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Topological order & quantum error correction

• Knill-Laflamme conditions for Quantum Error-Correcting codes (‘96):

• Xiao-Gang Wen’s notion of topological order (’89): 

– defying Landau’s paradigm of local order parameters



Kitaev: QEC=TO

• Simplest model: toric code  / Z2 lattice gauge theory (‘97)

– Code distance: L ; # qubits: 2



• Surface code / planar code: boundary excitations, magic state distillation, 
Nishimori line, …

• More advanced techniques: code deformation & lattice surgery (Bombin, 
Kitaev), gauge fixing, … : involve deep abstract mathematical ideas

Duclos-Cianci, Poulin PRL ‘10
Terhal, RMP ‘15







Modular Tensor 
Categories

Topological Field 
Theory

Conformal Field 
Theory

Quantum doubles 
& String nets

Critical & Anyonic
spin systems

Continuum
Lattice

3+0/2+1 D       2+0/1+1 D

Witten  …

Reshetikhin, Turaev, Viro Moore, Seiberg /
Fuchs, Runkel, Schweigert

Kitaev / Levin, Wen / …
Pasquier / Jimbo et al. /
Aasen, Fendley, Mong

Strange Correlators

Topological order/ Category Theory: TFT & CFT





Topological Phases of Matter

• Landau: phases == group theory == symmetry breaking

• Wegner, Wen, …: topological order => no local order parameter

• Hidden (categorical) symmetries, cohomology theory

• Stability under perturbations: Hastings et al. (Lieb-Robinson bounds)

• Quantum Information point of view: 

– Two (ground) states are in the same phase iff there is a constant-depth 
(independent of system size) quantum circuit mapping the states into each other

– No-go theorem: constant-depth quantum circuits cannot create states exhibiting TO 
nor states exhibiting long-range order (GHZ) from states in a trivial / different phase

– Technical tool: Lieb-Robinson bounds
Bravyi, Hastings et al.  ‘06
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The quantum many-body problem
• Large part of theoretical physics /chemistry in last 90 years has focused on describing many-body 

systems with polynomial instead of exponential complexity, starting from a good fiducial 
noninteracting state
– Hartree-Fock, Perturbation theory / Feynman diagrams, Coupled cluster theory, Density 

Functional Theory, …

• Many strongly interacting quantum many body systems  of interest do not have such a fiducial 
state
– E.g. Hubbard model:

– Quantum Monte Carlo can sometimes help, but in many cases of interest sign problem

• Problem is solved by the universal Quantum Computer : it speaks the language of nature 
(Feynman!)

– Premise: Complete solution of sign problem [-> quantum algorithms session]



Full Hilbert space

Manifold of States reachable 
in polynomial time with time 
dependent evolution with 2-
body Hamiltonians starting 
from fully polarized state

Ground and thermal states 
of local n-body quantum 
Hamiltonians 

The convenient illusion of Hilbert space

Poulin et al.  ‘11



Area Laws for the entanglement entropy

• Ground and Gibbs states of interacting quantum many body Hamiltonians with 
local interactions have very peculiar properties

– Area law for the entanglement entropy (ground states) or for mutual 
information (Gibbs states)

– “explains” why physics is possible at all

Ground states:

Gibbs states:

Holzhey, Larsen, Wilczek ’94
Cardy, Calabrese ‘04

Wolf, …, Cirac ‘08

Srednicki ’93; Hastings ’07; …
Landau, Vazirani, Vidick ‘15



Entanglement spectrum

Entanglement spectrum of Moore-Read state



Entanglement

• Computational methods: Lanczos, DFT, Monte Carlo, DMFT, DMRG

– area laws, tensor networks ->      Exponential wall, sign problem, dynamics 

• Perturbation theory, renormalization group, effective field theories 

– disentangling & real space -> Strong coupling, frustration

• Exact methods: Conformal field theory, Bethe ansatz, Luttinger liquids

– entanglement structure & symmetries -> Realistic systems and higher D

Entanglement gives a new perspective on and alternative solutions to 
fundamental problems plaguing traditional approaches to the 
quantum many-body problem:



