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Ringtones of black holes

Power-Law
Eail

Ringdown

We would Like ko khnow

- Freguencies (quasi-hormal modes)
- Amplitudes (as a function of the binary source parameters)

Unigueness theorems: Kerr(M,J) is the universal final stage of collapse

. ﬁrequ@maes (M,:)) : all s knowin (1972 Teukolsky; 19%§ Leaver)
- Amyt&udes . estimatbes for c&e%ea&abit&%v (1997 Flanagan-Hughes)



Plawn

2. Black hole Perturbation theory
2.1. Regge-Wheeler and Zerilli equations
2.2. Quasi-normal modes of Schwarzschild - Black Hole Spectroscopy
2.3, Newman-Penrose formalism, Petrov’s classification, Teukolsky equation
2.4. Quasi-normal modes of Kerr

2.5, Ma%kissom“?aFape&roummxon %keorj



2.1, Regqge-Wheeler and
equ&% LOWNS




2.2. Quasi-normal modes
of Schwarzschild

Black hole spec&ros&opv




Schwarzschild spa&rus&opv
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(a) Quasi-normal modes frequencies for gravitational perturbations (b) Comparison of quasi-normal modes fundamental spectral = |s|
(s = 2). for scalar, vector, and gravitational perturbations (s = 0,1, 2).

Most meo\kt:j dampad - \ o = 0.3737 — 0.0890;.

Ad&p&ed {rgm E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black
branes”, Class. Quant. Grav. 26 (2009) 163001, arXiv:0905.2975 [gr-qc].

“E. Berti’s homepage, Ringdown.” https://pages. jh.edu/"eberti2/ringdown/.



2.3. Newman-Penrose formalism,
Pebrov's ttassiﬂfi&aﬁmm
T@.uwoiswv equ,a&cw\



Newman-Penrose formalism

- FEeTrTLOnS

- Cartall W i

The Newman-Penrose formalism is a tetrad formalism with complex tetrads where the tangent space

Tebrad : Suv = ﬂabezes M—SQ“FM{. “fﬂ)f'

Minkowski metric 7,4 is chosen at each point to be

0
0
1
0

The tetrad frame is chosen to be a set of 4 null vectors | My, My, Ty, with

gyv — ’lrlv — rlylv + m}‘mv + ﬁlymv .

Null directions suikable to s&u,civ GW propagation



Reformulation of the connection

4 v,u
= —mtI"Vyly ; o =-mtm"Vyl ;
= —ntm"Vyimy ; v=—ntn"Vymy ;
= —mtm"Vyly ; u=—ntm"Vymy ;
= —mfn"Vyly ; @ = —ntl"Vymy ;

1
H z < — — y v }‘l v 71 .
2=k Fy,o 2(n [Vl + mMIVN iy, ;

1,
— _i(n"n"vvl,, +mtn"Vymy) ;

1
_ —E(nf‘ﬁz”Vvl}, +mtm'Vymy) ;

1,
= —E(n"m"vvl}, +mFm"Vymy).




Reformulation of the curvature

1
Hapuv 1), Wiwpo = Ryuvpe = &uipRo + vjpRetu + S RGu[p80v-

RO 10

Yo = Waﬁrﬂslamﬁl'ymé,

Y1 = Wagqol“nPl17m’,
10 Wa Buv . ¥y = Wagsl®m B Tn®

Y3 = Wapyol“nPimn’,

- WﬁvtmN@.wmam-‘Penrose scalars



Reformulation of gauge invariance

¥, = Wam‘;l“nﬁﬂm‘s,

Y, = Waﬁfﬂsl"‘mﬁm"n‘s,

They are diffeomorphism tnvariant but dependent upon the choice of
tebrad.

Y, = Wamél“nﬁm%ﬁ, One can F?erffcwm H&ps and local Lorenkz transformation ak

¥, — Wam‘;n"‘mﬁ;ﬂﬁz‘s, each spacetime point (&6 real functions = 3 complex functions).

