarmaga, 2005;
Polkovnikov, 2005; Zurek, Dorner, and Zoller, 2005). For
an ideal experiment, the quench dynamics are now quantum
mechanical in that quantum fluctuations (rather than thermal
or technical ones) are amplified into coherent superpositions
of macroscopically distinct, broken-symmetry states.
Ultracold atomic gases are unique materials with which to
study such ideal quantum quenches.

The evolution of a quenched spinor Bose-Einstein conden-
sate was studied experimentally by Sadler et al. (2006). A
large F ¼ 1 87Rb spinor condensate, spatially extended in
two dimensions, was prepared in the jmz ¼ 0i initial state at a
high quadratic Zeeman shift. Following a rapid reduction of
the quadratic Zeeman shift, which initiated the spin-mixing
instability, the gas evolved for a variable time before it was
probed by dispersive magnetization-sensitive imaging. The
gas showed little magnetization for tens of milliseconds, after
which an inhomogeneous magnetization landscape sponta-
neously emerged (Fig. 19).

For the sudden quench studied in this experiment, the
spatial spin correlations of the inhomogeneously magnetized
condensate are determined by, and are, therefore, reflective
of, the spin-mixing amplification spectrum (Lamacraft,
2007). Considering the simplest case of a homogeneous
initial state, at early times after the onset of the spin-mixing
instability, the evolution of the initial spin fluctuations
at each wave vector can be considered independently accord-
ing to Eq. (72), where the temporal evolution is defined

FIG. 18 (color). Spontaneous pattern formation from modula-
tional instability of a transversely magnetized F ¼ 2 87Rb spinor
condensate. The condensate is prepared in a quasi-one-dimensional
optical trap. (a) The initial state and (b)–(f) saturated spin patterns
arising for increasing magnetic field are determined from Stern-
Gerlach and time-of-flight images that reveal the in-trap axial
density distributions of the five Zeeman-state populations. (b) and
(c) Represent the interaction regime (small q), while (e) and
(f) represent the Zeeman regime (large q). The characteristic length
scale of the spin modulation varies strongly with q. From Kronjäger
et al., 2010.
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spatially uniform polar state with the nematic director n
aligned with the z axis and then rotating the condensate
spin in a coherent, spatially dependent manner to generate a
texture with n ¼ þz at the center and n ¼ #z at the outer
edge of the gas. To effect such a rotation, following earlier
realizations of a similar technique with ferromagnetic tex-
tures (Nakahara et al., 2000; Leanhardt et al., 2002), Choi,
Kwon, and Shin (2012) produced a spherical-quadrupole
magnetic field of the form B ¼ B0½xxþ yy # 2zz%, where
the Cartesian coordinates are defined with respect to the
location of zero field. The location of the zero field was
gradually translated perpendicular to and across an optically
trapped 23Na condensate (Fig. 10). Everywhere within the
condensate, the magnetic field reverses its orientation about
an axis that varies with the azimuthal angle ! in the plane of
the condensate. Far from the trajectory of the field zero, the
field is always strong and the atomic spin follows the rotating
field adiabatically, rotating the director n by " radians. At the
location of the field zero, the magnetic field changes its
direction diabatically; the atoms cannot follow this field
reversal, and thus their nematic director remains unchanged.
At intermediate distances from the field zero, the spin texture
smoothly interpolates between these settings, generating a
continuous skyrmion texture.

The texture was characterized by time-of-flight measure-
ments of the Zeeman-state distributions, preceded by rf
pulses which allowed for a characterization of the phase
winding in each of the spin components. The skyrmion was

stable for about 100 ms. The mechanism for its decay has yet
to be identified.

Applying a similar procedure to an F ¼ 1 condensate
prepared initially in a uniform ferromagnetic state produces
a Mermin-Ho spin texture (Nakahara et al., 2000; Leanhardt
et al., 2002; Jae-yoon et al., 2012). This texture differs from a
skyrmion because the edge of the condensate, while magne-
tized in a common direction, carries a 4" phase winding. This
difference between the polar and ferromagnetic states is
reflective of the fact that the SO(3) group does not support
two-dimensional skyrmions.

A texture similar to the Mermin-Ho ferromagnetic texture
was produced in an untrapped F ¼ 2 87Rb spinor gas using
optical Raman transitions (Leslie, Hansen et al., 2009).
Starting with a gas that is spin polarized in the jmz ¼ 2i
state, circular polarized light was used to drive !mF ¼ 2
transitions, populating the jmz ¼ 0i and jmz ¼ #2i states.
One of the beams used for this transition was in the first-order
Laguerre-Gaussian mode, so that the Raman transition also
imprinted a þ2" phase winding onto the product Zeeman
state. The spin configuration produced with such Raman
transitions resembled the Mermin-Ho textures of ferromag-
netic F ¼ 1 spinor condensates, which are composed of
mz ¼ ðþ1; 0;#1Þ states with circulations of (0,1,2) quanta.

Topological excitations are also expected to appear upon
rotating spinor condensates. Ferromagnetic spin-1 conden-
sates are expected to accommodate rotation by forming
Mermin-Ho textures, which are shown to be stabilized by
such rotation (Mizushima, Machida, and Kita, 2002b;
Mueller, 2004). Under certain circumstances, such spinor
condensates may also adopt nonaxisymmetric vortices, ones
in which all Zeeman components are circulating, but in which
the vortex cores of the components do not overlap. Such spin
configurations are no longer fully ferromagnetic (Mizushima,
Machida, and Kita, 2002a). Antiferromagnetic spin-1 con-
densates are expected to store angular momentum in the form
of half-quantum vortices (Isoshima and Machida, 2002;
Mueller, 2004). The landscape of spin condensates under
rapid rotation is expected to be very complex (Kita,
Mizushima, and Machida, 2002; Mizushima, Kobayashi,
and Machida, 2004).

E. Hydrodynamic description

The Gross-Pitaevskii equation deals with the order
parameter, from which physical quantities such as magneti-
zation, nematicity, mass current, and spin current can be
calculated. Alternately one may develop descriptions that
are equivalent to the Gross-Pitaevskii equation and deal
directly with the quantities of experimental interest. Such
hydrodynamic theory has been instrumental in describing
scalar condensates, and it is of interest to ask if it is possible
to describe spinor condensates in terms of observable
quantities only.

To produce manageable equations of motion, one may
confine the description to low-energy variations within the
order-parameter manifold. Lamacraft (2008) derived such a
set of low-energy hydrodynamic equations for the case of a
spin-1 ferromagnetic condensate. When the particle density is
constant and the system is locally fully magnetized, the

0.1 ms

10ms

50 ms

100 ms

300 ms
m  = 0zm  = -1z m  = 1z

(b)

x

z

(a)

FIG. 10 (color online). Creation of a skyrmion in a two-
dimensional antiferromagnetic F ¼ 1 spinor condensate. (a) A
spherical-quadrupole magnetic field, with field orientations shown
by arrows, is translated from being centered above to below the
Bose-Einstein condensate (shaded horizontal region at the center).
The nematic director n follows the rotating field at large distances
from where the magnetic-field zero crosses the condensate and
remains fixed near the crossing, generating the skyrmion texture.
(b) Stern-Gerlach absorption imaging shows the jmz ¼ 0i compo-
nent is divided between an inner region (where n ¼ þz) and an
outer ring (where n ¼ #z). Between these regions, the nematic
director lies in the transverse plane; the state is thus a superposition
of the jmz ¼ (1i sublevels as seen in the data. The skyrmion
decays after 100 ms. At long times, the entire gas returns to the
jmz ¼ 0i state. From Choi, Kwon, and Shin, 2012.

1216 Dan M. Stamper-Kurn and Masahito Ueda: Spinor Bose gases: Symmetries, magnetism, and . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013

Seoul

Stamper-Kurn & Ueda 

Rev. Mod. Phys. (2013)
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The single mode approximation

In this lecture, we will assume that all external degrees of freedom are frozen:   kBT, Eint ≪ ℏω

In good approximation, all atoms occupy the ground state of a tight laser trap

~!

Only spin degrees of freedom are relevant (Single Mode Approximation = SMA)

 : antiferromagneticα > 0Corresponding interactions: Ĥinteraction =
α
N ∑

i<j

̂ ⃗si ⋅ ̂ ⃗sj

All-to-all coupling
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate
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Symmetry and conserved quantity 

Single atom Hamiltonian: Zeeman effect with  along the  axis⃗B z

Binary interaction: 

Conservation of Sz =
N

∑
i=1

si,z

Ĥinteraction =
α
N ∑

i<j

̂⃗si ⋅ ̂⃗sj =
α
N ∑

i<j
[ 1

2 ( ̂s+
i ̂s−

j + ̂s−
i ̂s+

j ) + ̂si,z ̂sj,z]
  is also conserved by the interaction HamiltonianSz

Total spin: ⃗S =
N

∑
i=1

⃗si
⃗B = B ⃗u z
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Which spin to get a non-trivial many-body dynamics?

