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Abstract

These are lecture notes of an advanced quantum field theory course intended for graduate
students in theoretical high energy physics who are already familiar with the basics of
QFT. The first part quickly reviews what should be more or less known: functional inte-
gral methods and one-loop computations in QED and ¢*. The second part deals in some
detail with the renormalization program and the renormalization group. The third part
treats the quantization of non-abelian gauge theories and their renormalization with spe-
cial emphasis on the BRST symmetry. Every chapter includes some exercices. The fourth
part of the lectures, not contained in the present notes but based on arXiv:0802.0634,
discusses gauge and gravitational anomalies, how to characterise them in various dimen-
sions, as well as anomaly cancellations.
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PART 1:
A QUICK REVIEW OF WHAT SHOULD BE KNOWN

1 Functional integral methods
1.1 Path integral in quantum mechanics

The usual description of quantum mechanics is in the Schrodinger picture where

[Qa; Pb] = idab ) Qa |Q> = {Ga |Q>

ZQH.pa

0 )

) Pa ’p>:pa ’p>

,QIpH

ethPaefth

Go to the Heisenberg picture by Q.(t) = e'Q.e 1 and P,(t)
these Heisenberg picture operators are

. The eigenstates of

lg.t) = e q)

- ) Qa(t) |Qa t> = Qa |q7 t) )
p,t)

Hpy . Pu(t)Ipt)

Ga|p:t) - (1.2)

Note that these are not the Schrodinger states |g) or |p) evolved in time (which would be e~ |q)
resp. e~ |p)). Tt follows that |q,t + At) = ¢TA%|q,t) and (¢/,t + At| = (¢, 1|

e AL Hence
(¢, t] (1 —iHAt + O(At?)) |g,t) (1.3)
Now H = H(P,Q) = e 'H(Q, P)e~"* = H(Q(t), P(t)) and we assume that H is written with all
P’s to the right of all ¢’s (by using PQ) = QP — i if necessary). Then one has

(g, t| H(Q(1), P(1)) |p, 1)

(¢ t+ Atlg,t) = (¢, t]e 2 g, t) =

= H(q(t), p(t){g; t|p, ) , (1.4)
so that
(¢t +Atlg,t) = / (H dpa | (a1 (1 —iH(Q(t), P(t)) At + O(A)) |p,t) (p,t|a, )
/ (H dpa | (@' t| (1 —iH(d'(t),p(t)) At + O(A)) |p, t) (p, t|q, 1)
iPa (e —da)
_ dp, | e 1 H @ @p0)A+O(AR) € ‘ 15
/ (1:[ Pa ] € 1;[ 27 (L.5)
Now one can take a finite interval ' — ¢ and let At = . We write t, =t + kAt with k=0,... N
and to=1t¢, ty =t as well as gy = ¢/, qo = ¢q. Then
(q,t"|q,t) /HdQ1 Ay {an, tn fav-1 tv—1) {av—1 tn-al -l ) (a1, t |qos to)
dp? dp% . al ) al
l_qu1 dg_ 1H e OXD —zkz:;H(qk,pk)At+z;pk(qk — qe-1) ¢ - (1.6)
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Then, for any “configuration” {qo,q1,...qn} define an ‘interpolating” ¢(7), so that gxi1 — qr =~
g(r)At. Also [, , dgg ~ I, Dgs and [],, U [ I, Dpa, so that finally
t/
dr Hlg(r).p(r) +1 [ drp(r)i(r) {
t

21
(¢,t'|g.t) = /
Qa(t):(Im Qa(t’)
(1.7)

Han Hpr exp {—Z/
b t
This can be easily generalized to yield not only transition amplitudes but also matrix elements of

t/

—

products of  operators. Going  through  the  same steps again  for
(¢, 04(Q(ta), P(ta)Op(Q(tg), P(tg))...|q,t) with t4 > tp > ..., one easily sees that the path
integral just gets O4(q(ta), p(ta))Op(q(ts),p(ts)) ... inserted. Thus
(@' U1 T{0a(Q(ta), P(t))Op(Q(t5), P(ts)) - - -} g, t)
= / HDQaHpr OA(Q(tA)>p<tA)) OB(Q(tB>7p<tB)) cee X
9a(t)=qa, qa(t") b

)
=490 g

xexp{—i/t dTH(q(T),p(T))—Fi/t dTp(T)q'(T)} : (1.8)

1.2 Functional integral in quantum field theory

An advantage of the canonical formalism is that unitarity is manifest, but Lorentz invariance is
somewhat obscured (although guaranteed by general theorems). In the functional integral formalism
with covariant Lagrangians to be discussed next, Lorentz invariance is manifest, but unitarity is not
guaranteed, unless the formalism can be derived from the canonical one (and then extra terms might
be present).

1.2.1 Derivation of the Hamiltonian functional integral

The path integral formula for matrix elements in quantum mechanics immediately generalizes — at

least formally — to quantum field theory by the obvious generalizations of the labels a to include the

a— (n, @) Z — Z/d?’x , etc. (1.9)

However, in field theory we do not want to compute transition amplitudes between eigenstates [1(Z))

position in space:

of the field operator W(Z)(the analogue of @) but between in and out states having definite numbers
of particles, or often simply between the in and out vacuum states. In order to obtain these one
has to multiply the transition amplitudes obtained from generalizing (1.7) to field theory by the
appropriate vacuum wave functions which for a real scalar e.g. are

3

. d TS
(p(T), £ [vac, £) = Nexp {—% /ddw d3y /#ew-(z—y) P2+ m? ¢(f)¢(gj)} . (1.10)

Note that, contrary to the exponentials appearing in the transition amplitudes or matrix elements,

the exponential in (1.10) is real. Note also that it only contains 3-dimensional space integrals (if it
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were not for the /5% + m?2 the whole expression would collapse to a single f d3x integral), and in this
sense it is infinitesimal as compared to the 4-dimensional space-time integrals in the exponents of the
transition amplitudes or matrix elements. Hence we are let to expect that the effect of multiplying
with (1.10) is only to add terms of the form ix (infinitesimally small) to the exponent. It can
indeed be shown that they precisely provide the correct ie terms that result in the correct Feynman
propagator. Again, this was to be expected since this must be the role of the initial and final
conditions imposed by (¢, + |vac, £). Hence, one arrives at the functional integral representation for
the time-ordered product of Heisenberg picture operators between the in and out vacuum states:

(vac, out| T{OA(\IJ(tA,fA), M(ta, 74)) Op(¥(ts, 75), (ts, @5)) ... } Ivac, in)

— |N|2/HDYMHD7T” OA(@/J(tA,fA),W(tA,fA)) OB(¢(tB,fB),W(tB,fB)> .. X
l n

X exp {z/ dr [/ d3x280¢l(7', T)m(7, %) — H(r, &) (1, 7)) + ie—terms] } , (1.11)
oo l
where we have denoted the fields and their conjugate momenta as ¢; and m; while the corresponding
Heisenberg picture operators are ¥; and II;. The functional measures can be thought of as being

le:Hd(zZJl(T,f)) , 'D’H‘l:Hd(m(T,f)) . (1.12)

1.2.2 Derivation of the Lagrangian version of the functional integral

In many theories the Hamiltonian is a quadratic functional of the momenta 7;:

H((r, Dn(r,5) = = 3 / 0% 0% Az ()7, D7, ) + 3 / 0 B () (7, 5) + C) |

n,m

(1.13)
with a real, symmetric, positive and non-singular kernel A, z,,57(¢). Then the functional integral
over 7, (7, Z) in the vacuum to vacuum amplitude is gaussian and can be performed explicitly. More
generally, if the O4 only depend on the fields ¢, and not on the m;, one can also perform the D,
-integration in (1.11). Before giving the result it is useful to recall the following remark on gaussian
integrations.

Let f(x) be a quadratic form in 2%, i = 1,... N, i.e. f(z) = %miaijxj + bz’ + ¢, with a real, symmetric,
positive and non-singular matrix a. Then by straightforward computation (“completing the square”)

/dei e 7@ = 2m)N/2 (det a)~1/? ezbila™)bj—c (1.14)

Now the exponent %bi(a_l)ij bj—cis just —f(xo) where z is the value which minimizes f. Indeed, 0f/0x* =
a;;z? + b; and hence zf) = —(a=1)¥b; and f(xo) = ¢ — 1b;(a™1)¥b;. This is just the statement that for a

gaussian integration the saddle-point approximation is exact. Indeed, expanding f(x) around its minimum

we have f(z) = f(z0) + 3(z — 20)%a;j(x — o)’ from which follows immediately

/ [[dz" e 7@ = (2m)"/2(det a) ~/2e~/(70) . (1.15)
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We now apply this remark to the quadratic form given by

o0

/_ T [ / &z doh(r, Bymi(7, &) — H(W(r, D)n (T, :z))] : (1.16)

with H given by (1.13). Note that for the second term there is a double integral d3z d3y but only
a single dr integral. We rewrite everything as full 4-dimensional integrals by adding a §(7 — 7’).
Hence the corresponding kernel is A,z mg(¥) = 0(7 — 7') Ay z.mi(¢). The saddle-point value of 7
extremizing (1.16) is the solution 7; of dytpy; = g—g. But evaluating [ d3z >, doym — H (¢, m) at
m = 7 is exactly doing the (inverse) Legendre transformation that gives back the Lagrange function:

[ e S o, 800) - Hln m,000) = Ll o) = [ oLl D). (117
1

Putting everything together we find for Hamiltonians that are quadratic in the 7:
(vac, out| T{OA(\IJ(tA, 74)) Op(V(tp, p)) . .. } Ivac, in)

= N2 / [IDwi (Det 2miA@)]) ™ Ou(¥(ta, 7a)) Op((ts, Tp)) ... x

X exp {@ / 'z L (), Dutin()) + ie—terms} | (118)

A few remarks are in order:

e The overall constant |[A|? drops out when computing amplitudes that do not involve “vacuum bub-

bles”, which is achieved by dividing by (vac, out |vac, in). This is the case in particular for the
connected n-point amplitudes. Most of the times, this is implicitly understood, and we drop this
factor, as well as other overall constants. Similarly, if A is field independent, Det [27i.A(¢))] is a con-
stant and can be dropped. Moreover, even if it is field-dependent, it can be replaced by Det [27iA(¢)]

x (Det [2mi.A(0)]) !, which may be easier to handle.

o If Ais field-dependent, e.g. Ay zmy (V) = um (¥(2)) 6D (2 —1y) it gives a contribution to an “effective
Lagrangian”. To see this note that

DetA = exp [Trlog A] . (1.19)
A is the quantum-mechanical operator whose matrix elements are
(@,n] Aly,m) = Angmy() = nm($(2)) 8 (2 — y) = anm(¥(2)) (@ y) , (1.20)
with a(¢(x)) an ordinary matrix-valued function. It follows that
(wnllog Aly,m) = (loga(b(x)),,, (ly)
= Trlog A = /d4:U (x,n|log Alx,n) = /d4:U tr (log (v ())) (z|z) , (1.21)

where tr is an ordinary matrix trace over the indices n = m, and (z |z) = 6(¥)(0) is to be interpreted,

as usual, as f % (which is divergent, of course, and has to be regularized and renormalized). Thus

DetA:epr/ (S;‘;]))4>/d4x tr(loga(w(x)))] , (1.22)

which can indeed be interpreted as an additional contribution to the Lagrangian.
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e As just mentioned, one encounters diverging expressions and there is the need to regularize and
renormalize as will be extensively discussed later-on. Actually, the need to renormalize occurs in any
interacting theory, whether there are divergences or not. In particular, the fields that appear in the
Lagrangian in the first place are so-called bare fields v g. They are related to the renormalized fields

Y, by a multiplicative factor, ¥y p = \/Z; %y gr. For the time being, it is understood that the fields
iy are bare fields, although we do not indicate it explicitly.

e In the presence of constraints, e.g. if some of the fields have vanishing canonical momentum, the
corresponding m; are absent in the Hamiltonian. Integrating over these m; when deriving (1.18) formally
still gives the r.h.s. of (1.18) but with the Lagrangian missing certain auxiliary fields. This can be
cured by adding in the Hamiltonian formulation a constant factor which is an integral over the auxiliary
fields. In the end one recovers (1.18) with the full Lagrangian.

e Functional integrals for anticommuting fields (fermions) can be defined similarly. The relevant formula
for fermionic gaussian integrals is

/szw exp (EMz/; + M) +@n) = N Det M exp ( — ﬁM*ln) . (1.23)

The power of the determinant is positive rather than negative because the integration variables are
anticommuting. Furthermore, it is +1 = 2 X % because the fields 1 and v are to be considered as

independent fields (just as bosonic ¢ and ¢! are considered independent). Another difference with the
bosonic case is that the Hamiltonian is not quadratic in the momenta (they are anticommuting, too),
e.g. for the Dirac field the free Hamiltonian density is H = —my°(y/ 0; + m)1, where m = —y0. As
a result, to pass from the Hamiltonian formalism to the Lagrangian one, one should not integrate the
7 but only rename ™ = —1y". The analogue of our bosonic formula (1.18) for Dirac fields is

(vac, out| T{@A(q/(tA,fA),@(tA,fA)) Op(U(tp, @p), U(ts, @p)) ... } Ivac, in)

_ WP/HDW% Oa(P(ta, a), D(ta, 7a)) Op(V(ts, T5), b(ts, i5)) ... x
I
X exp {z [ / d*x L, 4, 0,) + ie—terms] } . (1.24)
1.2.3 Propagators
The free propagators — or simply propagators — are defined as
—iAp(z,y) = (vac, out| T'(V,(z)Uk(y)) |vac, in) |no interactions - (1.25)
They are not to be confused with the “complete propagators” (denoted A’)
—iA} (2, y) = (vac, out| T(¥;(z)¥(y)) [vac, in) | (1.26)

to be discussed later on. Recall that in a free theory we do not need to distinguish between the
Heisenberg picture and interaction picture field operators ¥,;(z) and ¢;(x). Evidently, the free prop-
agators are determined by the free part of the action, i.e. the part of the Lagrangian density that is

quadratic in the fields. Hence, the computation of the propagators reduces to computing a Gaussian
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integral. As before, we consider the bosonic case where the free action is of the form?

/d4:v Ly = —% /d4:z: d*y Zz/}l(x)l?l,l/(x,y)wl/ (y) . (1.27)

L

For a hermitean scalar field e.g. D(z,y) = (—0"8, +m? —ie)0™(z — y). The general formula (1.18)
(with A = 1) gives

—iAp(z,y) = N /HDm/ Ui(x) Yr(y) exp {z’/d% Eo} ) (1.28)
l/
In a free theory one has
1 = (vac, out |vac, in) |no interactions = N /Hle/ exp {i/d% EO} , (1.29)
l/

which allows us to rewrite

—itn(e,y) = LI DU OB e (3] S o} (130

le, D’QDZ/ exp {Zfd4l'£o}

Actually, in a free theory, it is not much more difficult to compute the n-point functions:

<VELC, Out| T(\Ijll (‘Tl) R ‘Ijln (In)) |VaC, 1H> |no interactions
_ 11, DYv iy (x1) - ..y, (@) exp {z [ d*x Eo}
le, Dy exp {ifd4$ ﬁo}

1 . 0 0
= (ZO[O]) (—4)" 8Jy, (z1) 8y, (Tn)

ZolJ]| (1.31)

J=0

where

Zo[J] = / Hw,, exp {z / d*z [Lo(x) +Jl(x)wl(:c)]} : (1.32)

(One should not confuse the generating functional Zy[J] with the field renormalization factors Z;.)
With the quadratic £, given by (1.27), the integral is Gaussian and one gets
D\ ~1/2 iy .
ZolJ] = (Det [%D exp | 5 d*zd*y Ji(2)Dy (x,y) Jk(y)

i
= Zy[0] exp (§/d4xd4y Jl(:t)Dl_kl(a:,y)Jk(y)) . (1.33)
We then get for the free propagator

1 0 )

—i8u(e,y) = (1) (Zl0) " 5757

2| =Dy () . (1.34)

J=0

' As already mentioned, for the time being, our fields are bare fields. Indeed, the fact that the quadratic part of the
action equals the free action is true for the bare fields with a bare mass parameter, while for the renormalized fields
the quadratic part of the action contains the “free” part determining the free propagator, as well as a counterterm
part which is at least of first order in the coupling constant. This will be discussed in detail in section 2.
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or

Alk(l‘,y) = (D_l)lk(I,y) . (135)

From translation invariance one has Dy ;(z,y) = Dyp(x—y) = [ (d 1)’ eP@=Y)D, 1.(p) so that the inverse
operator (D71);x(x,y) is given by the Fourier transform of (D~1);.(p), which is the inverse matrix of

Dy (]9)3

dip .
Au(a) = dula =9) = [ RO (136)
For the scalar  field  with  D(z,y) = (=010, + m? — ie)dW(x — vy
PE=Y)(p? + m? — ie) this leads to A(z —y) = [ ((21 glglp(m*y)m.

1.3 Green functions, S-matrix and Feynman rules

1.3.1 Vacuum bubbles and normalization of the Green functions

It is a most important result that the mn-point Green functions Gi;‘)"l"(xl,...,xn)

= (vac, out| T[‘I/ll(:vl) . \Illn(xn)] |vac, in) (where the W; are Heisenberg picture operators of the
interacting theory) are given by the sum of all Feynman diagrams with n external lines terminating
at x1,...x,. We will now derive this result and at the same time obtain the Feynman rules from the
functional integral formalism.

It will be useful to consider “normalized” n-point Green functions (or simply n-point functions)
obtained by dividing by the 0-point function:

N (vac, out| T'| ¥, (x1) ... ¥, (z,)| |vac, in)
Gl (o) — 1 | (137

(vac, out |vac, in)

Obviously, if the fields are bare fields, this is the so-called bare n-point function G B(n), While if
the fields are renormalized fields, this is the so-called renormalized n-point function G R(n)- Since
U, p = \/Z; ¥ r one simply has

@g(é’)l (T1,. .., Tp) = [H V7, @%(Tf’)”‘ (T1,. .., x) - (1.38)
r=1

For the time being, we will concentrate on the bare n-point functions, although we will not indicate
it explicitly.
We use the functional integral representation of the numerator and the denominator? in the

Lagrangian formalism and obtain

fpw ¢l1 (I1> P 77Z}ln ({L’n) eifd4xﬁ(x)
f’Dip et [ diz L(z)

Gtz my) = (1.39)

2In the following we simply write D instead of [] 1 Dy
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Note that the normalization constant |N|* has been eliminated when dividing by
Sacwac = (vac, out [vac, in) = |N|? /D@b et/ deL@) (1.40)

In the absence of time-varying external fields Syac vac 1s just a number. Contrary to a free field theory,
however, in general this number is not just 1. Recall the definition of the in and out states: |vac,in)
is the state that resembles the vacuum |0) of particles without interactions if an observation is made
at t =& —oo. Recall also that the separation of H into Hy and V' must be such that H and Hy have
the same spectrum. In particular, H |vac,in) = 0 and Hj |0) = 0. Hence |vac,in) cannot contain any
particles that would necessarily contribute a positive energy. We will suppose that the vacuum is
unique® and stable, so that there are no transitions {(«, out |vac,in) for any « # vac. (For a unique

vacuum, this follows from energy conservation.) Hence,
Sa,vac = Svac,vac 5a,vac . (1'41>
Unitarity of the S-matrix implies

1= Z |ch,vac|2 = |‘S(vauc,vam|2 = Svac,vac = <VaC7 out |vac, in> = ei%ac . (142>
a

It is instructive to compute Syacvac in perturbation theory and verify that it is a pure phase. Indeed,
Svacyac = (0] T exp (—z’ [ d*z ’Him(q:)) 0), which equals 1 plus all Feynman diagrams without external
lines, cf Fig. 1. One can convince oneself that the sum of all such diagrams equals the exponential
of the connected diagrams only:

Svac,vac = €XP [sum of all connected vacuum-vacuum diagrams (1.43)

In such a diagram, every propagator contributes a —i, and each vertex also gives a factor —i (since

l+®+®+®+@
00 @ Q@ -
:”YXCD +®+@+®+...

Figure 1: Syacvac is given by the sum of all vacuum bubbles which equals the exponential of the sum
of all connected vacuum bubbles.

3In many theories with symmetries, the vacuum is degenerate. In this case the present discussion is slightly more
complicated but can be adapted accordingly.
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Hing is real, but the vertex equals —i times the numerical factor). Finally, each loop contributes an i
due to the Wick rotation (to be discussed below). If we let I be the number of internal lines, V' the
number of vertices and L the number of loops, this yields a total factor

(=) (=)t = ()Y = ()", (1.44)
where we used the diagrammatic identity
I1-V=L-1, (1.45)

valid for each connected component of a diagram. Thus, every connected vacuum-to-vacuum diagram
is purely imaginary and Syacvac is indeed pure phase.

What is the effect of normalizing the Green functions as in (1.37), i.e. of dividing by
(vac, out |vac, in) ? Suppose the numerator in (1.37) is given by the sum of all Feynman diagrams
with n external lines (including propagators) terminating at x1, . ..xz,. This sum then corresponds to
connected and disconnected diagrams. The disconnected diagrams, in particular, contain diagrams
with vacuum-bubbles. There may be 0,1,2,... vacuum bubbles. It is easy to convince oneself that
the sum of all diagrams is the product of a) the sum of diagrams without vacuum-bubbles and of
b) 1 plus the sum of all vacuum bubbles, i.e. of Syucvac = (vac, out |vac, in). Thus @(n) as given by
(1.37) should exactly be the sum of all diagrams (connected and disconnected) with n external lines
(with their propagators) not containing any vacuum bubbles:

CAJZ(Z)“Z”(ml, ...xy,) is given by the sum of all Feynman diagrams with n external lines
(with propagators) terminating at 1, ..., and not containing any vacuum bubbles.

(1.46)

This is the result we will show starting from the identity (1.39). Actually, this result applies both
to the bare and the renormalized Green functions, provided one uses the Feynman rules with bare
propagators and interactions in the first case, and renormalized propagators and interactions (and
counterterms) in the second case. This will become clearer in section 2.

One can also rewrite @(n) in a simpler-looking way. Indeed, still assuming a non-degenerate

vacuum, |vac, in) and |vac, out) only differ by the phase factor e as is easily seen from (1.41) and
(1.42):

|vac,in) = Z |, out) (v, out |vac, in) = Z v, 0ut) S vac = €77 |vac, out) . (1.47)
It follows that for any O;erator or product of operatoars M one has
<V?\fa§1§1’1’cﬂ\/[\7 LV:?;? — Q| M[Q) = <§‘ M ‘ﬁ> . 19) = |vac, in) | ‘ﬁ> — |vac,out) , (1.48)
and hence
Gl (@1, sa) = QT |0 (1) 0 (@) 19) = (T [ W (20) 9, () bvee - (1.49)
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1.3.2 Generating functional of Green functions and Feynman rules

Just as we defined Zy[J] for a free theory, eq. (1.32), the generating functional for the interacting
theory is defined by

_ /mp exp {z‘/d‘*x [£(x) +Jl(x)wl(:v)]} : (1.50)

Equation (1.39) can then be written as

1 .6 5
Z[0] (=9) 5T (x1) 6 ()

Gl (zy,. . wy) = Z1J] (1.51)

J=0

We see that indeed Z[J], or rather Z[.J]/Z[0], generates the n-point Green functions G (n) Dy successive
functional derivatives. Conversely, the @(n) appear as the coefficients in the development of Z[J] in
powers of the J:

Z o /d4x1 d*z, Gl1 l"((xl, ey Tp) By (1) - i, () (1.52)

To make the relation with the Feynman diagrams, recall that the sum of Feynman diagrams corre-
sponds to a perturbative expansion in the coupling constant(s). So let us compute Z|[.J] in pertur-
bation theory. To do so, separate

L(¥(x), 9 (x)) = Lo(¥(2), 9t (x)) + Line (¥(2), Outb(2)) (1.53)

with the free Lagrangian Ly given by the quadratic part, cf. (1.27), and develop el Lint in a power
series.* Hence

217 = /D¢Z - /d4x[,mt(1/1( ). 00(@)| exp {i/d4x [Lol) + i)t ()]}

N NZ::OEV_N[ / A" L (- 5J5(x)’_28“5J5(x / Dy exp / v [Lo(x) + Ji(@)u(@)] |
— Ni;oj\]; [/d4x£int(—i%(x),—iaﬂ%(x))} Zo[J] . (1.54)

Zo|J] is the generating functional of the free theory computed before, cf. eq. (1.33) with D! equal
to A

2] = 20 e (5 [ oty ae)dute i)
= Zo[0] exp (%/d%d‘ly (iJl(x))(—iAlk(x,y))(iJk(y))> . (1.55)

4As it stands, this applies to the computation of bare Green functions. To compute the renormalized Green
functions, one simply takes the corresponding £y while including all counterterms into L;,t, even the quadratic ones.

The bare and renormalized generating functionals then are the same provided one also defined Jp,; = Zl_l/ 2 R,l SO
that Jp1¥B1 = Jr ¥R,
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We see that —id/§J(x) acting on Zy[J] yields a propagator —iA(z,y) “attached” to a vertex at x
(times 4.J(y) and integrated over d*y). There are as many propagators attached to a vertex at x as
there are fields in Ly (z). All propagators are attached to some vertex or to an “external” i.J(z;).
Obviously, a term of given order N in (1.54) corresponds to a diagram with N vertices. It is also
not difficult to work out that the combinatorial factors accompanying a diagram are the usual ones.
Hence, Z[J] is the product of Zy[0] and the sum of all Feynman diagrams with an arbitrary number
of external lines at the end of which are attached the factors i.J(z;) (integrated d*z;).

Let’s look at an example. Take a hermitean scalar field with an interaction L;,; = —%gb‘l, and
compute Z[J] up to first order in g, meaning we only keep the terms of order N =0 and N =1 in
(1.54):

Z(g)[J] — ZO[O]{l _ 225;4 d4x ( — iéj(zx))4} exp (% f d4£Cd4y (’iJl(Q?))(—’iAlk(ﬂU, y))(ka(y)))

_ ZO[O]{l —id [ d'

(/d4z(—z'A(q;,z)z'J(z))4—|—6(—iA(:c,a:)(/d4z(—z’A(:z:,z)z’J(z))2

+3(—iA(SU,:L‘))2]} exp (3 [ d*ad*y (idy(z))(—iAuw(z,y)) (i J(y))) -
(1.56)

First, take J = 0. At order g there is only one term and:

Z9[0] = Zo[o]{1 - i%/d%(—iA(z,x))z} (1.57)

The term of order g corresponds to a single vertex with 4 lines, joined two by two (two loops). This
is a vacuum-bubble diagram. The factor —%g is in agreement with the usual combinatoric factor: the
vertex gives a factor —ig and the symmetry factor is % X % X % = %. More generally, Z[0] is the sum

of 1 and all vacuum-bubbles.

If one first takes the derivatives 50 J‘(le)) TG J((S:r:n)) of Z[J] and only then sets J = 0, one generates
a sum of products of propagators (—iA) attached either to the external z; or to internal Z; of vertices
which are integrated. One sees that each vertex contributes i times the numerical factors in Ly,
and the symmetry factors again are automatically generated. As explained above, this sum of all
diagrams factorizes into a sum of diagrams without vacuum bubbles and the sum of 1 plus all vacuum
bubbles. Thus, dividing by Z[0] exactly eliminates these vacuum bubbles and we have shown (1.46)
for the n-point Green functions @(n) as defined by the functional integral (1.51).

Let us come back to the example of the scalar theory with Ly = —%qﬁ‘l. Here, we get for the
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4-point function up to order g:

+6(—iA(x, ) 2(—iA(z, 1)) (—iA(x, 22))(—iA(x3, 24)) + 5 permutations| . (1.58)

The two terms correspond to the two diagrams shown in Figure 2.

X )(1

+ + g PQVWK'('G‘Efm;

X3 Xy Xy X,
Figure 2: Diagrams corresponding to (1.58).

Loop-counting : It is sometimes convenient to introduce a loop-counting parameter A by replacing

the action S — %S and J — %J . This multiplies all vertices by % and all propagators by A. Each
external line also gets a factor % from the % Thus external lines get a net factor \°, and the overall

M=V = X~C where [ is the number of internal lines, V the number of

factor of a diagram is
vertices, L the number of loops and C' the number of connected components of the diagram and we
used (1.45). Thus for fixed C, X is a loop-counting parameter. In particular, a connected diagram is
accompanied by a factor A’~!. Note that the exponent in the functional integral is %(S + [ J) if one
does not use units where 2~ = 1. One sees that A is a loop-counting parameter, and the limit A — 0
isolates the diagrams with L = 0, i.e. tree diagrams. In this sense, tree amplitudes are referred to
as classical, while loop corrections are quantum corrections. Note also that taking into account the

tree and one-loop diagrams often is referred to as semi-calssical approximation.

1.3.3 Generating functional of connected Green functions

The n-point (n > 0) Green functions é(ﬂ) (x1,...,2,) without vacuum-bubbles contain the impor-
tant subclass of connected n-point Green functions GE’;)(%, ..., Zy). They can be defined by an

algebraic recursion relation: by definition Gg)(:v) = @(1)(33) and then G(Cz) (x1,29) = @(2) (1, 29) —
G(Cl)(xl)G(Cl)(xz), etc. One can show that this is equivalent to G(Cn)(:vl, ..., Ty) being the sum of the
corresponding connected Feynman diagrams. The algebraic recursion relation is best summarized

as a relation between generating functionals. Let iWW[J] be the generating functional of connected
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Green functions, (cf. Fig. 3)

iW[J 0] + Z . /d4x1 T, Gi)ll“'l” (1, oymy) iy (x) . iy, () - (1.59)

W (0B + o[-0 -0e ) 4y s o |
e D=

+ ...
Figure 3: W[J] is the generating functional of connected Green functions.

We separated the part i14[0] which corresponds to connected 0 point Green function, i.e. to connected
vacuum-bubbles. Note that for n > 1, the Gg cannot contain vacuum-bubbles. As one sees from
Fig. 3 or the definition (1.59), the connected full propagator is given by
) )
. _ C . .

_ZAlc(xvy) = G(2)<J],y) =t 5J(IL’ m
Consider now exp (1W[0]) = 1+ iW[0] + 2(W[0])" + .... Here, iW[0] contains all vacuum-bubbles
with a single connected component, while %(I/I/[O])2 contains all vacuum-bubble diagrams with two

connected components (the factor % is the appropriate symmetry factor for those diagrams having

W[J}‘JZO = WD (z,y) . (1.60)

N —
(o2

two identical components, while it is compensated by a factor 2 for the product of two different
components), etc. Hence, exp (ZW[O]) is the sum of 1 and all possible vacuum-bubble diagrams,
connected or not, i.e. it equals Z[0]. In the same way one sees that exp (ZW[J]) equals 1 plus the

sum of all diagrams, connected or not, i.e. Z[J] :

Z[J] = exp ((W[J]) . (1.61)

Let’s look at the example of connected 1- and 2-point functions. As already noted, the 1-point

function without vacuum-bubbles is necessarily connected:
Gy(z) = GG)(2) . (1.62)

Next, the relation (1.61) indeed leads to the correct relation between the 2-point functions (without

~

vacuum-bubbles) Gy and the connected 1- and 2-point functions GC and GC :
4] J ; B J J

0(iJ)(x) 5(217)( ) J=0 6(iJ)() 5( J)(v)

A2V, ~ (s 21|,

Z[7] 5(iJ)(x) 6(zJ I Zl sen@ 2

= Gulz,y) - G(1 () Gy (y)

= Gpl(,y) - Giy() Gy (y) - (1.63)

GG (. y) Wm] log Z1J]|

J=0

(Z[J} 5@ (y) ZM) ‘J:O
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Loop-counting : If one introduces the loop-counting parameter as before, one also has W[J] =
T o AW, where Wi [J] is the L-loop contribution to W[J]. In the limit A — 0 one iso-
lates the contributions of the tree-diagrams. On the other hand, in this limit, one can evaluate

the functional integral in a saddle-point approximation (stationary phase) and then the integral is
dominated by those 1; that solve % + J; = 0. It follows that
Wald] = S[us) + [ eyl ia) (1.64)

i.e the tree contribution Wy[J] is the (inverse) Legendre transform of the classical action.

1.3.4 Relation between Green functions and S-matrix

The basic quantity in particle physics is the S-matrix from which measurable transition rates like

cross-sections and life-times can be extracted. The S-matrix elements are defined as
Ssa = (B, out|a, in) | (1.65)

and give the transition amplitudes between the in-states |« in) and the out-states |3, out). Here,
a and f are short-hand for a complete collection of momenta p;, helicities o; and (anti)particle
types n; describing the state. Recall that the in-state |o, in) = |p1,01,n1;p2, 02, n9;...10) is a
(time-independent Heisenberg-picture) state that looks, if an observation is made at ¢ — —oo, as
a collection of non-interacting particles with momenta p;, helicities o; and of type n;. A similar
definition holds for the out-states with t — +oo.
To relate the S-matrix elements to the Green-functions, we first define the Fourier transform of
the latter as
Gl (pry - pa) = / Aoy .. dhe, e X P Gt (2, Ly (1.66)

with all momenta p!’ considered as entering the diagram. These momenta are off-shell and are those
of the propagators associated with the external lines. S-matrix elements are computed between on-
shell external states, i.e. precisely at those values of the momenta where the external propagators

of the Green functions have poles. We will see in the next sections, that loop-corrections to the

free propagators shift the pole from p?> = —m?% (mgp is the bare mass entering the Lagrangian) to
p? = —m?, where m must be interpreted as the physical mass. Thus the full propagators have poles
at p> = —m?2. To get a finite result for on-shell external states, one obviously has to remove the full

external propagators. This can be done by multiplying with the inverse full propagators i(A’)™!.
The result is called the amputated n-point Green function, cf. Fig. 4.

Gl (o1, pa) = | H(A) " (0))

1

Gl (b pa) (1.67)

J

Again, this definition holds with all Green functions and full propagators being the bare or renor-

malized ones.
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py—= Py

P]/ P

Figure 4: n-point Green function (left) and corresponding amputated n-point Green function (right)

It can be shown that the S-matrix elements are obtained from the on-shell amputated renormal-
ized Green functions simply by multiplication with the appropriate “wave-functions” of the initial
and final (anti)particles. More precicely, to obtain the S-matrix element with r (anti)particules in
the initial state and n — r in the final state : (i) take the corresponding amputated renormalized n-
point Green function (with ¢ for any initial particle or final antiparticle and ¢ for any final particle
or initial antiparticle), (ii) take the p; on-shell for the initial (anti)particles, and similarly the —p,

on-shell for the final (anti)particles, (iii) multiply with the appropriate wave-function factors Zéfr 1)30/2)
etc., that enter in the expansions of the corresponding free fields. Thus
e UZ@}%)/“I;@}‘%) " uli(pi,ai)/vl”;(pi,ai)
Py,00,mY . 5p1,01,m0,. H (27'(')3/2 H (27'(')3/2
J=1 =1 (1.68)

Sl
XG};(n,amp) (pla"'pra_p,la"' _p;—r> .

It follows from (1.38) that A%y = Z A/, and, combining with the definition of the amputated Green
function (1.67) one immediately sees that

Gll rlznamp) (pla .- 'pn) = Gll inamp) (ph .- -pn) . (169)

- Z_,l/Q
Hz

Thus we can rewrite the relation between the S-matrix elements and the amputated Green functions

in terms of the bare amputated Green functions as

_ pj? )/vll(p]7 _]) T ull(plyo-z)/v*(p’uo-z)
Sp/ 70-/ 7n/ yeesP1,01,100 ... H Zl/ H ll le
1:91,1 27T 3/2 j (271')3/2
=1

=1

(1.70)

iyl
X Gé(n’amp) (p1,---pry =D, — DL _,)

It is in this second form that the relation, first derived by Lehman, Symanzik and Zimmermann, is
usually referred to as LSZ reduction formula. However, (1.68) has the advantage of expressing the
finite S-matrix elements solely in terms of renormalized quantities that have a finite limit as the

regularization is removed.
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1.4 Quantum effective action

1.4.1 Legendre transform and definition of I'[¢]

We already defined the generating functional Z[J] of Green functions and the generating functional
W1J] of connected Green functions. They correspond to the sum of all Feynman diagrams and of
connected diagrams only. Connected diagrams are more basic since all diagrams can be constructed

WL Here we will define yet another

from them. The algebraic relation was simply Z[J] = e
generating functional T[] that generates an even smaller subclass of connected diagrams, namely
the one-particle-irreducible diagrams, or 1PI for short. A 1PI diagram is a connected diagram that
does not become disconnected by cutting a single line. (There is a slight subtlety with this definition
for the 1PI 2-point diagram to be discussed below.) Since a tree diagram becomes disconnected by
cutting a single line, tree diagrams are not 1PI. A one-loop diagram with the external propagators
removed always is 1PI. Higher-loop diagrams may or may not be 1PI. For n > 3, a 1PI n-point
diagram is also called an n-point proper vertex.

The functional I'[¢] is defined as the Legendre transform of W[J]. First, let
) ) 1 )
¥ = = —1 log Z = —1 A . 1.71
@) = 57V = ~igr s = g5 (- igrm 2) (a.7)

The expression on the r.h.s. is similar to the one-point Green function without vacuum bubbles

(which is the connected one-point function) é(q)(x) = Gg)’r(a:) except that we have not set J = 0.
Not setting J = 0 amounts to keeping the additional interaction terms ¢"J,. in the Lagrangian. Thus
@7 () is the connected one-point function in the presence of the additional interactions generated by
the sources. This is also called the vaccum expectation value of the corresponding Heisenberg field

®" in the presence of the sources J:

(vac, out| ®"(z) |vac,in)

¢l () = (27(2))vac, s = (2 2"(2) [?) (1.72)

(vac, out |vac,in)

One can invert the relation ¢’ (z) = #(I)W[J ] to get J,(z) as a function of ¢"(z). More precisely, for
every (c-number) function ¢"(x), we let j,-(x) be the (c-number) function such that ¢’;(z) = ¢"(r) if
Jr(x) = jor (), i.e. jor(x) is the current such that the vacuum expectation value of ®” equals ¢"(z).

We can now use ¢ as variable® and define the Legendre transform of W as

el = Wil = [ d (@) (o) (173
I' is called the quantum effective action. Let us show why: one has

1) . 4, 5j¢r(l‘) 5W[j§0] . B iy (e 5jw(x)
s _/d 5o (y) 3 () VoY) /d Ay (1.74)

Now
Wlj,] — W[J]

8jor () 6 (2)

= ¢'(x), (1.75)

J, = j<pr

°Since Jp s = Zs_l/ZJR,S one obviously has (¢%)s = vV Zs (¢5)r and thus also ¢% = /Z, ¢%.
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so that the first and third terms in (1.74) exactly cancel. Hence,

5
6p*(y)

Ple] = s (y) - (1.76)

O[]
5 (y)
means that the vacuum expectation values of the ®"(z), in the absence of any current, equal ¢"(x).
olfe] _
s (y)
0, i.e. be stationary points of I'[¢]. This shows that I' can indeed be interpreted as some quantum

Suppose that for a given function ¢ one has

= 0, i.e. the corresponding j,- vanishes. This

Conversely, the vacuum expectation values of ®”, for vanishing current, must be solutions of

action.