* Rotations of type [ which leave I¥ unchanged (a2 € C);

[* s * nt s n* 4+ a*m" + am* + aa™I1¥, mt — m# + al¥ mt v mt + a* ¥,

e Rotations of type II which leave n# unchanged (b € C);

nt v nt I* s IF + b*mt + bmt + bb*n¥, mt — mt + bn¥, mt — mt* + b*nt.

e Rotations of type III which leave the directions of /¥ and n¥ unchanged and rotate m¥ by an

angle in the m¥, m¥ plane (4,0 € R);

* s AT1H nt — An* m#




Yy = Waﬂwl"‘mﬁl"m‘s,
¥, = W,xmgl"‘nﬁl'rm‘s,

Y, = Wamgl“mﬁﬁﬂn‘s,

Y3 = Waﬁ,,51“115171711‘5,

Y, = Wam(;n“mﬁ;ﬂm‘s.

Prove thabk under Yo — Yo,

Rotations of type I which leave /¥ unchanged (a € C); T1 - T +a™¥,
(L) ¥, > Wy + 204, + (a*)2F,,
[* s I# nt s nt + a*m* + am” + aa*1¥, mt — mt + al¥ mt v mt + a*I¥. ¥s > 3 + 30* ¥, + 3(a*)2¥; + (a%)3F,,

Yy > Yy +4a*¥Y3 + 6(a*)?¥, + 4(a*)3¥q + (a*)*¥;

Yo+ Yo + 4bY1 + 6b*Y5 + 4b3Y;5 + b* ¥y,

2 3
Rotations of type II which leave n# unchanged (b € C); Y1 ¥+ 3072 +30°F3 + 07y,
(. 3 ) Yy > ¥y + 2b¥3 + b?Yy,

K K H K *mh la FyuH H K H H K Fnl
n* s nt, [P 1P + b"m” + bm" + bb™n”, mP v m? + bn¥, mb v mF + b*n”. Ya > Y3 4 by,

Yy Yy,

Rotations of type III which leave the directions of /¥ and n* unchanged and rotate m" by an
angle in the m¥, m¥ plane (4, 0 € R);

" A71F nt — Ant, mht 0 mlt s e Omk,



Remwember

Yy = Waﬁ,y(gl“mﬁl'ym‘s,
¥, = Wamgl"‘nﬁﬂm‘s,

Y, = Wamgl“mﬁm'yn‘s,

Y3 = Wam(sl“nﬁﬁﬂn‘s,

Y, = Waﬁfy5i1aﬁlﬁ717ﬁ1§.

We define the 3 anti-symmetric bivectors

Xy = =2np,My) Yuw = Zl[ym,,] ; Luy = 2mpy iy — Zl[yn,,].

Prove that the Weyl tensor is a Linear combination of these 3 bivectors

Waﬁ'yé =Y XaﬁX,ﬂ; + Y1 (X,xﬁZ,,(; + ZaﬁX,Y(;) + Y5 (YaﬁX,ﬂ; + XaﬁYrﬂ; + ZaﬁZ,ﬂ;)

+ ‘P3 (Yaﬁzr),g + Zaﬁyfy(s) + ‘Y4 YaﬁY'yé + C.C.




Remwember

Yy = Waﬁ,y(gl“mﬁl'ym‘s,
¥, = Wamgl"‘nﬁﬂm‘s,

Y, = Wamgl“mﬁm'yn‘s,

Y3 = Wam(sl“nﬁﬁﬂn‘s,

Y, = Waﬁfy5i1aﬁlﬁ717ﬁ1§.