Ĥinteraction =
α
N ∑

i<j

̂⃗si ⋅ ̂⃗sj =
α
N ∑

i<j
[ 1

2 ( ̂s+
i ̂s−

j + ̂s−
i ̂s+

j ) + ̂si,z ̂sj,z]

Assembly of spins ½                                                          

No relevant dynamics can happen

Sz =
ℏ
2 (N+1/2 − N−1/2)

Assembly of spins 1

Sz = ℏ (N+1 − N−1)

A sufficiently complex system to illustrate  
several aspects of many-body physics

i

j i

j
+1/2

−1/2

+1

−1
0
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Where do we get our spin 1 atoms?

Coupling of the outer electron spin  and the nuclear spin se =
1
2

sn

with for 7Li, 23Na, 39K, 87Rb : sn =
3
2

Hyperfine structure of the ground state of a single atom:

s = 2

s = 1 The state of interest in this lecture

Plays no role, except for inducing a non-linear Zeeman effect for  (next slides)s = 1

Alkali-metal atoms: 
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The Hilbert space of the problem
 spin 1 atoms in the single mode regime (  even)N N

Occupation number basis

J=4$

J=2$

J=0$

N0=0$
N0=1$

N0=3$
N0=4$

N0=2$

M=+4$ M=+3$ M=+2$ M=+1$ M=0$ M=3$M=2$M=1$ M=4$

4,0,0$ 3,0,1$ 2,0,2$ 1,0,3$ 0,0,4$

3,1,0$ 2,1,1$ 1,1,2$ 0,1,3$
2,2,0$ 1,2,1$ 0,2,2$

1,3,0$ 0,3,1$
0,4,0$

Figure 1: Les deux bases naturelles pour N = 4 (espace de Hilbert de dimension 15).

• La base des nombres d’occupation |N+, N0, N�i ⌘ |N0, Mii avec

N+ =
1

2
(N �N0 + M), N� =

1

2
(N �N0 �M), (5)

qui est commode pour les termes 2 et 3 de l’hamiltonien.

L’hamiltonien commute avec Ĵz ce qui veut dire qu’on peut diagonaliser Ĥ dans un
sous-espace de M donné. Le sous-espace le plus grand correspond à M = 0 et il a pour
dimension 1+N/2 (colonne centrale de dimension 3 dans la figure 1, tracée pour N = 4).

On choisit de diagonaliser dans la base |N0, Mii. Le seul opérateur ‘non trivial’ est Ĵ
2:

Ĵ
2 = (N̂+ � N̂�)2 + 2N̂0(N � N̂0 +

1

2
) + N + 2((a†

0)
2
a+a� + h.c.), (6)

dont le dernier terme couple |N0, Mii à |N0 ± 2, Mii. On obtient donc une matrice tri-
diagonale pour laquelle il existe des algorithmes e�caces. En pratique, on peut la diago-
naliser pour des N allant jusqu’à 420.

Une fois la matrice diagonalisée, on donne le poids de Boltzmann à chaque état propre
et on peut évaluer la valeur moyenne de chaque observable, les distributions de probabilité,
etc.

La figure 2 montre les résultats obtenus pour la fraction d’atomes en m = 0, définie
par n0 ⌘ N0/N , avec N = 100, 200, 400 et di↵érentes températures, en fonction de
q. La température la plus grande est T = gN , pour laquelle tous les niveaux sont
appréciablement peuplés, au moins si q n’est pas trop grand. La température la plus
basse est gN/512, ce qui pour N = 400 correspond à T ⇡ g.

|N−, N0, N+⟩

with   N− + N0 + N− = N

Hilbert space with dimension        (i.e.   for )d =
1
2

(N + 1)(N + 2) d = 15 N = 4

Total spin basis J=4$

J=2$

J=0$

N0=0$
N0=1$

N0=3$
N0=4$

N0=2$

M=+4$ M=+3$ M=+2$ M=+1$ M=0$ M=3$M=2$M=1$ M=4$

4,0,0$ 3,0,1$ 2,0,2$ 1,0,3$ 0,0,4$

3,1,0$ 2,1,1$ 1,1,2$ 0,1,3$
2,2,0$ 1,2,1$ 0,2,2$

1,3,0$ 0,3,1$
0,4,0$

Figure 1: Les deux bases naturelles pour N = 4 (espace de Hilbert de dimension 15).

• La base des nombres d’occupation |N+, N0, N�i ⌘ |N0, Mii avec

N+ =
1

2
(N �N0 + M), N� =

1

2
(N �N0 �M), (5)

qui est commode pour les termes 2 et 3 de l’hamiltonien.

L’hamiltonien commute avec Ĵz ce qui veut dire qu’on peut diagonaliser Ĥ dans un
sous-espace de M donné. Le sous-espace le plus grand correspond à M = 0 et il a pour
dimension 1+N/2 (colonne centrale de dimension 3 dans la figure 1, tracée pour N = 4).

On choisit de diagonaliser dans la base |N0, Mii. Le seul opérateur ‘non trivial’ est Ĵ
2:

Ĵ
2 = (N̂+ � N̂�)2 + 2N̂0(N � N̂0 +

1

2
) + N + 2((a†

0)
2
a+a� + h.c.), (6)

dont le dernier terme couple |N0, Mii à |N0 ± 2, Mii. On obtient donc une matrice tri-
diagonale pour laquelle il existe des algorithmes e�caces. En pratique, on peut la diago-
naliser pour des N allant jusqu’à 420.

Une fois la matrice diagonalisée, on donne le poids de Boltzmann à chaque état propre
et on peut évaluer la valeur moyenne de chaque observable, les distributions de probabilité,
etc.

La figure 2 montre les résultats obtenus pour la fraction d’atomes en m = 0, définie
par n0 ⌘ N0/N , avec N = 100, 200, 400 et di↵érentes températures, en fonction de
q. La température la plus grande est T = gN , pour laquelle tous les niveaux sont
appréciablement peuplés, au moins si q n’est pas trop grand. La température la plus
basse est gN/512, ce qui pour N = 400 correspond à T ⇡ g.

|N, S, Sz⟩
S = 4
S = 2
S = 0

Sz = − 4 −3 −2 −1 0 +1 +2 +3 +4

If  is a conserved quantity, we work along a given column of these two diagramsSz

Drawing for N = 4
+1

−1
0
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The relevant Hamiltonian (1): Zeeman energy

Linear Zeeman effect:

Since  is a conserved quantity,   does not contribute to the dynamicsSz H(1)
Zeeman

B

E m = − 1

m = + 1

m = 0

Quadratic Zeeman effect:

: favours the accumulation of atoms in  q = 277 Hz/G2 > 0 m = 0

Ĥ(2)
Zeeman = qB2 (N̂+1 + N̂−1) + constant

The value and the sign of  could be changed by rf dressing or a time-modulation of q BB

E m = − 1

m = + 1

m = 0

= − qB2N̂0 + constant

N = N−1 + N0 + N+1

β ≡ qB2

Ĥ(1)
Zeeman = − μB ̂Sz = − μB (N̂+ − N̂−)

s = 1

s = 1
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The relevant Hamiltonian (2): Interaction energy

Real magnetic interactions (dipole-dipole) are negligible at our temperature scale 

Only van der Waals interactions (described by a contact potential) are significant

For a collision between two spin 1 atoms, the total spin can be:

Here, symmetric orbital state (same spatial mode)       Only S = 0 and S = 2 channels are relevant    ⇒

       S = 0 (symmetric spin state) 


       S = 1 (anti-symmetric spin state) 


       S = 2 (symmetric spin state)

Ho (1998)

Ohmi & Machida (1998)

Na: gs > 0 (antiferro) Rb: gs < 0 (ferro)
a0 = 2.51 nmFor Na:
a2 = 2.80 nm

ḡ =
g0 + 2g2

3
= δ(r1 − r2) [ḡ + gs ̂s1 ⋅ ̂s2]

Ĥ(1,2)
interaction = δ(r1 − r2) [g0𝒫̂S=0 + g2𝒫̂S=2]

plays no role in the SMA

responsible forgs =
g2 − g0

3
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate
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The experimental system