Note that the preceding careful discussion usually is simply summarized as

ow or
=" =—J Llp] = W[J] — [ d*z¢"(x)J, 1.
S mm k. T =W - [deg @ (1.77)
Note also that all these manipulations involving functional derivatives %, %, etc remain valid for

fermionic fields and sources, provided one correctly uses left or right derivatives, paying attention to

the order of the fields. Thus one should define e.g ?le/ = ¢" and ‘;LTE =—J,

1.4.2 T[p] as quantum effective action and generating functional of 1PI-diagrams

The interpretation of I'[p] as quantum effective action is confirmed further if we recall that in the
classical limit, i.e. at tree-level, W[J] is just the inverse Legendre transform of the classical action, cf.
(1.64). Since I'[¢] is the Legendre transform of W[J], it follows that, in the classical limit, I'[¢] just
is the classical action. Thus I'[] equals the classical action S[¢| plus quantum-, i.e. loop-corrections.
Actually, in a sense, I'[p] captures all loop effects since one has the following property:

One may compute iW[J] as a sum of connected tree diagrams with vertices and propagators
determined as if the action were I'[¢] rather than S[g].

To prove this, let us proceed as for the loop-counting above: we compute the generating functional
of connected Green functions Wr[J, \] using as action I'[¢] and having divided I" and J by A:

exp {in[J, )\]} - /quexp{%(ﬂgzﬁ] +/d4x¢T(:U)JT(x))} . (1.78)

If one does a perturbative (Feynman diagram) expansion of Wr[J, A], the propagators are given by
the inverse of the quadratic piece in g and hence contribute a factor A, while every vertex gets a
factor % as does an external line. This yields an overall factor A'=V = A~! where L is the number
of loops. Thus the loop-expansion of Wr[J, \] reads

WelJ A =Y AW A =1] (1.79)

L=0
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One isolates the tree graphs (L = 0) by taking the limit A — 0: limy_,o ()\WF[J, )\]) = WF(O)[J, A=1].

But z'WF(O)[J, A=1]= iWF(O)[J | is the sum of connected tree diagrams computed as if the action were
[[¢]. On the other hand, in the limit A — 0, one can use the stationary phase (saddle point) to
evaluate (1.78) and get

exp{%WF(O)[J]} ~ exp{ ( (6] + /d4x¢§(x)Jr(x))} where or

5 =—J. (1.80)

¢=¢J

There is some constant of proportionality which has some finite limit as A — 0 and which contributes

an order \° piece to the exponent, but nothing at order % We see that WF(O) is the (inverse) Legendre
transform of I. On the other hand, the (inverse) Legendre transform of I is the ordinary W[.J]. We
conclude that

wiJ) =w (1.81)

and the full generating functional of connected Green functions is indeed given as a sum of connected
tree diagrams computed with propagators and vertices taken from the effective action I'.
If we let

Z —~ /d vy dia, T (2, x) @ (@) T () (1.82)

the I'™ for n > 3 are the so-called proper vertices, and the complete (connected) propagators

G(%)(x, y) are given (cf. (1.27) and (1.35)) by —z(—l"@))f (x,y). This can also be seen more formally
as
J J J
C,r,s . _ s
J J J
I (x,y) = Mol =—————7.(y) . 1.83
S0V = @ A @Y (1:59)
It follows that
GG = —iA =i(P@) (1.84)

Since an arbitrary connected diagram is obtained once and only once as a tree diagram using these
complete propagators and proper vertices, the proper vertices must be one-particle irreducible (1PI)
amputated n-point functions:

['[¢] is the generating functional of one-particle irreducible (1PI) diagrams.

As an example, consider a hermitean scalar field. The full propagator is of the form —iA'(p) =
—i(p? + m? — II* (10))_1 so that I'®(p) = —p? — m? + II*(p). Clearly, —p*> — m? is the contribution
from the quadratic part of the classical action and IT* contains the loop-contributions.

A few remarks:
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e In later sections, we will be much concerned with possible divergences occurring in loop-
diagrams and their cancellation by counterterms. Since a tree diagram is never divergent
if the vertices and propagators are finite, it is clear that any diagram will be finite if the '™
are. Hence the issue of renormalisation can be entirely discussed at the level of the I'™). More
precisely, one can expand I' in powers of the bare % or of the renormalized (% related by the
same relation as the fields ¥ g and g, namely

©B=VZs¥r (1.85)

implying

RQ rgﬂmmm (T1,...,x0) (1.86)

B rl.urn('rlv s ,ZEn) -

- Z;1/2

The Fg) and Fgg) are called the bare and renormalized n-point vertex functions. The vertex

functions that should be finite after removing the regularization are the Fg‘).

e Quite often one encounters a somewhat different notion of effective action: in a theory with
two sorts of fields, say ¢ and v, one might only be interested in Green functions of one sort
of fields, say the ¢. This happens in particular if the other sort corresponds to very heavy
particles that do not appear as asymptotic states in a scattering experiment, though they still
do contribute to intermediate loops. Let S[¢,v] = S1[¢p] + S2[¢] + S12[¢, 1]. We only introduce
sources J for the ¢ and define

21 = /D¢Dwexp {z(5[¢, w]+/ qﬁ’”Jr)} _ /D¢exp {¢(51[¢]+W[¢]+/ ¢’“Jr)}, (1.87)

where

exp {i171]} = / Duexp {i(Sa[u] + Sualo,]) } (1.88)

Then, for reasons that are obvious from (1.87), Si[¢] + W[¢] is referred to as the effective
action for the field ¢ obtained after integrating out the field ¢. Note that often W[(b] still
allows to obtain certain Green function of the i-field. Suppose e.g. that the coupling between
the two sorts of fields is Sia[¢p,¥] ~ ¢F(¢). Then, by taking functional derivatives of WM
with respect to ¢ one generates vacuum expectation values of time-ordered products of the
F (V). A standard example is spinor quantum electrodynamics with ¢ playing the role of the
fermions and ¢ of the gauge field. It is relatively easy to integrate out the fermions since they
only appear quadratically in the action. This yields a determinant which can be exponentiated
into W and is interpreted as a single fermion loop with arbitrarily many gauge fields attached.

e There is a different, sometimes more direct way to compute the quantum effective action I'[¢]:

exp (iI[¢]) :/ D¢ exp (iS[e + ¢]) , (1.89)

1PI only
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where the subscript “1PI” instructs us to keep only 1PI diagrams in a perturbative evaluation

of the functional integral. To see why this equation is correct, it is best to look at an example.

Consider a scalar ¢*-theory with S[¢] = [(—1(8,0)> — = ¢* — L¢*). Then
Slo+d) = Sliel+ [ @p-mto-2¢%0-3 [(@ef+mie?)- [(Gtet+ s+ L6t (190

If one computes the functional integral (1.89) in perturbation theory one sees that (i) S[p] can
be taken in front of the integral, (ii) the (free) ¢-propagator is the same as before, (iii) one now
has vertices with one, two, three and four ¢-lines attached. However, the vertices with only one
line attached cannot lead to 1PI-diagrams and we can drop the term linear in ¢. Thus only the
interactions quadratic, cubic and quartic in ¢ remain and they exactly generate all diagrams
where at every vertex one has either two external ¢ and two internal ¢-lines, or one external
@ and three internal ¢-lines or only four internal ¢-lines. With the restriction to 1PI diagrams
only, the perturbation theory will exactly yield the generating functional of all 1PI diagrams,
connected or not, i.e. exp (zF[go]) It should also be clear that the cubic and higher terms
in ¢ only contribute to two- and higher-loop 1PI diagrams. Thus if we are only interested in
the one-loop approximation to I'[¢] it is enough to keep only the part of the interactions that
is quadratic in ¢. On the other hand, this quadratic part cannot generate any contributions

beyond one loop and the latter are necessarily 1PI. We have in general:

Tl 1eople] . LiS[p 3 4.4 525[90]
efiemlél = el ]/ch exp (2/d oy ol o) cb(y))
—_  ¢iSll o 525[90] e
(D t590(93)590(y)) ’ (191)

with the power of the determinant depending on whether ¢ is bosonic or fermionic.

1.4.3 Symmetries and Slavnov-Taylor identities

Symmetries of the classical action lead, via Noether’s theorem, to conserved currents, at least clas-
sically, and in many cases also at the quantum level. Since the quantum effective action equals the
classical action plus quantum corrections, one might expect that the former shares the symmetries
of the latter. We will show when this is indeed the case.

Suppose that under the infinitesimal transformation

¢ (2) = ¢ = ¢ () + F"(x, ) (1.92)
the action and the functional integral measure are invariant:
Sl =58lg] . Dy =][Ds" =Do=]][Do" . (1.93)

One then has (suppressing the indices r)

Z[J] = /D¢ eiSlel+i [ 6T _ /D¢/ Sl i [¢'T /D¢ S0+ [ (¢+eF)J
= /ng Sl ed —l—ie/FJ) = Z|[J] +i€/DgZ5 /FJ eSletif ol (1.94)
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where we first renamed the integration variable from ¢ to ¢’ and then identified ¢’ with the trans-
formed field (1.92). Hence,

0= / Do / Az F(x, ¢)J,(x) eS0T o7 — 7] / d*x (F"(x))y Jo(x) | (1.95)

for every .J. Recall that 5‘% = —J,,r with J,, such that (®"); = ¢". Choosing J, in (1.95) to equal
this J,,,, we can rewrite (1.95) as

/d4q; (F(x)) s, 5;236) =0. (1.96)

This identity is called Slavnov-Taylor identity. It states that I'[p] is invariant under ¢” — " +
e(F"(x))s,. In general, for a non-linear transformation, (F"(x)), is different from F"(z, ), and the
symmetry of the quantum effective action is different (“quantum-corrected”) from the symmetry of
the classical action. For a linear classical symmetry, one can go further. Suppose now that F"(x, ¢) =
[r(@) + [ Ayt ¢°(y). Then (F'(x)), = [+ [ Ayt (¢°(y))s, = [T+ [ Ayt ¢°(y) = F'(z, 0).
In this case, (1.96) states that I'[¢p] is invariant under ¢"(x) — ¢ = ¢" () + eF"(x, ) :

If the action and measure are invariant under a linear field transformation,
then so is the quantum effective action T'[].

1.5 Functional integral formulation of QED

We will now apply the functional integral formalism to the particularly important example of quan-
tum electrodynamics. We will consider Lagrangian densities of the form

1
E — —ZFIJJVF'LLV + J'U‘A/J, + £matter(\1jl, 8“\IJZ) y (197)

where J* is a conserved matter current (i.e. 9,J" = 0 by the classical Euler-Lagrange equations).
Lagrangians of the form (1.97) include in particular those of spinor electrodynamics, which describe
the coupling of a charged spin % Dirac field to the electromagnetic fields.%

1.5.1 Coulomb gauge

Due to the gauge symmetry A, — A, + J,\ and W' — €4 P! the “naive” canonical formalism
does not apply. In particular, the canonical momenta are IT* = F*° and obviously then IIY = 0 :
Ag has a vanishing canonical momentum. A vanishing momentum is a constraint on the canonical
variables. One has to distinguish so-called first class and second class constraints. The first class
constraints always correspond to a local (gauge) symmetry and can be eliminated by a gauge choice.

6They do not include scalar electrodynamics though, which has couplings ~ (j)Trj)A#A“ or, equivalently, in which
case the current J* depends on A*.
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Possibly remaining second class constraints can be dealt with either by Dirac quantization or by the
functional integral formalism in the way we will see now.

We adopt the Coulomb gauge V - A = 0. This fixes A° in terms of J° and thus eliminates A° and
I1° as canonical pair, hence eliminates the first class constraints. It leaves as second class constraint
the Coulomb gauge condition itself and a corresponding condition on the momenta: V-1, = 0,
where I, ; =II; — 9;A° = Aj. Upon working out the Hamiltonian one finds that it is given by

- = 1 —, — —
H(A,HJ_7\III,PI> = /d333 |:2H3_ + - (V/\A) —J- A:| + VCoulomb +Hmatter(‘;[]lapl) )

1 JO(t, ©)JO(t, ¥)
ooy = | APz OAO:—/d3 dy ’ 1.
VEoulomb / x 2J 5 rdy P (1.98)

where Hatter is the part of the Hamiltonian that does not depend on the gauge field or the II; .

Our starting point for the functional integral formulation is the Hamiltonian formalism. The
two constraints V- A = 0 and V - I, = 0 will be enforced by inserting the factors 1L 5(V-ad) =
[z, (5((6 -a@)(Z,t)) and [T, §(V - 7) inside the integral. (We write a instead of A and 7 instead of
I 1 for the integration variables.) To simplify the discussion suppose the matter Hamiltonian Hyagter
is quadratic in the P, (with a constant matrix Aj;) and that the operators O 4; do not depend on the
P, so that they can be straightforwardly integrated out. Hence”

(T{O40p... })vac
:/DaDﬁHw,Hé(ﬁ ) H5 :7) 04 Op ... X
l T
1 1 -
xexp{ /d T |:7?'8a—§7?2—§(V/\a) +j-6+£mamer} _'i/dtvCoulomb}- (199)

To appreciate the role of the d(...), recall the formula §(f(z)) = >, mé(x — x4) with the z, being
the solutions of f(x) = 0. For N variables z’, this reads 6™ (fi(2)) = 3, mé(m (x¢ — 2%) with
JJZ: = 0f'/0xI. Thus, [[, §(V-a) = mnxé(ag + 95 1(01a1 + D2a2)), and we see that imposing the
Coulomb gauge amounts to eliminating the functional integration over one out of the 3 fields a;(t, %), as
expected. Similarly, the insertion of ], § (67?) eliminates the integration over the corresponding canonically

conjugate momentum.

It is often useful to rewrite a functional ¢ as a functional integral over an auxiliary field, e.g.

H5 (V- 7) /Dfexp{ /d4xf( )ﬁ-ff(:c)} . (1.100)

We will also suppose that the operators O do not depend on the 7. Then the only part in (1.99)

" Above we denoted ((...))vac = (Q| (...)|Q) = % Since (vac, out |[vac,in) = eMva< is just a (constant)

phase, we will drop it together with other constants and simply write ((...))vac instead of (vac,out| (...)|vac,in), with
the understanding that overall constants are either unimportant or should be fixed in the end by dividing by the same
expression without the operators O4 Op.. ..
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that does depend on the 7 is

- /Dfexp{ /d4x—<80a—Vf>}
= exp{ /dx (o) }/Dfexp{ /d4 {-%fﬁﬂfﬁ-@oa}}, (1.101)

up to an irrelevant overall multiplicative constant which we do not write explicitly. This expression
(1.101) is to be inserted into the remaining integral. But then @ is constrained by V - @ = 0 which
implies V - 9@ = 0 and the term fV - dy@ in the exponent in the third line of (1.101) does not
contribute. The integral over Df then only gives another irrelevant constant. We arrive at

(T{0410p ...} /Da HD@Zleé Q) Oy Op ... x
X exp {z / 'y [5(806)2— 5(6Aa)2+j’-a+,cmm} i / dtvcm()mb}. (1.102)

1.5.2 Lorentz invariant functional integral formulation and a-gauges

Let us rewrite this functional integral in a manifestly Lorentz invariant form. First note that

| 1
/Daoexp{i/d4 [ a’;® + §(V )]} —exp{ /d4x 23 (Vz) 1j0}
1 t t
= exp / - 3o ddy 7t D)5 <ﬁ ) = exp —i/dt Vooulomb ¢ - (1.103)
2 A7t |Z — 7]
Furthermore,
1 v 1 14 1 14
—waf“ = —§8Nal,8“a +§8uaV8 at

1 1 1 1 1 1
= §8oai(90ai — Eaiaj&aj + 581‘&081‘@0 + §8iaj8jai — 5806@(%&0 — §ai&(]aoai

L9 A a)2 = 9 (00das) + a0¥ - (o) - (1.104)

_1 —\ 2 1_'02_
= SO+ 5(Va') -

The last term of the last line vanishes due to the constraint, and the next to last term is a total
derivative. Inserting the expression (1.103) of exp {—z' Jat VCoulomb} into (1.102) one gets

(T{040p... VaC:/HDa“ HD¢,H5V @) 04 Op ... x

1 - o
xexp{ /da:{ (806)2—§(V/\c?)2+j a—a’®+ = (Va) +£matter}}

/Hpau [T2e 167 ) 01 0s . o [i[Sla )]} (1.105)
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with
1
Slay, | = /d4x Lla,, v = /d4:r; (—waf’“’ + juat + Ematter> ) (1.106)

Now everything is manifestly Lorentz invariant except the insertion [, 5(6 - @) which fixes the
gauge. Let us now suppose that not only the action S|a,, | is gauge invariant but also the operators
O4 Op ..., eg8 O1(z) = F(x)F"(z) or Oy = exp ( § dz”A,(x)). Moreover, we will assume that
the product of the mesures [] . Da,, and [I, Dy is gauge invariant. One can show rather easily
that [ . Da,, is gauge invariant, but the invariance of Dy is not always warranted. As we will see
later-on, in the presence of chiral fermions, this measure generally is not invariant and one has an
anomaly. Different chiral fermions contribute additively to the anomaly and, in a consistent theory,
the sum of all anomalous contributions must vanish so that [[, D1, indeed is gauge invariant. With
these assumptions, the only gauge non-invariant term in (1.105) is the gauge-fixing term [ ¢ (6 -a).

Recall that the gauge transformations act as
Ay = aup = a, + N, b = Ppp = Yy (1.107)

with A = A(z) completely arbitrary. It could even depend on the a, themselves.”

One can rewrite the functional integral (1.105) by first changing the names of the integration
variables from a, and ; to a,a and ¥y a, then identifying the latter with the gauge transformed
fields (1.107). The gauge invariance of the action and the operators O gives

(r{o, (’)B...}>vaC:/HDa’I( T2 [[6(5 - @x) Oa O .. exp {iSlap ]} (1.108)

Since the A-dependence came about by a simple change of integration variables, we know that the
expression on the r.h.s. actually does not depend on A, whatever this function may be. Let us choose

A, Z) = A(t,T) — / d%;M (1.109)

dmly— 2|

with an a, independent A.

Let us check what happens to the measure [ u Da,, under this field-dependent gauge transformation. One
has

. _ N ~ R a 3 aoao(tag)
auA(t,T) = au(t,Z) + OuA(L, 1) W/d Anlj— 7|
— = N(+ 7 9 3 (0 ’ ao(t/ﬂj)

8The definition of composite operators like F, v () F* (x) requires some normal order type prescription preserving
the gauge invariance. In practice, one most often computes <T{(9 A0p... }>vac with O4, that are not gauge invariant,

as e.g. the propagator (T{Au(m)A,, (y)})vac. Nevertheless, such gauge non-invariant quantities should only appear at
an intermediate stage, and the final result should be gauge invariant.
9A familiar example of A depending on a,, is the transformation that allows oneself to go to a given gauge, e.g.

A(t, &) = 1= fd‘“ﬂym to go to Coulomb gauge.

|71
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so that

5(10A(t fL') . (4) 1
5a0(t/ ) =0 (.I‘ y) A |—»_ |8t8t/5( )
(SG/ZA(t x) 0 1 (SCL#A(t,f) (4)
_ JS(1 — il ek S A — 1.111
Sao(t', §) =t ey e @y (L1
resulting in a non-trivial Jacobian.
[[Daps = [[Pap x Det <5(4)(x— y) — 4’1|5"( )) . (1.112)
Ty — &
I Iz

Although non-trivial, this Jacobian only contributes an irrelevant field- and K-independent constant to the

functional integral (which we drop as usual). Similarly, in the absence of anomalies, [ [, Dy a = [, Dt

Thus the only effect of this gauge transformation with A is

=

§(V - dn) = 0(V - i+ V2N + 8a°) = 6(9,a" + V?A) (1.113)

which allows to write (1.108) as

(T{(’)A Op ... {)vac = /HD@“ HDz/qH(S Oy at + V2A A) Oy Op ... exp{iSla,, ;] + ie—terms} .

(1.114)
By construction, both sides of this equation are independent of A. We can multiply both sides by
exp [ 2 [d*z (V2A) ] (with o > 0) and integrate DA = (Det§2)_1D(§2x). On the Lh.s. this
results in yet another irrelevant constant factor. Interchanging the order of integrations on the r.h.s.,
we finally arrive at

<T{OA OB }>vac = /]‘_[,Z)a'u Hle OA OB ... €Xp {iseﬁ[auawl]}u (1115)

with

Sl vl = Sl il = 5 [ 0 @007, (1.116)

where the parameter « is often called the gauge parameter. Starting from the manifestly uni-
tary canonical formalism in Coulomb gauge, we have obtained a manifestly Lorentz invariant func-
tional integral representation of the vacuum expectation values of time-ordered products of gauge
invariant Heisenberg operators. As already noted, we will use this equation (1.115) to compute
(T{O 405p... }}vac even if the O are not gauge invariant. In this case, one has to remember that the
result is unphysical and depends on the gauge-parameter «. Nevertheless, any final physical result

(like S-matrix elements) must be gauge invariant and independent of a.
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free

Let us now determine the propagator of the gauge field (T'[A,(z)A,(y)])re = —iA,,(z,y).
According to (1.36), the propagator is given by the inverse of the quadratic part of the action Seg:

1
SeH|Quadratic = /d4l’ [_Zf#Vf”V - %(auau)2 + (ZG — terms)

_ /d4£L‘ a” [1,,,0,0° — (1 — )0,0,] a” + (ie — terms)

2
1
= —§/d4a:d4y a"(x)Dy (z,y)a” (y) , (1.117)
with
0 0 o 0 .
D;w(xa y) {_nuuﬁa_xp + ( - a)%a%’” — €N 5(4) (x - y)
d'q 2 : ig(o—y)
— W [nlwq — (1 —a)quq, — i€ nu,,} e ) (1.118)

The propagator is —iA,, (z,y) where A = D!, ie.

d4q 1q(x—
A;w(xv y) = A;w(x - y) - / WAMV(Q)e a(@=y) ) (1119)
with
n;w -« Q,uQV
A(q) = ) .
4) q% — i€ + a (g% —ie)? (1.120)

As expected for a gauge-dependent quantity, the propagator depends explicitly on «. Note that
the limit @ — 0 is singular since it would remove the gauge-fixing. The choice a = 1 is called

Feynman gauge and yields A, (¢) = -#*% which is particularly simple, while o — oo gives A, (q) =

q%—ie
qg‘fk — (qg*j.”ep and is called the Landau or Lorenz gauge (since o« — oo strictly enforces the Lorenz

gauge condition d,a" = 0).

1.5.3 Feynman rules of spinor QED

Let us now specify the matter part of the action to be that of an electron Dirac field (of charge
q = —e with e > 0) interacting with the electromagnetic field:

C- —}lFWF’“’ _ TP+ ied +m) (1.121)

and
Log =L — %(@La“)Z . (1.122)

The Feynman rules for S-matrix elements then are:

—1 Nuw -« qu49v
e photon propagator : — + 5
PROTOR PIOPIETOT™ (amy <q2 i a (£ —ze>2)
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—i 1 —i (=it +m)
QCm)*ik+m —ie  (2m)* k% +m? —ie

e clectron/positron propagator :

o vertex : (2m)tey"dW(k — k' +q) |

e
final photon : £

(27)3/2/2p0 ’ (27)3/2/2p0 ’

e initial photon :

e initial electron : u ,  final electron : ¢ ,
(2m)3/2 (2)3/2

e initial positron : v ,  final positron : Y ,
(2m)3/2 (2)3/2

e integrate over all internal four-momenta.

The Feynman rules for Green-functions are the same, except that one associates propagators to the

external lines instead of the initial/final particle wave-function factors u, v or e.

4)’s from the vertices. Of course,

Most of the integrations over internal momenta are fixed by the §¢
one overall §® only enforces conservation of the external four-momenta and thus cannot serve to
fix any internal momentum. Thus the number of unconstrained internal momenta is I — V + 1 if
the number of vertices is V' and the number of internal lines /. We have already seen that there is
the general topological relation (1.45) between I, V' and the number of independent loops L in a
diagram, I —V = L — 1. It follows that in any Feynman diagram there are exactly L unconstrained
four-momenta to be integrated, one for every loop.

Note that in spinor QED all vertices are tri-valent (3 lines attached). This gives another relation

between V| I and the number E of external lines: 3V = 21 + E. Thus in spinor QED
3V =2I+F , I-V=L-1 = V=2L+FE-2, (1.123)

and for a given S-matrix element or given Green function (fixed number of external lines) one gets an
additional factor of e? for every additional loop: one sees very clearly that the perturbative expansion
is an expansion in the number of loops and the expansion parameter is the fine structure constant «

(not to be confused with the gauge parameter)

e? 1

_ L 1.12
R (1.125)

0ne can argue that the expansion parameter for a given S-matrix element is 1= rather than a: every vertex
contributes a factor (27)*e and every internal line a (27)~*. Every integration over a loop momentum d*k can be
expected to give a factor 72 (the angular integration is estimated to give the volume 272 and k3dk = %dekz gives

another 7). Altogether, one has a factor

L
(27r)4VeV(27r)_417r2L _ (277)4613—2 (é;) _ (271_)46E—2 (%)L : (1.124)

so that every loop can be expected to yield a factor % = ~06x 1074 <« 1.
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1.6 Exercises
1.6.1 Linear operators on L?(R")
Quite often one has to manipulate linear operators A acting on functions f € L?(R*). These are not

operators acting in the Hilbert space of quantum field theory but in a “much smaller” Hilbert space.
A typical example are differential operators. In general one can write

(AN = [ Az f). (1.126)

It is very convenient to use the notation A(z,y) = (x| Aly) where |z) is the ket of the non-
normalisable basis of L2(R*) such that X/ |z) = 2# |z) (cigenstate of the position operator). One
also uses the non-normalisable eigenstates |p) of P*. Recall that

1= [d el = [avln ol Gl = s (1.127)

a) Show that an nth order differential operator such that (Af)(z) = -2 ... 52— f(z), corresponds

OxH1
to A(z,y) = (—)"+% ... 572 0W(x —y) = % ... 526 (2 — ). Show that for this same operator

ayul . ayll«n — Ozt ©t OxHn

one also has A(p,p) = (p| A|p) = " py, - . - P, 0@ (p — ).

b) Show that for any A, the matrix elements A~ (z,y) = (x| A~! |y) of the inverse operator satisfy

/d4z AN (2, 2) Alz,y) = 6W(z —y) . (1.128)

Write the analogous relation for A=(p,p) = (p| A~'|p) and A(p, p)).

c¢) Show that if A(z,y) only depends on the difference x — y (translation invariance), then
i (@ - dp_ipa-y)
(p| Alp) = A(p) 67 (p—p) with A(z,y) = n)] e Alp) (1.129)

and that in this case the matrix elements of the inverse operator simply are

~ 1 dp . 1
pl AT p) = —=Yp-p = Al(zy —/ eP@y) . 1.130
A7 ) = 4750~ ) @)= [ G a0 (1.130)
More generally, show that for such operators one has for a “general” function F' of A:
 FA) ) = [ 52 e EaG) (1.131)
€ = — € . .
Y (2m)° p

d) Use these results to show that the inverse of the Feynman propagator of a scalar field A(x,y) =
a0

© 9zt Bz,

satisfied by the Feynman propagator.

Ap(x —1y) is given by A7 (x,y) = [ +m? — ie} W (z —y). Deduce the differential equation
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f) We will also have to compute traces of certain operators on L*(R*). By definition
T A = /d‘*x (2| A|z) = /d4xA(ac,x) | (1.132)

Explicitly show that this is equivalent to Tr A = [ d*p (p| Alp) = [ d*p A(p, p). Show that for an
operator invariant under translations (cf (1.129)) formally one has

Tr F(A) = 6% (0) / d*p F(A(p)) . (1.133)

Interpret 6V (0) as (p|p) and argue that if one replaces R* by a hypercube of volume L*, this factor

would be replaced according to 6 (0) — (%)4.

1.6.2 Green’s function and generating functional in 0 + 1 dimensions

Consider the 0 + 1 dimensional quantum “field” theory (this is actually quantum mechanics) with

action

Sol¢] = /_ dt% [df“ - w%ﬂ , (1.134)
where ¢ = % = 02¢.

a) Determine the corresponding Green’s functions G(t) as the solutions of
(07 +w?) G(t) = 6(t) , (1.135)

by first solving this equation for all ¢ # 0 and then matching solutions to get the correct discontinuity

at t = 0 to reproduce the J-singularity.

b) Obtain Feynman’s Green’s function from the Fourier transform with the ie prescription:

00 —ipYt
Grt) = | dp—C 1.136
0= [ W (1.136)

and compare with the results from a).

c) Define the generating functional as

ZolJ] = / Do exp {iS[qﬁ] i / at J(t)gb(t)} (1.137)

and compute Zy[J|/Zy[0]. Explicitly convince yourself that

1 o 4]
Zp[0] 0 (t1) 0 (ta)

ZO[J]‘ (1.138)

J=0

gives the functional integal representation of the (free) four-point function (T'[p(ty1) ... d(t4)])o-

d) Now add to the action Sy an interaction term S = Sy + Sy with Sy = [*o_dt 2¢3. Define Z[J]
as Zp[J] but with Sy replaced by S. Compute Z[.J] and Z|[0] to second order in g. Give the graphical

representation of the terms you find.
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e) Deduce the full 2-point function as
1 ) )
Zo[J] . (1.139)

To(t)o(t2)]) = —

(rlot)ote)) =~z mrsrey s 2V,
Discuss the graphical representation of the terms you get and observe that the vacuum bubbles have
cancelled.

1.6.3 Z[J|, W[J] and T'[¢] in ¢*-theory
Consider a quantum field theory with action
1 m? g
T to sore - Mg 9 4] 1.14
5= [dta[- S0, - "ot - Lo (1.140)
Explicitly compute the functionals Z[J], W[J] and I'[¢] up to first order in the coupling constant g.

Interpret the different terms in I'[¢].

1.6.4 Effective action from integrating out fermions in QED

a) Show that in spinor quantum electrodynamices, the functional integral representation of time-
ordered expectation values of operators that do not involve the matter fields can be done in two
steps, where the first step involves doing the functional integral over the fermions only. This amounts
to computing

Svacvac|A] = (vac, out |vac, in) ,

= |N|2/1:ID¢ZD% exp{—i/d%@(m)(@vLm+i€1§{(x))¢(x)} : (1.141)

b) Compute this integral exactly in terms of an appropriate functional determinant. Of course, this
determinant is ill-defined and needs regularization. (One could e.g. replace Det[...] = [[, A, by
Hi:[:o A, and let N — oo in the end, or replace it by ] A,e~" and let € — 0 in the end.) Once
regularized, it can be manipulated as an ordinary determinant. Show that

Sl o 14 () et 112

Use Det (1 4+ M) = exp(Tr log(1 + M)) and the power series expansion of log(1 + z) to get

—iiiiiii[&] = exp {—Tr ; % [(@‘Fm)il (_26)4{@)]”} , (1.143)

and give a Feynman diagram interpretation of each term in the sum.
¢) One can show that each term in the sum in the exponent is purely imaginary which allows to write
Svac,vac[A] = Svac,vac[o] €xXp {Z/d4x Eiﬁloop[A]} s (1144)

where L£15'°°P[A] is the effective action obtained by integrating out the fermions. Show that by taking
functional derivatives with respect to A, (z;) of [d*x L£1;'°P[A] one generates time-ordered (con-
nected) correlation functions of the electromagnetic current operators J#(z;) = —iew)(2;)y*1b(x;).
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2 A few results independent of perturbation theory

2.1 Structure and poles of Green functions

There are a few statements that can be made about the structure of the various Green functions
independently of any explicit (perturbative) computation, just based on arguments of symmetry, in
particular Poincaré invariance. Consider the Fourier transform of a general n-point (Green) function'!

~

Gyq1,---qn) = /d4:v1 ... dtg, el o ann (T(Ol(xl) . (’)n(xn))>vac . (2.1)

Recall that (T'(...))vac = (| T'(...) |2) where (©| and |Q2) are both the in-vacuum. (In perturbation
theory, this would be given by the sum of all the corresponding Feynman diagrams with n external
lines but excluding all diagrams with vacuum bubbles.) From translational invariance, this Green
function must be a product of (3" ¢,) times some é(n)(ql, .. .qn). The latter may contain pieces
which are again proportional to some §®*) (corresponding to a disconnected part of the Green function)
and pieces without such further §¥-singularities, but with various poles and branch cuts in various
combinations of the momenta. We will concentrate on the poles and their residues. As an example,

2 and

consider a free scalar theory where 6(2) is just the propagator with a pole at ¢ = ¢3 = —m
residue —i.

Here we will establish the general structure of the 2-point Green functions close to their poles and then
just state the corresponding result for the n-point functions. To begin with, we write explicitly

Goylar, @) = /d4:c1 dtay efniritieze: [ 0(z] — 23) (2 O1(1)Oa(22) |)
+ 02§ — 29) (2] Oa(22) 0 (21) |9) | . (2.2)

We now insert a complete set of states in the in-basis of the Hilbert space. This basis contains, besides the

in-vacuum, the one-particle states ‘\II;)PU n>, as well as all the multi-particle states. These one-particle states

correspond to the physical particles with masses m,, that one can measure as m?2 = —p? = —pupt and where
P|win, ) = pu |, ). Thus
Q;+Z/d3 | (R4 (2.3)

where + ... indicates all the contributions from multi-particle states. These are defined as states depending
on the total momentum pi.;, as well as at least one more continuous variable. Thus

Q[ O1(21)O02(22) [2) = (2] O1(21) [2) (2] O2(z2) [£2)
+ Z/d% (Q O (1) [ W, ) (W2 | Oa(22) ) + ... (2.4)

By translational invariance one has

(Q Oy (1) [T, ) = (Q 7T 01 (0)e o1 [T ) = ePret (Q 01(0) | W (2.5)

pan> ’

1Here we use the same notation é(n) for @(n) (21, ...x,) and its Fourier transform @(n) (q1,---qn). Also, we consider
general Heisenberg operators O; rather than just the “elementary” fields ¥, , since most of the argument does not
depend on the form of the operators.
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as well as (Q|O1(x1) Q) = (2] O1(0) [©2). Most often, the O; transform non-trivially under the Lorentz
group or some internal symmetry group (that leaves the vacuum invariant) in which case (2| O;(0) |Q2) = 0.
In general, one has

(Q] O1(21)O2(22) [2) = (2] 01(0) [2) (2 O2(0) [€2)

+ > / dPpeP172) (O] O1(0) [, ) (UR | 0200) 1) +... . (26)
e = Mo:r(ﬁ,a,n) = M(’;T (Pyo,n)

2

Let us insist that the p are “on-shell”, i.e. p° = \/p? + m2 = w,(p). When inserted into (2.2), the first line
of (2.6), if non-vanishing, yields a contribution ~ [ dtwdizge 0171222 W (q1)0™(g2) corresponding
to a disconnected piece. Concentrate now on the contributions of the one-particle states. Writing

0

00 —iw(z9—29)
ot —ah) = - [ SIS (2.7)

0o 2TE W + i€

they are

~

G2)(q1,92)

= Z z/ dew d3p /d4x1 d4m2 el T1tieTe o
— 2 ) w+ i€

)

one particle

et me DN, (5,0, m) M (7 0yn) + ¢ P et (5 0,0) M (7, 0,1)|

. dw
— i) 5@ +a) 3 [

w + 1€

30— @) — 6§ + 1) Mo, (32, 0,0) My (@2, 0,m) + 005 — )30 — af + ") Moy (@, 0.1) My (d@,0.m)|

2

MO1(§2707n)M*T(52707n) M02(§1707V)M*T(§1707n>
=i(2m)"6W (g1 + ¢ S e + 91 2.8
S 2)%; 68 — wn(q2) + ie qf — wn(q1) + ie 29

This expression clearly exhibits the poles due to the one-particle intermediate states. The poles are at

¢} = —q¥ = tw,(q1) = £y/m2 + ¢, i.e. on the mass shell of the intermediate physical particle. One can
show that the multi-particle intermediate states do not lead to poles but to branch cuts.
We will be mostly interested in the case where the Heisenberg operators O; correspond to the elementary

fields ¥; appearing in the Lagrangian, specifically O; = ¥; and Oy = \Il}; so that the above result reads

_ Ma, (@2, 0.0) M, (G2,0.m)  May (@10 m)M (G 0.m)
G , = i(2m)76® > : b i l . (2.9
@ (a1, q2) boles i(2m)' 0" (@1 +q2) - 03 — wn (@) + ic @) — wn(q1) +ie (29)

Let us compare with the result that would have been obtained in a free theory of a field of species n* and
3 . .
mass m, where U;(z) = ¢y(z) =, [ (;ﬁ(ul (7.0, n*)a(P, o,n*)eP* +vy(p, 0, n*)al(P, o, n*)e~"P*). In this

case, the only intermediate states that contribute are the one-particle states of species n* created by a! and

al. Furthermore, My, (2, 0,n*) = Wul(cfg,a, n*) and Mw;i (¢1,0,n%) = WUZ(@LU, n*), so that
G (g q) = (21D (g1 + ) Z w (g2, o, n*)ui (g2, o, n*) N v(qi, o,n")vg(q, 0,n")
@ —~ | @ —wn (@) +ie ¢) — wn(q1) + i€
= —i(2m)'6W (@1 + 42) A (a2) (2.10)

where —iA}}*(q) is the usual free propagator with mass m.. The similarity between (2.9) and (2.10) is
no coincidence. Indeed, by Lorentz invariance, the matrix element My, (g1, 0,n) is constrained to equal

the corresponding u;(q1,0,n), up to a normalization, and similarly for the M (q1,0,n) and v} (¢1,0,n).
k
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(Recall that for every irreducible representation of the Lorentz group one can determine the corresponding
coefficients u; and v; solely from the transformation properties — up to a normalization). Hence:

ul(i?agan) n U7(§1707n)

M\I/l ((?270-7 n) = Ng (27‘(‘)3/2 ’ M\I/;f ((I‘lvau n) = Vgt W s

(2.11)

where the normalization constants Ny and Ng; may differ at most by a phase. In (2.9), the contributions
to the residue of a given pole at some!? q% = —m? come from those one-particle states n that have a mass

my,, equal to m..

Combining the results (2.9), (2.11) and (2.10), we finally get for the behaviour of the 2-point

function:

Gl (a1, 2) ~ DS b)Y NG| () AR (a)

pole at g?=-—m?2
n | mp=ms

= ‘N\{ln* ? Gl(];)free,m* <Q1,Q2) . (212)

The lesson to remember is the following: in general, the 2-point function of the interacting theory

is very complicated, with branch cuts and poles. Equation (2.12) states that, as ¢3 — —m?, where
m is the mass of a physical one-article state such that (Q| ¥,(0) [¥2 % + 0, the 2-point function

p7o7n

behaves as the 2-point function of a free field of mass m, up to a normalization constant.

These results can be generalized to an arbitrary n-point function depending on momenta ¢, . . . ¢,:
Such an n-point function has a pole whenever, for any subset I of {1,...n}, the combination ¢; =
> jer 4 is such that gi = —m?® with m being equal to the mass of any one-particle state ‘\Il;ilan>
that has non-vanishing matrix elements with [];; (9;[ €2) and with [];,; O;|2). More precisely, if
wesuppose [ ={1,...thq=q=q+ ...+ ¢ = —¢i1— ... — q, then, as ¢* — /@ + m?

—2i\/q% + m?
Gr— o (2m) 6 (1 + . 4 40) D> Moo, - - 0) Myoio(@rras - - @) (2.13)
q° +m* — e =
with
2m)* 6D (> " g5 — p) Moo (g2, - - ¢r) = / d*oy .. A, e 2= 97 5 (Q T (O (21) - .. Op(2,)) [V, )
s=1
@2m)* D (D " a5+ D) Myojo(grr2: - - @n) = / Aoy .o dhe, e 2 0T
s=r+1

X <\ij,a| T(Or+1(xr+1) s On(QTn)) |Q> : (214)

Again, the proof uses only translation invariance, the causal structure implied by the time-ordering
and the fact that multiparticle intermediate states produce branch cuts rather than poles. Note that
the above pole structure is exactly what one expects from a Feynman diagram with a single internal
line for a particle of mass m connecting a part of the diagram, with the first r operators O; attached,
to another part, with the last n — r operators O; attached, as shown in the figure. However, the
above property is much more general in that the particle of mass m need not be one corresponding
to an elementary field in the Lagrangian but could correspond to a complicated bound state.