We define the 3 anti-symmetric bivectors
Hink:
Xyv = 2nptiy) 5 Yy =2lpmyy 5 Zyy = 2mpytity) — 2l ny,. COMP“&Q
X,ycsl,ymé
Prove that the Weyl tensor is a Linear combination of these 3 bivectors S sl
Z,ycslfyfrn(S
Wagns =0 XapXys + W1 (XupZos + ZagXos) + ¥2 (YasXos + XagYos + ZasZors) 25
+ Y3 (YapZos + ZagYos) + Ya YagYos + CoC. Y75m7n5
ny(g”ﬁ’ﬂn(s




Use

Waﬁ'yé =Y XaﬁX,ﬂ; + Y, (Xa'ngy(g + Zaﬁx75) + Y5 (YaﬁX,ﬁ; + XaﬁY'yé + Za'BZ,),(;)
+ ‘{;3 (‘YaﬁZ,ﬂ; + ZaﬁY'ycS) + ‘P4 YaﬁYt},‘S + C.C.

ko prove Ehak

"
¢]
A
)

f I[aWﬁ],ﬂg[pIU]I"I‘S = ‘f’ol[“ﬁzml[pma] <+ ‘I’{)“I[amﬁ]l[pma].




[ Pebrov, 1984 J[Géhéniau, 1987

Higher dimensions: 2004

Petrov classified the Weyl tensor by the number of degenerate local eigenvalues and (antisymmetric)

eigenbivectors of the Weyl tensor. The eigenvalue equation reads as

X = A XM

Hv
Wa

P

Distinction: G,ul/ 3 T,ul/7 W,ul/oaﬁ

Classification of the Weyl tensor categorizes both vacuum and non-vacuum solutions ko Einskein’s equations

Wivap s conformally tnvariant Wivap  identical for A4S and Minkowski



Three equivalent classifications

Petrov classified the Weyl tensor by the number of degenerate local eigenvalues and (antisymmetric)

(1 ) eigenbivectors of the Weyl tensor. The eigenvalue equation reads as

WH (X*P = A XH.

P

A non-trivial result due to Penrose in 1960 shows that solving this eigenvalue problem is equivalent

to classify spacetimes according to the degeneracy of principal null directions of the Weyl tensor. Such
(Z) directions are spanned by null vectors k¥ obeying

)
kjaWgjqsrokonk7k® = 0.

Yet another equivalent formulation of the classification is the following. We have just seen that with
respect to a chosen tetrad, the Weyl tensor is completely determined by the five Weyl-Newman-

Penrose scalars. The third formulation of the classification consists in determining how many of

these scalars can be made to vanish for a given spacetime by choosing a suitable orientation of the

tetrad frame.

For the Prooﬂf (1) <> (2) : see fSEephami, Kramer, MacCallum, Hoenselaers, Herlt, 2004 ]



Petrov classification using formulation (3)

Griven a NP tebrad we t:ampu&e the scalars {\Iji}izl,

1FO > 11,0/
Y- Y +a*¥,

| it Weyl vanishes, we are done. Let us assume it is not vanishing.
Tﬁ["ﬁ X ¥y > Yo + 2a*Y + (a*)*¥,

Y3 - Y3 + 3a*Y, + 3(a*)?¥; + (a*)>¥,,
Y, > ¥y + 405 + 6(a*)2¥, + 4(a* )3 + (a*)4¥;

We assume Yy # 0. Otherwise do a T ype 1 rotation,

We consider a Type II rotation with complex parameter b.

Yo > Yo + 4bYq + 6b2Y, + 4b3Y¥5 + b4y, Wy can be made to vanish if b is a solution ko

¥, — Y1 + 3b¥Y, + 30%Y3 + bPYy,

Yo + 4bY¥ + 6b°Y, + 4b°¥3 + b*¥, = 0.

Tupe II ¥y > ¥y + 2b¥3 + b?Y¥y,
JP R There are exactly 4 roots. The corresponding Type 11 rotations lead to
3> 13 4,
Tao ¥y I silt + b*m# ﬁz +bb*nt;  mt s mt +bnt,  mt s mt + b nt.
They define the 4 principal null directions of the Weyl tensor
U
Type 111 et

BN This proves (3) -» ()

The degeneracy structure of the roots of a quartic polynomial lead
to the classification.