Room temperature vapour cell of Sodium  (using UV light-induced desorption)

Magneto-optical trap in the vapour cell 

Evaporation in the  ground state in a crossed dipole trap + dimples = 1

Quasi-pure BEC in SMA with an adjustable atom number between 100 and 5000

ω/2π = 0.5 to 3 kHz ℏω ≳ kBT, Eint

David Jacob, Lingxuan Shao, Vincent Corre, Tilman Zibold, Luigi 
De Sarlo, Emmanuel Mimoun, Jean Dalibard and Fabrice Gerbier,  

Phys. Rev. A 86, 061601(R) (2012)
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Magnetisation: Detection and control

Diagnostic of the sample by Stern-Gerlach analysis 

Check of the single-mode approximation: 
same spatial profile for m = − 1,0, + 1

Absorption imaging

Using a combination of magnetic field gradient and radio-frequency pulses, we can prepare the atoms:

• all in , 


• or in a superposition of 


• or in a superposition of   and  


• or whatever…

m = 0

m = ± 1

m = 0 m = + 1
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Spin resolved fluorescence imaging at the single atom level

• Time-of-flight in the presence of 


• Recapture in an optical molasses 


• Collect the emitted fluorescence light during 
the molasses phase

⃗∇ B

Optimal molasses duration:  ms∼ 5
Determine optimized regions of interest

After background removal, the residual 
shot noise corresponds to a sensitivity of

N ≈ 1.6 atom

An Qu, Bertrand Evrard,  
Jean Dalibard, Fabrice Gerbier, 

Phys. Rev. Lett. 125, 033401 (2020)
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate
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A mean-field approach to the ground state of the  spin systemN

Antiferromagnetic interactions: Ĥinteraction =
α
N ∑

i<j

̂⃗si ⋅ ̂⃗sj

Quadratic Zeeman effect: ĤZeeman = β (N̂+1 + N̂−1) + constant

The two non-commuting contributions to the Hamiltonian   ( )α, β > 0

̂S = ∑ ̂si : total spin

Mean-field approach

Trial wave-function where all atoms occupy the same spin state   |Ψ⟩ = |ψ⟩⊗N

| i =

0

@
p
n+1 ei�+1

p
n0 ei�0

p
n�1 ei��1

1

A
6 real parameters but     -  Irrelevant global phase  
                                            -  Fixed norm: n+1 + n0 + n−1 = 1

  4 independent real parameters⟶

|ψ⟩ =

=
α

2N
̂S2 + const.
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The ground state in the mean-field approach
Zhang, Yi, You (2003)

| i =

0

@
p
n+1 ei�+1

p
n0 ei�0

p
n�1 ei��1

1

A

Minimize    with 


   and 

⟨ψ | Ĥ |ψ⟩

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)

magnetization Mz = n+1 − n−1

Second-order phase transition with the population  as the order parametern0

Critical magnetic field value βc = α (1 − 1 − M2
z )

For , the three populations  
are non-zero

β > βc

n0 ≠ 0

= Sz /N

For , only  are non-zeroβ < βc n±1

n0 = 0
magnetization Mz

Population n0
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Experimental determination of the phase diagram

• Prepare the system ( ) with a given magnetization (here )


• Vary the magnetic field


• Measure the fraction of atoms in 

N = 5000 Mz = 0.5

m = 0

Phys. Rev. A 86, 061601(R)

0 0.2 0.4 0.6
0

0.5

1
mz=0.30

B [G]

n 0

0 0.2 0.4 0.6
0

0.5

1
mz=0.40

B [G]

n 0

0 0.2 0.4 0.6
0

0.5

1
mz=0.50

B [G]

n 0

0 0.2 0.4 0.6
0

0.5

1
mz=0.60

B [G]

n 0

Mz = 0.5

 @ Bcrit Mz = 0.5

|m = 0⟩ + |m = 0⟩ ⇆ |m = + 1⟩ + |m = − 1⟩

m = + 1

m = 0

m = − 1
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Experimental determination of the phase diagram (2)

Fraction n0 for various Mz and various magnetic fields (note the symmetry )Mz ↔ − Mz

0 0.5 1

0

0.1
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0.5

0.6
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B c

 

 
fitted q*

SMA theory
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0

0.2
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1
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parameters

Previous measurements: NIST for Mz > 0.5, Georgia Tech (but not SMA)

D. Jacob et al., Phys. Rev. A 86, 061601(R)
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A singular point in the mean-field analysis: Mz = β = 0

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

mz

B c

 

 
fitted q*

SMA theory
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0
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Population  of the  state n0 m = 0

Ground state along  
the line    Mz = 0

β
α

Ground state along  
the line    β = 0

n0

1

β

n0

Mz

Important role of Quantum Fluctuations around this point!

0
0

0.5
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An assembly of spin 1 atoms:

The simplest many-body system 

Jean Dalibard


Solvay chair for Physics 2022


Lecture 4, part 2
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate

|m = 0⟩ + |m = 0⟩ ⟷ |m = + 1⟩ + |m = − 1⟩

Bertrand Evrard, An Qu, Jean Dalibard and Fabrice Gerbier,  
Phys. Rev. Lett. 126, 063401 (2021)



25

The various regimes to be studied

Ground state obtained by exact diagonalization  
for  atoms and   

   
N = 100 Sz = 0

β/α

N/3

N0

Bogoliubov

Strong quantum 
depletion

Singlet
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Bogoliubov approach (1)

α
2N

̂S2 =
α
N [ ̂a†

+1 ̂a†
−1 ̂a2

0 + ( ̂a†
0)

2
̂a+1 ̂a−1] + …

:  Let’s write the Hamiltonian in the “number” basis

where      is already diagonal… =
α

2N [ ̂S2
z + 2N + (2N̂0 − 1)(N̂+1 + N̂−1)]

Interaction term:

Zeeman term: β (N̂+1 + N̂−1) = β ( ̂a†
+1 ̂a+1 + ̂a†

−1 ̂a−1)

Take advantage of  by setting  N0 ≫ N±1 ̂a0 ≈ ̂a†
0 ≈ N

Ĥ ≈ α ( ̂a†
+1 ̂a†

−1 + ̂a+1 ̂a−1) + (β + α) ( ̂a†
+1 ̂a+1 + ̂a†

−1 ̂a−1) + constant

Quadratic Hamiltonian: Elementary brick at the basis of the Bogoliubov method

Y. Kawaguchi and M. Ueda (2012)
G. I. Mias, N. R. Cooper, and S. M. Girvin (2008)

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)
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Bogoliubov approach (2)

Ĥ ≈ α ( ̂a†
+1 ̂a†

−1 + ̂a+1 ̂a−1) + (β + α) ( ̂a†
+1 ̂a+1 + ̂a†

−1 ̂a−1) + constant

Canonical transformation:  ,   , leading to :     b̂+1 = u ̂a+1 + v ̂a†
−1 b̂−1 = u ̂a−1 + v ̂a†

+1

Y. Kawaguchi and M. Ueda (2012)
G. I. Mias, N. R. Cooper, and S. M. Girvin (2008)

ℏω = β(β + 2α)

Approach valid as long as   , which requires    N±1 ≪ N ≈ N0 β ≫ α/N

Linear energy spectrumĤ = ℏω (b̂†
+1b̂+1 + b̂†

−1b̂−1)

β/α
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Experimental test starting from all atoms in  ( )m = 0 N0 = N

Rapid quench of the magnetic field ( ) from a large to a low valueβ
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The pair distribution function

N̄pair = ( α
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate

Bertrand Evrard, An Qu, Jean Dalibard and Fabrice Gerbier,  
Phys. Rev. Lett. 126, 063401 (2021), Phys. Rev. A 103, L031302 (2021)
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Beyond the Bogoliubov regime
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Calculation for N = 100

β
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For states such that     and   ,  

the term   dominates in the Hamiltonian

⟨ ̂S2⟩ ∼ N ⟨N̂m⟩ ∼ N

α
2N

̂S2

Region of interest here:    β ≪ α/N

  quadratic energy spectrum:    ∼ ES =
α

2N
S(S + 1)

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)
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Evolution of the energy spectrum

Calculation for  and N = 100 Sz = 0
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Relaxation dynamics (1)
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Initial state:    |Ψi⟩ = |0,N,0⟩ ≡ |m = 0⟩⊗N

Decomposition on the spin basis:

|Ψi⟩ = ∑
S

cS |S , Sz = 0⟩

cS ≈
2S
N

exp(−S2/4N)

Fast quench

Subsequent evolution:

|Ψ(t)⟩ = ∑
S

e−iαS(S+1)t/2Nℏ cS |S , Sz = 0⟩

What is the evolution of  ?N0
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Relaxation dynamics (2)
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|Ψ(t)⟩ = ∑
S

e−iαS(S+1)t/2Nℏ cS |S , Sz = 0⟩

|Ψi⟩ = ∑
S

cS |S , Sz = 0⟩ cS ≈
2S
N

exp(−S2/4N)

3

system (!B real and positive) and no action was needed
to reverse the dynamics. The isolated character of our
system is essential for the subsequent discussion of relax-
ation and thermalization.