Feynman’s dream

“Now, in field theory, what’s going on over here and what’s going on over there and all 
over space is more or less the same. Why do we have to keep track in our functional of 
all things going on over there while we are looking at the things that are going on over 
here? ….  It’s really quite insane actually: we are trying to find the energy by taking the 
expectation of an operator which is located here and we present ourselves with a 
functional which is dependent on everything all over the map. That’s something wrong. 
Maybe there is some way to surround the object, or the region where we want to 
calculate things, by a surface and describe what things are coming in across the surface. 
It tells us everything that’s going on outside. 
I’m talking about a new kind of idea but that’s the kind of stuff we shouldn’t talk about 
at a talk, that’s the kind of stuff you should actually do!”

“Difficulties in Applying the Variational Principle to Quantum Field 
Theories”, Wangerooge 1987, Proceedings, 
Variational calculations in quantum field theory



Entanglement as building block of matter: 
Quantum Tensor Networks 



• tensor networks : crucial concepts

– Tensors model the entanglement structure in many-body wavefunctions: 
modelling correlations makes much more sense than modelling 
wavefunction directly
• Tensors dictate the entanglement patterns
• Entanglement-based ansatz: as long as entanglement entropy 

satisfies area law, ok; not OK otherwise (such as time-evolution after 
quench)

– Tensor networks can be efficiently contracted due to holographic 
property: map quantum 3D -> 2D -> 1D -> 0D problems, and this can be 
done efficiently due to area laws; states can be defined in thermodynamic 
limit, with finite size scaling replaced by finite entanglement scaling

– Tensor network algorithms: TDVP on manifold  of MPS/PEPS/MERA
• State of the art simulations of strongly correlated systems 

Haegeman, Vanderstraeten, Corboz et al. 



It’s all about symmetries

• Anderson ‘72: “physics is an applied form of group theory”

• Essential paradigm: detect the global features of a system through its 
entanglement degrees of freedom / local tensor network description

– The symmetries of the local tensor in the tensor network reveal the 
emerging properties of the system

– Even for the case of topological order: local order parameters arise in 
the form of different representations of groups / fusion algebras

Ug

= Vg V-1
g



Topological Entanglement Entropy

• Kitaev, Preskill ’06; Levin, Wen ’06: additive correction to area law for 
entanglement entropy in case of topological order

• Categorical symmetries on the entanglement degrees of freedom

– Form basis for description of anyons, TFT-CFT correspondence, dualities, 
...: tensor networks form the representation theory of the representation 
theory (bimodules) of fusion categories!
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Lieb-Robinson bounds

• There is an effective light cone for the spreading of quantum information in 
quantum spin systems

• Matthew Hastings (+ co-authors) realized that this bound can be used to prove 
a wealth of open problems in mathematical physics by connecting it to ideas 
such as quasi-adiabatic evolution:

– Exponential decay in gapped spin systems

– Higher dimensional Lieb-Schultz-Mattis

– Proof of Hall Conductance Quantization

– Area law for entanglement entropy in 1D quantum spin systems

– Robustness of topological phases of matter

– Robustness of area law in quantum phases

– Correctness of Quasi-particle (excitation) ansatz as plane waves on 
tangent space of  tensor network manifold

– …



Floquet phases

• Floquet: periodic driving of quantum spin systems, resulting in effective 
Hamiltonians 

• Classification of Floquet SPTs: group cohomology with group enhanced by 
time-translation symmetry

• 2D: Chiral Floquet Phases due to absence of energy conservation

Potter, Morimoto, Vishwanath PRX ’16
Po, Fidkowski, Morimoto, Potter, Vishwanath PRX ‘16
Else, Nayak PRB ’16
von Keyserlingk, SL Sondhi PRB ‘16  