2 1

12 ie : 2 _ ; -1 _ 1 1 _
This is an abuse of language: when we say a pole at ¢ = —m~, since T = o (@ (q0+wm(® qﬂ—wm(q)>’ we

really mean a pole at ¢° = w,,(¢) and a pole at ¢° = —w,,(q).
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2.2 Complete propagators, the need for field and mass renormalization

In the above formula (2.12) the 2-point function on the left-hand-side is the Fourier transform of
(T(@l(xl)WL(mg))>vac where the W, (z) are the Heisenberg operators that evolve with the full Hamilto-
nian. This is also referred to as the full or complete propagator, while on the right-hand-side appears
the free propagator as entering the Feynman rules. More precicely, the Heisenberg operators ¥; cor-
respond to the fields as they appear in the (interacting) Lagrangian and are accordingly normalized.
Such fields will be called bare fields and we write ¥; p(z). Actually, in most theories (at least in
perturbation theory) the only one-particle states W2 that are such that <\IJ;§1ML‘ U, 5(0) |€2) # 0 all
have the same mass, and then there is only a pole at g7 = —m?, with m being in general different
from the mass parameter appearing in the Lagrangian of the bare field ¥; 5 and which we call the
bare mass mp. Hence, we can rewrite (2.12) as

~ =i (@) [Ng[? (27)10 (1 +ge) . (2.15)

q;——m?

/d4$1 d4x2 eiqw1+iqycz <T(m173($1)\PL,B(x2))>vac

We can get rid of the factor |Ny|? on the right-hand-side by deviding by it and defining

1
U,p=—VY, 5. 2.16
tr = s (2.16)
Then, close to its pole at ¢? = —m?, the two-point function of ¥; g behaves as the two-point function

of a free field with mass m. A field with this behaviour is called a renormalized field and m the
renormalized mass. In the sequel, to simplify the notation, we will not write the subscript R for the

renormalized fields and masses. We will study in some detail how this goes for the different types of
fields.

2.2.1 Example of a scalar field ¢

Call the interacting real scalar ¢p, with Lagrangian

1 1
L=~ (0u0n) — 5midh — Vis(6n) (2.17)
There is no reason to expect that ¢p has a correctly normalized two-point function or that this

function has a pole at —m%. Let

o = VZ¢p & ¢=7""¢p
(2.18)

m? = m% +om?
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. . . . in\ __ 1 .

and require that ¢ is correctly normalized, i.e. that (Q] ¢(0) |¥ q‘> = oo and that its two-
point function have a pole at —m?. This will fix Z and dm? as functions of m% and the couplings.
Then ¢ is called the renormalized field and m the renormalized mass. A straightforward rewriting

of the Lagrangian yields

L= —2(00) — 5 lm” — 6w 26 ~ Vs(V79)
= (5000 = 5t + (<502 - V(@ + me?) + 520w Vol o) )
co z (2.19)

The strategy is to treat Ly as the free part of the Lagrangian and L£; as the interaction. All the
terms in £; involving factors of (Z — 1) or ém? will be called “counterterms”.

The full propagator of the renormalized field (also called the full renormalized propagator) is
denoted by A’(q). It is conveniently expressed in terms of the one-particle irreducible propagator.
Recall that a one-particle irreducible (1PI) diagram is a connected diagram that will not become
disconnected by just cutting a single line. More precisely, let i(27)*I1*(¢?) be the complete one-
the discussion below (1.84)). Graphically, with a ¢* interaction II* is given by

particle irreducible propagator of ¢ with two external free propagators removed (cf

The first term equals —(Z — 1)(¢*> + m?) + Zém? and is entirely due to the counterterms, while
the other terms involve loops (possibly including counterterms inside the loops) and contribute to
H*

loops

Figure below)

(¢*). The full propagator then is related to the one-particle irreducible propagator'® by (see
. 00 -

- et e ) O ()
i 1 (1_ IT*(¢%) '€>_1__( i 1 , (2.20)

(2m)* ¢ + m? — ie @ +m?—i 2m)% g% + m? — 11*(¢?) — ie

In summary:

N(g) = (@ +m? —TI*(¢?) —ie) ", (2.21)

13To simplify the discussion, we exclude the possibility of tri-linear self-interactions ~ ¢3 which would lead to
“tadpole” diagrams.
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with
(%) = —(Z = 1)(¢* +m?) + Zém* + T, (¢°) - (2.22)
The so far arbitrary constants Z and dm? must be fixed by the normalization requirements: we
required that A’ has a pole at ¢> = —m?. This implies

I (-m? =0. (2.23)

Correct normalization of the two-point function translates into the residue of the pole of A’ be one:

-1 H* -1

A'(q) = <5q2 —II*(—m? 4 §¢%) — ie) = <5q2 — 5q2d (—m?) + O((6¢*)?) — z'e)

2=—m2+8¢2 dqQ
dIr* |
~ (1= —m? S 2.24
(1- ) g (2.21)
which leads to
d .

a2 (%) e = 0. (2.25)

Inserting (2.22) into (2.23) and (2.25) yields

Zém* = —II . (—m?) (2.26)

Z = 1+ d_qQHikoop(QQ) _ ) (227)

which determines Z and dm® in terms of TIj, .

Clearly, in any generic interacting theory, II will be non-vanishing (and in particular non-

loo
vanishing at ¢> = —m? with a non-vanishing first dperivative). Hence, in such a generic interacting
theory there will always be renormalization of the wave-function (Z # 1) and of the mass (dm? # 0).
The necessity of renormalization has nothing to do with diverging, infinite loop-integrals, but is a
generic feature of interacting theories in order to have correctly normalized two-point functions with
poles at physical values of ¢

It is interesting to substitute the values (2.26) and (2.27) of Z and Zdm? into eq. (2.22) for IT*(¢?)

to get

* * * d *
I (q2) - Hloop(q2> - Hloop<_m2) - d_qgnloop(q2) 2= —m? (q2 + m2) . (228)

We see that the (renormalized) one-particle irreducible complete propagator I1* is given by its loop

contribution IT¥  with its two first terms in a Taylor series expansion around ¢ = —m? subtracted!

loop
To be completely clear, let us insist that —¢A’ is the full propagator of the renormalized field ¢,

related to the full propagator —iA’; of the bare field ¢ by

1 1

= ~{Ton(0)on(y)) = (~i)ANp(z — ). (2:29)

—iA (z —y) = (Top(x)p(y)) 7
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From our previous relations one finds

—1 -1
A(q) = (q2 +m® — II*(¢*) — ie) = (q2 +m? 4+ (Z = 1)(¢* + m®) — Zém? — 11}, (¢°) — ie)

1 1, N1 . Nl
= <q2 +m?—om?— EHIOOP(qQ) — ze) =7 <q2 +my — HBJOOp(qz) — ze) , (2.30)
where we defined )
1_I*B,loop = EHikoop : (231>
Comparing (2.29) and (2.30) we see that
/ 2 2 * 2 N\
Ap(q) = <q +mp — HB,]OOp(q ) — %)
1
N(g) = (q2 +m? —1I"(¢") — i6> (2.52)
Aplg) = Z A(q) -

In particular, in the bare propagator A’y one has II}

B, loops Missing the contributions from the countert-

erms. Nevertheless the relation between the full bare propagator and the full renormalized propagator
is very simple: they only differ by the factor Z. Let us insist that the renormalization conditions
(2.23) and (2.25) are such that the renormalized propagator satisfies

Ag) =

q% + m? — ie
i.e. up to corrections that vanish on shell, the full propagator of the renormalized field equals the

[1 +O(P + mﬂ — A(g) [1 +O(E+m?)] | (2.33)

free propagator of the renormalized field.

2.2.2 Example of a Dirac field

The Lagrangian is

L=—)p(@+mp)s — Vs(¥p) (2.34)
with
b=2,"vp & Yp=\7Za¥ , m=mp+om. (2.35)
As above, we rewrite L as
L=Lo+Ly , Lo= —P@+m)y
Ly= —(Zy = V)@ +m) + Zobmipp — Vs(\/ Za0)) . (2:36)

Denote by i(2m)*S*(¥) the one-particle irreducible complete fermion propagator.!® Let the complete
propagator be ﬁS’ (k). Then
1 1 1 1
= - — - =)t = —,
i +m—ie il +m—ie il +m — ie il +m — X (}) —ie
4When we write $*(f) we mean the following: we will see that ¥* is of the form X* = f(k?)if + g(k?)1 =
F(F) i+ g(F) 1, which is indeed a function of f.

S'(k) (2.37)
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and

() = —(Z2 = 1) (i + m) + Zadm + i, (K) - (2.38)
The correct normalization for the complete propagator (pole at k* = —m? and the residue condition)
yields
S(im)=0 . | =0 (2.39)
m) = . = =0. )

This fixes Z5 and dm as

Zy om = =X, (im) , (2.40)
L0 o,

Zy = 1- za—%zbw(k)(m . (2.41)

Again, if we insert these values for Z; and Z; ém into (2.38) we get

Z*(k) = Eikoop(%) - Eikoop(i?/n’) - %a;aéézikoop(k)‘/¢ (2% + m) ) (242)

m

showing again that the renormalized ¥*(¥) is given by its loop-contributon with its two first terms

in a Taylor expansion around ¥ = im subtracted.

2.3 Charge renormalization and Ward identities

The Lagrangian for charged particles is invariant under phase rotations of the associated fields. This
leads, as usual to a conserved current J* and associated conserved charge @ = [ d*z J° which, upon
quantization, become operators acting on the states. Since () commutes with the Hamiltonian we
can take all (one-particle) states |V, ,,) to be eigenstates of () with

Q |\Ilp,a,n> = dn |\I[p,07n> ) (2.43)

as well as Q|Q2) = 0. The eigenvalue g, is called the charge of the particle. On the other hand, in
the Lagrangian £ appear parameters ¢ via the covariant derivatives D,y = (0, — i@ A, )¢ of ¢.
How are they related?

From the definition of J° = ‘%Wg:ﬁ“wl] = 88‘9@[ (—1q;)Yy = —i¢ Py and the canonical commutation
relations we get [Q, V] = —¢V;. Hence
0=(QQY|¥psn) = (U (WQ+[Q,V]) [Ypon) = (g — @) (¥, [Vpon) - (2.44)

Thus, whenever (Q| ¥, |V, ,,,) # 0 we must have ¢, = g, : the charge ¢,, as measured by the eigenvalue
of @ equals the parameter ¢, appearing in the covariant derivatives of v, in the Lagrangian. Suppose
now we rescale A, — vA, = Aj,. Then Jt — (J')* = v~ 1J* and hence ¢, — ¢/, = 7" '¢,. According

to the previous argument, then also ¢, — ¢/, = v 'q,. As a result, @A}, = GnAm and the covariant

Adel Bilal : Advanced Quantum Field Theory 38 Lecture notes - September 29, 2016



derivative remains unchanged. It follows that if A, is renormalized by some multiplicative factor, all

charges are renormalized by the inverse of this factor:

AF =z AL o =25 qp, V. (2.45)

The charge renormalization is the same for all fields! Of course, this is related to the gauge invariance
which forces all charged particles to couple in the same way — via the covariant derivative — to the
electromagnetic field A,. In particular (2.45) shows that if ¢g; = gy then also ¢ = q, even if
iy and 1y have very different non-electromagnetic couplings like e.g. a proton and a positron, as
shown in Fig. 5 for a quark and a positron/electron. One sometimes writes g = \/Zq so that (2.45)
implies

ZyZ3=1. (2.46)

Figure 5: Contributions to the electromagnetic vertex function for a quark (left) and an elec-
tron/positron (right). The solid lines are fermion propagators, the wavy lines photon propagators
and the dashed lines gluon propagators.

One defines the vertex function T'*, (p,p’) by

/ d'z dty dtz e PR (QI T (JH(2) W, (y) Uin(2)) Q)
= —iq S, (k)T (k,1)S, .. (1) ) dD(p+Ek—1). (2.47)
It follows from this definition that I'* is the sum of all vertex graphs (with the two complete Dirac
propagators removed, and also no photon propagator): it is the one-particle irreducible 3-point

function. To lowest order (free fields) the Lh.s. of (2.47) is M(—iqv“)ihi_ie(;(@ (p+k—1),s0
that

e = (2.48)

Above we have derived identities due to the universal coupling of the electromagnetic field through the
covariant derivative. One of the tools was the commutation relation of the charge operator with the
Heisenberg picture quantum fields. Similarly, we now derive a relation between the vertex function
and the full fermion propagators, known as Ward identity. Using'® 9,J* = 0 and [JO(¢, %), U,.(¢, )] =

5Note that the Noether theorem implies 9,.J* = 0 as a classical equation. Here we need this conservation equation
as an operator equation. It is indeed valid in the quantum theory provided there is no anomaly.
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—q0®N(T — §) T, (L, ) we get

D (@ )8, (=) = (0 )T () +

OxH
+3(@” = )T (1), Ua () (2) ) +0(2° = )T (W0 (m) [ (2), U (2)])
= 0—qdW(x -y T(Vu(y)V,n(2)) + ¢6W (= )T (Va(y)Trn(2)) . (2.49)

This, together with the definition (2.47), and recalling that (Q|T(V,(y)¥n(2))[Q)
= —iSy(y —2) = —i [ & dq e 1=2)5" (q), yields

(1 — k), S' (k)T (k,1)S'(1) = iS'(1) — iS'(k) | (2.50)

or

(I — k) D9k, 1) = i8S (k) —iS8" (1) | (2.51)

which is known as the generalized Ward identity. The original form of the Ward identity is obtained
by letting | — k so that

Th(k, k) = —z%S' Yk) ="+ ia%z*m) . (2.52)

Due to (2.39), the last term vanishes on-shell, i.e. for ¥ = im, and hence when evaluated between

on-shell spinors one simply has
a(k)T* (k, Ryuk) = a(k)yu(k) | (2.53)

so that radiative corrections to the vertex function for the interaction of an on-shell fermion with a
zero-momentum photon vanish. But this is exactly the way the electric charge of particles is defined,

and we find again that ¢y*A,, is not renormalized. Similarly, (2.51) leads to
(Il = k) u(k)TH(k,Du(l) =0 . (2.54)

2.4 Photon propagator and gauge invariance

Gauge invariance implied that the current J* is conserved, 9,J* = 0. Then, much as above, one has

(@I ) = 6 )T (@), W) )

+5(:Jc0—zO)T<J“(:B)[JO(y),JP(z)]> Y. (2.55)

Now J” is a neutral operator and hence [J°(z), J(y)] = 0. This could be violated by so-called
Schwinger terms from defining J* properly in terms of the elementary fields at coinciding points. For
Dirac fermions and using dimensional regularization, however, no such Schwinger terms arise and
one indeed has

[°(z), J"(y)] = 0 (2.56)
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as an operator identity. As a consequence, the r.h.s. of (2.55) vanishes. Let

1\4;;;---(%,@,...):/d‘{r1 e (W | () T () ) ) (2.57)

Then (2.55) implies
(9:)uMp " (q1,q2,...) =0 . (2.58)

Now any S-matrix element in electrodynamics is of the form

Sﬁa ~ /d4Q1 d4QQ . A,U«IVl (Q1)Au21/2<Q2) e 6:1 (k1>€;2(l{72) - €5y (ll)EO'Q (lz) oo X

X ]/\4\5(;1/1/12112---0102---0102---(qh gz, ..., ]{31, k‘g R ,ll, l2 .. ) , (259)

with M being the matrix element of all the matter currents as defined above but with all electro-
magnetic interactions turned off. Clearly, (2.58) still holds for M and we see that the S-matrix is
unchanged if we replace any of the photon propagators A, (¢) or any of the polarization vectors

according to

Aplq) — Auwlq) +auq +quby,
(k) — ¢,(k)+ck,, (2.60)

with arbitrary four-vectors a,, b, or scalar c.

The complete photon propagator necessarily is given by

VaVaVa VI w@m
AL (@) = D (@) + Dpp(@) M7 (0) Ao (q) - . (2.61)

where Mr7 ~ 3 ﬂvp;’fvlé'c”‘QnAmm oo DNy s Indeed, the first term in (2.61) just is the free
propagator, and all higher-order corrections are summarized in the second term. Of course, M*? is
not one-particle irreducible. Obviously, it follows from (2.58) that ¢,M*” = M*°q, = 0. In a general
gauge we had A, (¢) = (77#,, - §(q2)%> and hence,

1

A,/uy(Q) = Auu(Q) + WM,UJ/ . (262)

2
Then qMA:U/<q> — QHAW(Q) — 1q2€_(36)QU.

In terms of the complete one-particle irreducible photon propagator II',, = II7 one has (with

obvious index contractions)

A=A+ AIFA+ ... = (1 - AIT") A, (2.63)

but also
A=A+ AII'A + AITPAITFA + ... = A+ AIT(A + AITFA +..) = A + AITPA . (2.64)
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Contracting the last equation with g, on the left yields'® 0 = 25(36 q"11;, A" hence ¢"1I; ) = 0. It
follows that

Iy, (q) = (¢*Nuw — quaw)7(q%) - (2.65)

Then (AI")” = so that (1 — AT = o (¢* (1 — 7) + ¢"¢’m) whose inverse is

(1 —AIl"),) = #(qz) (my - 7T(q2)q“q”) Using this in (2.63) gives

oty Apeiag e~ 6@ = w(@) 4 @) m — €)%
A,uu - [(1 AIT ) A} w (1 — W(QQ))(QQ _ ie) = (1 — 7T(q2))(q2 — iE) (266)

As before, we require that the complete photon propagator should have a pole at the physical

mass and close to this pole be normalized as the free propagator. Of course, we expect the physical
mass to be still zero, although this needs to be verified. Here we do not prove this statement but
give evidence for it. Indeed, since II},, is one-particle irreducible it is not expected to have any poles
at ¢> = 0. It certainly has branch cut singularities and it could, at least in principle, also have poles
at ¢> = —M? due to intermediate bound states of mass M. However, we do not expect the latter
to have zero mass. If IT}, has no pole at q* = 0, then 7(¢*) does not have such a pole either, and
then A’ keeps its pole at ¢* = 0. Note that if 7(¢*) had a pole at ¢* = 0, say 7(q?) ~ & — b then
A~ qQ(l_al/qQer) = q2_al+bq2 = 141rbq L would have its pole shifted to ¢* = = 113- On the other hand,
if (¢?) has a pole at ¢> = —M? with M2 # 0, say m(q?) ~ 757 — b then A" keeps its pole at > =0,
but there is an additional pole that appears at ¢> = —M? + T3
Henceforth we assume that indeed 7(¢?) does not have any pole. Then, for the correctly normalized
A, the residue of A" at the pole should be 7,, — ¢ (qQ) &l which requires

Clearly, this is undesirable, too.

7(0)=0 and (g% should not have a pole . (2.67)

As for the scalar or Dirac fields we can rewrite the (bare) Lagrangian, originally written in terms of
the bare fields A%, in terms of the renormalized fields A* and the constant Z3, and then separate a
free and an interaction part. In order to do so, we also need to start with a bare parameter ap for
the “gauge-fixing” term:

1 1 (Jé323

L = —ZFﬁF“” -5 OB (9 A 4. = — 1% Fu ™ — (0, A" +
1 L, 1 Y
- _ZFNVFM - 5((%%1“)2 - Z(Zg - 1)FNVFM + cee (268)

with o = Zzapg. The terms + ... involve the couplings to the matter fields and enter only in the
loop-corrections to the photon propagator. We see that the free propagator for the renormalized
field A, now is the same A,, with the same (o) as before, while the quadratic “counterterm”

16Except for a« — 0o one has £ # 1.
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—i(Zg — 1)F,, F" gives a purely transverse contribution to the one-particle irreducible propagator

IT%,. Hence it contributes a piece 1 — Z3 to 7(¢?) and we conclude
m(¢%) = 1= Zs + Moop(¢°) - (2.69)
The residue condition (2.67) then determines Zs in terms of moep as
Zs = 1+ Mooy 0) | (2.70)

We have shown how all the renormalization constants Z, Z; and now Z3 are determined by the
renormalization conditions in terms of the loop contributions to the various one-particle irreducible
functions. In practice though, if one wants to compute these one-particle irreducible functions one
does not need to explicitly determine the Z’s, as we have seen above for II* (for the scalar) or for ¥*

for the fermions. Similarly, for the photon, inserting the value (2.70) of Z3 into (2.69) simply gives

7T(q2) = 71—loop(q2) - 7I'loop(o) s (2.71)

which clearly satisfies (2.67), and we see (again) that the renormalized m(q?) is given by its loop-

contribution, with its first Taylor coefficient subtracted.

2.5 Exercices

2.5.1 Two-particle intermediate states and branch cut of the two-point function

Just as we have shown that a one-particle intermediate state (mass m) yields a pole in the two-point
function @(2)(q1, q2) at —¢? = m?, one can see that a two-particle intermediate state leads to a branch
cut. More precisely, if the intermediate particles have masses m; and ms, the two-point function has
a branch cut for —g? > (m; 4+ ms)?. This corresponds to the kinematical condition of having enough

energy to produce on-shell particles of masses m; and ms.

a) Recall that, for a complex variable z, the logarithm log z has a branch cut along the negative
real axis with discontinuity being log(—a + i€) — log(—a — i€) = 2mi, where a > 0. Recall also that
=7 §(x —xp). Let g(z) be some smooth function defined for real x > 0 and be such

f(z):/oood:c 9(x) (2.72)

r —z

3 €
lime o @—z0)2+e2

that g(x) — 0 as © — oo. Let

Show that this a well-defined function on the complex z-plane, except on the positive real z-axis
where f has a branch cut with discontinuity

fla+ie) — f(a—ie) =2mig(a), a>0. (2.73)

b) Let now

_ 3 g(ﬁ) w — ) m?2
1) = [a g i) = VP (2.74)
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with some smooth function g(p) such that p?g(p) — 0 as p? — oo. Show that this is a well-defined
function on the complex E-plane, except for a branch cut for real £ when E > m; + ms, with a

discontinuity given by

F(E +i€) — f(E — ie) = —2ni ]M ()

, for E>my+my, (2.75)

P=Pcm (E»ml ,m2)

where pem(E, mi,ms) = (E* + (mf — m3)* — 2E%(m? + m3)) /(4E?) is the function determining the
center-of-mass momentum and g(p) = [ dQ g(@}‘ F=p is the angular integral of g.

c) Repeat the arguments that led to equation (2.9) of the lecture notes, but now for two-particle
intermediate states where the two particles have masses m; and my. To simplify the argument,
choose a Lorentz frame where ¢; = 0 and call ¢! = E. Use the results from part b) to show that the
two-particle intermediate states lead to a branch cut for £ > my + my or, going back to an arbitrary
Lorentz frame, for —¢? > (my + my)%.

2.5.2 A theory of two scalars, one charged and one neutral

Consider the Lagrangian

L=-0,050"95 — M}opdh — 5314033 ©B — §m23<ﬂ23 — 9yBPBPRYB - (2.76)

a) Rewrite £ in terms of renomalized fields, masses and coupling (let g = 7 f}Z_ g) and identify
P ®

the counterterms.
b) Determine the complete propagators A}, and A{ in terms of the 1PI propagators IT}; and IT7.
¢) Draw the one-loop contributions to I} and IT, and identify the contributions of the counterterms.

d) Discuss how to renormalize the II* and A’ for both types of fields.
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3 One-loop radiative corrections in ¢* and QED

We will first work out the one-loop radiative corrections in some detail for QED and at the end of
this section quickly consider those of scalar ¢* theory.

3.1 Setup

Recall that the renormalized fields are those that have correctly normalized residues of their propaga-
tors close to their poles. They are related to the bare fields which appear in the original Lagrangian
by field renormalization factors. The renormalized masses are defined as the positions of the poles of
the complete propagators (poles at ¢> = —m?) and are related to the bare masses appearing in the
Lagrangian. Finally, coupling constants are also renormalized. For electrodynamics with charged

Dirac fermions

(0 =Z;1/2w3 : m = mpg+dom
A = z7PAR e = ZiPey (3.1)
while for scalars
O = Z_1/2¢B ., m’i= mQB +om? . (3.2)

The original Lagrangian is always written in terms of the bare fields and bare masses, with the same
numerical coefficients as for the free fields, plus the usual interactions with bare coupling constants.

For spinor QED we have

1 v . - a
L=~ FnFE —dp(@+mp)s — iepApdbpy"vs — - (0.A%)° . (3:3)

We have included the gauge-fixing term with a bare parameter as discussed above (2.68). Using (3.1)
together with o = Zzag, L is rewritten as

L = Lo+ Li+Ls, (34)
Lo = —3FuF™ = 5@+ m) - 50,47 (35)
Ly = —ieA 0y, (36)
Lo = Ml DBLP (2= )50+ m)o + Zabmit — el 2~ VAT,

(3.7)

Clearly, L, is exactly like the free Lagrangian but now with renormalized fields and masses. Similarly,
L, is exactly like the original interaction term but now with renormalized fields and couplings, resp.
charges. The third term, £, is due to the difference between bare and renormalized quantities. Its
terms are called the counterterms. If we would take all couplings to zero so that all fields become
free, there no longer would be a distinction between bare and renormalized quantities and in this
limit £5 would vanish.
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The complete propagators for the renormalized fields are —iS'(¥), —iA!,,(¢) and —iA’(q) with

pv

foryy : S'(B) = (if+m—S(f)—ie)", (3.8)
v — §%3°
P —ie

I, (q) = (@ — qua)7(¢®)  (3.9)
M — 1§+ (1 = (g %3~

) S T e (310

for A, : A, = (1-AIJA?,  with A,(g) =

(3.11)

' (3.12)

forg : Alg) = (¢+m*—1I"(¢*) —ie)

The X(¥),7(¢*) and IT*(¢*) get contributions from the loops (including also counterterms in the
loops) and from the counterterms at tree-level:

fermions : X*(f) = —(Zy —1)(ilf +m) + Zaom + X5, (K) , (3.13)
photons : 7(¢*) = —(Z3—1) + Moop(¢*) , (3.14)
scalars : IT*(¢*) = —(Z—=1)(¢>+m?) + Zom® + 11}, (¢%) - (3.15)

One imposes the renormalization conditions (correct poles and residues)

fermions : X*(im) = 0, %E*(k}‘lﬁim =0, (3.16)
photons : w(0) = and 7(¢?) should have no pole at any ¢* , (3.17)
scalars : II*(—m?) = 0, diqzﬂ*(qz)}(ZQZ_m2 = 0. (3.18)

3.2 Evaluation of one-loop integrals and dimensional regularization

When evaluating one-loop diagrams one typically encounters integrals of the type

I / Ak ! d e / di M R (3.19)
= _ all == - .
N D, Dy... Dy N D, Dy... Dy’
where
D; = [(k — pi)* +m7 —ie] . (3.20)

The p; are combinations of the external momenta and the m; are the masses appearing in the

propagators. Since each D; contains a k? the integrand of I " behaves for large k as ~ d*k k]‘;;, ~

k3t7=2N dk. (This is easy to see once the integral has been continued to Euclidean signature, but the

following discussion is equally valid in Minkowski signature.) Hence:
e The integral diverges for 3 +r — 2N > —1,i.e. 2N —r < 4.
e The integral diverges logarithmically for 3 +r — 2N = —1, i.e. 2N —r = 4.

e The integral converges for 3 +r — 2N < —1, i.e. 2N —r > 4.
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The 4 comes from the space-time dimension and would have to be replaced by d in d space-time
dimensions. Actually, one can formally continue to non-integer and more-over to complex dimensions
d where the integral can be evaluated and yields a meromorphic function of d with poles when d is
an even integer. This is the basis for dimensional reqularization.

In dimensional regularization one replaces

/d4 L) = /ddk: (3.21)

As we will see, this makes convergent all our integrals (which we continue to call Iy and Iy'#") for

d # 2,4,.... The indices u,v, p, ... formally become d-dimensional indices. One still has k*k, = k?
but this now is a sum of d terms. In particular, n*“n,, = o& = d or, when dealing with y-matrices,
Yy, = 0f = d. Also, the usual rules for replacements in tensor integrals have to be accordingly

modified, e.g.
/ Ak K"k f(K?) = / a1 =1 "k f(k*) (3.22)
1

where the factor 5 can be checked by contracting with 7,,. Dimensional regularization can be

consistently implemented except when the antisymmetric 4-index tensor ¢*?? plays an important

role, as in the definition of ~5 and of chiral fermions.!”

Feynman’s trick : To facilitate the integration, one rewrites the denominators appearing in the

integrals (3.19), using the formula

1 [(ay +...ay) /1 / gty
- dzy... [ dend(l . (3.23
DD D% T(ay)...D(ay) Jy oNd(1-) ) x1D1+ T anDaEe 32)

(Recall T'(x + 1) = 2T'(z), I'(n) = (n — 1)!, in particular T'(1) = I'(2) = 1, I'(3) = 2.) Note that the
i€ terms in Y x;D; add up to ) z; ie = ie. If all a; = 1 eq. (3.23) simplifies:

1 ' . 51— ;)
- = (N-1)!/ day... [ d ] , 3.24
D1 DQ...DN ( ) /; o /0 N [$1D1 + ... +LUNDN]N ( )

and in particular

1 ! 1
= / dz
Dl D2 [.Z'Dl + (1 - .CE)DQ]
(3.25)
/ / 1
= dx
Dy Dy Ds D2 D Y oD+ yDs + (1 —w — y) DsP?

Since D; = (k — p;)* +mj — ie = k* — 2kp; + p; + mj — i€, one has

21Dy + ... +ayDy = k* = 2kP(x;) + M*(z;) —ie = (k — P(z;))* + M*(z;) — P*(x;) —ie , (3.26)

"This is one way to see why chiral fermions can lead to anomalies: one cannot simply use the gauge invariant
dimensional regularization in the presence of chiral fermions.
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with

P(%‘) = xprt+zepr+ ...+ (1—zy— ... —2zNn_1)pN
M?(z;) = ai(pf +mi) +@o(ps +mi) + ...+ (=21 — ... —xy_0) Py +my) . (3.27)

Then

R L 51—y )
o= o=y [fan o e 629

One interchanges the now convergent k-integration with the x;-integrations, so that

0
with

In(P, M) = / 4’ = / 4k (3.30)
M= k=P + M2 —P2—idN — | 2+ R2— iV’ '

where we set R? = M? — P? and shifted the integration variables form k to k' = k — P. Note that
such shifts are justified only because we have a convergent integral. Of course, one has an analogous

formula for the 74" with

(3.31)

~ 1258 Mo / J75% / U
]’Ml...ur(P’ M) — ddk k . k _ ddk, (k + P) e (k + P)
N ]N

[(k— P)2+ M2 — P2 —ic [k? + R2 — ie]N ’

At this point one needs to make a Wick rotation, to be discussed in the next subsection. This
results in a factor of ¢ and the four-momentum k* then is a Euclidean four-momentum, which we
denote by k. (Strictly speaking, the P* appearing as argument in I, ~ (P, M) should then also be
continued to a Euclidean Pf.) The last expression in (3.30) for the integral is easily evaluated due
to its spherical symmetry. Using d%p = de_lk%_ldk:E and

2ﬂ_d/2
dQg_; = vol(8971) = —— | 3.32
[ 49 = vol(sh = o (332
we get
_ 9qd/2 o0 d—1 d/2 oo 41
In(P,M) = i 7Td / kgj dka:iﬂd / — dsz
[(5) Jo [ke” + R? L) Jo [+ R
d/2 00
— T @Y [Cagyt ey (3.33)
I'(3) 0
The last integral is
© d dy _T(§)T(N—19)
dyyi1(1 *N:B<—N——)z 2 2 3.34
/0 yy: (1+y) 5 5 V) : (3.34)
so that finally (R? = M? — P?)
~ (N — %) iy
In(P, M) = in%? 22 (M? — PH2 .
N(P,M) =im (N—l)!( ) (3.35)
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Inserting this into (3.29) and performing the integrations over the Feynman parameters z; then
yields Iy. Performing explicitly these x; integrations is often the less obvious part of the story. Let
us summarize: so far, we have shown that, using Feynman’s trick, the dimensionally regularized

momentum integration reduces to

d _4d g
/ k2 + izf— iV ”d/2r(1j*v<—JV>2)<R2)zN . (3.36)

By differentiating I, ~(P, M) with respect to the P, one can generate the integrals with factors of
k* in the numerator. Indeed, rewriting the integrand in (3.30) as [k* — 2kP + M?|~% it is obvious

that
(N—r—1)! 0 0

>N T P aPMIN,T(P, M) . (3.37)

Far-(P, M) =

Plugging in the explicit expression (3.35) for Iy_,(P, M) one gets

~ I(N—-r—%) 9 ) 4Ny
It (P M) = in?? 2 M? — P?)? .
N (P M) =i (V1) 9P, 8Pm( ) (3.38)

Integrating this expression, with M? = M?(z;) and P? = P?(x;), over fol dzy ... fol dey 6(1 =5 ;)
yields the IR
The most commonly encountered cases are r = 1 with

I4(P, M) = i n?/? pr (M2 — P2 (3.39)

and r = 2 where'®

d_N41 F(N — g)

(N —4-1)
— (N —1)!

I (P, M) = im 2 { ST

prpr (M2 - PPN (3.40)

There is an alternative, often simpler way, to compute the integrals I%;, 14, etc. First note that a

slight generalization of equations (3.33) to (3.36) yields the useful formula

Ak (k) plEHSTWN =G —s) pap
/ (k2 + R2 - i€)N - ! F(%)F(N) (R ) . (3.41)

Next, it follows from Lorentz (resp. Euclidean rotational) invariance (cf. (3.22)) that

kH kFEY 1 d?% k?
d _ d = —p ) 3.42
/dk(k2—|—R2—ie)N 0 /dk(kz—l—R?—ie)N K /(k2+R2—z'e)N (342)

18In the Euclidean, one should replace n** by §H¥.
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One then has from (3.31), e.g. for r =2

. " “w v v N d 2 d
F P AL = /ddk(k + Py (k +P):n_/ d' k +P“P”/( d'k

(k2 + R2)N d ) (k2+ R2)N (k2 + R2)N
(N —¢—-1) g T(N — ) .
— ;2 d/2) v 2 2\§+1-N | pupv 2 2\4-N p
o {" 2(N — 1)! (1) - (N — 1) (7) } (343)

which, of course, coincides with (3.40).
Finally one needs the expansions of the various I'-factors as d — 4. We always let

d=4—¢. (3.44)
Then
r(g_g) _ %—WO(G) ,
(3.45)
S e

where v >~ 0.5772... is Euler’s constant.

3.3 Wick rotation

In the previous subsection we had to evaluate integrals like

In(P, M) = / @k (3.46)
MBI e+ RE =iy '
where R? = M? — P2. Furthermore, d% = dkg A1k and k2 = k2 — k2. Thus the integral explicitly
1s
N

-1
In(

P, M) :/ddlk/_oodko (ko— <\/m_i€,>> <k0+ (M—ie’))

The integrand has poles at v/ k2 4+ R? — i€’ and at —Vk2 + R2 + i¢, as shown on the left of Fig. 6.

As it is also clear from this figure, one can deform the kq-integration contour away from the real axis

(3.47)

without crossing any of these poles until on gets the integration contour depicted on the right part
of the figure and denoted I'y UT'y U T'3:

/-de”("')_/rl dko(...)+/rzdko(...)+/F3dk0(...). (3.48)

Now with I'y and I's being “quarter”’-circles of radius going to infinity, the corresponding integrals
vanish, so that only the integral over I'y remains. But I's is the imaginary axis in the complex kg
plane, and if one sets

ko = iky (3.49)
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r
1

Figure 6: The integration contours for the ky-integration

then, as kE runs from —oo to +o0o, ko runs along the imaginary axis, i.e. along I'y. Hence

/F2 dko f (ko) = z/: dkE f(ikE) . (3.50)

Applying this to (3.47) or directly to (3.46) finally gives

~ . -1z = _1
o = [ ] ) G ()

d%%pg
= ) — bl
Z/[k%RQ]N | o0

where, of course, k2 = (kF)% + k2.
What happens if the integrand contains some expression involving k,p" = k- p'— kopo ? Obviously, this
becomes k - - ik(‘;“J Py = k- 7+ kéj p(];; = kf pE if we also let pg = ip(‘)E . Finally, consider
~ d%k k" kY
I (P, M) = . 3.52
v (B M) /[k2+R2—ie]N (3.52)

Doing the Wick rotation yields

~ kg kLK, A% p (—)k9, KO : Ak (—i)KY K
IJ’“P,M:'/EE7 IOORM:./ ENE jOjP’M:./ Ekp
(3.53)

Due to the spherical symmetry of the Euclidean integral one has
/ d%%p Kl kY, _ 1 &W/ d%p k% (3.54)
[kg®+ RAN  d [kg® + R2N '
which together with (3.53) gives

- 1, . dkp k?
I]‘\L,’d(P,M):an“ z/[ £

. 3.55
kg + RN (3.55)

This is consistent with what would have been obtained by first replacing k* k* by %17’“’ k2, and then doing

the Wick rotation. One can summarize all this as the following
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Recipe for the Wick rotation: do the continuation kg = i kY in the integrand, replace similarly all
external momenta that may appear in scalar products by their Euclidean counterparts, replace d%k
by d?kg (with all components of k% real), and multiply the whole integral by a factor of 7. Integrands
involving k* k¥ x f(k?) can be replaced by Zn* k* x f(k?), independently of the Wick rotation.

3.4 Vacuum polarization

The computation of the one-loop vacuum-polarization diagram shown in Fig. 7 is straighforward. To

order e? this is the only contribution to Hif;’;(q), while at order e* one would get 2-loop diagrams,

as well as one-loop diagrams with counterterms inserted, as shown in Fig. 8.

k
u v
q q
k—q

Figure 7: The one-loop vacuum polarization diagram. Of course, although we have drawn the
external photon propagators, they are not to be included in II}, .

Figure 8: Loop contributions to the vacuum polarization at order e*. The two upper diagrams are

two-loop diagrams, while the two lower diagrams are one-loop diagrams with O(e?) counterterms
inserted

Now, applying the Feynman rules to the order e? diagram of Fig. 7 we get

. ARy o 4 (_Z) _Z'% +m 4 (_1) _Z(k — g) +m 4 _ v
i(2m) L0 () = —/d k tr {(27r)4 L m? i€(27r) ey O (=g - m? = i€(27r) ey (} : |
3.56

where the overall minus sign is due to the fermion loop. Simplifying a bit gives

—je? /d4k tr [(—if +m)y*(=i(k — ¢) + m)y"] . (3.57)

oop.e2 (@) = (27) (k2 +m? — i€][(k — q)% + m? — i¢]
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This integral clearly diverges for large |k| where the integrand behaves like ~ |k|=2 while the
integration measure goes like |k|>d|k|. If we simply “cut off” the large |k| values et |k|max = A we
expect the resulting integral to be dominated by a term ~ [* |k|3d|k| x |k|™2 ~ A2. If this is the
case one says the integral is quadratically divergent. We have seen that gauge invariance requires
' (q) = (¢*n™ — ¢"¢")m(¢*) and hence also [ (q) = (¢*1" — ¢"q")Tioop,c2(¢*)- As long as our
regularization procedure does not destroy gauge invariance this must still be true for the regularized
integrals. In order to manifestly preserve gauge invariance we will use dimensional regularization.
Before doing the computation, let us argue a bit more what we should expect. It is not difficult to

see that taking a derivative of I* ,(q) with respect to ¢” results in an integrand behaving as k|~

loo
for large |k| and hence an integral that is less divergent, i.e. behaves as ~ A rather than A2. Taking
one more derivative with respect to ¢ results in an integral that is only logarithmically divergent,
and taking a third derivative with respect to a ¢* gives a convergent integral. This means that the
diverging part of the integral is annihilated by 3 derivatives with respect to the external momentum.
Thus the diverging part of Hf i ';62(q) must be a polynomial of second degree in the ¢, and by gauge

invariance: 9

Hféf;’ezydiv(@ = (1" = ¢"q ) Toop.e2div 8_qo.7rloop,e2,div =0. (3.58)
Hence, although 7.2 Will be a non-trivial function of ¢?, its diverging part (the coefficient of the
poles in €) will be constant. From (3.58) we see that we can e.g. extract this divergent part of myep c2
by taking two derivatives of (3.129) and setting ¢ = 0. The resulting integral clearly is logarithmically
divergent. One often says that gauge invariance has reduced the degree of divergence of the vacuum
polarization from 2 (quadratic) to 0 (logarithmic).