Relaxation and Generalized Gibbs Ensemble. The os-
cillating behavior discussed above relies on the linear-
ity of the many-body spectrum ⇠ n~!B (n integer) in
the Bogoliubov approximation. Outside this regime, the
spectrum exhibits a significant non-linearity and the sum
over several oscillation functions causes dephasing, as for
the prethermalization phenomenon [43]. The expectation
value of a physical observable relaxes to a steady-state
value, possibly accompanied by revivals at some specific
times. The spin-1 atomic assembly at zero magnetic field
is well suited to observe such a behavior since the spec-
trum of Ĥint is ES = S(S + 1)Us/2N , hence quadratic
with the quantum number S associated with the total
spin [44–46]. In practice, the magnetic field should be
such that q ⌧ Us/N to ensure that the Zeeman energy
is negligible for the states that we consider hereafter.

We first investigate theoretically the relaxation associ-
ated with this quadratic spectrum. We consider again the
initial state | ii = |m = 0i

⌦N and study its evolution for
a zero magnetic field. For N � 1, the decomposition of
| ii on the basis states |S, Mi, where M is the quantum
number associated with Ŝz, reads [47]

| ii =
X

S

cS |S, 0i, cS ⇡

r
2S

N
e�S2/4N

. (8)

Here, the sum runs on even (resp. odd) values of S for N

even (resp. odd) and the most populated spin states are
S ⇠

p
N . Using the matrix elements of N̂0 between spin

states for S ⌧ N ,

hS, 0|N̂0|S
0
, 0i ⇡

N

2
�S,S0 +

N

4
(�S,S0�2 + �S,S0+2) , (9)

and treating S as a continuous variable, we find that the
evolution of the population n0 = hN0i/N obeys

n0(t) = 1 � ⌧D(⌧), ⌧ =

r
2

N

Ust

~ , (10)

where D(⌧) =
R +1
0 sin(2x⌧) e�x2

dx is the Dawson func-
tion. At long times, n0(t) tends to 1/2.

We now turn to the experimental investigation of this
relaxation dynamics, with atom numbers in the range
100–1000. The spin interaction was calibrated using the
oscillations of N±1 at relatively large q (see Fig. 1) and
ranges from Us/h = 17 Hz for N = 110 up to 50 Hz for
N = 840. We performed a sudden quench to q = 11mHz
(B = 6.2 mG) so that the inequality Nq < Us is well
satisfied for all atom numbers. We show in Fig. 2 the
evolution of n0. The agreement with the prediction (10)
is excellent. In particular, the collapse of data acquired

FIG. 2. Experimental observation of relaxation near
zero magnetic field. (a) Evolution of the population n0(t)
following a fast quench of q to a negligible value, for various
atom numbers N . Disks: N = 107, Us = 17.2 Hz; squares:
N = 230, Us = 24.2 Hz; Losanges: N = 835, Us = 64.7 Hz.
The initial state is |m = 0i⌦N . For ⌧ = 9, the “real” time
spanned is t = 609 ms, 635 ms, and 452 ms for the three atom
numbers. The solid line is the universal prediction (10). (b-e)
Distribution of the population n0 at t = 30, 100, 200, 500 ms
for N = 107 atoms. In (b-d) the solid lines are the results of a
numerical simulation. In (e) the green dotted line is the pre-
diction from the micro-canonical ensemble [48] and the red
dashed line is the prediction from the GGE with the con-
straint Sz = 0 [35].

with notably di↵erent atom numbers shows that the re-
laxation dynamics is entirely characterized by the “uni-
versal” function ⌧D(⌧). We checked for all data of Fig. 2a
that the magnetization Sz remains compatible with zero,
as in Fig. 1c.

Fig. 2a shows no sign of revival, neither for the ex-
perimental data, nor for the theoretical prediction (10).
The lack of revival in the theory is an artifact of the
replacement of the discrete sum over S in Eq. (8) by
an integral. Keeping S as a discrete quantum number,
the time-dependent phase factors e�iESt/~ appearing in
| (t)i rephase at times multiple of hN/Us [47]. In prac-
tice, this time is much larger than 1 s even for our lowest
atom number, and parasitic e↵ects such as atom losses
prevented us to observe these revivals.

In spite of the SO(3) symmetry of Ĥint, the three pop-
ulations nm are not all equal to 1/3 after relaxation is
complete. This implies that the final state of the spin as-
sembly cannot be described by a thermal density matrix
such as ⇢̂ / exp(�Ĥint/kBT ) associated with an e↵ective
temperature T . This non-thermal character is readily ex-
plained by the fact that Sz is a conserved quantity. For
a given Sz, the system has essentially a single degree of
freedom characterized by the value of the quantum num-
ber S and is thus integrable [49].

In order to apply the statistical physics formalism to

A useful relation:

3

system (!B real and positive) and no action was needed
to reverse the dynamics. The isolated character of our
system is essential for the subsequent discussion of relax-
ation and thermalization.

Relaxation and Generalized Gibbs Ensemble. The os-
cillating behavior discussed above relies on the linear-
ity of the many-body spectrum ⇠ n~!B (n integer) in
the Bogoliubov approximation. Outside this regime, the
spectrum exhibits a significant non-linearity and the sum
over several oscillation functions causes dephasing, as for
the prethermalization phenomenon [43]. The expectation
value of a physical observable relaxes to a steady-state
value, possibly accompanied by revivals at some specific
times. The spin-1 atomic assembly at zero magnetic field
is well suited to observe such a behavior since the spec-
trum of Ĥint is ES = S(S + 1)Us/2N , hence quadratic
with the quantum number S associated with the total
spin [44–46]. In practice, the magnetic field should be
such that q ⌧ Us/N to ensure that the Zeeman energy
is negligible for the states that we consider hereafter.

We first investigate theoretically the relaxation associ-
ated with this quadratic spectrum. We consider again the
initial state | ii = |m = 0i

⌦N and study its evolution for
a zero magnetic field. For N � 1, the decomposition of
| ii on the basis states |S, Mi, where M is the quantum
number associated with Ŝz, reads [47]

| ii =
X

S

cS |S, 0i, cS ⇡

r
2S

N
e�S2/4N

. (8)

Here, the sum runs on even (resp. odd) values of S for N

even (resp. odd) and the most populated spin states are
S ⇠

p
N . Using the matrix elements of N̂0 between spin

states for S ⌧ N ,

hS, 0|N̂0|S
0
, 0i ⇡

N

2
�S,S0 +

N

4
(�S,S0�2 + �S,S0+2) , (9)

and treating S as a continuous variable, we find that the
evolution of the population n0 = hN0i/N obeys

n0(t) = 1 � ⌧D(⌧), ⌧ =

r
2

N

Ust

~ , (10)

where D(⌧) =
R +1
0 sin(2x⌧) e�x2

dx is the Dawson func-
tion. At long times, n0(t) tends to 1/2.

We now turn to the experimental investigation of this
relaxation dynamics, with atom numbers in the range
100–1000. The spin interaction was calibrated using the
oscillations of N±1 at relatively large q (see Fig. 1) and
ranges from Us/h = 17 Hz for N = 110 up to 50 Hz for
N = 840. We performed a sudden quench to q = 11mHz
(B = 6.2 mG) so that the inequality Nq < Us is well
satisfied for all atom numbers. We show in Fig. 2 the
evolution of n0. The agreement with the prediction (10)
is excellent. In particular, the collapse of data acquired

FIG. 2. Experimental observation of relaxation near
zero magnetic field. (a) Evolution of the population n0(t)
following a fast quench of q to a negligible value, for various
atom numbers N . Disks: N = 107, Us = 17.2 Hz; squares:
N = 230, Us = 24.2 Hz; Losanges: N = 835, Us = 64.7 Hz.
The initial state is |m = 0i⌦N . For ⌧ = 9, the “real” time
spanned is t = 609 ms, 635 ms, and 452 ms for the three atom
numbers. The solid line is the universal prediction (10). (b-e)
Distribution of the population n0 at t = 30, 100, 200, 500 ms
for N = 107 atoms. In (b-d) the solid lines are the results of a
numerical simulation. In (e) the green dotted line is the pre-
diction from the micro-canonical ensemble [48] and the red
dashed line is the prediction from the GGE with the con-
straint Sz = 0 [35].

with notably di↵erent atom numbers shows that the re-
laxation dynamics is entirely characterized by the “uni-
versal” function ⌧D(⌧). We checked for all data of Fig. 2a
that the magnetization Sz remains compatible with zero,
as in Fig. 1c.