Pebrov’s classification

Table and diagram adapted from
[Stephani, Kramer, MacCallum, Hoenselaers, Herlt, 2004

Petrov type  Multiplicity of p.n.d.  Vanishing Weyl components  Criterion on Weypep

I (1,1,1,1) ¥o=0 Kry WagpoiskskPk? = 0
(2,1,1) Yo=Y =0 Kpy WagposkPk? = 0
(2,2) Yo =¥;=0 Kpy WagpopkPk? = 0
(3,1) Yo=Y =¥2=0 Kry Wi pogk? = 0
(4) Yo=Y =¥2=¥3=0 Wapopk® = 0

(a) Characterisation of Petrov types. k¥ is always the most degenerate principal null direction (p.n.d.).

: : e Gab ; : £ : (b) The Penrose graph summarizing the degeneracy growth
Kerr is T:j?ﬁ D: itk adwmiks 2 disktinck PT’LMCLPO\L null directions,. in Petrov’s classification. Each arrow indicates one
additional degeneracy.

A Newman-Penrose kebrad ad&p&ed to these null directions and such bhat V3, Vs vanish is called a
Kinmersi.ev tebrad. Omtv Uy s hoh-vanishing in a Kimnersi.ev tebrad.

The Goldman-Sachs theorem implies that for a Type D s;m:e&&me, the principal null directions are

shear-free geodesic congruences. The Newman-Penrose formalism is therefore well-adapted for
the sEu,dv of GW in Kerr!



Quasi-normal modes: definition

We consider Linear perturbations of matter and the metric around the Kerr geometry,
ALl Linear per%urba&iams are collectively denoted as

Thanks to the 2 Killing vectors of Kerr, there is no explicit time or angular dependence
in the field equations. Therefore, the Linear solution can be decomposed in isolated
Fourier modes:

The linear equations are partial differential equations in T 0, which dependence upoh (M,a=9/M) and M, W
The boumc&ar:} conditions are

-"In" ; Ingoing at the horizon e WHIMPE(y,9) L1, gmiwotimP. | (g)

where r, is the tortoise coordinate, v, = t + r, the advanced time and ¢, the angular coordinate which
define the regular ingoing Eddington-Finkelstein coordinates v,,7., 8, ¢« (or in other words, which

resolves the geometry near the horizon).

r—o0,u fixed

- "Up” : Qubtgoing at Enfimiﬁj e~ WHHIMPE (r,0) > e~ "WIHIMPF(0)

where u = t —r is the asymptotically flat retarded time.



Quasi~normal modes: quatiéaﬁve solubion

\\ l+

Linear ¥DEs

Penrose diagram of the domain

of outer communication of Kerr Radial interval at fixed Boyer-Linquist time

This is a baumdarv value probi.em‘ It admits an infinite seb of solutions Labelled b'ﬁ

— Spheroidal harmonic numbers [, m
— Overtone N =0,1,2,...

The frequ@.v\t&es are WimN — Re(wlmN ) e iIm(wlmN ) Linear s&abiti&v is equivalent to Im(wlm N) < 0



wko i. S M‘v q MO& Lo

Teukolsky found during his PhD thesis with Kip Thorine tn 1972 how to separate the radial and polar
equations for the Weyl components.

He started to write down the Llinear Per&urbaﬁwn equations in terms of the & Weyl-Newman-Penrose
com[pi@.x scalars for a Kimnevstev tebrad. In Kerr (in Bover*LEqus& coordinates), ombj

(r —iacos0)3

s hon-vanishing. It turis out that the Linear permrba&mns {6W;}; can be expressed in terms of either 00
or 0V, up to the change of Ma (in U5 ),

Insight: the equations for (r —iacos 0)* 00, and 0¥ are separable. We call it ¥ for s=-2 or +2. It obeys

0*

[ i COS 9] op
T 2 A
sin“f | 0¢

—r—iacos()] i—¢+(szcot29—s)1p= T

ot




Radial and po Lar Teuleols M‘j equa% LONS

o0

o+
W(t,r,0,¢) = % f dwe N7 N e@MIR] (1) ST (cOS 6).

|=|s| m=—I

The equation for S], (cos0) is called the spin weighted spheroidal harmonic equation

d m? + 2msx + s2

d
[a(l — xz)a] ?mw(X) -+ [azwzxz — 2awsx + glsmw — W] Slsmw(X) =0

where x = cosf and &?

i 18 the separation constant. When a = 0, the dependence in w drops out and

the functions S;, (cos 0) reduce to spin-weighted spherical harmonics Y} (6, ¢) = S; _(cos 0)e'™? after
inclusion of the Fourier ¢ factor. In this case, the angular separation constants &;

i = €1y are known
analytically tobe & = I(I +1).