Let us now do the computation. As already mentioned, we choose dimensional regularization as explained
above. Applying also the Feynman trick yields

L™ (g i / d / d%k trl.] — (3.59)

—xq)?+m? + z(1l — x)¢® — i€

The Dirac trace can still be evaluated as in 4 dimensions!? so that
tr[...] =4 [-k"(k —q)" — k' (k — @)" + k(k — Q" + m*p"] . (3.60)

Shifting the integration variable k — zq — k this becomes

Hiifﬁlez _416 / dz /dd (k+zq)"(k—(1—2)q)" — (k+xq)"(k— (1 —z)q)*
1
k2 +m2+2(1—2)?)

+(k+ xq)(k — (1 —x)g)n"" + m277‘“’} (3.61)

Now one can do the Wick rotation. As explained in the previous subsection, in order for this to make
sense one must also continue the external ¢* to a Euclidean ¢%. Furthermore, due to rotational symmetry,

19 All one needs is that {y#,7*} = 27*¥1 and the only issue concerns tr 1 which can be chosen to be 24/ = 4 x 27¢/2
or just 4. The ambiguity consisting in an overall 27¢/2 is of the same type as the ambiguity in choosing to continue
also the factors ﬁ to ﬁ In the end this only changes the renormalization constants Z; by finite amounts and

does not affect the renormalized IT* or X*.
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terms linear in k* don’t contribute to the integral, while terms k* k¥ can be replaced by én“”k:Q which
become én““ k% after the continuation. Hence

e —41@ / dp i /dd [m? —2(1 — 2)q% + (1 — 2)kE]n™ + 22(1 — z)¢d%
o :
loop,e [k‘% +m? + (1 — :L‘)ng] 2

(3.62)

Using the formula (3.41) for s = 0 and s = 1 with R?> = m? + (1 — 2)¢% (and taking into account that here
we already have done the Wick rotation?’) yields

02 1 d
Moope2(48) = (;Lﬂ)zl /0 dz { [[mQ — (1 —a)gp]n" + 2(1 - :E)q%q‘w’E} /2 F(Z - g) (R2)2 2
+(1 - 2) /2 at +;i5§1 d)(R2)5—1} : (3.63)
2

Observing that (1 — )% —(1-2)4r1 -9 = (@ -Dr1—2)=-T(2—2) we get
2

_y 4e? d » y d_
I o(ap) = ol (2- 5) 742 /0 do | [m? —2(1 = 2)q} — R 0" +20(1 - o)afsaly| (B3

(2m)* 2
—2z(1 — z)q%
¢’ ! a_
:@r)ﬁ(?—g) w2 (dpa — ain™) /0 dra(l—a) [m2+o(l—2)3]? > . (3.64)

Recall that IT**(q) = (q277“” — q“q”) 7(g?), so that we read from (3.64), upon changing back the argument
from ¢g to g,

[SI[oH

e? d ! -
(377)4F<2 - 7> /2 /0 dzz(l —x) [m2 +ax(1— :U)qQ] 2

5 (3.65)

Toop,e? ((]2) = -

Note that, when doing the dimensional regularlzatlon one has various options. In addltlon to continuing

(2 )
in d dimensions the coupling e no longer would be dimensionless. In order to avoid this, one replaces e by

d*k — d?k one can also continue @ )4 — =7 and, as already mentioned, tr1l =4 — 25. Furthermore,

2-% ¢ where 11 is some mass scale and then e remains dimensionless. All this results in an additional factor
(C)*~¢ where C possibly includes the additional factors 27 or 1/4/2, so that

2 g2

e d _ g [t m? 4+ x(1 — x)¢?] 2
moop,ez(qg) = —2—7T2F(2 - 5) xd/2=2 ot d/o drz(l —x) [ /%2 ) } . (3.66)

Next one sets d = 4—e and expands the result in e. Recall from (3.45) that ['(2—4%) = T'(§) = 2—y+0(e),
and also a¢ = e°1°8% = 1 + eloga + O(e?), so that

I‘(Q - g) x/2=2 A=) .]g_Q = (% — v+ O(e)) (1 - glogw - glog[. ]+ elogC+ 0(62))
2
= ——~vy—logm+2logC —log[...]+ O(e) . (3.67)
€

Since fol dz (1 —z) = %, we finally get

2

1 1 — 2
7T100p7e2(q2) = —% (E - % + log— - 3/ dzz(1 — x)log {m + x/; *)q } + (’)(e)) . (3.68)

20Indeed in eq. (3.41) the Lh.s. is still Minkowskian, so in using (3.41) for our present Euclidean integral one has to
omit the ¢ on the r.h.s. of (3.41).
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Recall from (2.69) that 7 also contains the contribution from the counterterm 1 — Z3, and hence

7.2 includes these contributions up to order e?:

Te2 (QQ) = (1 - Z3)€2 + Toop,e? (q2) . (369)

The renormalization condition (2.70) then gives

e2 (1 v C 1 m?

(Z3 — 1)e2 = Tioop,e2(0) = ) <Z — 5 Tlog N log {ﬁ} + 0(6)) : (3.70)

For later reference we note that the divergent part simply is

e? 1
Z3—1 =——=. 3.71
(Zs = 1)ez div 672 € (3.71)

Finally (cf (2.71)),
2y 2
Te2 (q ) = Toop,e? (q ) — Toop,e? (0)
o2 [l e (3.72)
= 52 i dzz(1 — x)log [1 +z(1 - x)ﬁl + O(e) .

This now has a finite limit as ¢ — 0, so that one can remove the regularization and simply set ¢ = 0.
Note that this renormalized ,2(g*) does not depend on fi nor on the arbitrariness of the continuation

which showed up through the constant C'. We also note that m.2(¢*) is a monotonuous function of

¢

Note that m.2(q?) is positive for ¢*> > 0 and negative for —4m? < ¢*> < 0, while it develops an
imaginary part for ¢> < —4m?. This imaginary part translates the possibility that a photon with
such ¢ can yield an on-shell electron-positron pair. More precisely, if viewed as a function of the
complex variable ¢%, the function 7.2 (¢?) , and thus also the full photon propagator, has a branch cut
along the negative real axis for ¢> < —4m?. Thus the intermediate two-particle et e~ physical state
yields a branch cut singularity at the corresponding values of ¢?, in agreement with the discussion in
section 2.1.

3.5 Electron self energy

The electron self-energy diagram shown in Fig. 9 gives after dimensional regularization

i(?ﬂ)4 * (ﬁ‘) _ /ddk (_Z) "po (27)467'0 (_Z) (_Z(ﬁ B k) +m) (27?)46’)/0 7 (3'73>

loop,e? (2m)4 k2 — ic (2m)* (p — k)2 + m? — ie
or after simplifying:
d P(— il —
) = it [ LD rn,
oop,© (2m)* k2 —ie (p—k)2+m? —ie
_ e / (ddk 1 (d=2)i(p—¥)+dm

2m)* k2 —ie (p— k)2 +m? —ie

(3.74)
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p—k

Figure 9: The electron self-energy diagram. As before, the external propagators are not to be
included in X*.

Introducing the Feynman parameter and shifting the integration variables gives

d —2)i(p — m
Toop,ea(fé):w/dw/dk — :r(d 2)i(p — ) +d -

p)2 + (1 — x)p? + xm? — ic
_ / / dex/ 2)i (1—2)p—F) +dm
B )4 k’2+x(1 z)p? 4+ xm? — ie]?

| , 49k 1
= ie? /0 dz[(d —2) (1 — 2)ip + dm] / 2m)* k2 + z(1 — 2)p® + am? — ie]?

2 1
= — 2n) Trd/QF(2 - g) /0 dz [(d —2) (1 — 2)ip + dm] [zm® + z(1 — z)p?]

—2

NI

(3.75)

As for the vacuum polarization, we introduce (C71)*~? to keep e dimensionless and to allow for the other
options in doing the dimensional continuation. Expanding in e = 4 — d as above in eq. (3.67) gives

. e? 1 2 C? xm? + x(1 — x)p? )
bonee ) = ~16z [ @ (27100 S —aog TEEELEI ) () (1 i+
2 2 C?\ [d—2.
N (R e
1 2 _ 2
_/ dz [(d—2) (1 — 2)ip + dm]log =™ “%(21 z)p } (3.76)
0
Now we can drop the O(e) terms to get
Shopall) = =iy § 2+ 4m) — i —2m + (log S =) (i + 4m)
= — —(1 m) — iy — 2m og — — i m
loop,e? 1672 | € & s Y
1 2 1— 2
_/ de [2(1 — 2)ip + 4m] log 2 ”52 AL G o
0 H

As discussed in general above, the self-energy ¥*(j) also receives contributions from the counterterms,
cf. eq. (2.38):

(@) = —(Za — D)e2(ipp +m) + (Zadm)e2 + Eiop 2 (P) - (3.78)
The renormalization conditions then fix Z; and dm according to (2.40) and (2.41) which now read
(Zo— 1) = 252 () Smez = —55 . a(im) (3.79)
2 e — aﬁ loop,e? fim ) e? — loop,e? ) :
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so that

M2 = —m { — —
© 872

e 3 143y C ! ?m?
log — — 1 1 .
{ ; 5 T 3log NG /0 dx(1 + ) log = (3.80)

and

82 | e 2 NZa 2 x

Note that the dz-integral for Z; diverges as # — 0. This is actually an infrared divergence which

(22—1)62:_6_2{}_“_7“%3_/1@ {(1—x)logm2m2 +2(1_$2)} } (3.81)

occurs for on-shell electrons and is related to the possibility of emitting soft (very low energy) photons.
The proper treatment of such infrared divergences would be a chapter by itself. Let us only say that
when summing appropriate diagrams corresponding to physically measurable and distinguishable
situations such infrared divergences cancel. Note that the UV-divergent part simply is

2
__e1 (3.82)

o —1).2 .
(22— 1)e div 872 ¢

We finally get

2 m? + (1 — z)p? 2(1 — 2%)

) = Oldx{[u—x)@'wzm}mg[ _ -2 (¢¢+m)}. (3.83)

872 rm

Although there are infrared divergences as x — 0 as just discussed, all ultraviolet divergences (% poles)

have cancelled.

3.6 Vertex function

Figure 10: The one-loop vertex function diagram. The external photon and electron propagators are
not to be included in T'*(p', p).

The vertex function I['*(p', p) was defined in (2.47). Since we are computing with renormalized fields
(and not bare fields) we will automatically compute the renormalized vertex function, and not the

bare one. Note that T'*(p/,p) is normalized such that its lowest order contribution is just v*, cf.
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eq. (2.48), while the tree vertex Feynman diagram would give a (27)%ey#. Taking this into account
and applying the Feynman rules to the one-loop diagram shown in Fig. 10 gives
. . / . .

/d4]{7 (271')46’}/1/ (_2) _Z(Zj — k) + m. fy,u (_l) _Z(¢ — %) + m.

(2m)* (pf — k)2 +m? — ie (2m)4 (p — k)2 +m? — ie
(=) 1
(2m)4 k2 — e
S [ B e

(2m)4 7 (p’—k)2+m2—z'67 (p—k)Q—l—m?—ie% k% —ie

[loope(Ps0) =

x (2m)%e,

(3.84)
For large |k| the integral behaves like % which diverges logarithmically. We have to introduce
again some regularization, e.g. dimensional regularization as before. Actually, this diagram could

;W into the photon propagator with
M being taken to oo in the end. It can be shown that this does not affect the gauge invariance. Of

also be regularized by simply including an additional factor kQL

course, there is also a contribution from the counterterm —ie (Zy — 1) A,y in Ly:

T (0,p) = Ty (' 0) + (Z2 — 10" (3.85)

We will not do the complete computation of I'}, op.e? (p', p) here. However, we will extract its divergent
piece and show that it is precisely cancelled by the counterterm with the same Z, as already deter-
mined from the self-energy. We will also extract a certain finite part which gives the first higher-order
correction to the magnetic moment of the electron, the famous g — 2.

3.6.1 Cancellation of the divergent piece

I
loop,e?2

The divergent part of I’ (p', p) arises from the large |k| limit of the integrand. In this limit one

can neglect the external momenta and the mass so that with dimensional regularization
d?k ilf ilf 1
Iy .2(0,0 = i / v . v
1°°p’62< ) (2m)4 i k2 — e i k2 — e " k2 — ie

m=0 —1 —1
d?%  E2yr — 2kMkVy
= —ie? (d—2 / .
=2 | G T
(d — 2)? / 4%k 1
d (2m)* (k% —ie)?

= —jeiqt

(3.86)

The trouble with this integral is that for d < 4 it is UV convergent but IR divergent, and vice versa
for d > 4 (and UV and IR divergent for d = 4). To avoid the IR divergence, we should have kept
the electron mass m. If we are only interested in the UV divergent behavior it is enough to keep m
in the denominators so that

d—2)? [ dk 1
0,0 o it /
0.0], T Ty 2m)* (k2 + m? — ie)?

r(2- C—l) (m?)%~?

FM

loop,e?

2 4 (d—2)2 7Td/2

~eT d (2m)* 2
e? 1
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This divergence should be cancelled by the diverging part of (Z, — 1)y*. However, Z5 is already

determined from the above computation of the electron self-energy and, hence, it is by no means

obvious that this cancellation does indeed take place. Nevertheless, we know from the Ward identity

(2.52) that if ¥* is finite, then I'*(p,p), and in particular I'*(0,0) must also be finite. It follows

that the divergences must cancel between (3.87) and (Z; — 1)y*. Of course, this is confirmed by the
e? 1

explicit expression (3.82) of Zy: (Z; —1)e2| = —g <. We conclude that the renormalized vertex
div

function is finite (at least to the order we computed).

3.6.2 The magnetic moment of the electron: g — 2

Historically, the computation of the vertex function has played an important role since it gives the
first correction to the magnetic moment of the electron. This magnetic moment g is usually expressed
through the g-factor as y = g5—s, where s = j = % is the spin of the electron. The tree-level result
which can also be obtained from studying the Dirac equation in a magnetic field is ¢ = 2. Let us
sketch how to obtain the corrections to this result.

First note that one is interested in evaluating I'*(p’, p) between on-shell wave-functions u(p’, o’)
and u(p, o) as appropriate when computing e.g. the S-matrix elements between an incoming electron
of momentum p and polarization ¢ and an outgoing one with p’ and ¢’. The interaction is with an
electromagnetic field A,(¢q) where ¢ = p’ —p. Now I'*(p’,p) can involve various products of v*,
and g, together with p# and p'*. Moving all § to the right till one can use pu(p, o) = imu(p, o) and
moving all ¥’ to the left until @(p’, o’)p’ = u(p’, o’)im, one is left with the general structure

1, o T, D)y, ) = wlp!, o) { F () 7~ 5 G(?) o+ +5 (@) (0=9)" bulp, o) (3.55)

where the coefficient functions can depend on the only scalar available, i.e. ¢> = —2m? —2p - p’ and,
of course, on m. If one contracts this equation with (p—p’),, the left-hand-side vanishes by the Ward
identity (2.54), while the right-hand-side equals %H (¢*)uu and thus

H(¢*)=0. (3.89)

The following identity is valid between the on-shell wave-functions u(p’,0’) and wu(p,o):
iy A —p), = i (Y —p) —i(p — P)y* = 2i(p + p)* + 4my*. We can use it to rewrite
(3.88) as

—alp,0'){ — o (F() + G(¢")) (0 + 1)
P (@) ) — ) o) (3.90)
This form is particularly useful when studying the limit where ¢ = p’ — p — 0. The Ward identity
(2.53) states u(p, o )\T'*(p, p)u(p, o) = u(p, o’ )y"u(p, o), so that
F0)+G0)=1. (3.91)
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Indeed, the vertex function captures the quantum corrections to the coupling of the electron to the
electromagnetic field. It contributes ie u(p’, o’ )I'*(p/, p)u(p, 0)A,(q) to an “effective” —Lin, = Hint-
For p = p’ and in the rest frame of the electron this is just +eAy = (—e)A°, stating that —e is indeed
the charge of the electron one can measure. To determine the magnetic moment, consider the second
rewriting in (3.90). The term ~ (p+p')* is blind to the spin ¢ and cannot contribute to the magnetic
moment. The second term yields a contribution to the effective interaction Hamiltonian

%F( @) alp', o) [y, " ulp, o) (p' = p), ieAu(q) = %F( @) up', o)y, v 1 Fw(@ulp, o), (3.92)
where F,,(q) = iq,A.(q) —ig, A, ( ) In an almost static situation (i.e. to first order in ¢), one has
a(0,0") [v*, v Fuw (0)u(0,0) = 8iB-S,., so that the spin-dependent terms in My are —=F(0 0)B-S =
-B- ii, with the magnetic moment of the electron being

e = e =
i = —F = g— 9
A= _—F0)5=g5-5, (3.93)
so that the celebrated g-factor equals
g=2F(0)=2-2G(0), (3.94)

where we used (3.91).

It remains to explicitly compute G(0) at one loop. To do so, we only need to keep the part
~ (p+p)* in TH(p,p), while we can drop the part ~ v*. Due to the explicit factor (p + p/)* we
expect this part to be given by a finite (converging) integral. We start with (3.84) and introduce

dimensional regularization and Feynman parameters as usual:

1_‘loop e2 <p p

226 /dx/ /dd (W =)+ im) 3 (@ = ) +im) 5, - (3.95)

— k2 4+m?] +y[p—k)2+m?] + (1 —z—y)k> - ie}3

The actual computation is a bit lengthy: First one does the y-matrix algebra in the numerator. The
denominator is [(k‘ —ap' —yp)? + (z+y)?*m?* + zyq® — ie} ® and one shifts & — & + xp’ +yp and drops
the terms linear in k. The result still contains many terms, but taking I'* between u(p’) and u(p)

this can be further simplified as above. Dropping then the terms ~ * one gets

u(p" )T, (P, P)u(p) i 27T4m/dx/ dyu (z+y) (1—y)p“+(1—$)p’“)—yp“—xp’“}uId(x,y,QZ)

(3.96)
where I(z,y,q?) is a convergent integral for d < 6. For d = 4 it equals
9
Lz, y,¢°) = /d4k [k + (z + y)*m? + 2yq® —ie] = % [(z +y)*m? + 2yg®] " . (3.97)
ertmgfo dx |, dy f(z,y) = fo dxfo dyd(1—z—y)f(x —foldxfoldyﬁ (1—z—y)f(y,x), we

see that we can symmetrlze the 1ntegrand of (3.96) in z and y, and thus in p and p':

11—z
(x+y)2—2—vy)— (z+y)
:—mu + “u/dx/ , (3.98
ptp 82 w+v (x + y)*m? + xyq? (3.98)

u(p" ), (P, P)u(p)
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from which we identify

1—x
) :E+y 2—x2—vy)— (93+y)
G(¢%) = —— m* /dx/ R (3.99)

We only need

l—x—y e?
G(0) = d = — 3.100
(0) = 47r2 x/ x4y 82’ ( )
so that )
e a «
_o(14+ -2 :2(1 —> S 101
g <+87r2> ts) © ¢ - (3.101)

This is the classical result of Schwinger. Since then, the art of measuring and computing g — 2 has
been pushed to an extreme refinement (four loops in QED!) — with an excellent agreement.

3.7 One-loop radiative corrections in scalar ¢*

The Ward identity of QED linked the charge or coupling constant renormalization to the photon

wave-function renormalization, see eq. (3.1). In general though, such a relation is not expected, and

here we will briefly discuss scalar ¢* theory where the coupling constant gets renormalized separately.
We start with (cf. egs. (2.17), (2.18) and (2.19))

1

L= ( 0,65)> = Jmpdh — Tl (3.102)

and let 7
¢B:\/E¢7 77”L2B:Tn2_57n2 ) gB:Z_gg7 (3103)

so that
L = co+£1+c2 , (3.104)
1

Ly = ( d,9)* — o m*¢? (3.105)
L, = —% o (3.106)
L = —5(Z- 106 - 52 - )¢ + S 2om*e — 57, -1t (3107

—1
Propagator: Recall that the complete propagator is A’(q) = (q2 +m? — II*(¢?) — ie) with

H*(QQ) = _(Z_l)<q2+m )—I—de +Hloop( ) Hikoop( ) Hikoop( 2)_(q2+m ) Hikoop( 2)|q2:—m2'
Then the one-loop contribution of order g to the one-particle irreducible Complete propagator II* is

|
| Q 1 (—i) 1 . i dkp
477+ 2 d 4
i(2m) Mgep 4 (q7) = 4 T é/d k(27r)4 k2 4+ m?2 — ie( —ig(2m)") = _Qg/ ki +m? —ie’
(3.108)

given by?!

21There are also one-loop contributions with additional insertions of the counterterms. These are higher order in g.
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1

where the factor 5

comes from the symmetry factor of the diagram. In dimensional regularization

we get??
d/2 d
* 9~4-—q T d—2
Moopg(®) = —27* 7T (1-3)
loop,g(q ) 21”’ (271’)4 92 m
2 2
- g - (- e 100) - )
5 2 5 log ™ c -1+ (€) 2Ogﬁ2
g o (1 ~vy+logmr—1 1 m?
= - ——log = | . 3.109
1672 " <e 2 2 %8 2 (3-109)
Since this is g-independent, Z = 1 at this order (cf. (2.27))
Z=1+0(g* . (3.110)

~—

For the mass renormalization we then get from (2.26

) . 9 g o (1 ~v+logmr—1 1 m?
5mg = _Hloop,g(_m ) = _167'(2 m <g — f — 5 10g~—2 (3111)
so that
*( 2\ __
I (%) = 0 . (3.112)

4-point function: We define F(q,q2 — ¢},q5) as the amputated four-point function, i.e. with
the external (full) propagators removed and normalized such that to lowest order F' = g. Then the

connected two-particle to two-particle scattering S-matrix element is given by
1

Flgig = dndy) . (3113
G OB BEE, 7 k), (113)

with all momenta being on-shell. In the present ¢* theory, the amputated 4-point function is just

Sq1, 42 — q1, q5) = —i(2m)* 0D (¢ + g2 — ¢} — )

the renormalized 1PI 4-point vertex function I'® and, taking into account the normalization of F

we have?

T (g1, g2, —q1, —a5) = —27)*6W (1 + @2 — ¢ — ) Fq1, 2 — ¢}, ¢5) - (3.114)
It follows that, up to order g%, the four-point function —i(27)*F is given by the tree-level vertex

—i(27)%g, the one-loop diagrams shown in Fig. 11, as well as the contribution from the counterterms
—i(2m)*g(Z, — 1). Hence

F=(q,9— qi,qé) =g+ Floor)(QlaCh — qivqg) +g(Zg -1), (3.115)

where in dimensional regularization

—i(27)* Fooop,g2 (01, 2 — ¢, ¢5)
N 7r42 (_i>2 d 1
-3 il [ {/dk[<k+ql>+m2—z'en<q2—k>2+m2—z‘e]

+(go = —q1) + (@1 — —q;)} ) (3.116)

22Just as in QED, if we want to keep a dimensionless coupling constant for d # 4 we must replace the coupling in
the d-dimensional Lagrangian by gfi*~¢, where i is some arbitrary mass scale.

23Recall that we usually take the arguments of Green functions or vertex functions as incoming four-momenta, i.e.
an outgoing ¢; appears as —¢;.
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q’l q52 q,l qs

q1 9, 94 a2

q1 q2

Figure 11: The three one-loop contributions at order ¢ to the 4-point function. Other one-loop
contributions also involve counterterm insertions and are of higher order in g.

Introducing the Feynman parameter, as well as the standard notation

s=—(n+@)?, t=—(a-a), u=—(n—ad), (3.117)

the denominator written explicitly in (3.116) becomes

L[] = [k:2 + 2zqik + 2qf — 2(1 — 2)gok + (1 — 2)g3 +m? — ie]2
= [(k+2q -1 -2)g)" — (g — (1 -2)g)” + 26} + (1 — 2)q3 + m? — ic]”

= [(k+zq—(1- x)q2)2 —x(1 —x)s +m? — z'e]2 . (3.118)
We then get
2 1 d
ig d*k

or after the by now familiar Wick rotation and evaluation of the Euclidean integral:

2 1
roy_ 9 d/2 _é 2 a2
Floop g2(q1, 02 = q1,43) = 72(2@477 F(? 2) /0 dz {[m se(l—z)]27*+(s = t)+(s — u)} . (3.120)

As already mentioned, if we want to keep a dimensionless coupling constant for d # 4 we must replace the
coupling in the d-dimensional Lagrangian by ¢fi*~¢, where fi is some arbitrary mass scale. This results in an

extra factor i*~% accompanying every factor of g. However, we want to normalize F such that its tree-level
d

value is just g, not gfi*~%, so that we just need to include a single factor of =% = (ﬂ2)2_5 in the r.h.s.

of (3.120). This then nicely combines with the terms in the braces to make them dimensionless. Finally,

expanding in € = 4 — d we get

2 1 2
g 2 m° —sx(l -z
F‘loop,g2(Q1aq2—>qgaqé):_32 2{<—10g7r—7—/ dz log ~2( )>+(5_>t)+(5_>u)}
™ € 0 M
39 (2 @ ! m? — sx(l — x)

The full four-point function up to order ¢? is given by adding the tree-level and the counterterm
contributions according to (3.115). Just as the wave-function renormalization factors Z, Z; and Z3
are fixed by requiring the full propagator to satisfy certain normalization conditions, we must impose
some condition on the full four-point function to fix Z,. A rather standard condition is to require
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that it equals g at the symmetric (off-shell) point s = ¢t = u = —%uz, where o is some mass scale

(which may or maynot equal the fi already introduced):

F(s:t:u:—%/f) =g. (3.122)
Using this condition in (3.115) fixes Z, as
9(Z; — 1) = —=Foop <s =t=u= —%/f) : (3.123)
Up to the order we computed this gives
(Zg = 1)orderg = % (% —logm — v — /01 dz log e %M;fu - x)) ' (3.124)

Substituting this back into (3.115) or, equivalently, subtracting (3.123) from (3.115) finally gives

2 1 2
Iy g m* —sxz(l — )
Fp(q,¢2 = @1, %) = g+ 3%2/0 dx{l‘)g m2+éugx(l_@ﬂs—w)ﬂs—w)} . (3.125)

Note that the argument of the logarithm may be negative for /s > 2m, so that F then has an
imaginary part. This is in agreement with the optical theorem (unitarity). Note also that the
dependence on the scale ji has cancelled upon imposing the renormalization condition. However, the
latter condition has introduced a physically relevant scale u: it is the scale where the measurable
coupling ¢ is defined. In a massive theory, one could conveniently take ;4 = m or p = 0, but let’s

stay more general.

3.8 Exercices

3.8.1 The simplest (non-trivial) one-loop integral

The simplest, non-trivial one-loop integral consists of a loop of a scalar particle with two external lines
attached. This integral is encountered when computing IT* in a scalar ©?® theory or when computing
the one-loop corrections to the coupling in scalar ¢* theory. The computation is actually presented
in the main text but it makes sense to give it instead as an exercice as proposed here.
In dimensional regularization it is given by
g [ A% 1
1Py =ip / Cr (2 m? — i) (P — k)2 + 2 —ie) (8-126)

where we did not include the coupling constants or the symmetry factor % into the definition of I(P),

but we did include a factor of ¢ for convenience.

a) Argue that the factor i~ keeps I(P) dimensionless. Show that

m/?2 d. (! (1 — z)P? + m? 7
I(P) = —(Qw)4f(2— 5)/0 dx[ e ] . (3.127)
b) Expanding in € = 4 — d, show that
1 2 1 1 — 2)P2 + m2
IP) = 1 <E — v —logm —/O dzlog [m< %2 = } + (9(6)> . (3.128)
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3.8.2 Vacuum polarization in QED

As with the previous exercice, the computation of the vacuum polarization is given in the main text,
but it appears more pedagogical to give it as the exercice that follows.
The one-loop vacuum-polarization in QED is given by

" _ it ) [y, tr (iR m)yH (=i — ) + m)y]
M (4) = = (2m) / e T Z il =g+ e —id]

(3.129)

a) Show that after evaluating the Dirac trace in the numerator (as in 4 dimensions), doing the
Feynman trick and shifting the integration variables k — xq — k one gets

1 ol0) = ) [ o [ QU = (ot a1 = 20 = (e 0 (1= )0

1
+(k+ 2q)(k — (1 — 2)g)n"™ + m*n*” . (3.130
@)k = (1 —=x)q)n U T (3.130)

b) Do the Wick rotation, also continuing the external ¢* to a Euclidean ¢f. Recall that, due to
rotational symmetry, terms linear in k* don’t contribute to the integral, while terms k* k¥ can be
replaced by én’“’k2 which become én“"k’% after the continuation. Show that this yields

" —die? e m? — (1 —2)g% + (1 — 2)kZ 0™ + 22(1 — x)¢kq
R e L R B e sl
’ (k3 +m? 4+ x(1 — x)qE]

(3.131)
which evaluates to (R? = m? + z(1 — z)q%)

4e?

@) /01 dz { [[m2 —z(1 = 2)gy| "™ + 22(1 — :U)q%q}’;} 72 F(2 — g)

+<1 _ 3) Y /2 F<d + (1 - %) RQ} <R_2) o . (3.132)

Moope2(gm) =

d d
¢) Observing that (1 — 2)TEEIUZ2) — (1 _2ydp — 4y — (4 — 1)I'(1 — ¢) = —I'(2 — ) show that

() 2
finally (upon changing back the2 argument from gg to q)
I (q) = (¢*n" — ¢"¢") ©(¢*) | (3.133)
with
9 8¢? d\ ! m? + (1 — 2)¢? 52
0op,e Z——F(2——) dzx(1 - — : 3.134
) = — oy (2- 3) 7 [ oot =) | Z 0T (3130

d) Set d = 4 — € and expand the result in e. Recall that I'(2 — ) = I'(£) = 2 — v + O(e), and also
a® = €8 = 1 4 eloga + O(e?). Show that

2 1 1 1
7TloOp,e2(q2) =—— (— _Y_ §log7r — 3/ dzz(1 — x)log [m
0
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PART 11 :
RENORMALIZATION AND RENORMALIZATION GROUP

4 General renomalization theory

In section 2, we have seen that the notion of renormalization arises in order to keep correctly nor-
malized full propagators, with their poles at the physical masses. This discussion was independent
of any divergences arising in loop integrals. In the previous section, we have computed various one-
loop two-, three- and four-point functions. The one-loop contributions were divergent and had to be
regulated. We have observed that after performing the renormalization, according to the conditions
formulated in section 2, the renormalized quantities turned out to be finite (i.e. have finite limits
even if the regulator is removed). The purpose of the general renormalization theory is to show
that this is no accident but remains valid to all orders in perturbation theory, at least for so-called
renormalizable theories as QED or scalar ¢*-theory.

4.1 Degree of divergence

The superficial degree of divergence D characterizes the behaviour of the momentum integral
[ d*; ...d*%y[...] when all |k;| — oo with a common k& — oo. More precicely: if the integral
behaves as ~ [ kP~!dk then D is the superficial degree of divergence. An integral with D > 0 is
called superficially divergent, and one with D < 0 is called superficially convergent. This does not
necessarily mean the integral really diverges or converges, but we will see that the superficial degree
of divergence D nevertheless plays an important role. Often, we will talk somewhat loosely about
the superficial degree of divergence D of a diagram, meaning the D of the associated integral. To
determine D let

e [ be the number of internal lines of the field f,
e [J¢ be the number of external lines of the field f,
e N; the number of vertices of type ¢ with d; derivatives and n;; fields f attached.
Now, for large momenta the propagators behave as Ay(k) ~ k=725 were
o for scalars: sy =0,
e for spin 1/2: sy =1/2,
q"q”

e for massive spin 1: sy = 1 since A(g)" ~ qiz (17/“’ — W)

e and for photons or gravitons: sy = 0, since: A(q)"” ~ q% (n“” — 5‘1:3”)
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It follows that
D=AL+> Nidi+ Y I;(—2+2s;) . (4.1)
i f

Now use the relation (cf. (1.45)) L=1—-V +1=3% :I; — > N;+1 to obtain
D=4+ Nidi—4)+> I;(2+2s;) . (4.2)
i /
Use further ) Nin;p = 21y + E; to get
D=4+> Ni((di =4+ ni(sp+1)) = > Ep(s;+1), (4.3)
i f

f

or

D=4-> Ei(s;+1) =) NA;, (4.4)
f i

with

ANi=4—di =) nig(sp+1) . (4.5)
7

One can repeat this argument in an arbitrary space-time dimension d. One simply has to replace
AL — d L in (4.1). The final formula then is modified as

D=d- ZEf<sf+—> ZNA (4.6)
A =d-— d—znzf (sf+—2>. (4.7)

Note that scalar theories in d = 2 have the particularity that the superficial degree of divergence
does not depend on the number of external lines.

There is an alternative derivation of (4.4), which works easily as long as only scalars, spin %
particles, photons or gravitons are involved (no massive spin 1). Define the dimension of a field
[ as given by the behavior of its propagator: (T'(f(z) f(y))) ~ [ d4kel§(x29;) has (mass) dimension
4 —(2—2s5) = 2(1 + sy) and hence the field f has (mass) dlmensmn Dy =1+ sy. (This does not
work for massive spin 1 fields that have s; = 1 but (mass) dimension 1, just as photons - it is the
explicit appearence of the mass m which messes up the argument.) Then any interaction of type i
involving n;¢ fields f and d; derivatives has dimension ) | snifDy + d;. Since the Lagrangian must

have dimension 4, the coupling constant g; must have dimension [g;] =4 — >, n;yDy — d; or
l9:] = A . (4.8)

Now in a diagram with NV; interactions of type ¢ and E; external lines for fields of type f the
corresponding (T'(f(z1)...)) has dimension }_, EyDy. Its Fourier transform then has dimension
> s E¢(Dy—4). This dimension must arise from the products of an overall § @ (3 p;) of dimension —4,
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propagators for the external lines of total dimension ) Ef(—2+2sy) = > ; E¢(2Dy—4), the coupling
constants of dimension ), N;A; and the momentum integrals whose dimension equals the superficial
degree of divergence D of the diagram. Hence ) Fy(Dy—4) = —4+>7, E¢(2D;—4)+3_, NiA;+ D,

or

D=4-Y ED;-> NiA;, (4.9)
f i

in agreement with (4.4). As an example, in Table 2, we consider the various interactions in QED,
where one has D, = % and Dy, = 1 and one indeed verifies that the A; coincide with the dimensions

of the coupling constants.

—iep Ay A=4-2x3-1=0
(Zs — 1)F,, F* A=4—-92-9—=)
[—(Zy — 1)m + Zyom]yp) A=4—2><%:1

Table 1: The values of A for the various interactions in QED

One can similarly assign AS™P to composite operators O,(z) inserted in a diagram. AS™P is the
same as one would define for the corresponding interaction, and eq. (4.4) would be replaced by
D == 4 - Zf Efo - 21 NzAz - Za NaAgomp.

The importance of the notion of superficial degree of divergence D resides in the following remarks:

o If A; > 0 for all 7 then only Green’s functions with 4 — Zf E¢D; > 0 can have D > 0 and,
hence, there are only finitely many superficially divergent Green’s functions. Note that, unless
A; > 0, Vi, these are still infinitely many diagrams (arbitrary N; for fixed Ey).

e Interactions with A; > 0 are called renormalizable interactions. Theories with only renormaliz-
able interactions are called renormalizable theories. In such theories only finitely many Green’s
functions are superficially divergent. We will see that in such theories all Green’s functions
can be rendered finite by a finite number of counterterms corresponding to the redefinition of
a finite number of physical constants (couplings and masses) and the (re)normalizations of the
fields.

e If A; < 0 for some interaction, then an infinite number of Green’s functions (arbitrary numbers
Ey of external fields) are superficially divergent. In general, one then needs an infinite number
of counterterms to make them finite. Such theories are called non-renomalizable.

The importance of the notion of superficial divergence is partly due to the following
Theorem (Weinberg): If D < 0 for the complete integration and any sub-integration (i.e. holding
some linear combination of momenta fixed) then the integral is really convergent.

In particular, at one-loop, there are no sub-integrations and, hence, by this theorem, any one-loop
integral with D < 0 is convergent. Note also that this theorem does not say anything about the
divergence of integrals with D > 0. We have seen examples in QED where the integrals are less
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divergent than expected. The vacuum polarization diagram e.g. had D = 2, but gauge invariance
allows one to “pull out” two factors of external momentum by writing IT7,, = (¢*Nw — quq0)7(¢*) with
7(¢?) only logarithmically divergent (D = 0). More generally, symmetries may result in cancellations
between the divergences arising from individual diagrams yielding less divergent or even finite Green’s

functions.

4.2 Structure of the divergences

Suppose an integral has D < 0, i.e. it is superficially convergent. This means that if all k£ are
simultaneously taken to be large the integral converges. Thus the only possibility for this integral not
to converge is that it diverges if some combination of momenta is held fixed and the divergence is due
to the sub-integration over the other momenta. This must necessarily correspond to a subdiagram.
Hence a superficially convergent diagram can only be divergent due to a diverging subdiagram (with
D’ > 0), as shown e.g. in Fig. 12. However, such subdiagrams are of lower order in perturbation
theory. If they have already been rendered finite by the addition of appropriate conterterms at the
lower order in perturbation theory, one no longer has to worry about such diverging subdiagrams
any more. Henceforth, we will assume that such diverging subdiagrams have been taken care of and
that superficially convergent diagrams are convergent.

MO

/WM\
Figure 12: A superficially convergent diagram containing a divergent vacuum-polarization subdia-
gram.

If an integral I(p;) depending on external momenta p; has superficial degree of divergence D > 0,
then by differentiating with respect to the external momenta lowers D by one unit since

0 1 _ —2(k +pi)u
ol (k+p)2+m2—ie  [(k+p)2+m?—ie?’

(4.10)

(There is a caveat to this argument to be discussed soon.) Differentiating D + 1 times results in
an integral having degree of divergence —1, i.e. which is superficially convergent. According to the

above remarks it is then convergent. Hence

0
opyl...0p

111 I(pl) = J(pz) ) (411)

iD+41
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where J(p;) is convergent. Upon integrating with respect to the external momenta p; we get

-~

I(pi) = Po(pi) + 1(pi) (4.12)

with Pp(p;) a polynomial of order D in the external momenta with (a priori) divergent coefficients
and T (p;) a convergent integral. Obviously, the diverging part Pp(p;) is entirely contained in the
first D + 1 terms in a Taylor expansion of I(p;). We may then rephrase this by saying that I(p;)
minus the first D + 1 terms in a Taylor expansion in the external momenta is finite. We have seen
examples of this in our one-loop computations, see e.g. (3.78) and (3.79) for the electron self-energy

which one can rewrite as

loope2 () = (Z2 = D)2 (iff + m) — (Zadm)e> + X2 ()

i S ) (4 )+ S i) + S0 (413)

p=im

The first two terms indeed constitute a first order polynomial in the external p which are the first
two terms in a Taylor expansion of ¥ » in p around p = im, while the last term X7,(p) is the
renormalized finite electron self-energy.