Fig. 2a shows no sign of revival, neither for the ex-
perimental data, nor for the theoretical prediction (10).
The lack of revival in the theory is an artifact of the
replacement of the discrete sum over S in Eq. (8) by
an integral. Keeping S as a discrete quantum number,
the time-dependent phase factors e�iESt/~ appearing in
| (t)i rephase at times multiple of hN/Us [47]. In prac-
tice, this time is much larger than 1 s even for our lowest
atom number, and parasitic e↵ects such as atom losses
prevented us to observe these revivals.

In spite of the SO(3) symmetry of Ĥint, the three pop-
ulations nm are not all equal to 1/3 after relaxation is
complete. This implies that the final state of the spin as-
sembly cannot be described by a thermal density matrix
such as ⇢̂ / exp(�Ĥint/kBT ) associated with an e↵ective
temperature T . This non-thermal character is readily ex-
plained by the fact that Sz is a conserved quantity. For
a given Sz, the system has essentially a single degree of
freedom characterized by the value of the quantum num-
ber S and is thus integrable [49].

In order to apply the statistical physics formalism to

“Universal” dynamics due to the non-linearity of the spectrum: N̄0(t) = N [1 − τD(τ)] τ =
2
N

αt
ℏ

Dawson function

What is the evolution of    ?N̄0(t) = ⟨Ψ(t) | N̂0 |Ψ(t)⟩
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Relaxation dynamics (3)
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Alternative approach based on a quantum trajectory approach (dissipation into a fictitious environment) 
L. Fernandes, M. Wouters, J. Tempere, Phys. Rev. A 105, 013305 (2022) 
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system (!B real and positive) and no action was needed
to reverse the dynamics. The isolated character of our
system is essential for the subsequent discussion of relax-
ation and thermalization.

Relaxation and Generalized Gibbs Ensemble. The os-
cillating behavior discussed above relies on the linear-
ity of the many-body spectrum ⇠ n~!B (n integer) in
the Bogoliubov approximation. Outside this regime, the
spectrum exhibits a significant non-linearity and the sum
over several oscillation functions causes dephasing, as for
the prethermalization phenomenon [43]. The expectation
value of a physical observable relaxes to a steady-state
value, possibly accompanied by revivals at some specific
times. The spin-1 atomic assembly at zero magnetic field
is well suited to observe such a behavior since the spec-
trum of Ĥint is ES = S(S + 1)Us/2N , hence quadratic
with the quantum number S associated with the total
spin [44–46]. In practice, the magnetic field should be
such that q ⌧ Us/N to ensure that the Zeeman energy
is negligible for the states that we consider hereafter.

We first investigate theoretically the relaxation associ-
ated with this quadratic spectrum. We consider again the
initial state | ii = |m = 0i

⌦N and study its evolution for
a zero magnetic field. For N � 1, the decomposition of
| ii on the basis states |S, Mi, where M is the quantum
number associated with Ŝz, reads [47]

| ii =
X

S

cS |S, 0i, cS ⇡

r
2S

N
e�S2/4N

. (8)

Here, the sum runs on even (resp. odd) values of S for N

even (resp. odd) and the most populated spin states are
S ⇠

p
N . Using the matrix elements of N̂0 between spin

states for S ⌧ N ,

hS, 0|N̂0|S
0
, 0i ⇡

N

2
�S,S0 +

N

4
(�S,S0�2 + �S,S0+2) , (9)

and treating S as a continuous variable, we find that the
evolution of the population n0 = hN0i/N obeys

n0(t) = 1 � ⌧D(⌧), ⌧ =

r
2

N

Ust

~ , (10)

where D(⌧) =
R +1
0 sin(2x⌧) e�x2

dx is the Dawson func-
tion. At long times, n0(t) tends to 1/2.

We now turn to the experimental investigation of this
relaxation dynamics, with atom numbers in the range
100–1000. The spin interaction was calibrated using the
oscillations of N±1 at relatively large q (see Fig. 1) and
ranges from Us/h = 17 Hz for N = 110 up to 50 Hz for
N = 840. We performed a sudden quench to q = 11mHz
(B = 6.2 mG) so that the inequality Nq < Us is well
satisfied for all atom numbers. We show in Fig. 2 the
evolution of n0. The agreement with the prediction (10)
is excellent. In particular, the collapse of data acquired

FIG. 2. Experimental observation of relaxation near
zero magnetic field. (a) Evolution of the population n0(t)
following a fast quench of q to a negligible value, for various
atom numbers N . Disks: N = 107, Us = 17.2 Hz; squares:
N = 230, Us = 24.2 Hz; Losanges: N = 835, Us = 64.7 Hz.
The initial state is |m = 0i⌦N . For ⌧ = 9, the “real” time
spanned is t = 609 ms, 635 ms, and 452 ms for the three atom
numbers. The solid line is the universal prediction (10). (b-e)
Distribution of the population n0 at t = 30, 100, 200, 500 ms
for N = 107 atoms. In (b-d) the solid lines are the results of a
numerical simulation. In (e) the green dotted line is the pre-
diction from the micro-canonical ensemble [48] and the red
dashed line is the prediction from the GGE with the con-
straint Sz = 0 [35].

with notably di↵erent atom numbers shows that the re-
laxation dynamics is entirely characterized by the “uni-
versal” function ⌧D(⌧). We checked for all data of Fig. 2a
that the magnetization Sz remains compatible with zero,
as in Fig. 1c.

Fig. 2a shows no sign of revival, neither for the ex-
perimental data, nor for the theoretical prediction (10).
The lack of revival in the theory is an artifact of the
replacement of the discrete sum over S in Eq. (8) by
an integral. Keeping S as a discrete quantum number,
the time-dependent phase factors e�iESt/~ appearing in
| (t)i rephase at times multiple of hN/Us [47]. In prac-
tice, this time is much larger than 1 s even for our lowest
atom number, and parasitic e↵ects such as atom losses
prevented us to observe these revivals.

In spite of the SO(3) symmetry of Ĥint, the three pop-
ulations nm are not all equal to 1/3 after relaxation is
complete. This implies that the final state of the spin as-
sembly cannot be described by a thermal density matrix
such as ⇢̂ / exp(�Ĥint/kBT ) associated with an e↵ective
temperature T . This non-thermal character is readily ex-
plained by the fact that Sz is a conserved quantity. For
a given Sz, the system has essentially a single degree of
freedom characterized by the value of the quantum num-
ber S and is thus integrable [49].

In order to apply the statistical physics formalism to
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Outline of this lecture

1. An assembly of spin 1 particles

2. Experimental implementation

3. A mean-field analysis

4. Bogoliubov approach and reversible many-body dynamics

5. Beyond Bogoliubov: Relaxation dynamics

6. A fragmented condensate

Bertrand Evrard, An Qu, Jean Dalibard, Fabrice Gerbier,  
Science 373, 1340 (2021)
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The zero-field limit
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For , the Zeeman energy   is always small compared to the interaction energy, , 


even for the low part of the spectrum

β ≲ α/N2 βN̄0 ≲ βN α ̂S2/N

E(S = 2) − E(S = 0) =
3α
N

What is the ground state of the system at zero magnetic field?

adiabatic following

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)
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The ground-state in a mean-field point of view
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magnetization M ⃗u

Population  of the  state n0 m = 0

β
α

0
0
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For a given orientation of the magnetic field axis  and a 
zero magnetization along this axis, the limit  gives

⃗u
B → 0

|GS : ⃗u ⟩ = ( |m = 0⟩ ⃗u )⊗N

⃗B = B ⃗u

In the mean-field point-of-view, the ground state of the system is 
the statistical mixture:


ρGS ∝ ∫ ( |m = 0⟩ ⃗u )⊗N (⟨m = 0 | ⃗u )⊗N d2u

Spontaneous breaking of the rotational symmetry: for each 
realization of the experiment, an orientation of  is randomly chosen⃗u