The radial equation is the radial Teukolsky equation:

ﬁ

A—Si(AS'*‘l

or or

Rimo) V(1) Rimeo () = Timeol")

with source Tj,,,,(r) and potential

2 eife
V(r) _w — Asicor + Apy,

Kinw (r2 - az)w — ma,

2

Mmew 2= Eimw — 2amw + a*w? —s(s + 1).

When a = 0, the m dependence drops out. This is a consequence of SO(3) symmetry.




Q@

Radial and PO Lar Teul¢ols N’j solutions

Leaver method: continued fractions [19%5]

Any method that solves a boumdwmj value ODE !

Implementations in "Black Hole Perturbation Toolkit”
http:// bhp&oatwiﬁorg/

Mabthemakica 12.1. now EMFL@.MQMS HeunG which solves bhe ‘SF@E;M.
weighted spheroidal harmonic equation.



Schwarzschild spa&rus&opv
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(a) Quasi-normal modes frequencies for gravitational perturbations (b) Comparison of quasi-normal modes fundamental spectral = |s|
(s = 2). for scalar, vector, and gravitational perturbations (s = 0,1, 2).

Most meo\kt:j dampad - \ o = 0.3737 — 0.0890;.

Ad&p&ed {rgm E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black
branes”, Class. Quant. Grav. 26 (2009) 163001, arXiv:0905.2975 [gr-qc].

“E. Berti’s homepage, Ringdown.” https://pages. jh.edu/"eberti2/ringdown/.



Kerr s ckrosco Y

- Most weakly damped s=2 mode Mwgo ~ 0.4437 —0.0739(1 — a/M)?-330

- Zeeman splitting (dependence upon mj

- Highly spinning behavior (Split bebween non-damped and zero-damped modes with half- :
integer real ffr@.qu.enaj). This is due to the near-horizon Kerr region with angular vetoci,&j O

Video on

kEEPs://www.vou&ubeﬂﬂom/wa&ch?szqu@Mlee“)Q

[Cook, Zalutskiy, 1410.769% ]



2.4, Mathisson-Papapetrou-
Dixon theory

Or how to model finite objects without their gravitational
backreaction?



We consider the small rakio Limit of the Ewowbodj F:»rc:-btem

mi1 << Mo

if boc&v 1 is a point particle without any internal structure not gravitational backreaction, iks motion is
determined by geodesic motion in the metric generated by the body 2. [Einstein-Grommer, 1927]

This is not a postulate but a consequence of Einstein’s equations. For a modern F'rcm{, see [Wald-Grralla,
200% ]

This is very useful if the boc&v 2 is a black hole because the mebric is the Kerr mekbric cié;pemdicw\g) only on M
and 2, It is also useful for a stationary metric like a neutron star, which is determined bj two infinite sets
of multipole moments.



mi << Mo

If body 1 is not a point particle but an extended object, a more general theory of motion is required
In addition, the body 1 gravitational backreacts and “gravitational self-force” corrections are also required,

In this lecture, we ignore the gravitational self-force. We assume that the background wmetric is the Kerr
metric determined by the black hole (body 2).

We consider the space-time diagram :
Worldline inside the object

Sy (&jpiaattj the center-of-mass)




Stress-tensor for timelike qeodesics

—m/ d)\—(5(4) (x — )

da’;“ dx’/

Jal gt
\/ 59W( ) -
~——(m [ ag §< BB 5z - z.) Pl
0 B
/OO 5(4> (x — z4(7)) dx* dz”
— 10)
dr dr




Show that the conservation of

0 Ay
TRt m/ d7'(S o
— 00 izl

Gk,

Nl ) =)

LS equivatem& to the geodesic equaﬁmm

|4 1 8 | 4 077
Hink: use Nl = \/jg o1V ( Ve il ) i FguT




weNF )




Extended objects contain additional mulkipoles:
o Spm
o Qu&cirupoie

o 2°N Fwt@.