It is very important that the divergent part of the integral I(p;) is a polynomial in the external
momenta since it is precisely such divergences that can be cancelled by local counterterms. Indeed,

a local counterterm is of the form

@)™ @) o Y dig=d, (4.14)

foi=1

being the product of Ey fields of type f with a total number of d derivatives. Such a counterterm
gives a (tree-level) contribution to the diagram with E external lines of type f which is a polynomial
of order d in the momenta. Thus, to cancel the diverging Pp(p;) one can always find a sum of such
local counterterms involving up to D derivatives. Now, such a counterterm will also appear as a
new vertex in loop diagrams and it is important to check that it does not render the theory less
renormalizable. Indeed, with at most D derivatives, we have A.y > 4 — > / EDy — D. But in
a renormalizable theory the possible values of D are constrained by D < 4 — > s E¢Dy so that
4-3 f E/Dy — D >0 and A.;. > 0, so the counterterm is part of the finitely many renormalizable
interactions. Moreover, if one includes all (finitely many) renormalizable interactions in the bare
Lagrangian, then all possible counterterms are necessarily of the same form as the terms already

present, and they just renormalize the couplings, masses and wave-functions

There is a caveat in the argument that taking a derivative with respect to the external momenta
lowers the superficial degree of divergence by one unit and which has to do with so-called overlapping
divergences. An overlapping divergence occurs if two divergent subdiagrams share a common line
(propagator), see e.g. the two-loop cotribution to the vacuum polarization shown in Fig. 13. Then
taking a derivative with respect to an external momentum typically results in a sum of terms with

the large momentum behaviour in one of the sub-loops improved in one term but not in the other,
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Figure 13: A two-loop diagram with overlapping divergences: two divergent subdiagrams share a
common propagator.

and vice versa for the other sub-loop. To be specific, for the example of Fig. 13 one has (neglecting
the electron mass for simplicity)

dip dp/ 1 1 1 1
[T (q) ~ / st {—,%,—7 — —7’3} : (4.15)
. p—v)2 "W +d " P+a"

Taking a derivative with respect to the external momenum ¢ gives a sum of two integrals:

ammmm_/&mwulg;w#mww+m Lo (4.16)

Jq7 G- | 7 W i
11 v 1,

In the first term the large p’ behavior is improved but not the large p behaviour, while in the second
term things are reversed. Of course, the superficial degree of divergence is lowered by one unit, and
taking two more derivatives would result in a sum of terms all with a D’ = —1, but the criteria of
the theorem cited above are not satisfied and one cannot conclude that up to a divergent subgraph
the integral is convergent. Although this is true for each individual term in the sum, the trouble is
that for each term the diverging subgraph is a different one. For example, in a given term in the
sum, the divergence may be traced to a divergent p sub-integration corresponding to the divergent
subgraph ~; in Fig. 14, while in another term the divergence would be due to the p’ sub-integration
corresponding to the subdiagram =, in Fig. 14.

V2

13

Figure 14: The nested sequences of subdiagrams used in the BPHZ construction: ~; C 73 and
Y2 C 3.
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Although such overlapping divergences are more complicated, the previous discussion shows that
one still has a sum of divergences associated with the various subdiagrams. To deal with such overlap-
ping divergences in a systematic way and show that the usual counterterms are exactly sufficient to

cancel these divergences, too, was the achievement of Bogoliubov, Parasiuk, Hepp and Zimmermann
(BPHZ).

4.3 Bogoliubov-Parasiuk-Hepp-Zimmermann prescription and theorem

One defines a forest U as a family of nested (sub)graphs 7;: if 3 € U and 75 € U then either
7 C 2 or ¥2 C 71 or ;3 Nye = (. For the diagram of Fig. 14 e.g., 7; and 7, cannot be in the same
forest. More generally, overlapping loops cannot be in the same forest. On the other hand, in Fig. 12
the vacuum polarization subdiagram and the whole diagram can be in the same forest. Hence the
notion of forest is exactly what one needs to distinguish overlapping subdiagrams (divergences) from
non-overlapping ones. Again, in Fig. 14 the list of all forests is:

U=0, Ui={m}, UVa={n}t, Us={wn}, Us={nnt, Us={ys}. (4.18)

For each diagram G one then considers such a family F(G) of all forests of G. Then we have the

BPHZ prescription: For each forest U; € F(G) consider the nested sequence vy, C 7 C ... of the
(sub)graphs in U;. Starting with the innermost 7,, one defines a subtraction term S(U;) by replacing
the integrand I, of each subdiagram ~, (in the nested sequence) with superficial degree of divergence
Dy, by the first Dy, 4+ 1 terms in its Taylor expansion (e.g. around 0) in the momenta flowing into
(or out of) this subdiagram. Since at each step one only keeps a polynomial in the corresponding

momenta, the final subtraction term is still a polynomial in the external momenta.

To see how this works, consider the diagram of Fig. 13, resp. Fig. 14:

e Uy =0 : no subtraction, S(Uy) = 0.

I

e Uy = {7} : This subdiagram is just the vertex function eIy,

(p'+q,p') and we know from our
one-loop computations that el ; (p'+q,p") = eLy" + el (0 +¢,7'), with g 5. (0" + ¢, p)
being the finite (renormalized) vertex function and L = —(Z; — 1).2. This subdiagram has
D = 0 and hence the corresponding subtraction term is just the first term in the Taylor
expansion: S(Uy) = —e[(Zy — 1)z + Jy* with ¢ = =T ,..(0,0) and (Zy — 1).2 given in (3.81).

Obviously, this corresponds to a counterterm ~ A,y .
o Us; = {72} : This similarly gives the same subtraction term S(U;) = —e[(Zy — 1)e2 + c|y*.

e U; = {73} : This is just the full diagram we want to study. It has D = 2 and thus the
subtraction term must be a second-order polynomial in the ¢q. By gauge invariance this must
be of the form (7,,¢* — ¢,q,)C with C' = Toverap(q® = 0). We are not claiming that this is the
only divergence of this diagram, but BPHZ tell us that this is the subtraction term for this
forest: S(Us) = (Nuwq® — 4u@v) X Tovertap(¢*> = 0). This corresponds to an order e¢* contribution
to Zs.
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e Uy = {7,773} : Here we must first replace the integrand of the ~;-part by S(U;) as defined
above, so that the integrand for the 73 part is the same as for Hlleloop but with ey* in the

left vertex replaced by e[—(Zy — 1).2 — ¢|Jy*. Then the subtraction term is S(U;) = (¢*n** —
¢"q")[—(Zy — 1),2 — c|(Z3 — 1).2. This also corresponds to an order ¢! contribution to Zs.

o Us = {72,753} : same subtraction term as for Uy.

BPHZ theorem: The original (regularized) diagram minus the sum of all subtraction terms is finite.

The latter is exactly generated by the (usual) counterterms.

We will not give the proof of this theorem, but just mention that it proceeds by recursion. One
assumes that all diagrams at order NV are made finite by the counterterms. Then one finds a recursion
relation for the large momentum behavior at the next order N + 1 (including on subspaces pLHpW
etc, as relevant for overlapping divergences). The solution to this recurrence relation uses the sum
over forests. It can then be shown that the original diagram minus the sum of all subtraction terms

is indeed finite.

4.4 Summary of the renormalization program and proof

e A; is the (mass) dimension of the coupling g; (provided one only deals with scalars, spin—%,
photons or gravitons). Renormalizable interactions have A; > 0, a renormalizable theory only
has interactions with A; > 0. The superficial degree of divergence (divergence in the region
where all k; — 00) is D =4 — > EfDy — >, N;A;. In a renormalizable theory only a finite
set of Ky gives D > 0. Diagrams with D < 0 are superficially convergent.

e A superficially convergent diagram can be divergent only due to divergent subdiagrams. Then
the same counterterms that render finite these subdiagrams also make the whole diagram finite.
Thus we only have to deal with superficially divergent diagrams, i.e. only with finitely many
Ey if the theory is renormalizable.

e [gnoring overlapping divergences for the moment, a superficially divergent diagram with D > 0
is made superficially convergent by D + 1 derivatives with respect to the external momenta.
This implies that its diverging part is a polynomial in the external momenta and this can
be subtracted by a local counterterm. In a renormalizable theory, even though at each order
in perturbation theory there are new diverging diagrams, for fixed Fy, the degree D cannot
increase and the structure of the polynomial, i.e. of the counterterms remains the same, only
the coefficients (the Z’s) get higher and higher order contributions. Since D > 0 only for
finitely many Ey, only finitely many counterterms are needed. Adding these counterterms
renders all these diagrams finite to all orders in perturbation theory. On the other hand, in
a non-renormalizable theory, at every order in perturbation theory, diagrams with more and
more external lines become divergent and one needs an infinite number of counterterms to
render them all finite.
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e To deal with overlapping divergences, BPHZ define the forests with nested boxes (subdiagrams)
7. of degree D, = D(7,), each forest giving a subtraction term obtained by replacing each
subdiagram in the nested sequence by its D, + 1 first terms in a Taylor series in the “external”
momenta. This corresponds to the same counterterms as defined above. BPHZ show that
this procedure renders also finite these diagrams with overlapping divergences to all orders in
perturbation theory. Again, in a renormalizable theory, finitely many counterterms make all
diagrams finite.

4.5 The criterion of renormalizability

Renormalizability restricts interactions to those with A; = 4 — d; — > £ f(l4+sp) =4—d;, —
> snifDy > 0 only. For a finite number of fields these are only finitely many interactions. Of
course, there are also other restrictions on the possible interactions like Lorentz invariance or other
symmetries one might want to preserve.

If the regulator preserves a given symmetry then the finite and the diverging parts of any Green’s
function (not necessarily of individual diagrams) at any order in perturbation theory must also
preserve this symmetry. Hence the counterterms also respect this symmetry.

What if one allowed to include non-renormalizable interactions, like e.g. adding a term zﬂ’yw,wF v

to the QED Lagrangian? This interaction indeed has dimension 5 so that A = —1 and it is non-
renormalizable. For dimensional reasons its coupling constant must be of the form /7 with dimen-

sionless p and some mass scale M. Such a term would change the magnetic moment of electrons by

Mme

M
we know that this quantity must be extremely small. Said differently, if we take p of the same order

an additional amount ~ p 2 which would thus become an adjustable parameter. From experiment

as e, the mass scale M must be very large compared to m..
More generally, a non-renormalizable interaction has A; < 0 and coupling constants of dimension

A; = —|A;|. Write g; = &7 Then non-renormalized diagrams have divergences that behave as
(ﬁi)N (%)miw at order N in perturbation theory, A being some UV cutoff. Also, infinitely many

Green’s functions are divergent and we need infinitely many counterterms, possibly with an arbitrary

number of derivatives. However, once these divergences are cancelled, we have renormalized Green’s
pj ) |AqIN

o )

Thus, as long as |p;| < M one can neglect the effect of these non-renormalizable interactions.

functions G(p;), and at order N in perturbation theory (in g;) they will behave as (g;)" (

Theories like QED are presently thought to be only effective theories, in the sense that they
provide the effective description of electromagnetic interactions at energies that are low compared
to some scale at which new physics could be expected, like e.g. the grand unification scale of 10
GeV or even the Planck scale of 10 GeV. Such an effective theory then has an effective Lagrangian
obtained by “integrating out” the very heavy additional fields that are present in such theories. (We
will discuss such integrating out a bit in the next section). This necessarily results in the generation
of (infinitely) many non-renormalizable interactions in this effective Lagrangian with couplings %,
M being e.g. the grand unification scale. From the previous argument it is then clear that at energies
well below this scale these additional non-renormalizable interactions are completely irrelevant, and
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this is why we only “see” the renormalizable interactions. Our “low-energy” world is described by
renormalizable theories like QED not because such theories are somehow better behaved, but because
these are the only relevant ones at low energies:

Renormalizable interactions are those that are relevant at low energies, while non-renormalizable
interactions are irrelevant at low energies.

This is also the teminology in statistical mechanics where one studies infrared physics at scales
Ip| < 2 = A, where a is the lattice spacing.

4.6 Exercices
4.6.1 Yukawa theory

Consider a 4-dimensional quantum field theory of a massive Dirac fermion v coupled to a massive
scalar field ¢ via a Yukawa coupling gyn)¢.

a) Determine whether this theory is renormalizable. Let I"™™ be the one-particle irreducible n +m
point function with n external fermions and m external scalars. Determine which I'™ are super-
ficially divergent and which ones are superficially convergent. Draw the one-, two-, and three-loop
contributions to I'%? and I'*! and explicitly (by looking at the propagators and integrations) deter-
mine their superficial degree of divergence.

b) What happens if one replaces the Yukawa coupling by a derivative coupling g’@/?y“z/)augb 7 Study

the superficial degree of divergences of I'*? at one, two and three loops.

4.6.2 Quantum gravity

The Einstein-Hilbert action for gravity in d > 3 dimensions is

Sen = 5 [ a3 Rlg (4.19)

where R[g] is the scalar (Ricci) curvature computed from the metric g, and /g denotes the square-
root of the determinant of the metric. In perturbative quantum gravity one lets g,,, = 7, + by With
“small” hy,, and does a perturbative expansion of the action. Show that g*” = n** — h* + O(h?)
where one raises and lowers indices on h with 7. Also show that \/g = 1 + %h‘lj (Hint: use the
formula det g = exp( tr log g). Recall the formula for the Christoffel symbols and show that

20, = Ouhl + O,hf, — 0Phyy — W7 (Dphue + Oyhye — Oshy) + O(h"OR) . (4.20)
Recall that
R”W\H = 8/\FZV — oIy, + F’A’O_FZV - FZJ v s Ry = R”Wm , R=¢"R,,, (4.21)

and argue without keeping track of the indices that U ~ 0?h + hd*h + (Oh)* + h20*h + h(Oh)* + . . ..
R and finally
of \/gR. Deduce the large momentum behaviour of the h-propagator as well as the dimensions of

Give the corresponding expansions (still without keeping track of the indices) of R” BV

the various interactions in space-time dimension d. Discuss whether this theory is renormalizable in

d dimensions? What happens in d = 2 dimensions ?

Adel Bilal : Advanced Quantum Field Theory 75 Lecture notes - September 29, 2016



4.6.3 Non-renormalizable interactions from integrating out a massive field

Consider a theory of two scalars ¢ and ¢ with masses m and M where M > m. Let their action be
1
Slp, 0] = /d4x( = ) [(09)* +m*¢* + (99)” + M?¢* + gmepg?] . (4.22)

(We have defined the coupling as g X m to have a dimensionless g.) Define the effective action for
the light field ¢ as

giSeatle] _ / Do eiSiedl | (4.23)

Show that the resulting determiant can be interpreted as a sum of one-loop diagrams with N ¢-
propagators and N external ¢ attached at the vertices. Compute the determinant by neglecting the
¢ momenta with respect to M and show that this results in infinitely many new couplings for ¢ of

the form

i (_]\;NA"‘ <”A23>N¢N , (4.24)

where A is some large UV-cutoff which one can take of the order of M. Discuss the role of these new
interactions for N < 4 and for N > 4.
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5 Renormalization group and Callan-Szymanzik equations

5.1 Running coupling constant and g-function: examples
5.1.1 Scalar ¢*-theory

Consider the 4-point vertex function F in the scalar ¢*-theory we computed in section 3. At tree-level

it equals g, independent of the momenta, while up to order ¢* it was given by (cf. (3.125))

2 1 2 (1 . .I‘)
F ,—>’,’:+g/dxlom i +(s—=t)+(s—=u)p, 5.1
92 (QI q2 q1 q2) g 327T2 0 g m2 + %sz(l B Jf) ( ) ( ) ( )
which depends on the momenta or, equivalently, on s, ¢ and u. It also depends on the scale u used
to fix the renormalization condition (3.122). Below, we will consider different scales, so let us call
the present scale u,. To emphasize the dependence of F' on pu, we will write F'(s,t,u;p,) and call

the corresponding coupling g,. Thus

4
F(s:t:u:—guf;u*>:g*, (5.2)
and eq. (5.1) is rewritten as
2 1 2
gz m? — sx(1l — )
F(s,t,u; () = g« dzq 1 — 1 — : 5.3
(stowin) = 0o+ 35 | { B o syt (0 0+ u)} 53

Recall from section 3, that this is essentially the 1PI 4-point function, since I'“(q1, g2, —¢}, —¢}) =
—(2m)*6W (g1 + ¢a — ¢f — @) Flar, a2 — i, 63).

Let us remark that the condition (5.2) can be viewed as defining what we mean by the coupling
constant of our theory. It is one convenient definition and obviously one might have chosen a
different one. For example, one might have defined g, in terms of the function F' and a scale u, but
at cgs = ¢t = c,u = —p? with some unequal coefficients cg, ¢;, ¢,. One might also have defined the
coupling not in terms of F, resp. ', but in terms of the 4-point Green function at some convenient
off-shell point. We will come back to this later-on, for the time being we keep the definition (5.2).

To make the discussion of the following paragraph more intuitive, suppose m # 0 and that
one has chosen p, = m. Then, as long as the momenta remain of the same order of magnitude
as m, the argument of the logarithm is of order 1, and fol dz{...} = O(1), so that the one-loop
correction is small with respect to the tree contribution as long as 5555 < 1. If, on the other hand,
one is interested in extreme high-energy scattering with s, |t|, |u| > m?, then the logarithms will

be large: log 1;€2—M ~ log 75 — log 1+xé(;1x_)x)'
3 3

+iz(1-2
MeV and +/s of th(e oider of 100 MeV. Then log -* ~ 10 which is large but is easily compensated
by the 321”2 ~ 3 x 1073, and the one-loop contribution will certainly be small with respect to the
tree-level result if ¢ is small. However, as one considers higher and higher energy scales, the log
will increase further. For /s, \/m, \/m ~ 10 TeV e.g. the sum of the 3 logarithms is about 100.

Eventually, perturbation theory will break down as one goes to very high energies. Actually, like

To fix the ideas, suppose m is of the order of 1
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for most quantum field theories, the perturbation series in ¢ has a vanishing radius of convergence.
Nevertheless, the series is asymptotic, meaning that one gets a good approximation, if ¢ is small
enough, by computing the first few orders in g. The approximation will be better for smaller ¢
or, at fixed g, if large logarithms like the ones discussed do not appear. In this sense, to improve
perturbation theory one has to avoid such large logarithms. This can be done as follows.

If one is only interested in the high-energy scattering, one might define the coupling constant g,
right away at a scale y, comparable to /s, v/|t], v/|u|. Then no large logarithms will ever appear?*.
In general, however, one wants to be able to compute at different scales and most often the original
definition of the coupling g, is at low or zero momentum, like the definition of the elementary charge e
in QED. The solution is to define a different coupling g(u) for every scale i as the value of F(s, ¢, u; fi.)
ats:t:u:—g,uzz

2

4 3¢ [* m? + p2x(1 — x)
9(k) (3 v=gh “) g +327r2/0 H e v s

Again, if u > p, the logarithm will be large, but this can be easily avoided by first defining g(u)
at some pi; just slightly larger than p,, and then use this g,, to compute a g,, at a scale uy slightly
larger than pu,, etc. More precisely, introduce intermediate pg = fis, ft1, - - - in—1, iy = p and define

39(4,)? / o A= )
3272 m?+ 3p2 (1 — )

9(tn+1) = g(pn) + (5.5)
[terating this relation allows us to go from g(u.) = g« to g(un) = g(p) while keeping the logarithms
small at every step.? Thus eq. (5.5) provides the desired relation between the g(u) at different
scales. Let us insist that no large logarithms will appear when computing scattering amplitudes at
typical s, t, u of order u? if one uses this coupling g(u) and, in this sense, g(u) is the natural coupling
constant at this scale. Obviously, as p increases, g(u) also increases.

It is much more convenient to turn this relation into a differential equation by considering u,, = u
and f,11 = p + op with infinitesimal . We get

d 3 s [ 12x(1 — x)
— = d 3 = B(u,m) . 5.6
Let us be slightly more precise. What one does is to express g(¢') in terms of u/, g(u) and p and
take the derivative with respect to p’ at fixed p (and fixed g(p)) and set ¢ = p in the end. With
this being understood, one simply writes ,u%g(,u). In general one defines the functions B(u, m) and

B(p) as

B(u,m)zu% W), B = Blu,0) . (5.7)

24except in certain kinematical regions like forward scattering

2’Note that g(un1) differs from g(u,) only by a term of order g2. Thus, to the order we work, we could just as
well replace the g(u,) in front of the integral by g(uo) = g«. If one does so, iterating eq. (5.5) N times exactly yields
eq. (5.4).
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Obviously, if g > m one can neglect the effect of the mass m and approximate 5(u, m) by S(u).
Equation (5.6) yields for the ¢*-theory:

3
1672

Bp) = g(1)* = Bo g(p)* . (5.8)

For the present ¢*-theory, the B-function is positive and the differential equation shows that for
positive (negative) S-function the coupling increases (decreases) when the scale p increases. It is
easy to solve the differential equation (5.7) with 5(u, m) replaced by (5.8):

d
dlog i

B ) 1 B 1 L & Bo
90 = Pog)” = oS ﬂmYJg(m) ‘ (59)

One sees again that g(p) increases when p increases. A useful rewriting of this solution is as follows:

1
exp ( ) = M , independent of . 5.10
: Bog (1) ( )

The quantity M is called the renormalization group invariant scale, since the change in g(u) is exactly
such that this quantity does not depend on u. Being independent of i, we expect the quantity M

to have a physical meaning. Indeed, if 4 = M we have = 0 and we see that M is the scale

1
Bog(w)
where g(u) — 0o. Of course, we have only done a one-loop computation and as g(u) becomes large
we no longer can trust a one-loop result. What one can say is the following: even if one starts at
some scale p, with a small g(u.), as the scale is increased, the coupling grows and for scales of the

order of M the theory enters a strong-coupling regime. We may rewrite eq. (5.9) as

-1

mngwal—&mmﬂ%% . (5.11)

This is valid for any po > m (since we neglected the mass) and as long as g(u) is small, whether
g(po) log -u% is small or not.

It is useful to note that, in practice, one can compute S(u, m) directly form (5.4) by taking
,u% and replacing g2 by g(u)?. Note though, that one should not take u*d?—t* of (5.3) as this would
result in the opposite sign. If one traces back our computation one sees that the -function is the
coefficient of the log yu-term which is minus the coefficient of the log fi-term in Fj,,, which, in turn is
the coefficient of the 1-pole of the Z,-factor times g, cf. (3.124). :

1
B()1-100p = coefficient of - in Z,g. (5.12)

We have also seen that, at one loop in the ¢* theory, the wave function renormalization factor is

Z = 1. Thus, we can just as well say that the one-loop S-function is the coefficient of % of %g =gp:

1
B(1)1-100p = coeflicient of — in gp when expressed in terms of g. (5.13)
€

If we go to two loops, however, Z # 1 and the two expressions for the g-function become different.

Also in other theories, like ¢* in 6 dimensions, Z # 1 already at one loop. Does this mean that
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in general (5.12) is right and (5.13) is wrong? The answer depends on how exactly one defines the
coupling constant g. Obviously, if it is defined in terms of the 1PI vertex function, eq. (5.12) should
be correct. More generally, one might define couplings ¢,, in terms of the renormalized amputated
n-point Green functions as is relevant for computing (on-shell) S-matrix elements at typical energy
scales p. On the other hand, 1PI vertex functions and full propagators at off-shell momenta appear
as building blocks of larger Feynman diagrams, as we have extensively discussed in the previous
section. Thus one not only has to avoid large logarithms in the 1PI vertex functions but also in
the full propagators. It then makes sense to include corrections from the full propagators into the
definition of the coupling g(u). Since each propagator is linked to two 1PI vertex function, its
contributions should be split between the two vertices, assigning half its contribution to each. Again,
if one traces the appearance of the logu and % terms, one sees that taking into account half the
contribution of a full propagator amounts to picking the coefficient?® of the %—pole in ﬁ In a ¢
theory this results in an extra factor of # and with this new definition of the coupling g the
B-function would indeed be given by (5.13).

Since the coefficients of the % poles are determined by the divergent parts of the one-loop integrals
only, this actually gives a very easy way to get the leading coefficient of the S-function in a large

class of theories. We will discuss this in somewhat more detail below.

5.1.2 QED

To see how the effective coupling of QED evolves with the scale of energy, consider how the tree-level
coupling of a photon to an electron gets corrected by one-loop effects. Following the above discussion,
we think of a complicated Feynman diagram built from 1PI-vertices I'*, complete electron propagators
and complete photon propagators, all with off-shell momenta, as shown in Fig. 15. (Note that we
use only the electron-electron-photon 1PI vertex explicitly, not the higher vertex functions. Hence
the resulting diagram is not necessarily a tree diagram.)

Then we need to include half of the corrections coming from the propagators and the entire
correction coming from the 1PI-vertex function to define what we mean by the running coupling
e(p). At the one-loop level, there are the following diagrams to take into account. First, the photon
propagator gets corrected by the one-loop vacuum-polarization diagram. We have seen that this

e’ 5 e?(1 + 7(¢?)) or e — e(1 + 3m(¢?)). Next, the electron propagators get

modifies € — =5
—7(q

corrected by the self-energy diagrams >* on the fermion lines (there are two of them but each counts
half). Finally, there is the one-loop corrected vertex I'*. The latter two are related by the Ward
identity. Recall that their divergencies were cancelled by the same counterterm ~ Z; — 1 and,
similarly, one can see that their contributions to the S-function cancel. (Schematically, the vertex
diagram contributes the coefficient of % in Zy, while each of the two electron self-energy diagrams
contribute the coefficient of % in \/%, giving a vanishing total contribution.) Thus, the effective

26Recall that Z = 1 + z with z of order g at least. Thus ﬁ ~1-—

SIS
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Figure 15: A complicated Feynman diagram in QED is built from the 1PI electron-electron-photon
vertex functions, the full electron propagators and the full photon propagators.

coupling is entirely determined by the vacuum polarization diagram:

1
e —e(q?) = €<1+§7T(q2)>
es [t q°
= 6+4_7T2 ; d$$<1_x)log [1+$(1_x)ﬁ}‘ (514)

Repeating the argument done for the coupling in the ¢*-theory, we get

63 1 M2

e(p) :e+m i dzz(1 — x)log [1+x(1—x)ﬁ] : (5.15)

and s 2 ¢

d e (1 —=x
m)=p—e(p) = — [ do—m—r— T 5.16
Bp,m) M (1) 27T2/0 T (5.16)
which yields the g-function of QED
¢’ (5.17)
Bel) = 153 - '

Note that in QED we have eg = Z3_1/26 with Z5 = 1—6% (% + ﬁnite) so that eg = e+% (% + ﬁnite)

and again

Be(ft)1-100p = coefficient of % in eg when expressed in terms of e. (5.18)
The p-function is again positive and e grows with the energy scale. Sometimes, this is written in
terms of the running of the fine-structure constant a = % as Bo = @a = 5= Be(p):
bulh) = = a? (519
3
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which is of the same form as (5.8) with §y = =. The S-function (5.17) or (5.19) governs the
running of e(u) or a(p) for values of p much larger than me, say p, = 10m.. To get the running
for 0 < pu < p., one should use the explicit expression (5.15) instead. The latter is perturbatively
Ly < 21og 100 ~ 0.01. As discussed in connection with the Ward
identity, the renormalized charge of the electron is defined at zero momentum, hence ez = €(0) and

ar = a(0) = a ~ 2. Thus ( fo drz(l —z)logz(l —2) = —2)

valid in this region since ;—

= 37 18
12
alp,) = +—/ dxxl—x)log[l+x(1—x)m2]
2 2
~ a+%/ dzz(1 — z)[log (1 — z) + log #*g]
20 . 5 2 5,171
= a+§[—6—l—log—e}Na[l-gCY(lOgm—e—g)] . (5-20)

For o > p., one can safely use the solution of pia(u) = Bu(p) with initial value given by (5.20)
and S, given by (5.19):

*

() = ) [1 = o) logﬂﬁ}‘l | (5.21)

Combining (5.20) and (5.21) yields

alp) = a[l - %Oz(log mie - g)} B . (5.22)

This equation is valid even when alog mip is of order 1. However, just as for the scalar ¢* theory, it
shows that the coupling becomes strong as p2 M =meexp (32) ~ 10%m,. Of more experimental
relevance is the value of (1) at present day collider energies. For u = 100 GeV e.g. (LEP) one gets
(i) ~ =i 4 5+ This is the result when taking into account the electron field only. Including the effects
of the two other lepton families (as well as the quarks) one gets (100 GeV) ~ .

5.2 Running coupling constant and [-functions: general discussion

Having seen the running of the coupling and the corresponding S-functions in two explicit examples,

we will now try to make some more general statements.

5.2.1 Several mass scales

We have seen in the example of QED with only electrons and positrons that the running of e(u) or
a(p) was well determined by the S-function for scales u above a few electron masses. Below, one
had to use the exact form (5.15) or its approximation (5.20). However, in the real world, there are
many more charged particles of higher masses that also contribute to the S-function. Let us consider
the case of two well-separated mass scales, 0 < m; < may, the generalization to more than two mass
scales will be obvious.
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Suppose the one-loop computation yields (cf. (5.4) with p,. = 0 or (5.15) written for a(u) instead
of (1)

2

g(p) = g. + g2 /dx {fl(ac) log [1 + hl(x)%} + fo(z) log [1 + hg(fﬁ)%] } , (5.23)

1
where z could stand for multiple Feynman parameters z;, and thef;(x) and h;(z) are some polyno-

mials. Let, much as before

2 2
Braumm) = o) = ot [ do {0 —Z0EE 1 o) s
Then, as long as u < my < mg, one sees from (5.23) that g(u) ~ g.. As p becomes comparable

to mq one still has 4 < mo, and one can neglect the second logarithm. Actually, as long as pu is
considerably smaller than ms (exactly how much smaller depends on hy and f2/ f1), one can continue
to neglect the second term in the braces: in this region, the heavy particle does not contribute to
the running of g(u). If, in this region, the first logarithm becomes large for m; < p < ms, one must
use the differential equation with 5(u, my, ms) to evolve g(u). However, for m; < p < my, one can
neglect the second term in the braces in (5.24), while in the first term one can set m; = 0. Hence,

in this region, the running is effectively governed by

Bu(n) = Bralp, 0, 00) = g / dw2f:(r) (5.25)

As 11 becomes of the order of msy, one has to use an expression similar to (5.23) with u, # 0 to evolve
g(p) from some p, < ms to some p > my beyond which it is reasonable to neglect the effect of msy

and one can use
Biya(p) = Pr2(p,0,0) = gf/dx (2f1(37) + 2f2(37)) (5.26)

to evolve g(u) further to even larger scales . It is often enough to simply evolve g(u) with 5y (u)
from my to my and then with £y.2(u) above ms.

The general lesson to remember is that at a given scale y the running of the coupling is determined
by the S-function due to loops of only those particles that have masses below p while particle with
masses much larger than p do not influence the running.

5.2.2 Relation between the one-loop (-function and the counterterms

We have already seen in the ¢*-theory and in QED that, with the appropriate definition of the
running coupling constant, the one-loop S-function coincided with the coefficient of the % pole in the
expression of the bare coupling in terms of the renormalized one. We will now establish this relation
more generally.

According to the above discussion, in general, we define the one-loop corrected n-point coupling as
given by the value of an appropriate proper n-point vertex function I'™ | plus half of the propagator
corrections (as shown in Fig. 15 for the example of QED), all computed up to one loop and evaluated
at some conveniently chosen momenta p;(f):

9) = T (p3(00) + 5 0 A5 o) T (13 0) - (527)
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As before, '™ and IT* are the renormalized vertex function and 1PI propagator (“self-energy”).
It will be useful here to separate the contributions from the one-loop diagrams and those of the

counterterms:

F(n)(p]) = g+ (Zg - 1)g + an)loop(pj)
(p) = —(Z; = 1) Aj(p) " + Z;0m + 111 05 (p5) - (5.28)

We will restrict ourselves to the cases where the one-loop contribution F@loop diverges logarithmically

and the original coupling ¢ is dimensionless in 4 dimensions. This includes most of the interesting

theories. Moreover, since we want to compute f(u) = ,u%g(,u)‘m_fo, i.e. we are interested in the
=

region where |p§| > m?, we can drop all terms involving the masses right away (except maybe to

regulate IR divergences). In particular, 6mj2 ~ m?, so these terms will also be dropped. Thus

n

1

g(1) = g+ (Zy — 1)g + T (3 (0)) + 3 D =92 = 1)+ gD ) I op (pi(1))] - (5:29)

j=1
The [S-function will be given by the coefficient of log i in this expression. We will show shortly that
each log i1 in a one-loop contribution is accompanied by a —% with the same coefficient, and that the
finite renormalization conditions require that this is also the coefficient of —i—% in the corresponding

combination of the counterterms. Hence:

1
B1-100p () = coefficient of — in
€

92— 1) =3 0(7 - 1)] . (5.30)

Note that, since Z;, — 1 and Z; — 1 are always at least O(g), one has to the order we are interested in

Z, 1+ (Z,— 1) 1
g5 =9 =g —g1+(z,-D-33 -], 63
,,/Z; “1\/1+(Z 1) 2;
and, hence
) 1. .
B1-100p () = coefficient of — in gp when expressed in terms of g. (5.32)
€

Let us now give the argument: Using dimensional regularization and Feynman parameters, the one-loop
contribution to the 1PI vertex function is of the form

" oop (D7) = —Cn g" ( ) / de] (2)) ( (pg;x”)>_6/2, (5.33)

where R(p;,z;) is some quadratic form in the momenta and masses and f is some scale introduced to keep
g dimensionless after dimensionally continuing to d = 4 — e. We let

bo = 2¢n /dejf(a:j) , (5.34)

so that ) R )
n n n n Dj,Tj
L oop(p) = =2 g" = Sbog" + g / [T dz;s £(a;) 108 (/;ﬂ) . (5.35)
J
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As before, we impose a renormalization condition that I'™ should equal g for some fixed p; = pj (1)
Combining (5.28) and (5.35) fixes Z, as

(2~ 19 ="24"+ g~ eng” [ [Ln; flay)tog (F2AL22)) (5.36)
J

The (renormalized) n-point vertex function then reads

KO =g+ eug” [ TTdns o) tom (o) (.37

We need the coefficient of log i in this expression when p; = p;(u), for p sufficiently large so that we can
neglect all masses. Now, R(p;(u), ;) necessarily is of the form

=2, (5.38)

my=0

R(pj(n), ;) = r(z)p® + > prs(zj)mems = udi log R(p; (), ;)

8

Thus the coefficient of log yu in T (p; (1)) is 2¢, g™ ij dx; f(xj) = bog™ which is also the coefficient of
Lin (Zg — 1)g, cf. (5.36). The same argument can be repeated to show that the coefficient of log ;1 in

€

Aj(p; (,u))H;‘ (pj(1)) is the same as the coefficient of 2 in —(Z; — 1). This completes the argument.

5.2.3 Scheme independence of the first two coefficients of the S-function

We have just seen that the result for the S-function does not depend much on the details of the
renormalization conditions. One might ask what happens if one uses a different regularization or
makes coupling constant redefinitions. We will show the following result:

As long as one defines the coupling such that

Blg) = bog” + bi1g® + bag* + ... (5.39)

the first two coefficients by and b, are universal, i.e. are unchanged by changing the renormalization
scheme or redefining the coupling by higher-order terms.
To prove this, assume that in a different scheme with a different coupling g one finds

BG) = bod® + b1g" + bog' + ... . (5.40)

Now, the bare coupling is scheme independent and must equal ¢ and g to lowest order: g, = g +
a19> + O(g?) and g, = g+ a19> + O(g®). Then g = g + ag® + O(¢®) with @ = a; — a;. Hence

j—g =1+ 2ag + O(g?). Also, g, should be a function of g, only and not of £ e.g. It follows
~ d _ d dg dg 2 3
= e = g o = B0) 52 = (bog® +big’ + ) (14209 + )
B(gy) i, = P9 4 5(g)dg (og +big” + + 2ag +
2
= byg* + (b1—|—2abo>g3—|—... :bo<§—a§’2+...> + <b1+2ab0>’g“3+...
= bog? + b+ ... . (5.41)

Hence 30 = by and 31 = by, as was claimed.
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5.3 [-functions and asymptotic behaviors of the coupling

Let us now study the different asymptotic behaviours of the running coupling constant, given the
different possible forms of the g-function. Here we will be mainly interested in the UV asymptotics,
i.e. the behaviour as the scale p becomes very large. In a massless theory, however, the limit where
i becomes very small (IR behaviour) is also of interest, in particular in the description of critical
phenomena in statistical physics.

The S-function being defined as f(g(u)) = /Li g(1) = 3—g(u), this gives a differential equation

dlog p
for g(u) if B(g) is known. This differential equation is integrated as

9(p2)
/ A9 gtz (5.42)
g(p1) 6(9) 251

5.3.1 case a : the coupling diverges at a finite scale M

Suppose (g) > 0. Then the coupling g(1) increases as the scale p is increased. Suppose furthermore

that ((g) increases fast enough with ¢g so that the integral f;&l) % converges. Let the value of
this integral be log MMI Comparing with (5.42) we see that at the scale M the coupling diverges:

g(M) = oo. This is shown in the left part of Fig. 16. Explicitly, M is given by

M = jexp (/g:) %) | (5.43)

Of course, the running of g(u) is precisely such that the r.h.s. does not depend on p. For this reason,
M is called the renormalization group invariant mass. Note that, even if we start with a massless
theory, the renormalization group equation (5.42) asserts that there is a well-defined mass scale in
this theory! Equation (5.43) allows to trade g(u) for M and vice versa. This is sometimes referred
to as dimensional transmutation.

We have seen that this would be the behaviour in scalar ¢*-theory or QED if we could trust

the one-loop result 3(g) = bog® with by > 0 (g9 = a for QED) since then fgﬁ) % = ﬁ(u) and
M = pexp (Wl(u)) We have also remarked that for QED this M is extremely large and certainly

well beyond the energy scales at which QED has to be embedded in a larger and/or more fundamental
theory. Of course, as already emphasized, unless one knows [3(g) exactly, perturbation theory must
break down as u gets closer to M and g(u) becomes large. In any case, as u becomes of the order of
M, the theory enters a strong-coupling regime.

5.3.2 case b : the coupling continues to grow with the scale

Suppose 5(g) > 0 but 3(g) increases slowly enough with g so that the integral fgg(m) % diverges as

g — 00. In this case, (5.42) shows that g(u) — oo as p — oo, but for any finite p the coupling g(u)
remains finite. This situation is depicted in the right part of Fig. 16.
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Figure 16: Shown are the S-functions and corresponding scale dependence of the couplings for case
a (left) and case b (right).

5.3.3 case c : existence of a UV fixed point

Suppose that 3(g) starts out positive for small g and has a zero at some finite g, with 5'(g.) < 0
(see the left part of Fig. 17):

Blg)=0 , pBg)=—-a<0. (5.44)
Then, if one starts with some initial g(u1) < g«, the S-function is positive and the coupling will

increase as p is increased. For some large enough ps, g(p2) will become close to g, and we can
approximate 3(g) ~ —a(g — g«). Equation (5.42) then gives

"o g(u)ﬂN_aom s - &a
log _/gm) Blg) lgg(ﬂz)—g* = 9(1) = g = (9(p2) g*)(ﬂ) : (5.45)

We see that, as 1 — oo, the coupling g(u) is driven to g.. For this reason, g, is called a UV fixed
point:

gx > 01s a UV fixed point if 5(g.) =0 and £'(g«) < 0. (5.46)

So far, we have considered positive §(g) for small enough g. This resulted in a coupling that

increased as p was increased.
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Figure 17: Shown are the S-functions and corresponding scale dependence of the couplings for case
c (left) and case d (right).