A random magnetic field creating    is sufficient to break the symmetryβ ∼
α

N2

Infinitesimally small field in the thermodynamic limit

spin-nematic (or polar)

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)
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Fluctuations in the mean-field point of view

ρGS ∝ ∫ ( |m = 0⟩ ⃗u )⊗N (⟨m = 0 | ⃗u )⊗N d2u

Average spin: ⟨ ̂ ⃗S ⟩ = Tr ( ̂ ⃗S ̂ρGS) = 0

Mean-field ground state
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Spin fluctuations: ⟨ ̂ ⃗S 2⟩ = Tr ( ̂ ⃗S 2 ̂ρGS) = 2N

ΔS ∝ N

In this mean-field approach,  spin states 
are populated in the expected ground state

∼ N

The difference with the true ground-state vanishes in the thermodynamic limit

P. W. Anderson, Phys. Rev. 86, 694–701 (1952)
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The true ground state of the spin system in zero fieldN−

    (antiferromagnetic interaction) α > 0

Minimize the total  spin, while staying compatible with the exchange symmetry for bosons 

Assume  even:  the state  by forming a condensate of  pairs in the singlet state of :N S = 0 N/2 (s = 1) ⊗ (s = 1)

1

3
( |0,0⟩ − | + 1, − 1⟩ − | − 1, + 1⟩) in the basis |ma, mb⟩• For two spin-1 particles  and , singlet state: a b

1

6 [( ̂a†
0)

2
− 2 ̂a†

+1 ̂a†
−1] |vac⟩

Koashi & Ueda, 2000; Castin & Herzog, 2001;  Ashab & Leggett, 2002; 
Muelller et al, 2006; Barnett et al, 2010; De Sarlo et al, 2013

• For N spin-1 particles, collective spin singlet state: 1
(N + 1)! [( ̂a†

0)
2

− 2 ̂a†
+1 ̂a†

−1]
N/2

|vac⟩

Law,Pu,Bigelow, 1998 
Ho & Yip, 2000
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Producing the collective spin singlet in the lab

How to reach it? 


Start with a large ( ) field , with all atoms in 


Adiabatic following of the ground state down to a very low field 
(milliGauss) such that 

β > α ⃗B = B ⃗u z |mz = 0⟩

β ∼ α/N2

time t

qu
.
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ee
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Adiabatic criterion on the evolution of the gap  to the first excited state:ΔE dΔE
dt

≪
(ΔE)2

ℏ

In practice, optimised ramp from 1 Gauss to 4 milliGauss in 1 second

  atomsN = 100 α = h × 20 Hz βf = h × 0.004 Hz

Ĥ =
α

2N
̂S2 + β (N̂+1 + N̂−1)
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Diagnosis of the singlet state: one- and two-body observables

Measurements performed either in the basis or after rotation of the state 
with adjustable angles and axes using Larmor precession and Rabi flopping               

z−

  super-Poissonian fluctuationsΔN0 ∼ N0 :

Expected for the singlet state:   

N0 =
N
3

, ΔN0 =
2N

3 5
+ 𝒪( N)

    squeezed spin stateΔSx,y,z ≪ N :

Expected for the singlet state:   
    for   evenΔSx,y,z = 0 N
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7.4 Observation of a fragmented BEC
7.4.1 Evolution over the ramp
We report in ��gure 58a ourmeasurement of themean value and standard deviation of the reduced populationn0 = N0/N over
the ramp. As we decrease the QZE q, the condensate gets depleted, n0 decreases and displays super-poissonian ��uctuations. At
the end of the ramp, the population in the three spin states are comparable, n0 ' 0.4, n+1 ' n�1 ' 0.3. Concerning the spin
observables (Fig.58b), the measuredmean value is compatible with zero all over the ramp and we focus on the standard deviation
�Sz . It is initially limited by the imaging noise and barely increases over the ramp. On the other hand,�Sx steadily decreases
and eventually reaches a value of 2.6 atoms, signi��cantly below the initial shot noise level. We observe good qualitative agreement
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Figure 58: a Evolution of the mean reduced population n0 (blue dots) and its standard deviation (red squares) showing super-
Poissonian ��uctuations. This contrasts with b the standard deviation of the transverse spin Sx (blue dots) that decreases below
the shot noise while the longitudinal spin Sz (red squares) remains close to the imaging noise level (gray area). The solid lines are
the value of the observable in the ground state of the Hamilitonian Eq. (7.9). Error bars represent two standard errors.

with the theory, but we notice a systematic deviation for n0 and�Sx, especially towards the end of the ramp. Two e�fects could
explain for this discrepancy: atom losses and heating. We now estimate the role of these e�fects by looking at the evolution af�er a
hold time.

7.4.2 Lifetime and decoherence
We present in ��gure 59 the long-time evolution of the fragmented state, while the magnetic ��eld is held at its ��nal value of 4mG.
On a timescale of⇠ 20 s, the super-Poissonian ��uctuations of the population shrink, and saturate at a value compatiblewith shot-
noise 1/

p
N ' 0.1. Simultaneously, the standard deviations of both spin-components increase and reaches the shot-noise level at

⇠ 20 s. Our lifetime ⌧ ⇠ 100 s is mostly limited by one-body losses due to collisions with atoms of the ambient vapor inside the
science chamber. Such losses are isotropic, and for1 ⌧ Nloss ⌧ N , we expect the total spin to evolve as�Ŝ2 ' 2Nloss (the shot-
noise) and each spin component as�S2

⌫ ' 2Nloss/3. As shown in ��gure 59, this simplemodel of decoherence underestimates the
growth of the spin. Moreover, it cannot account for the decrease of�n0. Indeed, as explained in Sec. 7.2 (see also [186]), as long
as the spatial degree of freedom remains condensed, atom losses are expected to lead to a statistical mixture of spin coherent states,
which exhibits super-Poissonian ��uctuations. The decrease of �n0 may be due to heating and a melting of the BEC (possibly
driven by intensity ��uctuations of the dipole trap).

7.4.3 Characterization of the state at the end of the ramp
Sensitivity to rotations We now focus on the state of the cloud at the end of the ramp. We show in ��gure 60 the evolution of
n0(�) and�Sz(�) over a rotation of the spin by an angle � around the y-axis. We compare the fragmented state obtained af�er
the ramp to a nematic state. The latter shows large amplitude oscillations for both observables. In contrast, the fragmented state
is fairly insensitive to rotations. This can be understood as a consequence of theSO(3) symmetry of theHamiltonian Eq. (7.9) at
q = 0. Yet, due to imperfection in the state preparation, we see small residual oscillations. In particular,�Sz(⇡/2) = �Sx(0) is
maximal as expected. Indeed, before the ramp,�Sx is shot noise limited, while�Sz is vanishing. We have checked the isotropy
of the spin in the (xy)-plane by performing a rotation around the quantization axis z prior to a ⇡/2 rotation around the y-axis.

Using the parameter de��ned by Eq. (7.32), we measure at the end of the ramp S2
z ' 3.55 ± 0.36, S2

x ' 6.36 ± 0.70, thus
(assuming S2

y = S2
x), hŜ2i ' 16.27 ± 1.05 and ⇠2 ' 0.078 ' �11.1 dB, with no removal of the imaging noise. From a

reconstruction of the state (described in Sec. 7.5), which includes the detection noise, we extract hŜ2i ' 9.91 ± 0.88, yielding
⇠2 ' 0.048 ' �13.2 dB.

ΔSx

ΔSz

detection 
limit

N
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the ramp. As we decrease the QZE q, the condensate gets depleted, n0 decreases and displays super-poissonian ��uctuations. At
the end of the ramp, the population in the three spin states are comparable, n0 ' 0.4, n+1 ' n�1 ' 0.3. Concerning the spin
observables (Fig.58b), the measuredmean value is compatible with zero all over the ramp and we focus on the standard deviation
�Sz . It is initially limited by the imaging noise and barely increases over the ramp. On the other hand,�Sx steadily decreases
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Figure 58: a Evolution of the mean reduced population n0 (blue dots) and its standard deviation (red squares) showing super-
Poissonian ��uctuations. This contrasts with b the standard deviation of the transverse spin Sx (blue dots) that decreases below
the shot noise while the longitudinal spin Sz (red squares) remains close to the imaging noise level (gray area). The solid lines are
the value of the observable in the ground state of the Hamilitonian Eq. (7.9). Error bars represent two standard errors.

with the theory, but we notice a systematic deviation for n0 and�Sx, especially towards the end of the ramp. Two e�fects could
explain for this discrepancy: atom losses and heating. We now estimate the role of these e�fects by looking at the evolution af�er a
hold time.