Their equation of motion follows from

vCbcrbaobdy =0

Pt[g] = L Tlsbobdy<aj/)§a(x/)dsb

!

??




Killing vector = Symmetry of spacetime

Spapgw/ 552 (9prng i aufpgpu =0

By covariance: Vo + Vi€ =0

In Minkowski, using Cartesian coordinates, (ct, T)

Oy =0 Eh = gt 4 Y €0y S0)] = C((ci;(b)gébc)

Eranslations Lorentz Poincaré algebra under the Lie braciet

In AdS;/dS; (other two maximattj svmmeﬁric‘ sya«ce&imes) -» 10 as well

AdS4Z SO(Q,S) dS4Z 30(1,4)

Schwarzschild: R « SO(3)

Kerr: R x SO(2) x 7,



Prove that a Killing vector obeys

using the Misner-Thorne-Wheeler/Wald convention [V, V3| = R° L e



Prove that a Killing vector obevs

using the Mismer-Thorne-Wheeler/Wald convention [V, V€€ = R, &%

va(vbfc T vcgb) =0

¥ VoVl + VeVabs + [V, Vel& =0

e o N a¥pte + VeVabh + Rodact” IR
bEb < ViWals + ViV, + RogchEo= 013
e < ViV, + VoVeé. + Reagpa€” =0 (3)

(1}“(2)"‘(3) - 2vavb€c Gr (Rbdac = Radcb SF Rcdba)gd — U
2vavb€c 3 (Racbd B0 Rcbad . Rbacd)fd =]

Rcbad < Rbacd s Racbd —

INL Vit 2R D




Tool 1: Killing %ramspor& along a curve

[Greroch, 1969]

Eal

Criven we can build

N
A

EalT)

B at a POEME 7

~
Q
R
AN

AN
TR

2 _

by integrating along the curve the following ordinary differential equations,

Ua(ﬂf/)vafb (QL‘/) = fUa’(;E/)Lab(z) Tangent vector along the curve
A dr'®
Ua(x/)vaLbC(x/) == _Rbcad(x/)fd(z)va(x/) vi(z) = oy

The equation is trivially obeyed ot 2. By construction, Lop(x") = Ligp(®) & Lggp)(z0) = 0 at any o

Ea(2)

This defines Boil%) along the curve. There is also a relationship among these quantities along the curve,
ab

which are compatible with the Killing equation.



Tool 2: Ritensors

[Poisson, Pound, Vega, 1102.0529]
Note: They use 0(z,z) nstead of o(z,2) .

Although there is no vector which preserves geodesic distances between all pairs of points in a general
spacetime, there are vectors which preserve geodesic distances from a given worldline.

ol Synge function = 1/2 square of geodesic distance between 2 and x’

1 Al dy* dy” 1
G g ¢ ANz 1 ). )°

Z ¢

Cownskank: €

Definition invariant under reparametrizations A= ad+0b

Ik s a biktensor: scalar wikh respect to bobth z and x.

We can define vectors/tensors with respect to each point:

Ok — Vo — Ouals 7l O — VeNGiolin

Oor =S\ 00 w0l Y, Ohal — N Gl o)



In the coincident Limik, 21— 2/

o] = limyis gz, 2 58 CGreodesic distance bebween a poim& and itself is ©
:O-a] = limzwm’ga(za ZC/) =0 b@.@&uﬁ@. no odd tensor exisks,

Oar] =0

:O-a’a,b] =1

:O-a,b] —=Gab

:O'a/b/] = Ga’'b’ We M@.@.ci &O FT’OVQ L&

:O-a/b] =5 Galb




Use

to prove Ehak

()

(i)
(Lit)