5.3.4 case d : asymptotic freedom

Now suppose that 5(g) < 0 at least for 0 < g < g,. Then, as long as we start with a g(u1) < g, the
coupling g(u) will decrease as p is increased (see the right part of Fig. 17).

To be more specific, suppose fgg (b2) ;(—% diverges as ¢ — 0. This will be always realized in
perturbation theory since 3(g) ~ ¢g" + O(g"™!) with n > 0. Then (5.42) tells us that as y — oo one
has g(u) — 0: the theory becomes a free theory in the UV limit. This is called asymptotic freedom.

To see this in more detail, suppose (with by < 0)
B(g) = —lbolg" +O(g"™), n>2. (5.47)

Neglecting the higher order contributions to £ (since g becomes small this will be more and more

justified as p becomes large!), we have

m 1 [9m) qq 1 ( 1 1 )
log 2 = — — - = — : 5.48
B ol L o = Dol \gla T gl (5:48)

One sees that as y1 — oo one must have g(u) — 0. Indeed

1

n—1

9(1) = 9(u1) {1 T (0 — 1)lbolg(u)™ " log ﬂ . (5.49)
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On the other hand, as p is decreased, the coupling g(u) increases. It is easy to see at which scale the

coupling must become strong. Again, we see from (5.48) that the combination

M= (~ ) = (= Tagre) 50

does not depend on p (at least, as long as one can trust the lowest order result for 5(g)). It is again

a renormalization group invariant scale. As u — M the argument of the exponent must vanish and
hence g(M) — oco. Of course, perturbation theory breaks down before u reaches M, but this shows
that M is the scale where the coupling becomes large. The difference with case a considered before

is that now this strong coupling region is approached from large values of i as p is decreased.

A %‘r’

\(3')
TR Rk — — - - - -~

/

~

Figure 18: Shown are the g-function and corresponding scale dependence of the coupling for case e
(IR fixed point).

5.3.5 case e : IR fixed point

Finally, consider a situation where the g-function starts out negative for small g and then has a
zero for some g, necessarily with '(g.) = a > 0. In this case, if at some initial scale u; one has
g(11) < gs, the S-function is negative. This means that g(u) decreases as p is increased, and g(u)
increases as j is decreased, just as for case d, above. However, as p gets smaller, and g(u) gets larger,
the g-function becomes less negative and as g(u) approaches g, it can be well approximated by its
linearized form (just as for case ¢): 5(g) ~ a(g — g.). Suppose that g(u2) is close enough to g. so
that the linearized approximation is good enough. Then

pi2 9(p2) — g
g(p) =g« (5:51)

and g(u) — g. as p — 0, i.e. g, is an IR fixed point:

log — ~ alog

gx > 0 is an IR fixed point if 3(g.) = 0 and §'(g.) > 0. (5.52)

Such IR fixed points are of particular interest in the study of critical phenomena in statistical physics.
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5.4 Callan-Symanzik equation for a massless theory

I most textbooks, when presenting the Callan-Symanzik equation, the discussion is somewhat simpli-
fied by switching from dimensional regularization to an explicit UV cut-off A. This has the advantage
that one does not have to deal with the extra mass scale i introduced in dimensional regularization
(to keep the coupling g dimensionless) and which is different from the renormalization group scale
. Thus with an explicit UV cut-off one only has to deal with A and p, while in dimensional regular-
ization one has to deal with €,  and 1. We will nevertheless derive the Callan-Symanzik equations
entirely within the framework of dimensional regularization. Indeed, the presence of i presents only
a slight complication of the discussion.

5.4.1 Renormalization conditions at scale u

We have seen that one can define a running coupling constant g(u) as the value of (a certain com-
bination of 1PI propagators and) appropriate vertex function evaluated at the scale pu, cf eq. (5.27).
Of course, this equation (5.27) can be viewed as imposing a renormalization condition on the vertex
function at the scale p. It is then most convenient to also impose the renormalization condition on
the full propagator at scale p and accordingly require for the corresponding 1PI propagator that

5,
—TT*(p? =0, 5.53
o P ._ . (5.53)

while still keeping the condition that the pole be at the physical mass:
IT*(-m?) =0. (5.54)

(Note that p* = pu? corresponds to a space-like momentum.) These two equations are for scalars,
but their generalization to Dirac fields or the electromagnetic field is obvious as can be seen on the
examples to follow.

We will now restrict ourselves to the massless case. This will also include the case where 1, p; > m
and m can be neglected, just as in our computation of 5(u) = 5(u, m = 0). Let’s look at the example
of massless QED. Then one has for the electron self energy (cf. (3.77) and (3.78))

(W) = =% = D ip + (Zo0m)e — 7o |2 +log - =y +1-log 5 (5.55)

where 1 was some fixed mass scale introduced to keep the coupling e dimensionless in d = 4 —e. For
m = 0 the condition ¥*(im) = 0 simply yields

dm=0. (5.56)
This was to be expected for a massless theory.?” The normalization condition (5.53) now reads

7= () = 0 and yields

1
(22—1)62 :—7 Z—klog———— Ogﬁ s (557)

27 Although expected, it is generally not true if we use a different regularization.
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and
2

2 = 1o [l0s 5~ 2] (5.5%)

In particular, this is now free from infrared divergences!

Similarly, for the vacuum polarization (photon propagator) one gets from (3.135) and (3.69), now

with m =0

2 2

1 c ~ 5 1 q
. 2:—2—18—6—[— log — — 1422 —]. 5.5
WQ(Q) (3 )2 672 Le Ogﬁ 2+6 QOgﬁQ ( )
Our new condition (5.53) can be easily seen to translate into 7(u?) = 0, i.e. (Z3 — 1) = Moop(1?).
One gets
e? 11 C ~ 5 i
Z—162:——[— log — — 142 :}, 5.60
(Zs = 1) 67T26+0g\/7_1' 2+6 Og,u ( )
and ) )
2 € q
Te2(q°) = o3 logﬁ . (5.61)

What is the general lesson we learn from these examples? First, we note the obvious fact that
the 1PI functions are simpler in the massless case than in the massive one. Second, we see that the
renormalized 1PI functions only depend on the coupling e, or rather e(u), and explicitly on p via the
dimensionless combination Z—Z or g—z. In addition, they may depend polynomially on the momenta.
They have a well-defined finite limit as ¢ — 0 and they do not depend on g. Third, the Z-factors
depend on € (they have poles ~ 1), on the coupling e(x) and on the dimensionless ratio E.

Finally, we must formalize a bit more the definition of the S-function of the preceding subsection.
We will assume that the coupling is dimensionless as appropriate for a renormalizable coupling.
As explained above, the running coupling should be defined in terms of the appropriate vertex
function and half the sum of the corresponding 1P1I propagators evaluated at some reference momenta
p;i(p) = 0. Let us call F' the corresponding combination of vertex function and 1PI propagators.
Obviously, at tree level we simply have F' = g. Beyond tree level, F' will depend on g as well as
on the momenta p;. Note that for dimensionless g the function F' also is dimensionless and can
depend on the p; only through dimensionless ratios like p;/p or p;/fi. Just as in the examples of
the 1PI propagators above, the loop-contributions will depend on ¢ and p; /i, but there are also the
counterterm contributions. If we write the renormalization condition for the coupling at scale g
(more precisely for p; = p;(1o) = 0;10) then the counterterms are fixed such that the dependence on
i will cancel out and

F= F(Q(No)a %) with F(g(uo)ﬁj) = g(po) - (5.62)

This then allows us to define (at least for u close to )
i
g(p) = F(g(uo), 9]'%) : (5.63)

The p-function is defined in terms of this running coupling g(u) as

d

B(g(po)) = Ha (1) (5.64)

= M%F@(uo)ﬂjﬁ)

H=po w=po
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Note that § is a function of g only with no ezplicit  dependence. The definition (5.64) implies that
the S-function is obtained by taking u% of g(u) keeping g(uo) fixed. Now, for finite regularization,
i.e. € # 0, one can express g(fp) in terms of the bare coupling gg, € and po. Thus one sees that one

can also write

Blg(w) = “a% 93769(/4&) : (5.65)

5.4.2 Callan-Symanzik equations

It is now relatively easy to establish the Callan-Symanzik equations for proper vertices I'™ or n-point
Green functions. They express that the choice of renormalization scale p is arbitrary. Indeed, the bare
action, expressed in terms of bare fields and bare couplings (as well as bare masses if we considered
a massive theory), equals the renormalized action which is expressed in terms of renormalized fields
and couplings (and masses). Thus when computing normalized Green functions é(n) (cf. (1.37)),
i.e. excluding vacuum bubbles, of bare fields or of renormalized fields one uses the same functional
integral with the same action, the only difference being the explicit Z-factors. Any difference in the
measures due to the different normalizations of the fields cancels in the normalized Green-functions.
Thus (cf. (1.38))

Glé('ri? (p17 e ,pn) = [H \/ er Gl(’ln)ln (p17 P ,pn) 3 <566)
r=1

and thus for amputated Green functions

Gy (P1s 3 Pn) = Gl (P10 (5.67)

- 71/
g

As for the fields, a subscript B indicates the bare quantity, while we have dropped the subscript

R for the renormalized ones. Often, the amputated Green functions coincide with the 1PI vertex

function and, obviously, the latter must satisfy the same relation as the former:
n
H Zl:1/2
r=1

One can also derive this relation more formally by working with the generating functionals: e
[ DS+l Jo and eWel/sl ~ [Dgp etBl0sl+i] Je¢s  Observing that S[¢] = Splop] and ¢p =
V' Z ¢ we find Wp[.Jg] = W[V Z.Jp] up to an irrelevant additive constant. Upon Legendre transforming
W1J] and Wg[Jp| one finds

(n)

L (1 pa) = T (1, D) - (5.68)

W]

L] =TpVZy] . (5.69)

Expanding in powers of ¢ yields the relations (5.68).
To simplify the notation, we consider just one type of field and suppress all indices. However, we
will explicitly indicate the other quantities on which the vertex functions depend:

—n/2

L% (pj, g5, €) = {Z(g(u),%w)] T (ps, g(n), 1) - (5.70)
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This is to be thought as the asymptotics for small € where the renormalized I'™ are e-independent.
On the left-hand side, nothing depends on p. More precisely, if we take ,u%, holding gp (and ¢)
fixed, we get zero. Thus

0 n 0
1,91 _n{({ 9 (n)
0 [“aﬂ ( Mo nglogZﬂ T (pj, g(p), 1) - (5.71)
One has
0 0 0 0
D1ty g n) = [_ +(_ )_}pm) o),
N (pj, 9(1), 1) ol T 1o gBiEg(u) 5900 (pj, 9(1), 1)
0 0
— + R NS " , , 5.72
[“aﬂ » B(g(u»ag(m J (pjr (1), 1) (5.72)
where we have used (5.65). Similarly, we have
d u [ 0 0 } o
=u—| logZ L) =|u— T 7| |loeZ Ze) . 5.73
n= w108 (g(m = 6) e B(g(u))ag(u) | Jos (g(u) 7 6) (5.73)

A priori, n can depend on the same arguments as Z, but looking at the above one-loop examples of
Zy or Zs, we see that the corresponding 7, and 73 are functions only of the renormalized coupling
g(u). We will shortly see that, in general,  can only be a function of g(u), just as is the case for
B(u). Combining the last three equations, we get

0
0= |z

This is the Callan-Symanzik equation for the n-point vertex function. It is now clear that 7 cannot

+B(g(n)) 9

g(k) g(p) 1

n

= 5 1(a0) | T 900.1) (5.74)

depend on € or j since nothing else in this equation depends on these quantities. Since the explicit
p-dependence of Z is only via the Comblnatlon it follows, since 1 does not depend on g it cannot

have any explicit p-dependence either. Thus 7 is a function of the dimensionless coupling g(u) only:

n(g(p) = u%

log Z . (5.75)

9B;€

The generalization of (5.74) to the case of a vertex function involving several fields is obvious. Each
type of field comes with its own Z, factor and corresponding n,-function, so that the Callan-Symanzik

equation becomes

0

Note that there is an analogous equation for the n-point Green function é(n) (pj, 9(p), pv) with simply

9(u)+ﬁ(g( )) —(

D) Z% ] ) 1 (P 9(10), 1) - (5.76)

the sign in front of the n; being + rather than —.
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As an example, let us work out the Callan-Symanzik equation for the electron-electron-photon

vertex function I'* of QED (in the limit where one can neglect the electron mass, i.e. u > m,), includ-

ing the contributions to 6, 7]2 and n3 up to one loop. One has from (5.60), log Z3 = ey [é—log %} :

672
0 0
Then p; S log Z3 = 67r2 ® while B9(1) 39t
a two-loop contribution. Hence, at leading order

log Z3 gives a contribution ~ e(u)* comparable to
L€

2
e(p
N3 = é 2 + O(e(p)?) (5.77)
T
Similarly, from (5.57)
e(p)’”
=R + O(e(n)?) . (5.78)
Thus 2n; + 13 = ( ) . Finally, recall the one-loop S-function of QED, eq. (5.17), S(e(p)) = %’ 0
that ; o s
e(p
~Lou M(ps - 5.79
{Mé’u w1202 de(p) |y 24m2 } (psre(p), 1) (5.79)

5.4.3 Solving the Callan-Symanzik equations

To solve (5.74) or (5.76) one first needs to find the running coupling constant as the solution g(u) of
the first order ordinary differential equation with some initial condition

@E(u) =B@a(w) . Flko) =90 - (5.80)

We have already seen that the solution simply is given by fggo(“) % = log _u&o With this g(u) the
partial differential equations (5.74) or (5.76) are turned into ordinary ones:

0= [ Zm ] v (03T 1) (5.81)

This shows that
Iz d,u _ B )
=P [" Z / ‘ )] o (0 9, i) = 2", (9)) (5.82)

does not depend on . Obviously, 71(111,.)..ln(pj> = Fl(ﬁ)__ln(pj,go,uo). Hence, the Callan-Symanzik
equation (5.76) is solved by

Fg?)zn (pj,ﬁ(u), = exp [ Z/ )] Fﬁl) (pjaQOaMO) . (5.83)

This is a powerful result. Suppose we have a good approximation for I'™ for some G (1), hke in

an asymptotically free theory for g — co. One can then use (5.83) to reliably compute I'™ with
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coupling g(u) at scale p, as long as one can trust the approximations made when computing § and
U

One can make further statements if one uses “dimensional analysis”. Every vertex function or
Green function has some well-defined “engineering dimension” which is its mass dimension. We say
that some function I'™ has engineering dimension A,, if '™ /u®» is a dimensionless quantity. In
4 dimensions, a scalar field has dimension 1 and a scalar n-point Green function Gy(T1,. .. 2p)
has A = n, its Fourier transform has dimension n — 4n. The vertex function I'™ is obtained by
multiplying with n inverse propagators which add a total of 2n to the dimension. Hence I'™ has
scaling dimension —n. If one writes ['™(p;) = T (p;) 6B (32 pj), as we did e.g. in QED for T*, we
see that the engineering dimension of ™ is 4 — n. More generally, let the engineering dimension of
'™ be A,.. Then

re (pj,g(u),@ =yt T (%,g(u), 1) , (5.84)

since the dimensionless quantity I'™ /u®» can only depend on the dimensionless comblnatlons % and

on g().

5.4.4 Infrared fixed point and critical exponents / large momentum behavior in asymp-
totic free theories

Suppose one has an infrared fixed point at g = g,. Recall that this occurs if §(g,) = 0 and 3'(g.) =
a > 0. Then as p — 0 one has g(u) — g.. Let 1;(g.) = n;. The integral f:; dﬂ—’f, n;(g(w)) for

p — 0 is dominated by the small values of i/ and one can approximate 7;(g(1')) ~ n;. Hence
. dlf, i (g(1')) = ¢;(po) + nj log L. Combining (5.83) and (5.84) yields

VSR = - En M—d“ Nt O (P g1 5.85
1101 (P32 905 110) = xp | =5 u n; ()| M,g(u), : (5.85)
j=1 Ko

We now let = Ay; and p; = Ag; with fixed p1 and ¢; while letting A — 0. Then p — 0 and
(1) — g« so that

n

n 1 Afly
Fl(l,?..ln<)‘qj790nu0) = exp [—5 Z( (Mo)‘“lj log 1o )] )\An n (n )(M ,g*,1>

j=1
1 ¢ N1) An ) (95
- ci(o) + n*log 21 n n ( . ) 5.86
25:(;(%) n; gm]m Y (5.86)

J=1

_1 *
— N\An3 2 exp

Thus as A — 0, the '™ scale as A2 25%  The naive scaling exponent A,, has been corrected by
1
T2 ) j 77; .
Recall that for Green functions one has to switch the sign in front of the 7;. For the two-point
function there is only a single 7 involved. Finally recall that the momentum-space propagator is the
two-point functions without the 5 so that A = —2 for scalars and A = —1 for Dirac propagators.

Then e.g. for a scalar propagator

AN'(Nq, go, pro) ~ A2 x {ec(uo) (%) 2 A/(M G, 1)1 as A —0. (5.87)

Adel Bilal : Advanced Quantum Field Theory 95 Lecture notes - September 29, 2016



This infrared scaling behavior ~ A2 is as if the field had dimension 1 + 7, /2. This is why 7, /2 is
called the anomalous dimension of the field. When the critical point of the (four-dimensional) Ising
model is described by the massless ¢* theory, 7, is called a critical exponent.

The previous arguments are easily adapted to the large momentum behavior of vertex or cor-
relation functions in asymptotic free theories. One now considers the large A\ asymptotics. Then

g(A1) — 0 and it is enough to compute F(")< ,g(Ap), 1) to the lowest non-trivial order in pertur-
bation theory (i.e. tree-level if non-vanishing). Similarly 7 is to be replaced by the one-loop result
evaluated at the (small) coupling g(Ap).

5.5 Callan-Symanzik equations for a massive theory

5.5.1 Operator insertions and renormalization of local operators

It is often useful to consider composite operators like e.g. O(z) = ¢*(z) in a scalar theory. (As
always, ¢ denotes the renormalized field.) One should think of this operator as being obtained from
é(y)¢(x) in the limit where y — x. One can then compute correlation functions (Green functions)
of O(z) with the elementary fields ¢(x;) by first computing (T [¢(y)d(z)@(z1) . .. ¢(2n)])vac and then
letting y — x. Of course, this limit is singular as one already sees for n = 0. Even in a free
theory one has limy_.(T'[¢(y)d(2)] )vac = —i limy_, [ %}% = — f( 55 +m2 —. This can
be interpreted as a “vertex” with two lines attached that are joined by a propagator i.e. a one-loop
diagram.

To get finite Green functions in the presence of such operators, one should work with the corre-

sponding renormalized operators Or(x):
O(z) = Zo Or(x) = Og(x) + (Zo — 1)Ogr(x) . (5.88)

The second term is interpreted, as usual, as a counterterm. One can then show that with appropri-
ately chosen Zp the Green functions involving Op are finite.

In the example of O = ¢? we actually already know this counterterm. If we start with a massive
theory and consider all terms in the action that involve the mass terms as a small perturbation, we
see that inserting —m?2¢? + Zdm?¢* — (Z — 1)m?¢? in any correlator must give a finite result. Thus

1 5m 1 dm?q-1
(5.89)
Of course, this is just such that
m? O g(r) = m% Z Op () = my ¢h(x) . (5.90)

In the ¢*-theory, egs (3.110) and (3.111) yield, up to order g : Zyp = 1+ ‘Smi; =1-:% (% =

Y+logm—1
2

as already observed above, and Z;» = 1 at this order.

— %log ’g—;) Note that this is in a massive theory. If we are in a massless theory, m? = 0,

As another example, consider Oy (z) = ¢*(x). Again, we know from the renormalized perturba-

tion theory of ¢*-theory that insertions of gg¢% () in correlation functions lead to finite expressions.
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Recall that gg = %g and ¢p = VZ¢, hence gpdy(x) = 9Z,¢*(x). Since g is finite, we see that the

operator which will yield finite results when inserted into correlators is

Opir(v) = Zyd'(x) = Zp=2]". (5.91)
One sometimes defines m% = Z7mm2 so that Z,, = Z [ — ‘;%2] From eq. (5.89) one sees that then

Zg = Z 1, in complete analogy with (5.91)

Note that our definition (5.88) of Z» expresses a relation between the renormalized operator
Og(z) and the operator formed from the elementary renormalized fields. One could further express
the latter in terms of the bare fields, e.g. ¢"(x) = Z "/2¢%(z), and define the bare composite
operators in terms of the bare fields only, e.g. Op(z) = ¢5(x). Thus

Op(z) = (H \/Z) Oz) = <ZO I1 \/Z) Or(x) = Zo Op(a) . (5.92)

5.5.2 Callan-Symanzik equations in the presence of operator insertions

It is now straightforward to derive Callan-Symanzik equations for Green functions or vertex functions
that involve insertions of local operators as just discussed. Again one writes that the bare functions
with the bare operators Op inserted into the correlation functions of the bare fields ¢p cannot
depend on the renormalization group scale p. This is then translated into a differential equation for
the correlation functions of renormalized fields with renormalized operators inserted.

To simplify the notation, we will only consider one type of field, denoted ¢, and one type of
operator, denoted O. We let

Gg’l)(xh e Ty, -y = (T [gb(xl) o 0(20)Or(W1) - - OR(yl)] Jvac
GO (wy, iy, y) = (T [ch(xl) . 0B(22)O0B(11) - . OB<yz>]>vac : (5.93)

They are related by
GE =2 7L GV (5.94)

If several fields and/or operators are present, one has the appropriate products of the Z factors. If
one amputates these Green functions by multiplying with n inverse propagators, one gets a similar

relation between the bare and renormalized quantities, but with Z"/2 replaced by Z~"/2. The same
relation holds for the 1PI vertex functions with operator insertions:
0 =z 7L ript (5.95)

As before (cf. eq. (5.69)), this relation can also be proven more properly by working through the
relations between the generating functional, now with an extra source/current for the operator Op =
ZO Og. Doing the Legendre transform — but only with respect to the elementary fields and not with
respect to this extra current, one gets a relation between the generating functional of 1PI diagrams
with additional insertions of O. Expanding this relation yields (5.95).
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In addition to the definition (5.75) of 1, we also define

- 0 ~
no(g(w)) = ,u% e log Zo . (5.96)
It is then straightforward to generalize (5.74) to
0= [ui + B(g(p)) 0 _n n(g(w)) +1 ﬁo(g(u))] L (pj, g(w), 1) - (5.97)
Ot lg() Ag(p) I 2

The solution of this equation and study of the asymptotic behaviors of the I'™! proceeds just as for
[ = 0 with the obvious replacement §1n — 51— [70.

5.5.3 Massive Callan-Symanzik equations

Let us now consider a massive scalar theory and consider the mass term [ d*z ( — 3)m%o%(z) =
—3 [ d*2m?Oy2 p(2) (cf. (5.90)) as a perturbation. Then any Green function of the massive theory
with [ insertions of Oy can be written as

n = . m2 " n,l+r
ana;ls)sive<‘rla - Tns Y1, - - yl) - Z<_Z)Tu /d421 s d4ZT G;;‘ls—s‘_leis(‘rlv T Y1y - Y 21, Z"“) .
r=0

(5.98)
Each term in the sum on the right-hand side satisfies a Callan-Symanzik equation (5.97) with the
last term in the bracket being (I + r)n4. But we can generate exactly this expression for each term
in the sum by acting on the sum with 7, (l + m2%>. We find that the left-hand side satisfies the

om
massive Callan-Symanzik equation:
0 0
0 = —

+B(9(n) 7=

) n
g(p),m 89(#) pm

+5 n(g()

Gr(ge;ls)sive (pj7 g(:u)v lu) : (599)

+ 7 (9(m) (1+ m 2

om? u,g(u)>

The relation between the bare and renormalized 1PI functions with [ insertions of an operator O was
obtained before. In particular, this also applies for the insertions of the mass operator and we get,

in analogy with the preceeding Callan-Symanzik equation for the Green functions,

0

0

+ B(g(n)) 2900

g(p),m w,m 2

~ 0 n
il (o) (1+m5 Mg(m)] Phvicive (52 9(1), 1) - (5.100)

om?
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5.6 Exercices

5.6.1 A-function in ¢3-theory in 6 dimensions
Consider a scalar field ¢ of mass m in d = 6 with a cubic self-interaction %qﬁ?’.

a) Write the action in terms of the bare quantities and then in terms of the renormalized ones,
thus determining explicitly the form of the counter-terms. In particular one lets ggZ3/? = 9Zg.
Give the Feynman rules for the counter-term vertices. Discuss how Z, is fixed by some appropriate
renomalization condition imposed on the proper 3-point vertex I'(3) (p1, D2, —P1, —P2)-

b) Compute this proper 3-point vertex I'® (p;, ps, —p1, —p2) up to order g®>. Impose that this ['®)
equals g for some particular momentum configuration at scale p. (One could conveneiently choose

p? =p2=p? and p; - py = —p?/2 so that p2 = (p; + p2)? = 12, too.)

c¢) Show how to compute g() at some slightly different scale. Obtain the one-loop S-function (in a

region where p > m), and determine the running of the coupling given by % = B(g(p))-

5.6.2 3-point vertex function in an asymptotically free theory

Non-abelian gauge theories have a cubic self-coupling of the gauge field with coupling constant g.
Assume that the S-function is given by 3(g) = —bg? with b > 0 (at one loop), and the n-function for
the gauge field by n = ag?.

a) Solve the running of the coupling constant and give the explicit form of g(u) for large p.

b) Write and solve the Callan-Szymanzik equation for the proper vertex function of 3 gauge fields
I'*¥P(pj, g, ). Use the solution to determine the asymptotics of I'*# in the large momentum limit
pj = Ag; with ¢; fixed and A — oo.
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PART 111 :
NON-ABELIAN GAUGE THEORIES

6 Non-abelian gauge theories: formulation and quantiza-
tion
Gauge invariance, and in particular non-abelian gauge invariance, plays a most important role in the
formulation of the quantum field theories that seem to describe (almost?) all of the particle physics as
it is known today: quantum electrodynamics to begin with and its embedding into the electro-weak
theory based on the gauge group SU(2) x U(1), as well as the theory of strong interactions based
on the gauge group SU(3). Here, we will briefly show how to construct (classical) actions that are
invariant under non-abelian gauge symmetries. Then we will discuss how to quantize these theories
using the functional integral approach. This will involve the issues of gauge-fixing, Faddeev-Popov
procedure and the appearance of so-called ghost fields. The gauge-fixed action no longer is gauge

invariant but instead has a new symmetry, the BRST-symmetry which we will identify. This BRST
symmetry will play a crucial role when showing that these gauge theories are renormalizable.

6.1 Non-abelian gauge transformations and gauge invariant actions

Recall from quantum electrodynamics that the classical action is invariant under the following gauge

transformation:

Yi(x) — Y)(x) = @y (x) , A,(z) — Al (z) = Au(x) + Oua(z) = Ay(x) + iem(w)qlﬁu e-i@a
aQ

(6.1)

This is often called a U(1) gauge invariance because obviously g(z) = ¢**@®a ¢ U(1). There seems

to be a different g(z) for every different charge ¢;, but note that ¢, is the eigenvalue of the charge

operator () when acting on ¢;. Hence we can write g(z) = ¢*@%  Using this g(z) we can rewrite

the transformations (6.1) as
Y(@) = ¢i(2) = g(@)d(x) , QAu(z) — QAL (2) = QAu(2) +ig(2)dug(x)™" . (6.2)
Of course, gauge invariant terms then are built from covariant derivatives, i.e.
D, = (0, —iQA)Y , (6.3)
since this transforms as
Dt = Di! = (8 = QA+ (99,9™") ) 9 = 9 (0t + (97 0u9) = iQA, + (B9 9) )
= 9(0,— iQA, )v = 9D,. (6.4)
Indeed, since g is just a phase, |D,1|? obviously is invariant.

Adel Bilal : Advanced Quantum Field Theory 100 Lecture notes - September 29, 2016



We have rewritten the simple U(1) gauge transformation of the electromagnetic (gauge) field
A, and of the matter fields ¢, as well as the definition of the covariant derivative, in a way that
makes their generalization to other gauge groups almost obvious. Let us now consider the case
where the abelian U(1) group is replaced by some, generally non-abelian Lie group G, called the
gauge group. In general this can be a product of so-called simple groups and U(1) factors, like e.g.
SU(3) x SU(2) x U(1) for the standard model of electro-weak and strong interactions, or even some
more exotic groups like e.g. Fg. For simplicity, one might simply think of SU(N), the group of
unitary N x N matrices with unit determinant. The structure of a Lie group is almost entirely
captured by the commutators of its generators: the group elements close to the identity are always
of the form ¢?“*e with dim G small parameters # and dim G generators t,. The latter must satisfy
closed (Lie algebra) commutation relations

[tow tﬁ] = Z.C’Ya,é’t“/ ) (65)

with real structure constants C’“’aﬂ which satisfy the Jacobi identity C‘S[aﬁC'eﬂ s = 0. It may happen
that several groups like e.g. SU(2) and SO(3) have the same Lie algebra. In this case the groups
are locally identical but not globally. We will be not so much concerned with the group elements
themselves but rather with their representations. If we use a specific representation R we write t%

r (tR),! for the dimR x dim R matrices of this representation. For compact Lie algebras (i.e. if
trt,tp is positive-definite), all finite dimensional representations are hermitian. This is the case of
most interest in gauge theories and, hence, (t%)" = t%. Of course, the corresponding representations
of the group then are unitary. In this case one can also find a basis for the generators for which the
C”aﬁ are antisymmetric in all 3 indices and one may then drop the distinction between upper and
lower indices. Note that the Jacobi identity implies that the

(ta) gy = —iCapy (6.6)

satisfy the algebra (6.5). This special representation is called the adjoint representation.
Consider a collection of matter fields ¢y, [ = 1,...r transforming in some r-dimensional repre-
sentation R of G:

i) = Yy(x) = UX(g(2))," vu() , (6.7)
where UR(g(x)) is the r X r matrix associated to the group element g(z) € G in the representation
R. For G = SU(N), the simplest example is the so-called fundamental (or “vector”)) representation
for which U(g(x))ij = g(m)ij with ¢ and 7 running simply from 1 to N. In the following, we will not
write the indices explicitly so that we simply write

Y(x) = ¢ (z) = U (g(x)) v(@) (6.8)

with the understanding that ¢ is a dim R-dimensional column vector of matter fields. We want to
construct a covariant derivative D,, involving 0, and some gauge field A,. In the abelian case the

relevant combination was A,Q with @ the generator of the U(1) group. Let us try
Ay = A0tk = A% (6.9)
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since this can act on the dim R-dimensional column vector of matter fields ¢, and a definition of the
covariant derivative as

DR = (8, —iAR)y . (6.10)
One often drops the superscript R on D, or A,, but one should remember that these quantities
take values in the representation R of the gauge group determined by the matter fields. We want
to determine the gauge transformation properties of A, in such a way that the covariant derivative

simply transforms as
Db = D! = UR(g) Dyt (6.11)

First, we look at the transformation of 9,1. To further simplify the notation we will simply assume
that the representation is the fundamental representation where D(g(x)) = g(x), but one could
replace everywhere g by D®(g)). Also we will drop the arguments z, although g, v and A, all

depend on z. One has

O = 0" = 9u(gh) = 90,1b + (Oug)tp = 9(3“ + (g‘lﬁug)ﬂ (6.12)
On the other hand,
—iA — —i ALY = —i Al g = —ig <g*1A;g>¢ . (6.13)
It is then obvious that the covariant derivative will transform covariantly, i.e. asin (6.12) provided A,
transforms as —igflA:Lg +9710,9 = —iA,, Le. A, = gA,gt — 10,997 ". Since 8,97 = —¢g10,997"
one has —9,99™" = g0,g~" so that one gets
A, = gAg " +igd g = g(AM + i8M> gt (6.14)

Note that for G = U(1) and g = ¢ and the replacement A4, — QA, one gets back (6.1). For a

general matter representation one simply has

W=UMgw AR =UNg)(AR +i0,)UR(g)
(6.15)
DR =09, —iAR | (DRy)' = UR(g)DR o

For a unitary representation, (D,1)"D,1 then is obviously invariant. This will be the ingredient to
write gauge invariant matter kinetic terms.

It is often enough and simpler to consider only infinitesimal gauge transformations with g(z) =
e ta or UR(g) = ¢* @1 Tt is convenient to define eR = €*tR. Then the previous equations yield

W=y = Y (6.16)

SAR = AR — AR — 9% —i[AR R .

The latter equation reads in components
SAY = 0,6 4+ Cy A€ (6.17)
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which shows that, of course, the transformation of the gauge field components does not depend on
the representation R of the matter fields. Using the generators of the adjoint representation (6.6)
one may also write this as

« adj\a
SAY = (D) & (6.18)

We still need to define the field strength F},,. Since D, transforms exactly as 9, taking a further
covariant derivative D, is defined in exactly the same way:

DDy = (0, —iAR)(0, — iAN) Y = 8,0, — 10, A ) — Al O, — iARO ) — ARATp . (6.19)

Antisymmetrizing in g and v eliminates all terms with a derivative of 1. Hence

(D, D = —iF (6.20)
with
FR = 0,AT — 0,A% —i[AF, AT] (6.21)
or with ny = Fﬁytz:
F2, = 9,A% — 0,A% + Cy.0 A8 AT . (6.22)

It follows from (6.20) that F),, transforms covariantly:
R "R _ IR R [rR(,—1 R _ ;R R
Fy—F,=U (g)FWU (97) or OF,, =ile", F;] (6.23)

Obviously then, a gauge invariant scalar density is tr F ;iF Ruv - For compact groups we can choose

a basis of generators such that
trtfty = Crlag = trE F™ = CrFo Fo" (6.24)

With the appropriate normalization, this will be the gauge kinetic term, generalizing _leF;wF w,
Note that, contrary to the abelian gauge theory of QED, in the non-abelian case, F7, F'**" contains
cubic and quartic terms in the gauge fields. This will lead to cubic and quartic vertices involving
only gauge boson lines.

In QED, the coupling constant is given by the electric charge, i.e. the eigenvalue of the charge
operator (). In analogy we may include the Yang-Mills coupling constant gy, in the generators ¢,
and their representations t%. In this case Cr ~ g%,; and Cg," ~ gym. This is what Weinberg does,
and we will follow this convention. Alternatively one can use conventionally normalized Lie algebra
generators (where the Cr do not include any factors of gyy). Then a factor of gyy does appear
explicitly in front of the A, in the covariant derivative, and similarly in front of the quadratic term
in F),. This explicit factors of gyy can then be removed by rescaling A% — gYLMAZf. The only
appearance of the coupling then is a factor !ﬁ in front of every F,,. If the gauge group is simple,
there is only a single coupling constant gyy. However, in the general case where the gauge group is a
product of simple and U(1) factors, every simple or U(1) factor can have its own coupling constant.
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The unique Lorentz and gauge invariant Lagrangian quadratic in the field strength then is

Loange F] = —}lF o F . Of course, there is one more possibility, 0,ze"*7 F F pﬁo but this is a
total derivative. Hence the Lagrangian for matter and gauge fields is
1
‘C[Au7¢] = ——F, " + Ematter[¢; Duw] 5 (625)

4"
where we collectively denoted all matter fields by . If temporarily 1 denotes spin % fields and ¢

scalars, an example of L .iter would be

‘Cmatter[wv D;ﬂ% ¢7 DM¢] = _&(VHD,U + m)w - (D#(b)TDu(ﬁ - m2¢T¢ - V(¢T¢) . (626>

We only need the fact that the matter Lagrangian is gauge invariant. This will be the case if

Lmatter [V, 0,0, ¢, 0,¢] is invariant under global (rigid) transformation by elements of G.

6.2 Quantization

Just as with QED, direct canonical quantization does not work due to the presence of constraints, in
particular one again has IT* = F** and hence 119 = 0 which is a primary constraint. Together with a
secondary constraint which does not involve Aj these are first class constraints. As usual, they have
to be eliminated by a gauge choice. In the non-abelian case, a convenient choice is the axial gauge

AG =0, (6.27)

Then A and A$ become canonical variables, while A§ is given by the solution of the secondary con-
straint. One can then go through the canonical formulation of the functional integral in Hamiltonian
form, as we did for QED. To begin with one only integrates over the canonical fields A% = 1,2 and
their conjugate fields I1¢. Proceeding through similar steps as we did for QED?® | one ends up with
a Lagrangian version of the functional integral as (C' is a normalization constant)

<T(Oa . ON)>V3C —C / DAL DY [[ 5(A3) Oy ... Oy ¢ Febln] (6.28)

where one integrates over all 4 components with the manifestly gauge invariant action [ d*zL[A,,, ¢].
Of course, the integration over A§ is effectively suppressed by the functional 6(A¢) which imposes
our gauge choice. Note that the derivation ensures that this gives a manifestly unitary theory. On
the other hand, Lorentz invariance is not manifest.

One is usually interested in computing the vacuum expectation valued of (time-oredered) gauge
invariant operators Oq,... Oy, although, at intermediate stages one may also compute and use
non-gauge invariant objects as e.g. the gauge field propagator (T’ (Al‘f(x)Af (y)))vac. Note that the
measure DAY is gauge invariant: It is easy to show that the Jacobian for the gauge transformation
(6.17) equals one.? In the absence of (massless) chiral fermions one can also show that the matter

28 Just as when discussing QED, in this section, we will simply write ((...))vac instead of (vac,out|(...)|vac,in).
2 Jopa.pry = 212;3((;)) = 6W(z —y) o+ {5;‘ + Oﬁvaev(x)}, and due to the antisymmetry of the structure constants

Co = 0 and DetJ = exp Trlog J = exp(O(e?)).
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measure is gauge invariant. However, if chiral fermions are present this is no longer guaranteed. If
the matter measure is not invariant, one has a so-called anomaly, and the entire following discussion
breaks down. It is thus important that, if present, gauge anomalies cancel between the contributions
of the different chiral matter fields.

6.2.1 Faddeev-Popov method

We want to show that one can rewrite the expectation values (6.28) in different equivalent ways,
corresponding to different gauge choices. First it is useful to rewrite (6.28) as

(T(Oa...ON>>VaC —C / DAS T[6(45) GlAZ) with G[AZ] = / DY O, ... Oy el d"oLlud]

(6.29)
the important point being that G[Af] is gauge invariant. Indeed, with a gauge invariant matter
measure and gauge invariant O; we have G[A?] = [DyY,;O,...On et [ A LlAL Y] Upon changing
the integration Varlable from 1; to the gauge transformed (0 and using the gauge invariance of the
measure this is G[A*] = [ Dy, O v et deLlALY — G[A%], where we used the gauge invariance
of the action in the last step.

The expression of eq. (6.29) is of the general form

SfA (z
Io=C / DA, B[f[A,]] DetFIA) GIA) . Fiyle.y) = % e (6.30)
where A’ denotes the gauge transformed A with parameter e. Indeed, if we let f‘“[ ] = A$ and

B[f] =[], 0(f*(z)), we have AL = 03¢ (since Az = 0) so that F (@, y) = 05 5% 6W(z — y) and
DetF is just an irrelevant constant.

