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Consistent interpretation of extracted UCN 
density in LANL production source… 

Cold flux: Ar activation 
UCN flux:V foil activation 

V: 52±9 UCN/cm3 

(C. Morris) Predicted: 107±20 UCN/μC/cm3 

Internal det: 85±10 UCN/μC/cm3 

2010:  

Mon: 79±16 UCN/cm3 



Planned LANL UCN source improvements 

 

• Feb. 2014 production tests establish 

capability to increase proton current 6 

→10 uA, Beam timing also can be 

optimized to reduce losses (up to another 

factor 1.8 gain) 

 

• LDRD source upgrade, planned 

increase of at least a factor of 3 in 

production (T. Ito) 

 

• Without upgrade, UCNA baseline 

roughly 50 Hz, UCNτ roughly 105 n/load  

 



UCN residency time in bottle < 

20s to limit depolarization… 

ratio"-super" a is   where,
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M. P. Mendenhall et al., Phys. Rev. 

C 87, 032501 (2013) 



Pushing Down the Limits: 2014 

and beyond… 

2010 method calibrated, but required 

MC corrections: 

add shutter, remove MC corrections 

Polarimetry 

Backscattering limited by foils: 

reduce areal density 

Scattering corrections 

Energy Reconstruction 

Add more conversion sources, 

Xe position-dependent gain 

maps, LED pulser 

2011/2012: 57 M decays  -- targeting  better than 0.6% precision 

2014:  improving rate for final UCNA in this configuration 



Projected UCNA Error Budget 

Uncertainty 

(%) 

Mendenhall 

(2013) 

In analysis 

(TBS 8/14) 
Next Step Source of 

improvement 

Statistics +/- 0.46 +/- 0.40 +/- 0.28 Decay rate! 

Depolarization +0.67 +/- 0.56 +0.7 +/- 0.1 +0.7 +/- 0.1  Shutter+ ex situ 

Backscatter +1.36 +/- 0.34 +0.56 +/- 0.15 +0.56 +/- 0.15 Thin windows 

Angle effect -1.21 +/- 0.30 -0.8 +/- 0.2 -0.8 +/- 0.1 Windows+APD 

Energy 

Reconstruction 

+/- 0.31 +/- 0.08 +/- 0.08 Xenon + LED 

Total Sys. +/- 0.82 +/- 0.28 +/- 0.22 

Total +/- 0.94 +/- 0.5 +/- 0.35 

Statistics: 0.28% requires 150x106 raw decays 

@100 Hz, 50% duty factor, requires 13 weekends, or ~one full run cycle 

(But could be split over multiple cycles)  

Preliminary estimates… 



Path Forward for UCNA 
 

Fall 2014: 

• Complete analysis of 2011/2013 data (target 

of end of year for unblinding) 

• Install replacement guide 

• Investigate impact of switcher to share beam 

with UCNτ 

• Conduct rate test to confirm gains 

Take first opportunity for “final data run” once statistics are 

available… 
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UCNB: Accessing b and bν 

B. Plaster 
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T. Bhattacharya et al., PRD 85, 054512 (2012) 

Q±± 

e p 

Measure e-p coincidences w/ 

polarized neutrons 

[UCNB, B ~10-3] 



Analysis: How to directly measure bν 

B. Plaster 

Differential Analysis: Integral Analysis: 

~0.3σ sensitivity to bν = 10–3 
with N = 1 × 108 

B. Plaster, S. Sjue and A.R. Young, in preparation 

Additional advantage: removes leading order dependence on polarization and 

detector efficiency ( Mostovoi et al, Phys. Atomic Nucl. 64, 1955 (2001)).– need to integrate 

with other e-p coincidence and spectrum measurements for best sensitivity!   

Measure  
proton asymmetry 

electron asymmetry 



Experimental strategy is similar to that carried out by PERKEO II, 

measure same-hemisphere electron-proton coincidences: 
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• Detector development integrated into Nab R&D 

• Decay trap and electrode development ongoing  -- 

updated error budget under development 

• Fall 2014: Configure two full detectors with pixels 

“ganged” nominally in groups of 6 

• Investigate running modes and full error budget for 

specific goal of high precision beta-spectroscopy as 

soon as possible (potentially this run cycle) 

UCNB Current status 



Nab 





Proportional to pp
2 



>500 Hz  expected, necessary statistics (0.07%) available in less than 2 mo. 

Electron-neutrino asymmetry error budget 

“b” error budget under development, anticipate less than 0.3% uncertainty 



FNPB flux is well understood 

21 

Technical Baseline Peak Flux 



Notional FNPB Experimental 

Program 
(as presented Aug, 2013) 

 

 

 

    2013     2014        2015      2016      2017 

Cold Ops 

Cold Setup 

R&D /  

Construct 

SNS β-Decay 

Correlation Magnet 

nEDM 

Nab 

      

Nab 

     Nab 

  n3He  

    np     d g n3He 



Nab/UCNB Development 

• Large area Si detectors the key to 

high precision β-spectroscopy and 

proton detection: 2mm thick, 127 

pixels, ~15 cm  diam 

 

• Development program underway at 

LANL 

 

• Used TUNL, low energy proton beam 

for first evaluation of proton detection 

sensitivity (A. Salas-Bacci et al., Nuclear 

Instruments and Methods in Physics Research A 735 

(2014) 408–415) 

 