(iv)

dyt dy” 5 el
A )Ginel 0%



(i)

alz + 0z,

ol s —

1

=

" dy” |

A/ |
Aor el : dh el )= X,)°

Ac’\jusE Fmrame%er such hat AA =)y — A, = A — Aise

50 (2, 5) = A / (gw<y>

Solz )

o(z, 2" + 6x')

Ol )

ab
G - OuObs=

=2 AN gW

') —o(z,2")
—o(z,x")

d,UJ

_5y

dA

o _()\x’ o )\z)gabzb

AX25%gp5° = AX%e = 20

dy* doy” 1 dy* dy”
8. Sy ) d
dh di RN ax ) >
Sz A7 )
% d=y* dy* dy>
—_Af : T g,
: /,\ v~z + Bavdarie 5
— _(Ax’ =n Az)guyé“5zy
SO —A,)gun i 6

[Poisson, Pound, Vega, 11020529, pg 35-37]

)doy” dA



(LiL)

(iv)

)

O U=

2900 con =00

s (Uac e gac) = ()

O-aa-ac’ — O¢/

Ua(O-ac s gac) = (

[Jab] — Jab



ﬁ&)f

[Harte, 2o0% ]

Greneralized Kill g ve

We define a foliation {Bs}scr around the curve 7

€a(2)

Criven a F»QE;\"
Lab (Z)

along the curve 7 we define ¢ in the vicinity of v as

Lz, 2 =0 Nz 4 B Va, € B,

This vector exists, Proof:  Leo(zs,2,) =0 Lot ) —0

£ (2 )V 00 + £2(25)Vp0® — Vpt®*(2,)0? = 0

£9 (2 ) V0% = —£8(2,)V50% + Vpt*(25)0°

S

Defime the inverse  HY,(r},z)  suck bhat  H',(z),2) Vw0 (2. 7)) = —0 -

This inverse exists and is unique locally around 7 . Due to caustics, it is not unique glob ally, i

gb, (ajfs) 5 Hb/a(x;a Zs) (Sb(zs)vbaa ¥ vbga(zs)ab)

= (g ) = Hal;(a:’, 2oz 1)

Ea,,ab(x/’z) ok —Ha/b(aj/,z)aa(z,x’)



We can wrike

equivaten&ifj bj

Indeed, in the coincidenk Limik, 2 +— &'

Vi (2) = V2 (2, 2)6,(2) + VB (2, 2) Lop (2)

:(;a] = —P  Vuéy (') = Loy (@)
[vb,Ealaab] 5 _[Ha/b] [Uab/] i 6a/b51?’

Finally, using the property of Killing transport Lap(2) = Ligp)(2) after choosing V(&) (20) = 0 for any zp € v

[Harte, private communication, 2020]]
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Expt&c&ﬂv ;

ga(z) :Aa+B[ab]2b

ga/ (il?/) = e B[a/b/]ll?/b/ L e B[a/b/]zb’ L (QC/b

Therefore,



PlE = [ Tty (@) (@)dSy

Using the d@.tomposﬁ:wv\

we obbain

where
p%(24,1) = / Tba’g’ ( w’)': a( S 2:)dS} ts the momentum vector with respet:& to the
9 ody eyt g 9 A
B

: reference worldline at foliakion time

S (2, 1) = / Tgbo’g?;( )29 (2'. 2,)dSy s the Lorentz «cka\rge. tensor w'i,&k. resp-@.c& to
B the reference worldline ok foliakion time E



1 MX"‘“b alance # Law

The current J° = body( )fb( ) obejs N g Jeie= Tbody( )Vafb(f) = —Tabﬁggab

Skokkes’ Eheorem E,mpu;@.s

These are Ehe Mabhisson-
?’o\pap@.&rmum‘bixom equ&&ic:)ms




Ma&h&ssav\*?apaF@.&raummxom equa&&oms

d : o 1
apt &) = /B Pry =TT Ligess By (L] P g] = p® (2, t)€a(2t) + §Sab(2’tat)v[afb] (2t)
Using the de&ampasi&mw
Dp*® , 1 DS Y : s 1
1;; €alze) + P2 VoEal2e) 5 Vabbla) + §Sabzt VeValo(2t) = F78a(2t) + 5 Nab Viale (%)

use

chafb o _Rbacdfd
True iv\ciependenﬂj for al2t); Via&y(2t)