7.4.2 Lifetime and decoherence
We present in ��gure 59 the long-time evolution of the fragmented state, while the magnetic ��eld is held at its ��nal value of 4mG.
On a timescale of⇠ 20 s, the super-Poissonian ��uctuations of the population shrink, and saturate at a value compatiblewith shot-
noise 1/

p
N ' 0.1. Simultaneously, the standard deviations of both spin-components increase and reaches the shot-noise level at

⇠ 20 s. Our lifetime ⌧ ⇠ 100 s is mostly limited by one-body losses due to collisions with atoms of the ambient vapor inside the
science chamber. Such losses are isotropic, and for1 ⌧ Nloss ⌧ N , we expect the total spin to evolve as�Ŝ2 ' 2Nloss (the shot-
noise) and each spin component as�S2

⌫ ' 2Nloss/3. As shown in ��gure 59, this simplemodel of decoherence underestimates the
growth of the spin. Moreover, it cannot account for the decrease of�n0. Indeed, as explained in Sec. 7.2 (see also [186]), as long
as the spatial degree of freedom remains condensed, atom losses are expected to lead to a statistical mixture of spin coherent states,
which exhibits super-Poissonian ��uctuations. The decrease of �n0 may be due to heating and a melting of the BEC (possibly
driven by intensity ��uctuations of the dipole trap).

7.4.3 Characterization of the state at the end of the ramp
Sensitivity to rotations We now focus on the state of the cloud at the end of the ramp. We show in ��gure 60 the evolution of
n0(�) and�Sz(�) over a rotation of the spin by an angle � around the y-axis. We compare the fragmented state obtained af�er
the ramp to a nematic state. The latter shows large amplitude oscillations for both observables. In contrast, the fragmented state
is fairly insensitive to rotations. This can be understood as a consequence of theSO(3) symmetry of theHamiltonian Eq. (7.9) at
q = 0. Yet, due to imperfection in the state preparation, we see small residual oscillations. In particular,�Sz(⇡/2) = �Sx(0) is
maximal as expected. Indeed, before the ramp,�Sx is shot noise limited, while�Sz is vanishing. We have checked the isotropy
of the spin in the (xy)-plane by performing a rotation around the quantization axis z prior to a ⇡/2 rotation around the y-axis.

Using the parameter de��ned by Eq. (7.32), we measure at the end of the ramp S2
z ' 3.55 ± 0.36, S2

x ' 6.36 ± 0.70, thus
(assuming S2

y = S2
x), hŜ2i ' 16.27 ± 1.05 and ⇠2 ' 0.078 ' �11.1 dB, with no removal of the imaging noise. From a

reconstruction of the state (described in Sec. 7.5), which includes the detection noise, we extract hŜ2i ' 9.91 ± 0.88, yielding
⇠2 ' 0.048 ' �13.2 dB.
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Diagnosis of the singlet state: many-body state

Set of 1100 shots giving    for   
with various angles and axes

N(i)
+1, N(i)

0 , N(i)
−1 i = 1,…,1100

Reconstruction of the many-body density matrix  using a 
maximum likelihood algorithm

ρ

(Lvovsky, 2004)max
ρ

𝒫 (ρ / {N(i)
m })

  

Reconstruction algorithm: Lvovsky J.of Opt. (2004)

State reconstruction

● State of maximum likelihood :

 Given a set         of  ~ 1100 shots of the system 
after various spin rotations. 

● >90% of the state in the lowest 
4 spin manifolds

Diagonal elements 
in the basis 

21

S = Mz = 0

Hilbert 
space

Mz

S

0

N

• The density matrix  is essentially diagonal in the basis ρ |S, Mz⟩

• The first four spin manifolds contain 90% of the population,  
meaning a very low entropy:  S(100 particles) ≈ 3kB

Spin temperature: 30 pK, comparable to 10 pK
α
N

=

  atomsN ≈ 100
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One-body density matrix: A fragmented BEC 

The set of measurements of      allows us to reconstruct the nine coefficients of   N(i)
+1, N(i)

0 , N(i)
−1 ⟨m | ̂ρ(1) |m′￼⟩
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(A) Fragmented BEC (B) Single BEC

The N-body measurement indicates that 
it is not a mere thermal state !
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(A) Fragmented BEC (B) Single BEC

Only one macroscopic eigenvalue

( |ψ⟩)⊗N

Predicted long ago (Nozières & Saint James, 1982) but little experimental evidence of such a full N-body state so far

E. J. Mueller, T.-L. Ho, M. Ueda, and G. Baym, Phys. Rev. A 74, 033612 (2006)
See X.-Y. Luo et al., Science 355, 620 (2017) for evidence of a two-fragment BEC

  atomsN ≈ 100
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Conclusions

Assembly of spin 1 atoms in the same spatial mode,  
coupled with a detection at the single atom level 

• Phase transition at the mean-field level

Unique system to illustrate many aspects of many-body physics, 
which also provides a very useful tool for quantum metrology

• Production of correlated pairs of atoms,  
with a record squeezing parameter 

• Possibility to produce and characterized a  
massively entangled state: a singlet (spin 0)  
state made out of  spin 1 atomsN ≫ 1

  

Reconstruction algorithm: Lvovsky J.of Opt. (2004)

State reconstruction

● State of maximum likelihood :

 Given a set         of  ~ 1100 shots of the system 
after various spin rotations. 

● >90% of the state in the lowest 
4 spin manifolds

Diagonal elements 
in the basis 

21

For well chosen couplings, this system can even exhibit a chaotic behavior and 
thus provides a tool to investigate the thermalization of a closed system  
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4

such a case, one has to consider a GGE that takes into
account the conservation of magnetization [1, 2, 10, 50,
51]. For our choice of initial state, with mean energy Ē =
h i|Ĥint| ii ⇡ Us and vanishing average magnetization,
the density matrix associated with this GGE is

⇢̂GGE /

X

ES2W
|S, 0ihS, 0|. (11)

Here the sum runs over the spin states |S, 0i whose energy
ES sits in a narrow window W centered on Ē. From the
matrix elements given in Eq. (9), one deduces that the
GGE average population n̄0 = 1

N Tr(⇢̂GGEN̂0) = 1/2,
which coincides with the asymptotic result predicted in
Eq. (10) and measured experimentally.

To compare more precisely our results with the pre-
dictions of the GGE, we consider the distribution P(N0)
plotted in Fig. 2b-e at four di↵erent times for N = 107.
We observe that this distribution reaches a steady-state
value in excellent agreement with the one calculated with
⇢̂GGE, plotted as a dashed line in Fig. 2e. To the contrary,
the prediction for “true” thermal equilibrium, which is
obtained by extending the sum (11) to all spin states
|S, Mi in the energy window W, di↵ers significantly from
the experimental result (dotted line in Fig. 2e).

In practice, the relaxation of macroscopic observables
in spinor BECs may also originate from fluctuating initial
states or from couplings between spin and spatial modes
[52–57]. Here, these processes are negligible compared to
the self-relaxation due to the non-linearity of the energy
spectrum and characterized by the universal law (10).

Chaotic dynamics and thermalization. For a generic
many-body system, the Eigenstate Thermalization Hy-
pothesis (a term coined in [58]) states that essentially any
energy eigenstate | Ei is “typical”, in the sense that the
statistical properties of a few-body observable Ô evalu-
ated with | Ei are close to their expectation value for
thermal equilibrium, calculated for example using the
micro-canonical density matrix ⇢̂E at the energy E (for
a review, see [2–4]). A consequence of ETH is thermal-
ization: If we consider an initial wave packet | (t = 0)i
formed by a combination of many energy eigenstates all
around the energy E, the time average of h (t)|Ô| (t)i
will be close to the thermal equilibrium average Tr(⇢̂EÔ).

The justification of ETH is closely related to the theory
of random matrices [58–60]. More precisely, the validity
of ETH is established for systems with a large number
of degrees of freedom whose level statistics corresponds
to a chaotic behavior such as the spectrum of random
matrices from the grand orthogonal or grand unitary en-
sembles. On the contrary, when the level statistics cor-
responds to a regular motion, ETH does not hold.