• Si detector response function studies 

(determine energy-angle response 

from point sources – S. Sjue et al, submitted) 
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Detected proton energy deposition in 
Nab/UCNB Si detector 

 

Prototype Si detector 



Research and Development: Detector 

Mount for Cooling and Acceleration Bias 

Acceleration 

Electrode: -30 kV  

Cooling lines (currently 180K) 



Research and Development: 2013 Running 

(24 channels Instrumented) 



Status: 2014  

Runs in October 2013 and January 2014 

• 24 channels instrumented 

• Intermittent LN2 cooling used 

• Example of thresholds for properly working channel: ~15 keV 

• Example of resolution for properly working channel: ~2.5 keV  

• Proton-electron coincidences detected (analysis ongoing) 

• Pogo-pin tests complete 

Detectors 

Nab construction 

 

• Full Nab DAQ ordered, NI PXIe-5171R: 254 chans of 250 

Ms/s, 14 bit fADC  (with low-level trigger filter capability) 

• Magnet ordered 



UCNτ 



Analysis: Lifetime consistency check 
• Compare measured and predicted n lifetime (using 0+→ 0+ vector 

coupling and λ from angular correlations) 
Bhattacharya et al., Phys. Rev. D 85, 054512 (2012)   &  A. N. Ivanov et al., arXiv:1212.0332 (2012). 

• Indep. of (V,A) extensions, do not need to fit for λ 
• Errata required for publication (thanks to K. Vos at RUG) 

Measured n 
decay rate 

1/τn - 1/τ0+ = 1/τn – K(GFVud)m
2 (1+3λm

2)fn(1+Δr) = κbn- αb0+ 

Predicted n decay rate using 
0+→ 0+ for (GFVud)  

λ extracted from angular corr 
meas (depends on bn) 

Difference comes only 

from non-zero Fierz terms! 

Use limits for gS, Solve for gT: 

Depends on <b0+> 

-4.0x10-3 < CT/CA < 2.6x10-3  

(limited at present by unc in λ) 

Pattie et al, Phys. Rev. C 88, 048501 (2013) 



UCN: Magneto-Gravitational Trap 
• Avoid material loss (magnetic trap): Halbach array of 

permanent magnets along trap floor repels spin polarized 

neutrons. 

 

• Minimize UCN spin-depolarization loss: EM Coils 

arranged on the toroidal axis generates holding B field 

throughout the trap (perpendicular to the Halbach array 

field). 

 



• Low symmetry construction permits very 

rapid spectral cleaning 

 

• Populations monitored by conventional 

analysis through UCN guides and also by 

V absorber 

UCN: Unique Features 



Adjacent Magnetization        

                               out of 

phase 

Higher  
Curvature 

Rows trace out the 

surface of a torus patch 

(circumferentially)  

PMs in a given 

row share 

same M 

alignment 

Low symmetry, together with field ripples, enhance states 

mixing between (quasi)-periodic orbits through chaotic motion. 
 

  quick cleaning (~ 10s of seconds) of the ‘quasi-bound’ UCN 

with large tangential velocities.  

Asymmetric Trap induces Phase Space Mixing 

Two torus patches of 

different curvatures 

join along middle row 

~700 liter volume 



UCN Population Monitoring 

Conventional Fill and 

empty to UCN detector 

V foil lowered into trap 
• Control for “quasi-bound” 

trajectories with long 

emptying time 

• Permits direct study of 

spectral  distributions of 

UCN in trap 



UCN Storage Time Measurement: 

2013 

Conventional load, store and empty to external UCN detector measurement 

(between 10k and 20k UCN loaded per fill): accepted for PRC 



UCNτ  progress 

End of 2013, experimented with “mock-up” 

of replacement trap-door assembly: 

• Obtained well over order of magnitude 

improvement in loaded population 

• Observed appropriate impact for spin-

flipper 

• Concluded depol. losses very large in 

2013 geometry—new fill system being 

installed now 



Loading Study Dec 2013 
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Load for 150s then trap door/GV closed. 
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Very short time measured to absorb UCN! 



V detector progress 

V detector now yielding clean activation decay curves with S/B > 10 

2013: 

• Added lead shielding 

• Increased number of NaI 

detectors 

• Achieved about 19% 

counting efficiency (90% 

from plastic alone) 

• More efficiency and 

background 

improvements in works 



The Neutron Lifetime Experiment at 

LANL 
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A. R. Young, B. VornDick, E. B. Dees, C. Cude (NCSU) 

PSI2013 



19Ne 

• Lifetime: 

 

 

 

 

• Asymmetry 

 

Broussard et al., PRL 112, 212301 (2014) 

T 1/2 =17.2832 ± 0.0051 ± 0.0066 s 

<T 1/2 >= 17.2604 ± 0.0034 s 

Collaboration between KVI/RUG and TUNL 

Careful dedicated systematic studies – rate 

dependence, diffusion and contaminants 

D. Combs at NCSU completed analysis of 

thesis data for Princeton student, G. Jones 

(1995).  -- precision close to the thesis 

analysis… 

 



Conclusions! 
• UCNA is making good progress towards analysis 

of 2011-2013 data, and unblinding this year, 

confirming readiness for high statistics running 

 

• Nab and UCNB achieved major milestones 

towards fully instrumented detectors, and orders 

for the Nab DAQ and magnet are placed 

 

• UCNτ should be ready for high statistics running 

this fall, and detailed assessment of systematic 

error budget 