We want to show that I does not depend on the choice of the gauge-fizing function f or on
B. Intuitively, what happens is the following: due to the gauge invariance of G[A,] there are many
gauge-equivalent configurations and integrating over all A, would result in an infinite factor equal
to the “volume” of a “gauge slice”. The gauge-fixing condition restricts the functional integration to
exactly one configuration among the gauge equivalent ones. There are many different ways to do this
and the factor DetF ensures the independence of the specific choice of f or B. This is the functional
analogue of the well known fact that [dxd(f(z))f' (z)g(z) = g(xo) does not depend on f, as long
as f has a single root xg.

Faddeev-Popov theorem : For gauge invariant G[A,], the functional integral I¢; is independent of the

gauge-fixing function f and depends on B only through an irrelevant overall factor.

To prove this theorem we first change variables from A, to some A;L = Af, which we identify with 4, gauge
transformed by some g(x) € G. Using the invariance of the measure and of G[A,] we get

Ig = C/DAH B[f[Af]] DetF[AJ] G[A,] . (6.31)

Since we only introduced g by a change of variables, this cannot depend on g. We multiply both sides by
some weight function p[g] such that [Dgplg] = Cy is finite:

Colo= [ DA, GIUJHIA) . HA) = [ Dgplo) BIrA7] DetF(47) (6:32)

Adel Bilal : Advanced Quantum Field Theory 105 Lecture notes - September 29, 2016



where now

Fylag)ay) - LT

Here (A9)" is the result of gauge transforming A,, first with g = e“ta and then with e’*"*e. Since the gauge

- (6.33)

transformations form a group this amounts to gauge transforming A, with g = 0%t = i€ taifta  Thyg

_ 3 f*[AI(x)] 367 (2)
o /d4z - X

§f[A999) (z)] )
§67(z) 1o=0 " deB(y)le=0

oeP(y)

FlA (2, y) =

(6.34)

We let G [g]vﬁ(z,y) = 38%(z) . This can be computed from the Baker-Campbell-Haussdorf formula for

5¢8 (y) e=0
0%, = log (e"ﬁat‘1 eiaata) in which one only needs to keep the terms linear in e:

1
g[g]aﬁ(za y) = 5(4) (Z - y) |:5g - Qcocﬂ'ye + Caﬁ5c5769’£97 + 0(93)] (635)
Obviously, this only depends on the §“(x) i.e. on g(z). One has

1
logDetG = TrlogG = 6(0) / A1 15 CoarsCas 07 = (5)"Cass Crant” + O]

= W(0) / d%[% 66 +0(93)} ~ (2/;4)4 / d*z [C;f 66 +0(93)] (6.36)

where we used Cqy5C3y5 = Cadjdas and the fact that sW(0) = 6W(z —2) = J (gjrz)ﬂ . One can work out

the form of the higher-order terms in 6 and show that p[g] = (Detg)f1 yields a reasonable weight function.
With this choice, (6.32) yields

‘/ Dy plg) B[f[AS]] Det me]Dtg / DO B[ f[A7]] De 5f Ag / DfBIf)=Cp. (6.37)

Obviously, this is independent of the choice of f and depends on B only through the constant Cp. Substi-
tuting this result into the first equation (6.32), the same is also true for I, i.e I/Cp is independent of f
and B, which was to be shown. Actually, there is an obvious problem here. Since H[A,] doesn’t depend on
Ay, one sees that Cy I¢ = [ DA, G[A,) H[A,] is actually infinite as it overcounts all the gauge-equivalent
configurations. The reason is that on the lhs, Cj is also infinite since our G[g| yields a finite integral as we
integrate over the group at fixed x, but we still get an infinite factor from the infinitely many space-time
points. To do things properly, we should define the gauge group on a finite space-time lattice. This makes
the integral over the gauge group finite. In particular it also gives a natural momentum cutoff A as already
used above.

Since for the special choice f*[A,] = A and B|f] =[], ,d(f) (in this case Cp = 1) the integral
I equals (6.29), the theorem tells us that the vacuum expectation value of a time-ordered product
of gauge invariant operators can be evaluated with any choice of gauge-fixing function and function
B, provided [Df B[f] converges and f indeed fixes the gauge:

(T(Oa...ON oo = / DA, B[f[A,]] DetF[A,] / D Oy ...Oy S TeLAvl — (638)
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6.2.2 Gauge-fixed action, ghosts and Feynman rules

Let us now make a convenient choice of gauge-fixing function f and function B which, in particular,

will be manifestly Lorentz invariant:

fa=0,A% | Blf] =exp {—2% / d'z fo(x) fa(x)] . (6.39)
As one can see from (6.38), the factor B[f] just contributes an extra term
1
Lg.f - _%fafa (640)

to the classical Lagrangian. One can then read off the gauge boson propagator —iA,, 5,(p) from
the quadratic part of £+ L, and finds

1
—de

(6.41)

2

PuDv
Aa,u,ﬂ,u(]?) - 5a6 (n,uu + (5 - 1) ;2 > p

Except for the extra d,z this is just like the photon propagator, which should not be surprising, given
our choice of f,.
Next, we must evaluate F and compute its determinant. Since a fermionic gaussian integral

equals the determinant of the quadratic form, it is a convenient trick to rewrite DetF as

DetF = /Dwa* exp {i/d‘lgp Aty w* () Fap(z,y) wg(y)} : (6.42)

where w, and w are anticommuting, i.e. fermionic fields. On the other hand, given the nature of
F we will soon see that they cannot be spin % fields but must be scalars. Moreover, w, and w, are
independent real scalars. They do not obey the usual spin statistics relation and hence are named
ghosts. However, this is not a problem since we do not want to obtain any Lorentz invariant S-matrix
for scattering of these ghost fields. More precisely, w,, is called a ghost and w an anti-ghost. Note that
the ghost and anti-ghost carry an index « just like the gauge field A,. One sometimes says that they
are in the adjoint representation of G, just as A,. One has f,[A]] = f.[A.] + 0, (5%& + Cwo‘AZeﬁ)

and hence 51 A\ (2) 5 5
_ Yl ) o g @) (p
Fugloa) = L5t = D (st ) 00— (6.43)
Using (6.42) we get
DetF = /Dwa* exp {i/d‘lgp Eghost(m)} , Lahost = —0uwy0"'we — C 5" 0wy Alws . (6.44)

Thus the effect of the so-called Faddeev-Popov determinant DetF is to add the ghost Lagrangian

Lgnost to the classical Lagrangian £ and gauge-fixing Lagrangian L, s :
Emod =L+ ‘cg.f. + ‘Cghost . (645>

Note that for an abelian theory like QED, the structure constants Cg* vanish and the ghosts do
not couple to any of the other fields. Equivalently then, their functional integral only leads to the

Adel Bilal : Advanced Quantum Field Theory 107 Lecture notes - September 29, 2016



determinant of 9,0" which is an irrelevant constant. This is why we did not have to bother about
the ghosts in QED. In the non-abelian gauge theory, with our choice of gauge-fixing function, the
ghosts do couple to the gauge fields and do make important contributions to loop diagrams.>® Their

propagator ﬁAag (p) can be read off from (6.45) to be the same as for a massless spin-0 fermion:

dap
Anp = — 6.46

p ey (6.46)
while the ghost - anti-ghost - gauge field vertex involves the structure constant C5* as well as a
factor of momentum. More precisely, taking all momenta as incoming (g for the ghost with label S,
p for the anti-ghost with label « and k for the gauge boson with labels p and ), one reads from
(6.44) that this vertex contributes

i(2m)*0W (p+ q + k) ipy Capy - (6.47)

We already gave the gauge boson propagator. The cubic and quartic gauge boson couplings simply
follow from the cubic and quartic terms in —iFWF’“’. Again, with all momenta taken as incoming,
the vertex for the coupling of three gauge bosons with (p, 1, ), (q,v, 5) and (k, p,7) is

2'(27r)45(4) (p+q+k) (_icaﬁv) [pvnup = Pplluw + oMoy — Qulvp + KMoy — kullpu| (6.48)

while the vertex for the coupling of four gauge bosons (the fourth one having (I, \,9)) is

2(27{_)45(4) (p + q + k + l) [ _Cea,BCe'y(S(nupnl/)\ - nu)\nup)
_Ceoz’yce5,8 (nuAnpu - nuun)\p>
—CeasCepy (MuMpx — NupMrw) ] . (6.49)

Note that the Lagrangian preserves the ghost-number which translates into the fact that every vertex
with one incoming ghost line also has exactly one outgoing ghost line.

6.2.3 BRST symmetry

One can now start computing Feynman diagrams and generating functionals using the Lagrangian
Limod = L+ Ly s + Lgnost of (6.45) and integrating over the matter fields, gauge and ghost fields. Note
that L4 no longer is gauge invariant: this was the whole point about gauge-fixing. All terms in L,,04
have A = 0 and hence this Lagrangian is renormalizable by power-counting as discussed in section
4: there are only finitely many divergent Green’s functions and they are made finite by the addition
of finitely many counterterms with their coefficients fixed at any given order in perturbation theory.
Moreover, these counterterms themselves all have A, > 0 and do not upset the renormalizability.
However, we want more than this: the counterterms should be of the form of the initial terms in
the Lagrangian. In particular, one should still be able to interpret L,0,q + L¢t as arising from the

gauge-fixing of some gauge invariant Lagrangian, but now with renormalized parameters. We must

300f course, in axial gauge, A3 = 0, one finds Fop(z,y) = 5256 (z — y)dap and the ghost Lagrangian simply is
—03w}w, so that the ghosts again decouple.
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find out what is the remnant of the gauge invariance of the original classical Lagrangian. This turns
out to be the BRST-symmetry.

Let us first do one more rewriting of our Lagrangian. Introducing an auxiliary field h, we can
rewrite the gauge-fixing term as ghaha +he fo since doing the gaussian integration over h,, reproduces
—% fafa- Thus, our starting point is

Enew =L + ghozhoc + hafa + W;pa 5 (650)
where
pal) = ,0a(2) + Oy QAL e)er(0) = [ ' Fuslip)ss(s) (6.51)

The BRST symmetry is defined to act on the “ordinary” fields, i.e. the matter and gauge
fields, just like an ordinary infinitesimal gauge transformation but with the (real) parameter e,
replaced by the (real) ghost field w,. It is thus a fermionic symmetry that increases the ghost-number
by one unit. To begin with, we simply set €,(x) = Ow,(z) with § an anticommuting parameter
(bw = —wh,0A, = A,0, etc, and 66 = 0). Then

0pA, = 0 (@MO‘ + CB,YaAﬁuﬂ)
5977/) = iewatf@b
oot = —ifwPTtR = 0T R W (6.52)
This is conveniently rewritten by defining a fermionic operator s such that for any functional F' we

simply let
d0pF = 0sF . (6.53)

Consistency with the fermionic character requires
s(FG) = (sF)G + F sG (6.54)

with a minus sign if F is fermionic (contains an odd number of anticommuting fields). We write
R *t%, so that we can reformulate (6.52) as s AR = D,w™ and s = iw™1 or,

furthermore w™ = w*t[,
dropping the superscript R, simply

s Ay = Ouw — i[Ay, w]
(6.55)
s =1iwy , syl =iYiw.

Note that s is not the hermitian conjugate of s, but rather (s¢)" = (iwy)! = —ipTw = —sif.
More generally, one sees that (sF)T = FsF! with a minus sign if F' is fermionic. Let us complete
(6.55) by the rules how s acts on the ghosts, chosen in such a way that s is a nilpotent operation,
i.e. s2 =0 on all fields. Choosing

sw=1iww , sw'=-h , sh=0, (6.56)
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where h is the auxiliary field introduced above, we have

A, = (0w —i[A,,w]) = 0,(sw) — i(sA,)w — iA,sw + i(sw) A, — iwsA,
= i0y(ww) — (0w — iAW + iwA,)w — 1A iww — wwA, — iw(0,w — IwAw +iwA,) =0,

s = s(iwy) = i(sw) — iw st = —wwip + wwip =0 |

sfw = s(iww) = i(sw)w — iw(sw) = —www + www =0 ,
s‘w* = s(—h)=0, (6.57)
which shows that the BRST operator s is nilpotent:
$2=0. (6.58)

It is now easy to show that L,y is BRST invariant. First note that on functionals of A, and
the matter fields ¢) only the BRST transformation is simply a gauge transformation with e replaced
by w. Thus any gauge invariant functional of the gauge and matter fields only automatically also is
BRST invariant. Hence

sL=0. (6.59)

Next note that Fe was defined as the gauge variation of f (which only depends on A,,) and hence

Pa=5fa = sp=0. (6.60)
It follows that
SLopew = s(ghahcy + hafa + Wipa) = haSfa + (sW2)pa = hapa — hapa =0 . (6.61)
Actually one has
Loew=L+sV |, U=—wfo,— ngha , (6.62)

with £ being the gauge invariant Lagrangian of the gauge and matter fields only. In this form, BRST
invariance is obvious. This also suggests how to obtain more general gauge-fixings: Any L, of this
form with an arbitrary functional ¥ of ghost-number —1 will provide a BRST invariant starting point
for quantizing the gauge theory (provided the quadratic term in the gauge fields is non-degenerate
so that one can define a propagator).

Below, we will use this BRST invariance to show that all conterterms also must respect this BRST
invariance (but with a renormalized coupling constant which we had hidden in the normalization of

the Lie algebra generators). Hence
Loew + Loy = L+ sV (6.63)

respects the same symmetries as the original £, with a renormalized Yang-Mills coupling constant
and yields finite Green’s functions.
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6.3 BRST cohomology

We already noted that the BRST symmetry is nilpotent, i.e. s2 = 0. Obviously also, it increases the

ghost-number by one unit.

At an algebraic level, this is quite similar to the behavior of the exterior derivative d = dz#d,, acting on
differential forms®!' of degree p and yielding a differential form of degree p + 1. As is well known, one has
d? = dd = 0 (which just states that 0,0, = 0,0,,). A p-form & () is called closed if d€() = 0. If there exists
a (globally well-defined) (p — 1)-form ¢~V such that £®) = (=1 then £®) is called exact. Since d* = 0,
obviously every exact form is also closed. It is then interesting to find out which p-forms are closed without
being exact. As an example consider a space-time with space being just the two-dimensional sphere with
coordinates # and ¢ defined in the usual way. Then d¢ is well-defined everywhere except at 6 =0 or § =7
(north and south pole), and the 2-form © = sinfdf A d¢ is well-defined everywhere. One has d2 = 0, so
it is closed. Although one has 2 = d(—cosfd¢) or Q = d(—sinfdb ¢), neither cosdd¢ nor sinfdf ¢ are
well-defined everywhere on the sphere and one finds that Q % d¢("). Hence Q is closed but not exact. Up
to multiplication by a constant®? this is the only closed and non-exact 2-form on the sphere. Actually, Q
is the volume-form on the sphere, and the volume form on any compact manifold is always closed but not
exact. For a given (compact) manifold M, the vector space of closed p-forms that are not exact is called
the pt* de Rham cohomology and is denoted H®) (M).

Similarly, one defines the classes of BRST-closed functionals and BRST-exact functionals as

follows:

The functional F[A,, ¥, w,w*, h] is BRST closed if s F' = 0,
(6.64)
it is BRST exact if there exists a functional G such that F' = sG.

Of course, a BRST-closed functional is a BRST invariant functional. Moreover, the ghost-number of
a given monomial of the fields is defined as the number of ghost-fields minus the number of anti-ghost
fields. The Lagrangian L., e.g. has ghost-number zero. The BRST operator s always increases
the ghost-number by one unit. Since one cannot have cancellations between terms of different ghost-
numbers it follows that one can define the space of BRST-closed functionals of a fixed ghost-number
and, similarly the space of BRST-exact functionals of a fixed ghost-number. Hence, the ghost-
number plays a role analogous to the degree p of the differential forms. In particular, one defines the
BRST-cohomology classes at ghost-number n :

The BRST-cohomology at ghost-number n is given by
(6.65)
the BRST-closed functionals of ghost-number n, modulo the BRST-exact functionals.

31Tn exterior calculus, one defines an antisymmetric “wedge product” so that dz* A dz¥ = —dz¥ A dz*. For every
rank-p antisymmetric tensor field &, ., ..., () one can then define a p-form as ) = p%gmm,,,up dztr AdxH2 AL date.
In d dimensions, the maximal degree of a form is p = d.

32For example, cosf € = cosf sinfdf A d¢ = da with a = %sin2 0d¢ a well-defined one-form. Hence cosf () is
exact.
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We have seen above that the gauge invariant Lagrangian £[A, 1] is BRST invariant, i.e. sL[A, 9] =0,
so it is BRST closed. Moreover, it is of ghost-number zero. The gauge-fixing and ghost terms are
of the form s¥ with ¥ of ghost-number —1, i.e. are BRST-exact terms. Since correlation functions
of gauge invariant operators do not depend on ¥ (as long as it provides some gauge-fixing), the
physics determined by L,y = L[A, %] + s¥ depends only on the BRST-closed £ and is independent
of the BRST-exact terms sW: it only depends on the BRST cohomology class of L,.,. Later-on we
will show that the BRST-cohomology at ghost-number zero is precisely given by the gauge invariant
functionals of 4, and ¢ (and ¢1) only, i.e. independent of the ghost, anti-ghost and h-fields.

BRST-charge :

One can introduce a fermionic BRST charge operator (acting on a “Hilbert space”) by demanding
that for any (Heisenberg picture) field operator ® one has

5e®(z) = i[0Q, B(x)] . (6.66)

The right-hand-side equals i0[Q, ®(z)]+, i.e. a commutator if  is bosonic and an anti-commutator if
® is fermionic, while the left-hand-side equals #s®(x). Hence the BRST-charge operator must have
the following (anti)commutation relations with the field operators:

s®(z) = i[Q, B(2)]5 - (6.67)

By taking the hermitian conjugate of either (6.66) (@ is real) or (6.67) and comparing with the
corresponding relations for ®, one sees that QT = —Q. This then implies (Q)" = Q10 = —Q0 = 6Q
as expected for a symmetry generator. Using the Jacobi identity, one finds that

0= —s5®=—isQ, 9]z = [Q.[Q Bl = 5[Q. Q). 0] =[Q2] Vo, (668)

An operator that commutes with all fields is either the identity or has to vanish. Since () increases
the ghost-number by one, the first option is excluded and one concludes

Q*=0. (6.69)

The “Hilbert space” on which ) acts is some “big” space of states which must include the
Hilbert space of physical states, but also states including an arbitrary number of ghost and anti-
ghost excitations, as well as non-physical polarization states of the gauge bosons. This is the space
which naturally arises upon the Faddeev-Popov quantization of the gauge theory. In particular, this
is not a Hilbert space in the strict mathematical sense since the inner product cannot be positive
definite: for any state |y) # 0 the state @ |y) has zero norm. One must then characterize the
Hilbert space of physical states. This can be conveniently done using this BRST charge as follows.
Matrix elements between physical states must be gauge invariant, i.e. independent of the “gauge-
fixing functional” W. Hence, under an infinitesimal variation W (z) — ¥(z) + §¥(x), the gauge-fixed
Lagrangian changes by 0L,e, = s0W(x) and any matrix element changes by

5a|B) = ilals6W[B) = = (| [Q,0¥]1 [B) = — (o] @OV [B) — (a 0¥ Q|B) . (6.70)
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If (o] and |5) are physical states this should vanish. Since §W(x) is arbitrary one concludes @ |5) =0
and (a| @ = 0. Hence, physical states |phys) must obey

@ |phys) = 0. (6.71)

Also, changing |5) — |8)+Q |y) does not change (« |5) if («| is physical since (a| @ |y) = 0. Moreover,
a physical state should have ghost-number zero. In conclusion, physical states are determined by
@ |phys) = 0 subject to the equivalence relation |phys) ~ |phys) + @ |y) and the condition of having

ghost-number zero:

Physical states are given by the ghost-number zero cohomology class of the BRST-operator Q.

(6.72)
Of course, we have only shown that this cohomology class contains the physical Hilbert space, i.e.
that the above conditions are necessary. However, one can also show that they are sufficient and thus
(6.72) exactly defines the physical Hilbert space. Note that in any covariant quantization, the modes
of the fields A§, when acting on the vacuum, generate states of negative norm (since 1y = —1). One

can then also show that the space of physical state as defined by (6.72) has a positive definite norm.

Remarks :

e The Faddeev-Popov procedure always leads to a Lagrangian L, that is bilinear in the ghost
and anti-ghost fields. (Recall that the ghosts appeared from expressing the Faddeev-Popov
determinant Det F as an integral over w and w* of e/« “.) Then, calling these fields the bare
fields and rewriting L, in terms of renormalized fields will generate various counterterms
of the same form as the original terms contained in L,e,. In particular, one will only get
counterterms that are at most bilinear in the ghost and anti-ghost fields. This turns out to be
sufficient with the gauge choice f, = 9,A%, but for more general choices of f, one might need
counterterms that involve two ghost and two anti-ghost fields. Although one does not have
to worry about diagrams with 4 external (anti)ghost lines, such diagrams can well appear as

divergent subgraphs, requiring a corresponding counterterm.

e One can consider more general gauge-fixing functionals that do not rely on the Faddeev-Popov
procedure. As we have seen, all that is needed for BRST invariance is to define some BRST-
operation s such that s acts on A, and 7 as a gauge transformation with the parameter replaced
by a ghost field, and with the action on the ghost and other fields (anti-ghost, h-field, and pos-
sibly others) defined such that s?> = 0. Then for any U of ghost-number —1 and gauge invariant
L, a BRST-ivariant Lagrangian is Loew = L+ sU. Then just as before, there is a corresponding
BRST charge @ that defines the physical states as the zero ghost-number cohomology class
and matrix elements between physical states (in particular also vacuum expectation values of
time-ordered products of gauge invariant operators) do not depend on the choice of U. In
particular, they are the same as with the ¥ from the Faddeed-Popov procedure and thus the

same as in axial gauge.
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e One can prove independently of comparison with any particular gauge, that the space of phys-
ical states, defined as the zero ghost-number cohomology of (), has a positive definite norm,

contains no ghosts or anti-ghosts and has a unitary S-matrix.

e Finally let us just mention that this BRST formalism can be rather straightforwardly extended
to other local symmetries as appear e.g. in general relativity or in string theory. If the natural
formulation of these symmetries is “too large” in the sense that one has introduced too many
“gauge” parameters and actually not all symmetries are independent, one has to introduce
“ghosts of ghosts”. In all these setting, the BRST operator always increases the ghost-number
by one unit.

We have already mentioned that the BRST invariant functionals of ghost-number zero are just the
gauge invariant functionals of A, and the matter fields, up to adding BRST-exact terms. Let us now
prove this result.

Cohomology theorem :

The zero ghost-number cohomology consists of gauge invariant functionals of A, and ¢ (and ¢T)
only, i.e. the most general BRST invariant functional of ghost-number zero is of the form I =
Io[A,, Y] + sVU[A,, ¥, w,w*, h.

The proof is relatively simple: suppose sI = 0. Write I = > x_, Iy where Iy contains all terms that

have a total number of fields w* and h equal to N. (Of course, we do not allow negative powers of

the fields.) Since sw* = —h and sh = 0, s does not change this total number N and one cannot
have any cancellations between the different s/n. Hence siy = 0 for all N separately. Introduce
t=wk %. One may similarly write s = —hg&% + ... where the unwritten terms do not involve w*
o 5
or h. It follows that st +ts = —N where N = w(”;w% + ha% is such that NIy = NIy. Thus
—NIy=—NIy=(st+ts)Iy=stly, (6.73)

and we conclude that for every N # 0 one has Iy = s (— %tIN), i.e. Iy is BRST-exact. Hence,
I=1Iy+ sV with U =Y3_, (= % tIy). Now, Iy cotains no h and no w* and, having ghost-number
zero, it cannot contain any w either. Thus Iy = Iy[A,, ¢], as was to be proven. Finally, /; cannot
be BRST exact. Indeed, it is easy to see that a BRST exact functional of ghost number one must

contain at least either an h, or an w}.
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6.4 Exercices

6.4.1 Some one-loop vertex functions
Use the action and Feynman rules as given above.

a) Draw all Feynman diagrams contributing to the 1PI gauge-boson-ghost-antighost vertex function
Fgm(pl,pg,pg) at one loop (2 diagrams). For each diagram determine the superficial degree of

divergence.

wvp
afy

are 8 diagrams if one counts as different diagrams two fermion loops with opposite orientations of

b) Same question for the 1PI three gauge-boson vertex function I'.7C (p1, p2, p3) at one loop. (There

the arrows.)

c¢) Same question for the 1PI vertex function for two ghosts and two antighosts I'ss46(p1, P2, P3, D4)-
(There are 4 diagrams. Pay attention to the relative signs between these diagrams.)

6.4.2 More general gauge-fixing functions
Instead of the gauge-fixing function f* = d,A*" now choose f* = (D, A")*.

a) Give the explicit form of the corresponding Ly + Lg and deduce the corresponding vertices
involving the ghost and antighost fields. In particular give the vertex between the ghost, antighost

and two gauge bosons.

b) Show that, in addition to the diagrams present in c) of the previous exercice, there are new
types of Feynman diagrams contributing to the one-loop 4-point 2 ghost- 2 antighost vertex function
Lagys(P1, P2; D3, Pa). Determine their superficial degrees of divergence. Does it come as a surprise if
you find the same answer as in ¢) of the previous exercice?

6.4.3 Two ghost - two antighost counterterms

In the Lagrangian used in exercice 6.4.1 there are no terms ~ w*w*ww, and thus we expect that one
should not need such counterterms either. This would mean that the vertex function 'y g5(p1, D2, P3, Pa)
given in c) of this exercice should not be divergent, although it had a superficial degree of divergence
equal to 0. Write the expressions for the 4 corresponding Feynman diagrams and try to argue that

there are cancellations between the diagrams.
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7 Renormalization of non-abelian gauge theories

7.1 Slavnov-Taylor identities and Zinn-Justin equation

7.1.1 Slavnov-Taylor identities

Recall that the vacuum expectation values of time-ordered products of field operators can be obtained

from the generating functional
Z|J] = / DA, DYDY DwDw*Dh exp [z / d*z (Loew + X" T0)| (7.1)

where, to simplify the notation, X" stands collectively for any of the fields A,, ¥, ¥, w, w* or h.
Of course, we do not really need to compute ghost correlation functions to get S-matrix elements
between physical states, but they certainly can and do appear in subdiagrams. Also, the form of L,
originally was derived only for time-ordered products of gauge invariant operators, but we can take
(7.1) as a definition for the gauge-dependent vacuum expectation values of time-ordered products
of the gauge non-invariant field operators. We have seen in the last subsection that the BRST
invariance implies that in the end matrix elements between gauge invariant states do not depend on
the gauge-fixing functional. We will now derive the implications of BRST invariance of the action
(and measure) for the generating functional Z[.J]| as defined in (7.1). These are the Slavnov-Taylor

identities.

_ SrRW[J] _
= El =
of this equation for given x". Then the Legendre transform is I'[x] = W[J,] — [ d*z x"J, . Note

As usual, we define Z[J] = eVl as well as x" (Xoperator) With Jy, \ being the solution
that, since x" can be either bosonic or fermionic (i.e. anticommuting), one must specify whether

functional derivatives should act from the left (L) or from the right (R). Indeed, for fermionic x™ one
5.0 _ _ gD
has 28 =~
As shown in general in section 1.4.3, the invariance of f Loew and of the functional integral
measure under

dox" =0A" | A" =sx", (7.2)
(dropping the tilde on the x") implies the Slavnov-Taylor identity

/ dta (A" (2)) . @(L(Fx) 0. (7.3)

Of course, invariance of the functional integral measure under BRST transformations is not guaran-
teed and needs to be verified. This will be discussed at the end of this subsection. The conclusion
will be that the measure is indeed invariant under BRST transformations provided the measure for
the matter fields is gauge invariant, i.e. there are no gauge anomalies. For now, we assume that
this is the case and the Slavnov-Taylor identity (7.3) does hold. As discussed in sect. 1.4.3, for a
linear symmetry (A" = c" x™) one would have (A"(z)); = c", (X" (x))s, = ", X™, and then the
Slavnov-Taylor identity just states that I is invariant under this symmetry. At present, however, the
BRST symmetry is non-linear, e.g. s = iww, etc, and the Slavnov-Taylor identity (7.3) does not

tell us that the effective action I' is also BRST invariant.
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7.1.2 Zinn-Justin equation

In order to nevertheless exploit the content of the Slavnov-Taylor identity, one uses the trick to also
introduce sources for the “composite” fields A™. (This is somewhat similar to what we did when
discussing the renormalization of composite operators and the Callan-Symanzik equations for vertex

n

functions I'™ with [ additional insertions of some composite operator like e.g. ¢?.) To begin with,

one defines
Z[J, K] = VI = /DX” exp [i/d% (Loew + X" I + A"K,) | - (7.4)
The K, are like additional (position-dependent) coupling constants. In particular,
drW1[J, K]
———— = (A" . 7.5
T = (@) (75)

Note that the addition of A"K, = s(x"K,) amounts just to a modification of the gauge fixing
functional W. In particular, the exponent in (7.4) is still BRST invariant. The effective action
['[x, K| is obtained by performing the Legendre transformation with respect to the sources J, only,

while keeping these extra couplings K,:

i K) = Wi K] = [ dlox' (@) 7o) (7.6)
where J! - is the solution of
SRWIL K]

for given x". (For obvious notational reasons, we write J7 ;- rather than (J,), x.) Note that these
definitions imply on the one hand, that x" and J, have the same statistics (both bosonic or both
fermionic) and A™ and K, also have the same statistics. On the other hand, any field from the first
group (x" or J,,) has opposite statistics from the corresponding field of the second group (A" or K,,).
Through the usual manipulations one finds from (7.6)

Iy, K K K OrJY OrJY
5rT [, K] 0rWJ, ]‘ /d4y53W[J, ] R X,K(y>_/d4yxm(y) rhey) g
0K, (x) 0K, (x) =ik 0Im(y) li=s x OK,(x) 0K, (x)
The last two terms cancel by (7.7) while, by (7.5), the first term is just (A™(x)), . x. Hence
5RF[X7 K]
— 2 — (A" . .
e (A" @k (79

It is completely straightforward to generalize the Slavnov-Taylor identity to the case where the

additional couplings ~ A"K,, are present:
ol [x, K]
diz (A" —= 2 =0, 7.10
/ z (@)JX,K,K " (2) ( )

Using (7.9), we get the Zinn-Justin equation:

/d4ilj' 5RF[X7 K] 5LF[X7 K]

o vl =0 (7.11)
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7.1.3 Antibracket

The Zinn-Justin equation displays a nice symmetry between the roles of K,, and x". This is further
emphasized by introducing the notion of antibracket. The antibracket of two (bosonic) functionals®?

F[x, K] and G[x, K| depending on two sets of arguments x" and K, having opposite statistics is

defined as
_ 41, 5RF[X7K] 6LG[X7K] _ 6RF[X7K] 5LG[X7K]
(F,G) _/d ( x*(zr) 0K, () 0K, () o (z) )

This is somewhat similar to the definition of the Poisson bracket but, as we will see, it is symmetric

(7.12)

rather than antisymmetric under the exchange of F' and (. Since the x™ always have the opposite
statistics from the K,,, one of the two functional derivatives in the definition of the antibracket
always yields an anticommuting expression while the other is commuting. Since exchanging a left
with a right derivative yields a minus sign for an anticommuting expression, we can flip left and right
derivatives in either of the two terms in (7.12) provided we include one extra minus sign. Thus

/d4$ ((5RF[X,K] 0tGx, K]  0pF[x, K] (5RG[X,K])
IxX*(z) 0K, (x) 0K, (x)  ox™(x)

_ /d% (5RF[X7K] oLGx, K] | O0rGlx, K]0 F[x, K])
IxM(z) OK,(z) Ix"(z) 0K, (z)

(F7G) =

0K (z)  ox*() 0K (x)  ox"(x) '
This shows that the antibracket is symmetric under the interchange of F' and G:
(F,G)=(G,F) . (7.14)

As is obvious from the last line in (7.13), the Zinn-Justin equation (7.11) can then be written as

(Ir)=0. (7.15)

7.1.4 Invariance of the measure under the BRST transformation

Let us now come back to the question of whether the functional integral measure is invariant under
the BRST transformation or not. Clearly, even if the measure is invariant under gauge transfor-
mations, this does not immediately imply invariance under BRST transformations. The reason is
that the latter are non-linear transformations of the fields A,,, 1, 1, w,w*, h while the former are lin-
ear transformations of A, and 1 only. A further technical complication appears since the BRST
transformation mixes commuting and anticommuting field variables. Nevertheless, we will now show
that the relevant Jacobian equals unity provided the measure for the matter fields alone is gauge

invariant.

33 A bosonic functional is a sum of terms each of which contains an even number of anticommuting fields. Hence it
is commuting. Similarly, a fermionic functional is made from terms containing an odd number of anticommuting fields
and hence is anticommuting.
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We want to compute the Jacobian for a change of integration variables of the form y* — x" =
X"+ A" = x" + Osx™ where x" stands for the various commuting and anticommuting fields and 6
is a single anticommuting parameter satisfying #2 = 0. Although the A™ depend non-linearly on the
X", the fact that 62 = 0 will simplify the Jacobian enormously. We let

5LX/n(°T) — 5@ (yp 5L(‘9An(x))
X" (y) =00 y) ox" (y)

Note that R is linear in 6, i.e. R =60R, and hence R? = 0, so that log(1+ R) = R. We can then use
the standard relation between the determinant and the trace of the logarithm to get

T (2,y) = = 576@(@ —y) + R'(x,y) . (7.16)

DetJ =exp (Trlog(1+ R)) =exp (TtR) =1+ TrR, (7.17)
where Tr includes a sum over the different field types of functional traces for every field. Now, for
anticommuting x” (i.e. the ghost, antighost or matter fermions), one has % = —95(@@”. It follows

that one has
TrR=0StrR , (7.18)

where Str is a functional “supertrace” which is just an ordinary functional trace but with minus signs
inserted for the anticommuting fields. With obvious notations we have

StrRR = Tr}A%A — Trﬁw — Trﬁg—k Tr}A%h — Trﬁw — Tr}A%w* ) (7.19)

Recall that A, = A, + 0sA, = A, + 0(d,w — i[A,,w]) so that AM = (J,w — z'[f/l\”,w]). Sirilﬂarly,
A* = jww and A¥" = —h, as well as AY = iwyp and A* = 0. Obviously then, Tr R,- = Tr R, = 0.
Also (Ew)aﬁ(aﬁ,y) = Cup,w"(2)0W(x — y) so that its trace vanishes (after an appropriate gauge

invariant regularization). Similarly,

(Raos(w9) = G505 = O Capye60(a =) (7.20)
B

This is again antisymmetric and its trace vanishes (after an appropriate gauge invariant regular-
ization). Actually, this is the same operator as the one we encountered when we discussed the
invariance of the gauge field measure under gauge transformations (except that now € — w). Ob-
viously, Tr R =0is equivalent to the statement that the gauge field measure is gauge invariant.
Finally, one has to study Tr R, and Tr ;. Once more, the vanishing of the trace is equivalent to
the gauge invariance of the matter measure. Although formally this trace vanishes, just as for the
other fields, here we may encounter a problem if it is not possible to regularize the trace in a gauge
invariant way. This is precisely the case for chiral fermions and one has a so-called anomaly as we
will extensively discuss in the next section.

We conclude that in the absence of anomalies (no chiral matter fermions), the full functional
integral measure is indeed invariant under BRST transformations. Moreover, the BRST invariance

of the measure is equivalent to the gauge invariance of the matter measure alone.
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7.2 Renormalization of gauge theories theories

7.2.1 The general structure and strategy

As already emphasized, non-abelian gauge theories are renormalizable by power counting. As dis-
cussed in sect. 4, it follows from power counting that there only are finitely many Green-functions
(or equivalently only finitely many 1PI n-point vertex functions I'™) that are divergent with their
superficial degree of divergence being some fixed finite number (independent of the order of pertur-
bation theory). Relying on the BPHZ theorem, we then know that all divergences can be removed by
finitely many local counterterms whose coefficients can be determined order by order in perturbation
theory. However, what this does not tell us is whether the divergent parts of the Green functions or
of the '™ — and hence the corresponding counterterms — share the same symmetries as the original
action. If one needed to add non gauge invariant (or actually non BRST invariant) counterterms at
some order N of perturbation theory to cancel some non-invariant divergence, these non-invariant
counterterms would almost certainly lead to non-invariant contributions at some higher order N’ > N
of perturbation theory. Thus, when one asks whether a (non-abelian) gauge theory is renormalizable
the question is whether all counterterms share the same symmetries as the original (gauge-fixed)
action, namely the BRST symmetry.

The proof of the renormalizability of non-abelian gauge theories thus amounts to showing that
the divergent parts 'y, of the quantum effective action I' (which generates the 1PI vertex functions
I'™) due to the loops still has the BRST symmetry, or some deformation thereof obtained after
changing the coupling constant and field normalizations. Instead of actually computing the loop
diagrams, we will exploit the algebraic structure coded in the Zinn-Justin equation to show that this
is indeed the case.

As usual, we rewrite the original bare action (including now the extra couplings ~ [ A"K),) in
terms of renormalized fields and coupling constants and masses:

Splxs, Ks] = S[x, K] = SWx, K]+ St [x, K] , (7.21)

where S]({(.)) has the same form as the original (bare) action but with all masses and couplings equal
to their renormalized values, and S, are the counterterms, c.f. the general discussion and examples
studied in sections 2 and 3. There are now two ways to rephrase the question of renormalizability
of the non-abelian gauge theories. If one insists that Sg is BRST invariant, as well as the “tree-
level” renormalized action Sg)), then the counterterms will also be BRST invariant. The non-trivial
question then is whether these counterterms are enough to cancel all the divergent parts that arise
in any N-loop diagram. Equivalently, we may just begin with the usual BRST invariant SI(%O) and
compute the divergent parts [',, of I' and adjust the counterterms S, ;. order by order in perturbation
theory to cancel these divergent parts. The question then is whether these counterterms are BRST
invariant, i.e. whether the bare action can be BRST invariant.