To address the connection between thermalization and
chaos for a spin 1 ensemble, we consider the following
Hamiltonian:

Ĥ
0 = Ĥ + ⌦Ŝx . (12)

The second term in Ĥ
0 breaks the integrability of Ĥ

by ensuring that Ŝz is not conserved anymore, so that
the two degrees of freedom associated with the quantum
numbers S and Sz are now coupled. The one-body term
⌦Ŝx describes (in the rotating frame) the e↵ect of a reso-
nant coupling induced by a rotating radio-frequency field
that drives the transitions |mi $ |m ± 1i. Note that the
implementation of Ĥ

0 requires an excellent control of the
ambiant magnetic field in order to keep the fluctuations
of the first-order Zeeman e↵ect small compared to Us

[66].
The matrix of Ĥ

0 in the particle number basis
|N�1, N0, N+1i (with N±1 = (N �N0±M)/2) is real and
symmetric. We diagonalized it numerically for N = 100
and studied its level statistics as a function of the control
parameters Us, q and ⌦. While the spectrum corresponds
to a regular motion when one of the three parameters
is either large or small compared to the two others, a
chaotic behavior emerges when they are all comparable
[62].

We show in Fig. 3a the density of states calculated for
q/Us = 0.8 and ⌦/Us = 0.6. In Fig. 3bc we give the dis-
tributions of the splittings between adjacent energy lev-
els, for eigenstates inside the two shaded zones of Fig. 3a.
In zone A (in red, centered on E/Us = �10), adjacent
levels show a clear antibunching, close to the one ex-
pected for random real symmetric matrices, an indicator
of chaotic dynamics [63]. On the contrary for zone B

(in blue, centered on E/Us = �53), the level statistics
is close to a Poisson law, characteristic of a regular mo-
tion. This diagnostic is confirmed by a resolution of the
mean-field equations, which shows chaotic (respectively
regular) trajectories, for initial conditions corresponding
to an energy in zone A (resp. B)[35]. Another chaotic
feature of Ĥ

0, the growth of out-of-time-ordered correla-
tors at short times, was also evidenced in [62].

To analyze the relationship between the emergence of
a chaotic behavior and ETH for our spin system, we cal-
culated the evolution of various physical quantities for
a wave packet inside zone A or B. The initial state is
R̂x(✓)|m = 0i

⌦N , where R̂x(✓) is the rotation around
the x axis, with the angle ✓ adjusted such that the av-
erage energy of the state sits in the middle of the de-
sired zone. We show in Figs. 3d-e the evolution of the ex-
pectation values of the one-body observable N̂0 and the
two-body observable Ŝ

2
x, together with the thermal aver-

aged value of these quantities, using the micro-canonical
density matrices for zones A and B. The results fully
confirm the prediction of the ETH: for the wave packet
prepared inside the chaotic region (A), full thermaliza-
tion does occur whereas for the wave packet in region
B, the asymptotic value of hŜ

2
xi di↵ers significantly from

the thermodynamic average. In addition, relaxation is
notably faster in the chaotic sector than in the regular
one, a hierarchy that also occurs in the model developed
in [64] for a quasi one-dimensional Bose gas.
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such a case, one has to consider a GGE that takes into
account the conservation of magnetization [1, 2, 10, 50,
51]. For our choice of initial state, with mean energy Ē =
h i|Ĥint| ii ⇡ Us and vanishing average magnetization,
the density matrix associated with this GGE is

⇢̂GGE /

X

ES2W
|S, 0ihS, 0|. (11)

Here the sum runs over the spin states |S, 0i whose energy
ES sits in a narrow window W centered on Ē. From the
matrix elements given in Eq. (9), one deduces that the
GGE average population n̄0 = 1

N Tr(⇢̂GGEN̂0) = 1/2,
which coincides with the asymptotic result predicted in
Eq. (10) and measured experimentally.

To compare more precisely our results with the pre-
dictions of the GGE, we consider the distribution P(N0)
plotted in Fig. 2b-e at four di↵erent times for N = 107.
We observe that this distribution reaches a steady-state
value in excellent agreement with the one calculated with
⇢̂GGE, plotted as a dashed line in Fig. 2e. To the contrary,
the prediction for “true” thermal equilibrium, which is
obtained by extending the sum (11) to all spin states
|S, Mi in the energy window W, di↵ers significantly from
the experimental result (dotted line in Fig. 2e).

In practice, the relaxation of macroscopic observables
in spinor BECs may also originate from fluctuating initial
states or from couplings between spin and spatial modes
[52–57]. Here, these processes are negligible compared to
the self-relaxation due to the non-linearity of the energy
spectrum and characterized by the universal law (10).

Chaotic dynamics and thermalization. For a generic
many-body system, the Eigenstate Thermalization Hy-
pothesis (a term coined in [58]) states that essentially any
energy eigenstate | Ei is “typical”, in the sense that the
statistical properties of a few-body observable Ô evalu-
ated with | Ei are close to their expectation value for
thermal equilibrium, calculated for example using the
micro-canonical density matrix ⇢̂E at the energy E (for
a review, see [2–4]). A consequence of ETH is thermal-
ization: If we consider an initial wave packet | (t = 0)i
formed by a combination of many energy eigenstates all
around the energy E, the time average of h (t)|Ô| (t)i
will be close to the thermal equilibrium average Tr(⇢̂EÔ).

The justification of ETH is closely related to the theory
of random matrices [58–60]. More precisely, the validity
of ETH is established for systems with a large number
of degrees of freedom whose level statistics corresponds
to a chaotic behavior such as the spectrum of random
matrices from the grand orthogonal or grand unitary en-
sembles. On the contrary, when the level statistics cor-
responds to a regular motion, ETH does not hold.

To address the connection between thermalization and
chaos for a spin 1 ensemble, we consider the following
Hamiltonian:

Ĥ
0 = Ĥ + ⌦Ŝx . (12)

The second term in Ĥ
0 breaks the integrability of Ĥ

by ensuring that Ŝz is not conserved anymore, so that
the two degrees of freedom associated with the quantum
numbers S and Sz are now coupled. The one-body term
⌦Ŝx describes (in the rotating frame) the e↵ect of a reso-
nant coupling induced by a rotating radio-frequency field
that drives the transitions |mi $ |m ± 1i. Note that the
implementation of Ĥ

0 requires an excellent control of the
ambiant magnetic field in order to keep the fluctuations
of the first-order Zeeman e↵ect small compared to Us

[66].
The matrix of Ĥ

0 in the particle number basis
|N�1, N0, N+1i (with N±1 = (N �N0±M)/2) is real and
symmetric. We diagonalized it numerically for N = 100
and studied its level statistics as a function of the control
parameters Us, q and ⌦. While the spectrum corresponds
to a regular motion when one of the three parameters
is either large or small compared to the two others, a
chaotic behavior emerges when they are all comparable
[62].

We show in Fig. 3a the density of states calculated for
q/Us = 0.8 and ⌦/Us = 0.6. In Fig. 3bc we give the dis-
tributions of the splittings between adjacent energy lev-
els, for eigenstates inside the two shaded zones of Fig. 3a.
In zone A (in red, centered on E/Us = �10), adjacent
levels show a clear antibunching, close to the one ex-
pected for random real symmetric matrices, an indicator
of chaotic dynamics [63]. On the contrary for zone B

(in blue, centered on E/Us = �53), the level statistics
is close to a Poisson law, characteristic of a regular mo-
tion. This diagnostic is confirmed by a resolution of the
mean-field equations, which shows chaotic (respectively
regular) trajectories, for initial conditions corresponding
to an energy in zone A (resp. B)[35]. Another chaotic
feature of Ĥ

0, the growth of out-of-time-ordered correla-
tors at short times, was also evidenced in [62].

To analyze the relationship between the emergence of
a chaotic behavior and ETH for our spin system, we cal-
culated the evolution of various physical quantities for
a wave packet inside zone A or B. The initial state is
R̂x(✓)|m = 0i

⌦N , where R̂x(✓) is the rotation around
the x axis, with the angle ✓ adjusted such that the av-
erage energy of the state sits in the middle of the de-
sired zone. We show in Figs. 3d-e the evolution of the ex-
pectation values of the one-body observable N̂0 and the
two-body observable Ŝ

2
x, together with the thermal aver-

aged value of these quantities, using the micro-canonical
density matrices for zones A and B. The results fully
confirm the prediction of the ETH: for the wave packet
prepared inside the chaotic region (A), full thermaliza-
tion does occur whereas for the wave packet in region
B, the asymptotic value of hŜ

2
xi di↵ers significantly from

the thermodynamic average. In addition, relaxation is
notably faster in the chaotic sector than in the regular
one, a hierarchy that also occurs in the model developed
in [64] for a quasi one-dimensional Bose gas.

See also M. Garcia-March, S. van Frank, M. Bonneau, J. Schmiedmayer, 
M. Lewenstein, and L. F. Santos, New J. Phys. 20, 113039 (2018)
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