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Effective Theory @ ~2 GeV 
V-A (gA, gV) Weak interactions 
S, T (gS, gT)  New Interactions 

Probing New Interactions: MBSM >> MW >> 1 GeV 
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100 GeV 
V-A Weak decay 
eL with a νL 

TeV 
Novel S,T interactions 
eR with a νL 
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LHC 

Neutron 
Decay 

Many BSM possibilities for novel Scalar & Tensor interactions: Higgs-like, leptoquark, loop effects, … 
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Neutron decay can be parameterized as    ↑σn 

e- 

ν  

p   n  

b:   Deviations from the leading order electron spectrum: 
       Fierz interference term 

B1:  Energy dependent part of antineutrino correlation 
       with neutron spin 4 



Novel S and T interactions at TeV scale 
        Effective Theory at low energy 
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ASM 

At leading order, contributions from BSM physics arise due to interference 
of ASM and ABSM and contribute to b and B1 only through εS and εT 
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•  Couplings εP,S,T   ~ (ΛBSM)2/GF ~ (v/ΛBSM)2 ~ 10-3 

•  Recoil corrections:               q/MN ~ 10-3 

•  Radiative corrections:         αem/π ~ 10-3 

•  Isospin-breaking:      (MN-MP)/MN ~ q/MN ~ 10-3 

•  UCN: small Doppler broadening of e spectrum 

•  SM contribution is O(10-3) and known to (~10-5):   It is 
controlled by 2 small parameters (Mn-Mp)/Mn and αem/π  

•  Unique:  scalar and tensor BSM interactions involve 
helicity-flip (me/Ee suppression) and are hard to detect  
in high energy experiments 

Physics Case: (BSM/SM) ~ O(1) 
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Relating b, B1 to gS,T & BSM couplings εS,T 
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bBSM " 0.34gS#S $ 5.22gT#T

! 

b"
BSM # B1

BSM = Ee
$BBSM (Ee )

$me

% 0.44gS&S ' 4.85gT&T

Linear order relations from n → p e ν decay 

gT = ZT  gS = ZS  
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What we know 
•  Experiment 

–   gA = 1.2701(25)     Neutron decay 

•  Phenomenology: CVC 

8 
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gS
gV

=
(MN −MP )

QCD

(md −mu)
QCD = 1.02(8)(7) Gonzalez-Alonso & Camalich 

Phy. Rev. Lett. 112 (2014) 042501  

Lattice QCD can provide precise estimates of nucleon structure 
•   Charges (gA, gS, gT) 
•   Vector and axial form factor 
•   Generalized Parton Distribution functions 



Low energy constraints  
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Allowed region in εS and εT are being 
constrained as estimates of gS and gT improve 
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|B1-b| < 10-3 

|b| < 10-3 

b0+  = 2.2 (4.3)∗10-3 

Allowed region in [εS , εT ] (90% contours) 
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Precision Lattice QCD calculations:  <p|u Γd|n> 
Oi

q 

n p 
× 

Isolate the neutron e-Mnτ Project on the proton e-Mpτ 
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Reducing excited state contamination 
2-point correlation function  → MN 
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Current data are fit by including 1 “excited” state  

  

€ 

Γ2(t f ,ti) = A0 e
−M 0 Δt + A1 e

−M 1 Δt +…



Reducing excited state contamination: 3-pt fn. 
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Assuming 1 excited state, the 3-point function is given by 

Where M0 and M1 are the masses of the ground & excited 
state and A0 and A1 are the corresponding amplitudes.  € 

Γ3(t f ,t, ti) = A0
2 0O 0 e−M 0 Δt + A1

2 1O1 e−M 1 Δt +

A0A1
* 0O1 e−M 0 Δte−M 1 (Δt− t ) + A0

*A1 1O 0 e
−M 1 Δte−M 0 (Δt− t )

n p
× 

ti 
Δt = tsep = tf - ti tf 

O(t) 

Need simultaneous fit to data at multiple Δt = tsep =tf  - ti 



Simultaneous fit to multiple tsep 
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tsep=10 tsep=12 tsep=14 

Data for gS on the Mπ=220 MeV ensemble at a=0.09fm 
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1O1 Term Excluding 



Renormalization of bilinear operators 
•  Non-perturbative renormalization factors ZΓ 

using the RI-sMOM scheme (p1
2 = p2

2 = q2) 

–  Need quark propagator in momentum space 

•  Basic Assumption: there exists a window 
                ΛQCD << p << π/a 

•  HYP Smearing introduces artifacts 

–  Gluon momentum above (~1/a) are averaged out 

–  ΛQCD << p << π/a window may not exist on coarse lattices 

•  No detectable dependence of Z’s on mq 
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Renormalized Charges 

Ward identity: ZVgV = 1 

Lattice 

! 

ZA ,S,T

ZV

M S ( , 2GeV )

! 

ZA ,S,T

ZV
"
gA ,S,T
gV

Fit data to: A/p + Z + Cp 
in the range {1<p<4 GeV} 
Or  
Choose Z at p2 = 5GeV2 

& errors from {4<p2<6GeV2} 



Observations and Lessons Learned 

•  For given statistics: σ(gS) ~ 5 σ(gA)  [or  5 σ(gT)] 
Need O(15000) independent measurement (Configs ✕ Sources) 

•  Excited state contamination is significant but controlled   
Need:  data at multiple tsep with good signal for tsep > 1.2fm  
                 fits including at least one excited state to data tsep > 1.0fm  

•  Renormalization (RI-sMOM): Smearing introduces artifacts 
Impose a prescription with a well-defined continuum limit 
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Analyzing lattice data: 
Extrapolations in  a, Mπ

2, L 
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! 

g(a,M" ,L) = g + A a + B M"
2 + C e#M " L +…

Using lowest order corrections when fitting lattice data w.r.t. 

•   Lattice spacing a 

•   Dependence on quark mass mq ~  Mπ
2 

•     Finite volume  Mπ L 



Lattice QCD Calculations  
 are ongoing and collaborations 

are addressing all sources of 
systematic errors 
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lattice data: combined plots 
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Towards Physical Estimates 
•  gT:  1.05(5)   

–  Estimate of ZT is reliable 

–  Small dependence on a, Mπ
2,  MπL (Caution: see gA) 

•  gA:   
–  Estimate of ZA is reliable 

–  Extrapolations in  a, Mπ
2, MπL are not yet resolved 

•  gS:   
–  Statistical errors are large  

–  ZS is not well-determined 

–  Extrapolations in a, Mπ
2,  MπL are not stable 
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Constraining εS and εT  

•  Measurements of b and B1 at 10-3 to 10-4 will probe multi-TeV scale  
and place stringent constraints on novel scalar and tensor interactions   

•  GF*εS,T = (1/ΛS,T)2        

•  εS,T =v2/Λ2
S,T~ 10-3  

•  Constraints on εS and εT from [U]CN experiments combined with 
improved gS and gT will be more stringent than existing probes  
(0+ → 0+;   π→eνγ).  

•  Collider experiments are not competitive until √s=14 TeV & 100 fb-1 
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ΛS,T ~ 5 TeV 



Constraints from β-decay versus LHC 
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Improving low energy bounds further depend on 
improvements in nuclear experiments for b and B1 
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LHC bounds: 
•     10 fb-1 at 14TeV 
•   300 fb-1 at 14TeV  

Nuclear exp + Theory bounds: 
•     b = B1 = 10-3 

•  gS and gT from Herczeg 
•  gS and gT from Lattice QCD 