Thermalization

• Deutsch (‘91), Srednicki (’94): local observables of eigenstates versus thermal 
states => eigenvector thermalization hypothesis (ETH)

• “Entanglement and the foundations of Statistical Mechanics” [Popescu, Short, 
Winter Nat. Phys. ’06]: stat mech is about entanglement of subsystems with 
larger systems 

• Quenches: isolated systems thermalize (von Neumann ’29)

– Prime example of where entanglement-based simulation methods fail

– Fast information scrambling: ultimate limits, Sachdev-Ye-Kitaev, …

• Can a completely isolated, non-integrable systems ever fail to thermalize?

– By adding static disorder and in 1D: Many-body localization (MBL) 
Eigenstates all look like (MPS) ground states, satisfy area laws, … 
[Altshuler, Huse, Abanin, Altman, Imbrie, …]



Measurement-induced phase transitions 
in quantum circuits

• Volume vs area law entanglement as a function of measurement strength; 
at criticality: logarithmic scaling, critical exponents, …

• Related to the “phase transition” in quantum complexity: if the error rate 
is too high, then a quantum computation can be simulated efficiently

Li, Chen, Fisher PRB ‘18, PRB ’19
Skinner, Rummer, Nahum PRX ‘19



Quantum Supremacy: 
simulating Sycamore with tensor networks



Hybrid tensor network – quantum computing platforms

• Exchange circuit depth and space: Holographic quantum algorithms for 
simulating correlated spin systems

• Implementation of MERA as quantum circuits (Vidal), QAOA (Farhi), 
creating cMPS in superconducting circuits (Walraff et al.), …

Foss-Feig, …, Potter ’21
Barratt, …, Pollmann, Green ‘21



Outlook

• Entanglement provides a new vocabulary for describing the ubiquitous quantum many-body problem

– Where is the quantum complexity frontier dividing classical from quantum, it is for what (useful) 
problems do we need quantum computers? 
• Classical algorithmic development is also going fast
• What about hybrid tensor network – quantum computing platforms?
• What fidelity do we need to beat state of the art classical algorithms? 
• What about noisy quantum simulators (cfr. Lukin’s talk)?
• Are many-problems problems which are hard for quantum computers physically relevant?

– tensor networks provide the rules for a new unifying language and the means to tackle it, but how to 
provide the semantics?
• A big challenge is to develop better / different algorithms and scale them up to be useful for real 

material science, for problems like QCD, for experiments with continuous degrees of freedom, …
• Development of representation theory of fusion categories, 2-categories, fractons as defects in 

TFTs, quantum groups, … : make all this incredibly abstract but useful mathematics tangible!
• Use Tensor networks to analyze quantum error-correcting codes based on categories / Levin-Wen

– How do you put fields on the lattice? What about boundary conditions, dualities, …?

• How to Construct real-space renormalization group flows (respecting all symmetries, continuum 
limits, …) both using tensor networks and quantum computers?

• Variational methods for relativistic quantum field theories
• How to rigorously set up a formalism for entanglement & finite quantum circuit depth scaling?
• How are tensor networks useful for the “it from qubit” programme?
• How do you measure entanglement in experiments (cfr. proposals of Zoller et al.)



Theoretical Quantum Physics of the 21st century

Entanglement
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“the unreasonable effectiveness of tensor networks in physics”

Real-Space Renormalization Group 

Tensor Networks

Symmetries and dualities

Quantum Field Theory
Statistical Mechanics

- High-Energy Physics
- Condensed Matter 

- Cold Atoms



Entanglement Matters

Quantum Computation

Bosonic SPT phases
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Quantum Quenches
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Multiscale Entanglement 
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Matrix Product States

Non-Commutative Gross-Pitaevskii

Anyon Condensation

Holographic Principle

Renormalization Group

Quantum Phase Transitions

Lieb-Robinson bounds

Quasi-Particles (Virtual) Order Parameter

Entanglement