Actually, there is is slight subtlety here: in the non-abelian case, the gauge and BRST transfor-
mations explicitly depend on the gauge coupling constant (which we have hidden in the generators

ta, respectively in the structure constants). Thus, when one states that some quantity is gauge or
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BRST invariant, one has to specify what is the coupling constant. Now the bare action Sp is BRST
invariant using the bare coupling constant, while the renormalized action Sg)) should be BRST in-
variant using the renormalized coupling constant. The precise formulation of renormalizability then
is whether we can find counterterms that cancel the divergent part I',, and which equal the differ-
ence of the gg-BRST invariant bare action S and the gg-BRST invariant action Sg)). Equivalently,
starting from a gr-BRST invariant SI(%O), we must show that Sg]) — ' is gg-BRST invariant. In the
sequel, we will call a conterterm or I'y, simply “BRST-invariant” if it fulfills this requirement.
In perturbation theory, I' has an expansion

00 N
Pl K] = Y Tal K] . To=59 | Tn=Tyieopt S T5M (7.22)
N=0 M=1
where Fffv"_%)_l is an (N —M)-loop contribution involving “vertices” from lower-order counterterms
oop

of total order M, resulting in a contribution at the same order in perturbation theory as I'y_ioop-
(In QED e.g., the order a? contributions to the vacuum polarisation correspond to I'4” and are given

by the genuine two-loop diagrams (I',”, ), one-loop diagrams with one-loop (order «) counterterms

2—loop
F;u/ c.t.,1

4.2
Y ooy ), as well as a new order-a* counterterm (I'f”,57-%).

inserted ( 0—loop

One can again introduce a loop-counting parameter A and formally replace Sl(g) by %Sg)). Then an

AN-1 AN=1 We can similarly

N-loop term will have a coefficient , and I'y_1o0p Will be multiplied by
assign a factor AM to every counterterm that arises from an M-loop diagram, in addition to an
overall + in front of Scy: +Scr. = 3> 3721 AMSH . Then F‘Z}f,"_%)_loop will be accompanied by a
factor AN"MINM — AN=1 " Ag a result, we see that I' = Y ¥_, AV 'I'y. Inserting this into the
Zinn-Justin equation (I',T') = 0 and collecting the coefficients of the AN ~?-terms (recall that the

antibracket is symmetric) yields

N
> (Cw.Ty-y)=0 , N=>0. (7.23)
N’'=0

We want to show that I' can be made finite by choosing “BRST-invariant” local counterterms
order by order in perturbation theory. We will show this by induction in N. First, for N = 0 one
has 'y = SI(%O). Now, SI(%O) is expressed in terms of the renormalized (finite) parameters (couplings and
masses) and the renormalized fields. Obviously, no counterterms are needed at this order. Suppose
then that all I'ys with N < N — 1 are finite, i.e. we assume that all divergences in I'y/_jo0p have
been cancelled by the contributions Z}\N4/:1 FE}&,{/[M)?]OOP,
invariant”) counterterms SM with M < N’. This shows that in the sum (7.23) the only terms that

can involve divergences are the terms N’ = 0 and N’ = N. Thus, isolating the possibly divergent

induced by appropriately chosen (“BRST-

parts, eq. (7.23) yields
(S Iyo) =0 (7.24)

In agreement with our above remark, we can interpret this constraint in two different ways.

e First, we may consider that I'y contains the N-loop contributions I'ny_je0p, the contributions
N-1 FC.t.,M
M=1

(N M)—loop (the corresponding counterterms are

from lower-order counterterms in loops
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“BRST-invariant” by the induction hypothesis) and an order-N counterterm I'i;%2™. The latter
is taken “BRST invariant” and we must then show that it can indeed cancel the divergent part
from the other contributions. This will be the case if the latter are “BRST invariant”. Since
the counterterm is already supposed to be “BRST invariant”, it is equivalent to show that the
divergent part 'y o of the full I'y is “BRST invariant”. (Of course, if this is the case, the

divergent parts just cancel and I'y o, = 0.)

e Second, we may consider that we have not yet included an order-N counterterm FE;E‘(;N in the

computation of I'y which now only contains I'y_io0p and the contributions from lower-order
counterterms in loops ]A\g_:ll I’E}f,"_%)_loop. Then, to be able to cancel the divergent part I'y
of I'y by an appropriate “BRST invariant” counterterm, we must show that I'y o is “BRST

invariant” .

We see that, whatever interpretation we adopt, it is necessary and sufficient to show that I'y o is
“BRST invariant”. This will be done by :

e cxploiting the content of (7.24) which we derived from the Zinn-Justin equation,

e using the various linear symmetries3* of the tree-level action S](%O) which must be also be sym-
metries of the effective action I' at every order, i.e. of I'y, and in particular also of its diverging

part,

e using the fact that I'y « is a local functional of the fields of dimension less or equal to 4 (here

we rely of course on BPHZ to exclude any trouble with overlapping divergences).

Let us recall that all computations are done in the presence of the extra couplings ~ A"K,,, i.e. with
Sg)) X" K] = [(Loew,r[X"] + A"K,,). Here A" = sy™ with the BRST-transformation s being the
one involving the same renormalized coupling as appears in SI(J?). Let us also insist, that eq. (7.24)

will only tell us something about the diverging part of I'y, not its finite part.

7.2.2 Constraining the divergent part of I

Let us now constrain the divergent part I'y o of I'y using dimensional arguments, the linear sym-
metries and equation (7.24). We begin by showing that I'y o, can depend at most linearly on the

various K,,.

Dimensional arguments

The gauge field A, has dimension 1, just as scalar matter fields. The fermionic matter fields, 1) and
1 have dimension % The dimensions of the ghost and antighost fields can be read from their kinetic
term (or their propagator). This depends on the choice of gauge-fixing function f,. If f, = 9,A*+. ..,
the ghost Lagrangian is ~ w*d,D*w + ... and dimw* + dimw = 2. Since in any ghost-number zero

34These are Lorentz transformations, global gauge transformations, ghost phase transformations related to ghost
number conservation and possibly antighost translations for certain choices of the gauge-fixing function like e.g.
= 0,A~L.
o 2 kre’
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functional one always has as many ghosts as antighosts it does not matter how we distribute the
2 between the ghost and antighost and we can choose dimw = dimw* = 1. As one sees from
s A, = D,w, s =iw, etc, s changes dimensions by dimw = 1. It follows that for any field x" one
has dim A" = dim x" + 1. Finally, A" K,, must have dimension 4 so that dim K,, = 4 — dim A". To

summarize:

dimA4, = dimw = dimw* =1 |, dimy = dimy = g,
dimA? = dimAY = dimAY =2 |,  dimAY = dim AY = g ,
dimKy =dim K, =dimK_ =2 dim Ky = dim K35 = g (7.25)

Since the divergent part of I' must be a local functional of all the fields of at most dimension 4, we

see that it can be at most quadratic in the K.

Ghost number conservation

Since Loy is invariant under global ghost/antighost phase rotations w — €“w, w* — e “w* it
follows that the ghost number is conserved (w has ghost number +1 and w* ghost number —1). This
will remain true in the presence of the extra couplings ~ A" K, if we assign ghost numbers to the
K,, which are the opposite of the ghost numbers of A”. Since A™ = sx™ and s increases the ghost
numbers by one unit, one has ngA™ = ng X" + 1. Thus

ngn(Au) = ngn(¥) = ngh(@) ;o ngw(w) =1, ng(w")=-1,
ngh(AA) = ngh(Aw) = ngn(A 1#) , ngn(A¥) =2, ngh(Aw*) =0,
ngn(Ka) = ngn(Ky) = ngn(Ky) = =1, ngn(Ku) = =2, na(Ker) =0, . (7.26)

Hence, all K,, have negative or zero ghost number.
Now, I'y oo must have ghost number zero and we have seen above that it can be at most quadratic
in the K,,. Let’s see which quadratic terms could appear. Terms involving two K4, K, or K- have

dimension 4 and hence cannot involve any other field. Such terms have negative ghost numbers and

are excluded except for K,-K,-. The latter term, however, is excluded since A¥" = sw* = —h is a
linear transformation so that 5‘SI§F = (A¥") = A¥" = —h tells us that I'[x", K,] must be linear in

K, and cannot have a term ~ K« K . Actually, this argument tells us even a bit more: the K-
dependence of T'[y, K] must be precisely a term [ d*z (—h)K,-. This is just the (finite) term already
present in the tree-level action ng) [x, K| and, in particular, the diverging part Iy, cannot contain
any term linear in K,.. Similarly, A" = sh = 0 and we conclude that I', cannot contain a term
linear in K, either.

Next, since the ghost is a Lorentz scalar, all A" transform under the same representation of the
Lorentz group as the fields x" and the K, must transform in such a way that A"K, is a Lorentz
scalar. It follows that K, and K- are Lorentz scalars, K. is a four-vector and K, transforms as
the spinor ¢, while K7 transforms as ¢. Thus a term quadratic in the K, and involving at least

one Ky or Kj must necessarily involve both of them, i.e. be ~ Ky K. This expression has ghost
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number —2 and dimension 3. There is no dimension 1 field of ghost number +2 available to make a

dimension 4, ghost number 0 term. Thus we conclude that I'y o is at most linear in any of the K,:

Pyl K] =T + [ dt B3(0)Eo(e) (7.27)

with T oo[X] = Iveo[X; 0] = [ d*2 Yy o) . Similarly, we had for the (tree-level) action
S, K] = Sy’ d'z A"(2)K 7.28
O K] = SO+ [ ' A" @) () (7.25)

Just as A" is a local expression in the fields x", the same must be true for the ﬁ?\r Note also that
the A% must have the same ghost numbers and dimensions as the A™. Finally, we have seen above

that 'y » cannot contain any terms linear in K« or K and we conclude that

Ay =Ah =0 (7.29)

Exploiting (S](;?), I'Ne) =0

In order to get further information on the form of Yy .(z) and A7 (), we insert (7.27) and (7.28)
into (S [x. K], T, K]) = 0:

_ 4, OrSR X, K] 61T NoolX, K| | 0rU'NoolX, K]0LSR X, K]
= [ <6Kn<> e oK) 5x<>>

- foelsn (e [t )

< 0154 [X] S, A™ (y)
+ A (z L—i—/d‘* —K,, : 7.30
The terms without K, and the coefficients of K, (y) must vanish separately, giving two equations:
Ol nsolX] | xn (0K Y]
diz | A™(2) =22 L A () R 22 ) =0, 7.31
and _
OLAR(Y) | xn (. \0LA™(y)
dlz [ A"(2) == L AL (2)——22 | =0. 7.32
/ ( D AN ) (732

The second equation (7.32) is a set of functional first-order partial linear differential equations for
the 87]{,. Note that these equations do constrain the functional form of the AR, but not their overall
normalization. Inserting the solutions E’]{, into the first equation then should determine the functional
form of I'y [x]. Note that these two equations (7.31) and (7.32) do not explicitly involve the K,
anymore. Indeed, all we really want to determine in the end is the form of FNOO[ ] = T'noolX, 0]
although, once we know A% (z), we also know Iy so[x, K] = Dn.so[x, 0] + fA" K,(x).
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To solve these equations in practice, it is useful to give them a more physical interpretation.
Define
PN =S +eTnaly]  and  AY™(x) = A"(2) + e A% (x) . (7.33)

Consider the “deformed BRST transformation”
sOx(z) = A" (z) . (7.34)

Obviously, for € = 0 this reduces to the ordinary BRST transformation. It is then not difficult to see

that, up to first order in e, Fgf,) [x] is invariant under this transformation and that this transformation

is nilpotent:

SOTON =0+ 0(2) by (7.31)  and sy =0+ O(e2) by (7.32) . (7.35)

Deformed BRST symmetry

First note (again) that, since Z?V couples to K, in I'y [x, K], in the same way as A™ couples to K,
in S}(_-io) , both Z?V and A™ must have the same ghost numbers, dimensions and Lorentz transformation
properties.

The strategy now is to write the most general nilpotent transformation of the fields that increases
the ghost numbers of the fields by one unit, increases their dimensions by dimw and that is a
deformation of the usual BRST transformation in the sense that it depends on some small parameter
¢ and reduces to the ordinary BRST transformation in the ¢ — 0 limit. (Of course, nilpotency is
only required up to terms of order €2.) These requirements will turn out to be stringent enough
to show that any such deformed BRST transformation must be identical to the ordinary BRST
transformation, up to changes in the normalization of the fields and a change of the gauge coupling
constant.

It is easy to see that the deformed BRST symmetry must act as
o) = W Tatp,
OpAcy = 0 (Bap0uws + Dapy Agutr)
1
59&),1 = —59 Eaﬁﬁ{ wp~ . (736)
(Having the correct ghost number would also allow e.g. a term of the form 0y ~ iwawﬂw:FaﬁiTmﬁ,

but this is excluded by the argument about the dimensions.) Recall from (7.29) that Ay = Ak =0
and, hence, the deformed BRST transformation of w* and h just equals the undeformed one:

Sw' =—he ,  ha=0. (7.37)

67

Let us now exploit the nilpotency of these transformations (7.36) and (7.37). First, dg,dg,w = 0
yields EqgyEgse wswew~ = 0 so that E,z,Egse must vanish after antisymmetrizing in 9, €, v. i.e. the
E, 3, satisfy the Jacobi identity and must be the structure constants of some Lie algebra. As e — 0,
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these are just the C,3, and we conclude that this Lie algebra is the same as the original Lie algebra

G and the F,g3, differ from the C,p, just by the normalization:
Eupy = ZCopy (7.38)
(Note that if the Lie algebra is semi-simple one may have a different Z; for every simple factor.) Next,

looking at (59159214# giVGS Daﬁ’yDﬂée - DaﬂéDﬁé“/ = Eﬂe'yDozéﬂ =2Z OBEVDCMSB and BQBEB,W; = Da,B(SBB'V'

~

The first equation implies that the matrices D, with (D,)ag = +D,ap are the generators of the
adjoint representation of the Lie algebra G, so that

Dogy = ZCoap . (7.39)

Hence, D3, = E,p, and the second condition involving B,s just states that the matrix B commutes
with all matrices D and thus is proportional to the unit matrix:

Bag = ZNbas . (7.40)

(Again, for a semi-simple G we can have a different N; for every simple factor.) Finally, looking at
89, 00,% implies [T}, Tp] = iEupy Ty = iZCop, T, and we identify

T,=Zt, . (7.41)

We conclude that, apart from the new constants Z and N, the deformed BRST symmetry 5 must

act exactly as the ordinary BRST symmetry s we started with. Let us summarize:

sy = iZwi,
sA, = Z (Na#w - i[A#,w]) )
Sw = i Zww
sw* = —h
sh = 0. (7.42)

We can absorb these new constants by redefining the normalizations of the ghost fields and redefining
the coupling constant (hidden in the Cyp,) as follows:

_ - ~ 1

Ww*=ZNw* , AG=AL , Capy = N Capy - (7.43)
Then the generators are redefined accordingly by ¢, = j%[ t, and thus @ = 3%, = Zw, = Zw and
](u = J%[AH. Furthermore, one can redefine the normalization of ¢/ by some factor and the one of w*
and h by another (common) factor. These latter factors are not yet determined by (7.42). In terms
of the redefined fields and couplings, the deformed BRST transformations (7.42) take exactly the

form of the undeformed ones. In particular, we have
#=0 (7.44)

and any gauge invariant functional F’ [/TM, Y] (with structure constants 6’(157) automatically also is s

invariant.
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Constructing a Lagrangian invariant under the deformed BRST symmetry : constraining £y

Let us now construct I‘ = [Ly E) x| with a Lagrangian ES\E,) that is invariant under the deformed
BRST transformation s. As we have Just seen, the latter is the same as the original BRST transfor-
mation — up to changes of normalizations. Hence, our task amounts to constructing the most general
BRST invariant Lagrangian in the redefined fields and couplings. Strictly speaking, we should only
require invariance to first order in the deformation parameter €, but because of the rather rigid alge-
braic structure, this actually results in invariance to all orders in €. Of course, as explained before, we
also require that it is of dimension less or equal to four and invariant under all linear symmetries of
Sg, namely Lorentz symmetry, global gauge symmetry, ghost phase rotations (implying total ghost
number zero), and (in most gauges) antighost translations, in which case w* must appear as J,w*.
Obviously, once we have constrained the form of ,Cgf,) = Lyew + € Ly We also have constrained the
form of the diverging part Ly - of Ly.

It now follows from the above cohomology theorem applied to s that the most general s invariant
local function is of the form ng,) = L[A, Y] +5U with L\[A, 4] invariant under the gauge symmetry
with the redefined coupling and ¥ of ghost number —1. The additional requirements cited above
imply that L\[A, 1] is of dimension less or equal four, while U must be of dimension less or equal
3 and contain w* only as d,w*. Taking also into account Lorentz and global gauge invariance, we

arrive at
€ 1 - l/~O[ v ~ o ~ 5, Z *
£ = —Za L Ee —f-ﬁ;v[?,D,D,ﬂﬁ]—l—S( SWaha+ SO A“)
L =z ST 5 Zy . (7
= 524 EW R + L0, Dyl + = hoha + E Nh oAl — 2, 0w} (D'w)  , (7.45)
where
Fo = 0,A2~8,A%4Cogy APAT | Dyth = 9,0p—i A% (Dyw)a = 0w +Capy AW . (7.46)

This is of the same form as the initial L., except for the appearence of the “renormalization
constants” Za, Z,, a changed coupling via the j%/ in 6’04@, as well as further “renormalization
constants” hidden in £’ VY, uw] and the replacement & — £'. Let us insist that, on the redefined
fields, the deformed BRST symmetry is just a BRST symmetry with a redefined coupling constant
g=g/N, and ES\E,) is invariant under this g-BRST symmetry for all e.

7.2.3 Conclusion and remarks

It is enough to recall that £§§) = Lyew + €LN,00 to see that the diverging part Ly o of Ly is “BRST-
invariant” in the sense explained above, i.e. it is the difference of a g-BRST and a g-BRST invariant
local term. Since € was arbitrary, the same is true for —Ly o, which is the required counterterm.
One can now redo the argument order by order in the loop-expansion to see that the sum of all
counterterms up to a given order N is “BRST-invariant” in this sense. Hence we conclude that to
any order in perturbation theory the renormalized action is g-BRST invariant precisely if the bare

action is gg-BRST invariant. Said differently, by appropriately choosing the field renormalization
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constants and coupling constant renormalization we get a finite quantum effective action I'y at every
order N of perturbation theory.

Let us look more explicitly at the renormalization of the gauge field and of the gauge coupling
constant ¢g. Recall that the latter was included in the Lie algebra generators as t, = g%\a and
accordingly in the structure constants as Cyp, = ¢ @m with ¢, and 6a5w the more conventionally
normalized, coupling-independent generators and structure constants. Thus Fj, = 9,47 — 0, A} +
g aﬂf‘AﬁAz, and similarly for Fj ,, with Ap and gp. If we let

%u =V ZA Afj ; gB = \/79 g, (747>

the relation between the bare and renormalized F? term is

]' (0% v ]' (0% [e9Vh 7 1 (0% « av 14 o
~ FBu FR = = F = (Za = 1) (0,45 — 0,47) (0" A™ — 9 A™)
1 3/2 o nA a v
—59(\/2921 —1) (9,48 — 9,A%)C,.0 AP A
1 ~ ~
—30°(Z,25 = 1) O AL Oy oA A (7.48)

To determine only Z4, at a given order, it is enough to compute the two-gauge boson function, i.e.
the vacuum-polarization. However, to determine Z, and hence the renormalization of the coupling
constant, one has to determine two of the three counterterms on the rhs of (7.48) and hence compute
e.g. the vacuum-polarization and the 3-gauge boson vertex function. This is related to the fact that
the bare and renormalized actions have their BRST invariance defined with different couplings. In
an abelian gauge theory like QED), there is no coupling dependence of the BRST symmetry and the
Ward identity implies (Z;Z4)abelian = 1 s0 that we could read the coupling constant renormalization
from the vacuum-polarization. Below, we will discuss a special type of gauge fixing, the so-called
background gauge, where an analogous relation holds also in the non-abelian theory and, hence, it
is enough to compute a single Green’s function to obtain the coupling constant renormalization and
the S-function.

We have used the anti-ghost translation invariance of the so-called {-gauges f, = 0,A%, and this
is why we get back this form. However, if one uses a gauge-fixing with f, = 9,44 + aamAgAgu
with some global G-tensor a,g., there is no w*-translation invariance to enforce the absence of BRST
invariant terms with two ghosts and two anti-ghosts, like e.g. §(ba57w;w§w7) = —bapy (QhO/Jng7 +
%ZC’v&w;wEw(gwe). Hence, such terms must be allowed in the action (and counterterms) from the
beginning. However, such terms cannot be obtained from the Faddeev-Popov procedure (which
always gives a ghost term linear in the ghost and linear in the anti-ghost). To get these terms
necessitates a more general Lagrangian L., = L[A, Y] + sV[A, ¢, w,w*, h], as already discussed
above.

We can conclude that, as long as we start with a general Lagrangian of this form, with gauge
invariant £ of dimension less or equal 4, there is a counterterm available to cancel any divergence at
any loop order, and the theory is renormalizable in the usual sense.

Heavy use was made of the Slavnov-Taylor identity [ d*z (s X">£{—2 = 0 from which the Zinn-

Justin equation was obtained. The derivation of the Slavnov-Taylor identity assumed that
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Dypet frevlX"l is BRST invariant and in particular that DszAMeif LAY is gauge invariant. Now
[ LA, 9] is gauge invariant by construction but it may happen that D¢ is not gauge invariant. This
typically shows up at one loop and then (Sg,I'1) # 0. Equivalently, certain one-loop diagrams are
then seen to violate the corresponding Ward identities of covariant current conservation. In this case
the theory is said to be anomalous. Anomalies are the subject of the next chapter. Fortunately, as
we will see, anomalies can only appear for certain gauge groups and only in the presence of chiral
fermions. Moreover, in potentially anomalous theories, by carefully arranging the content of the
chiral matter fermions, the anomalies can be made to cancel. This is the case, in particular, for the
standard model based on the gauge group SU(3) x SU(2) x U(1) with the content of chiral matter

fermions observed in nature.

7.3 Background field gauge

Suppose we can find a gauge-fixing procedure such that the one-loop quantum effective action®
't —1oop|@; Yo, wo, wg] must be gauge invariant under the same transformation as was the tree-level
renormalized action Sg), Le. daj; = Ou€e* + gCﬁf‘aﬁﬁ and 0¥y = 1ig eo‘ﬂzwo, as well as some

appropriate transformations for wy and wj. Then necessarily we have

1 1 1
S A ]+ S PAL L = FLF = (Za = DELF = ZaF F

4"
(7.49)
On the other hand, this must be the bare action. Comparing with (7.48), we see that then Z,Z, =1
and, hence, ggp = (Z4)~"/?g. Since the one-loop S-function is given by the coefficient of % in the

expression of gp in terms of g, we then find that3¢

1 1
B1-10op = —59 X (coeff of = in ZA) ) (7.50)

€

This will allow us to extract the one-loop f-function from the computation of the single coefficient
of the F2-term in I';_j50p-

With this motivation in mind, let us now introduce the background field gauge. Recall equations
(1.89) and (1.91) which compute I'[a] from S|a + A] by integrating over the quantum gauge field A,
(with the restriction to 1PI diagrams - which is irrelevant at one loop). We want to find a gauge-fixing
for A,, such that I'[a] still is invariant under gauge transformations of the “background” field a,,.

We introduce two types of gauge transformations: the “background field gauge transformations”
dp and the “quantum field gauge transformations” d,. The background field gauge transformation
is defined to act on the background and quantum fields as follows:

dpa, = Oue—ilay,, € = Dfe & Opa, = 0™ + C’O‘ﬁwaﬁe7 ,

opA, = —i[A,, & AL =C% Al (7.51)

35 Although we do not want to compute scattering amplitudes or Green’s functions for external ghosts, nothing
prevents us from computing I' also with ghost “background fields” wy and wy.
36To lowest order in perturbation theory gp = (Z4)™Y2g = (1+ (Za —1))"Y2g ~ (1 - 3(Z4 — 1))g.
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Thus under this background gauge transformation a,, transforms as a gauge field and A,, as an adjoint

matter field. Obviously, on the sum of both fields dg acts as an ordinary gauge transformation:
dpla, +A,) =0, —ila, + Ay €l . (7.52)
Similarly, the action on the matter quantum and background fields is defined as
Sptho = i€*ththy , Opp =ity = Op(Yo + 1) = ie"tR (Yo + 1) (7.53)
and for the ghost fields
dpwy = aﬂ7w€€ , Opw® = C’amw6€7 =  Ip(wf +w?) = aﬁv(w{j + w?)er | (7.54)

and idem for the antighost fields. On the other hand, the quantum field gauge transformations d,
should not act on the background fields and will be defined such that they do act as standard gauge
transformations on the sums a, + A, and vy + ?. Thus

dga, = 04tho = dgwo = dgwy =0, (7.55)
and
dgA, = O —ila, + Ay, € = 6g(ap+ Ay) = 0pe —ila, + Ay, €
S0 = i€t (Yo + 1) = G,(o + ) = ie*tR (Yo + ) . (7.56)

In order to compute the one-loop quantum effective action as the functional integral (1.91) one
has to choose a gauge-fixing function f, in the action S. The choice for the background field gauge
is

fo=(DJAM)q = 0,48 + Copyal, AT . (7.57)

Note that this is a generalization of the standard gauge fixing function to a non-vanishing background
field a,. It is an appropriate choice for the present purpose, since Df is covariant under g and thus
DEA“ transforms as A* under Jp :

0pfa = Capy fP€ = 5p(fafa) =0, (7.58)

and we see that the gauge-fixing term is invariant under the background gauge transformations dz.
On the other hand, if f, is to fix the gauge in the functional integral, it better be not invariant under
the quantum field gauge transformations ¢,. Indeed, we have

0gfa = 0g(DFA*) o = (DF6,A") o = (DFDYye)o — i( DAY, €])a (7.59)
from which we read the corresponding ghost Lagrangian
Lonlay, Ay w,w*] = —(wa*)a(D‘éw —[A%, W), (7.60)

Since w, w* and A, transform as adjoint matter fields under dp, and since DE is covariant with

respect to dg, we conclude that this ghost Lagrangian is invariant under the background field gauge
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transformations, dpLg, = 0. Since also wy and wj transform as adjoint matter fields under 5, the

same remains true if one replaces w by wy + w and w* by w§ + w*:

dpLgnlay, Ay, wo +w,wy +w] =0, (7.61)
so that finally
08Lmod s Ap, o + Y, wo +w,wy +w =0 | Lpoa =L — %fafa + Lo - (7.62)
Note that Lla + A, 1o + ¢] = —1Fula + AJF*[a + A] + Liasterla + A, tho + ] with F,,[a + A] =
Fulal+ DJA, — DJA, —i[A,, A].

Our goal was to determlne Dlay,...] as [p; DA...exp (ifﬁmod(a + A, .. )) We see that due
to the gauge fixing and ghost terms, L., does not only depend on the sum a + A but on a and A
separately. It is then not obvious any more that this does generate all 1PI diagrams. However, if
we restrict ourselves to the one-loop quantum effective action, things are simpler and the separate
dependence on a and A of the gauge-fixing and ghost terms does not cause any trouble. Since L,0q
is invariant under the background gauge transformations dp, as is also the measure DADYDwDw*
(excluding anomalies), it is then obvious that I'y_j,ep[a, 1o, .. .] must also be invariant under these

transformations:
6BF1—100p[a/7 ¢0, .. ] =0. (763)

But the background gauge transformations act on the background fields just as ordinary gauge
transformations (in particular with the same normalisation of g af, t. as explained at the beginning
of this subsection). Then eq. (7.49) must hold, and hence Z,Z4 = 1 so that we can use (7.50) to

compute the one-loop S-function.

7.4 One-loop f-functions for Yang-Mills and supersymmetric Yang-Mills
theories

To extract the one-loop S-function we need to compute the coefficient of % in Z4 in the background
field gauge. (Z4 — 1) is the coefficient of —%F? in the counterterm. Hence we need the coefficient
of % in front of the —iF 2 piece of the counterterm. To extract this term, we may simply consider
a constant background gauge field a, and all other background fields vanishing. In particular then,
Fi(a) = ,Bya’BCﬂ

7.4.1 p-function for Yang-Mills theory

As explained above, to compute the one-loop contribution to I'[a] we have to identify the part in
[ Linoala, A, ¢, w,w*] that is quadratic in the quantum fields A, ¢, w,w*. In particular,
Fula+ Al F*a + Al ,, = (DA, — DBA,) (DAY — D A*) — 2F,, [a] [A*, A¥]. The expan-

sion of L,0q then yields
1 (6% v
/‘CmOd[a’ A’ ¢’ w,w Hquadratlc part /d4l’d4 ( o _A “( >D$04N yﬁl’[ ]Aﬂ (y>

~ (@)Dl ula] Y1 (y) = " (@)Di ol ¥ (9) ), (7.64)

—part
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where

0 0
Dinsplal = (= don gz = oo @) (= oo = + Crap ) 00w =), (769
or, using a matrix notation with aadJ = aj, tadJ and the generators of the adjoint representation given
in (6.6), 5 5
w = (- —= adj - _iad*. @) (p —
D3, la) = (= 5o +iai@) ) ( 5, () 69 —y). (7.66)
Similarly, one has
0
¥ —( A angR ) (p —
Dy lo] = (=g, = i) +m) 30 ). (7.67)
and
0 , 0 0 . ) .
A - _ad, ; - ad, . ad
Doy ywlal = {’hu( — 5 Tia (@) (- ay iagy;(¥) — (= g +ia @) (- gy L '(y))
- 1 0 . 0 .
ad, ad - _ad, 4
] g (= g it @) (- 5 i) W)} 8@ —y). (7.68)
Then ]
il _1oopla] = —§Tr log D*[a] + Trlog D¥[a] + Trlog D*[a] . (7.69)

These traces are evaluated as usual. We will sketch the computation for Trlog D¥[a], the others
being similar.

Since we will only consider constant fields a, it it most convenient to Fourier transform. One has in
general D, , = (x| D |y) and hence

Wl Dlg) = / dizdy (o)) (2 Dy} ylq) = / dladly e (2| D]y) V. (7.70)

1
(2m)*
With a D, of the form D, , = f(—5%:) g(—5>) 0¥ (z — y) this yields

WDk = e [ atadty e 5T a5 60 )| @ = o [ate oo (i) gt

= f(=ip) g(ip) 6 (p — q) = M(p) sV (p— q) . (7.71)
Hence (p|D?|q) = [d*k (p|D|k) (k| D?|q) = M?(p) 5™ (p — ¢), and similarly for any power n and any
functlon of D, and thus

Tr logD = /d4p (p| tr logD |p) = /d4p 6 (p — p)tr log M(p) . (7.72)

Of course, §(4) (p—p) arises because we work with constant fields and it has to be interpreted as [ (347354 ei@(P—p) =

(Qﬂ 7 [ d*z. Our M(p) are all of the form M (p) = My(p) + Mi(p) + Ma(p) with iMy(p) being the inverse
propagator for the given field and M; and M are linear and bilinear in the background fields a,. One has

X/ \yn—1
tr log M = tr log Mg+ tr log (1+M61(M1+M2)) = tr log Mo+ tr Z (=)

n=1

(My ' (M +Mb))"™ . (7.73)
We need to pick out the quartic term in aj:
1 1
tr log M|, = — tr (M ' M)? + tr (Mg M) My My — 1t (M ') (7.74)
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Since —iM; 1'is just the propagator this expansion generates the relevant one-loop Feynman diagrams
with 4 external (background) gauge fields a,, attached. There are vertices with one and vertices with two
gauge fields, corresponding to M; and Ms. Obviously, one could have evaluated these diagrams directly
using the appropriate Feynman rules. The present alternative computation has the advantage of giving all
combinatorial factors in a straightforward way.

Obviously, the D“[a] corresponds to the ghost loop and the above expression gives

Tr logD¥[a] = /d49:/ dp tr log M“(p)
(2m)* ’
M“(p) = (—ipu+ iazdj) (ip" — iagdj) = pup! — Qp“aidj + azdjagdj . (7.75)
We read off Mg (p) = pupt, My (p) = —2p“azdj and MY (p) = azdj gdj and (7.74) then gives
d*p d*p 1 traye® aya® tr p,at pya? aya® tr (p at)?
tr log M“| , = 4——f(—f ot 4 4 EPed Dy ERLAV ), 7.76
[ mioenla= [ s (-5 e+ w—ii) 17T

where all the a, are in the adjoint representation although we did not write it explicitly. Since all a,, are
constant, corresponding to vanishing external momenta, the loop integrals are particularly simple. Using

dimensional regularization (d = 4 — ¢) and introducing an IR regulator p, we have3”
dp 1 i 2
I= = =2 (2~ (@]
/ (2m)% (p? + p? — ie)? 1672 (m4r”) (e 7+ 0()
= / ddp PuPv _ 177 I
Ll e s R L
dp  pupupep 1
Lvpo = / (2m)t (p2 i;2p_;5)4 = ﬂ(nﬁwnpa + NupMve + 77u077Vp) I. (7.77)
Thus
d4p w 1 A o W, v A 1 w v, p,c
W tr log M ‘a4 = I(— itra,\a aga’ + Ny trar a” arya” — é(nm,npg + NupNve —i—nwnl,p) tr aa”a’a )
1 1
=5 I (tr ara® aya® — traya, a/\a”) =5 1 (tr aray a’a® — tragaya® a") . (7.78)

Recall that for constant a,, in the adjoint representation one has tr oq; F F* = tr aqi(—1)[ay, a,)(—1)[a, a”] =
=217 4qj (aual,a“a” — a#a,,a”a“), so that finally

1
Tl“ log Dw[a] = /d4$ ﬁ I tr adey,z/FuV . (779)

The evaluation of Trlog D4[a] is very similar, except that the tensorial structure is a bit more complicated.
In the final result, the % is replaced by a —% The matter determinant Trlog D¥[a] depends on the mass
of the fermions. However, the structure of the divergence is mass independent, i.e. the term ~ % does not
depend on the mass, and if our only purpose is to compute the S-function we can just as well neglect the

fermion mass.

37Note that when computing 1,,, one replaces p,p, by %mwpz. The remaining scalar integral yields %I so that
1, = inwl and not énwl as one might have naively expected. Similarly for I, -
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In the limit where the fermion masses can be neglected, the three traces are:
A 4 ) v
Trlog D% st —picce = 1 /d T (_§ tr gy F FH )

1
Trlog D% |at picce = I /d4x (12 tr aj Fpu B )

Trlog D¥|at_picce = 1 / d*x (—%trRFWF‘“’) : (7.80)
where (u is an IR regulator) I = [ %m = 55 (L + finite) . If we let
tragitals = 92 C1as , trrtats = g°Colug , (7.81)
we get ,
P ] = —%% (gol + 1—1201 - %02) / A (—EF;’;FC‘“”) , (7.82)
and, hence
Z Al 00p = +Qg ! (1201 - %@) / d%( iFjVFO‘“”) . (7.83)

Finally we can read off the one-loop S-function as

11
5171001) 49 (1201 - _C2> 5 (784)

which is negative as long as Uy < %C’l, i.e. as long as there are not “too many” matter fields.
Of course, this is a famous result. For example, if the gauge group is SU(N) and the matter
representation R is the defining “vector” representation N, one has C| = N and C5 = % For ny
flavours of quarks in the N-representation one has Cy = % Thus

3

N)—QCD with ny flavours of quarks _ _g_ EN . E 7 85
61 —loop 47T2 <12 6 ? ( : )

Standard QCD with gauge group SU(3) could accommodate as many as ny = 16 flavours of quarks
and still remain asymptotically free. Recall from our earlier discussion that the relevant S-function
at a given scale p is the one that corresponds to the number of flavours of quarks having masses

(well) below p. Any quarks having masses (well) above p do not contribute at this scale. Let us

write B, (9) = =By’ 1;;’% and also use a(u) = 92? As shown before, the running of g(u) is such
that o2 )
m m
A, = pexp (—n—> = L exp <—n—) (7.86)
! o’ 9 (1) o’ )

does not depend on p. It is the RG-invariant mass scale characterizing the strength of the interaction.
More precisely, it is independent of i as long as pu does not come close to any of the quark masses
and the effective number of flavours does not change. Since the running of the coupling below m,,, 11
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is well approximated by f3,,, and above m,, .1 by B,,4+1, matching the coupling at p = m, 4 leads

to the RG scale matching condition

n ne+1
An 5()f An ﬁof
< ; ) :( f“) . (7.87)
mnf—l-l m’VLf-f-l

It is useful to isolate the contributions of the various fields to the one-loop S-function. There are

3 basic contributions: the gauge and ghost fields, spin—% matter fields and scalar matter fields. We
already have computed the first two types of contribution, while the contribution of a complex scalar
matter field can be obtained from the one of the ghost fields. Indeed, the ghosts are (anticommuting)
scalars in the adjoint representation and with the obvious changes we get (C,q; = C1 and Cg = C»)

3
gauge and ghost g 11
Blfloop - A2 E C(adj
3
Dirac fermion in R __ g 1
Bl—loop - _47T2 (_§ CR)
3
complex scalar in R g 1
B 1oop = T2 (—E CR) : (7.88)

Note that we considered standard Dirac fermions. If one considers instead chiral (Weyl) fermions or
Majorana fermions, one has to divide the corresponding matter contribution by a factor of 2.

7.4.2 p-functions in supersymmetric gauge theories

In supersymmetric theories the fields are part of supersymmetry multiplets and thus the field content
is subject to important constraints. We will now show that this leads to simpler expressions for the
one-loop S-functions.

N=1:

In gauge theories with the minimal amount of supersymmetry, so called unextended supersymmetry,
often referred to as A/ = 1 supersymmetry, the gauge fields have a corresponding partner, called
the gaugino field, which is a spin—% Majorana fermion A*(z), also in the adjoint representation
and also massless. More precisely, the boson-fermion correspondence holds for physical states, so
that the Majorana fermion field is the partner of the gauge and ghost fields. Together they form
the gauge or vector multiplet. The matter fields are organized in so-called chiral multiplets, each
multiplet consisting of a Majorana fermion v (z) and a complex scalar ¢(x), both fields in the same
representation R of the gauge group. Since a Dirac field is equivalent to two Majorana fields, the

[-function of a Majorana fermion is half that of a Dirac fermion. Hence, ﬁfﬁﬁ‘g’ = 49?% Cladj, so that

3
Bvector multiplet ﬁgauge and ghost and gaugino __ g 3 (7 89)

— _ = T 5 VYadj -
1—loop 1—loop 472 4 J

Similarly, for a chiral multiplet

3 1
chiral multiplet __ 1 Dirac fermion in R complex scalar in R __ g
ﬁlfloop - iﬁl—loop + /Blfloop = _4_7_(2 _Z CR . (790)
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Obviously then, in an N = 1 supersymmetric gauge theory with nc; chiral multiplets in the repre-

sentation R;:
3

N=1 with nc; in R; _ g 3 1
61—10013 - _W (Z Cadj - Z ;nC,ZC”I%) . (791)

Note that such a theory with 3 chiral multiplets in the adjoint representation has a vanishing one-loop
[-function. Actually, with appropriate masses and couplings, this theory actually has an extended

supersymmetry.

N=2:
In N = 2 extended supersymmetric gauge theory the AN/ = 1 multiplets are grouped into larger
N = 2 multiplets. Thus the N' = 2 vector or gauge multiplet consists of the N' = 1 vector multiplet

together with a massless N' = 1 chiral multiplet in the adjoint representation. Hence

N=2 vect et 90 1
=2 vector multiple
Blfloop - A2 5 adj - (792)

N = 2 matter multiplets are so-called hypermultiplets which consist of two A/ = 1 chiral multiplets:

3
N=2 hypermultiplet g 1
61—100p - _m <_§ C’R) ) (793)
so that an V' = 2 theory with ny,; hypermultiplets in representations R, has its one-loop S-function
given by
N=2 with ng; in R; ¢ (1 o 1 o
B 100p P IR chz R | - (7.94)
Again, we see that the special theory with a single adjoint hypermultiplet has a vanishing one-loop
[-function.
N=4:

The maximally extended (global) supersymmetry is AN/ = 4 extended supersymmetric gauge theory.
It has a single N' = 4 multiplet consisting of an N' = 2 vector and a massless N' = 2 adjoint
hypermultiplet. As just noted, this theory has a vanishing one-loop S-function:

B =0. (7.95)
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PART 1V:
ANOMALIES

For detailed notes on anomalies, see my

“Lectures on Anomalies”, e-Print: arXiv:0802.0634 [hep-th].

8 Anomalies : basics I

8.1 Transformation of the fermion measure: abelian anomaly
8.2 Anomalies and non-invariance of the effective action
8.3 Anomalous Slavnov-Taylor-Ward identities

8.4 Anomaly from the triangle Feynman diagram: AVV
9 Anomalies : basics II

9.1 Triangle diagram with chiral fermions only
9.2 Locality and finiteness of the anomaly

9.3 Cancellation of anomalies, example of the standard model
10 Anomalies : formal developments

10.1 Differential forms and characteristic classes in arbitrary even di-
mensions

10.2 Wess-Zumino consistency conditions and descent equation
11 Anomalies in arbitrary dimensions
11.1 Relation between anomalies and index theorems

11.2 Gravitational and mixed gauge-gravitational anomalies

11.3 Anomaly cancellation in ten-dimensional type IIB supergravity
and in type I SO(32) or Eg x Ejs heterotic superstring
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