We obkain
Final variables :

a gl s®»a. i abed
s =0, JY L

The MPD equations arise because a generalized Killing vector which is purely translational at a point
becomes a combination of translations and Lorentz transformations at a later time under Killing
transport. This leads to a mixing of momenta and Lorentz charqges.



if £ is a background exact Killing vector, %Pt E = / d3$\/—gTab/Z§gab = Fi|&]
By

a foae
Then  Fild] = p"(26, )€a(22) + 53 b(Zt,t)V[afb](Zt) is exactly conserved. In Kerr, there are 2 conserved
quantities, as for geodesics, Analogue of Carter’s constant??

In order to close the system of equations

Dpa’ 1 C el ° a
Dt — §Sb Rbcd Z? _|_F
DSeb iy .

Pt o 2p Zt] i

we heed equations of state to define the stresses and torques, as well as the
= ” that fix the center-of-mass:

Tutczz.jjem: S“bpb — (Other op&iow Mathissown: Sabvb — i

?roposiﬁmw If b is proper tie, we can solve for Z.’,? in terms of pa, S a’b, F a, N [Steinhoff, Puetzfeld, PRD &, 044033 (2012)]
1 b gcd 2
We can then define the intrinsic angular momentum: OS¢ = "iﬁeabcdp o =0,

1
As well as the spin length: 5% = 5S@bSC’f’ — 598



Show that the Mathisson-Papapetrou equations reduced with the Tui;ézjjeééahdiﬁcm where t s proper time

Dp“ 1
C — SRl
Dt 2 ab '
ab S Db
DS e .
= 20
Dt
lead bo
where
1)
gl {1 | Racsabscd
4M2 bed
1 .
o bede ga f hi :
N | 4A2,u4saprSd€R S pgS ngh’b

1

e geabl o ab qef
Hint: prove RapcaS™ 5™ = 2Rabcds S First derived by [Ehlers, Rudolph, GRG ¥, 197 (1977)]



= —SbcR v * -

1 2 D | ® |
: e Sab —() b Ammnerill a4 Pb a Sab cd

Lusis | = 2pl%® D k i BT
Dt e = N a _I_Ba, Uf B¢, — 1 SabScdR
= MP i i W cdf b
(p + B%p ) i Bafo v9 We will solve for N later.
Sab i abcdpcs paSa ) EabcesabSCd 58! (pcSe b peSc)SCd =)
Havga =9

1
Rabcd S Sbf = 5 Rabcd SabSef

N X (Bb )n N Ba pf
i S pa, Tegyele f b A=l /
vy, = —1 Deduce N
Note: instead of proper time, one could fix V'Pa = —[i which results i another N [Dixon, 1970]

see e.q. [Susulki, Maeda, PRD §5(%), 4¥4¥% (1997)][Santos, Batista, PRD 101, 104049 (2020)]



Usitng the Mathisson-Papapetrou equations reduced with the T utcz.jjeQ condition

Dp“ T %
Dt — §Sb Rbcd Ud . 'pa 1 bpc d 4
3 = — o N | Sa _R C eS .
DSab 2 S Db 0 U y QIUZA 10 bcd
by : _

I
prove that =it asigellias 5 = §SabSab are cownserved.



Usitng the Mathisson-Papapetrou equations reduced with the T utczjjeQ condition

Dp%. o |
P 2 _SbcR avd - s :
Dt 2 e Sab 0 R NS P | 1 Sabp D Sde
< = e l — dlpede
1,5 _ oplagh £ e\ _
Dt
I
prove that =it asigellias 5 = §SabSab are cownserved.
ab
We have Sab D;Z — ) because Rabcdpcpd =0
D a
Pa—— =0 Becaiin X,5% X, =0 X, = R0 S



nerq v M, SOT

“Sieelebizabion”: reduce the skress-tensor ko iks Lawes&. muﬁ:upote.

nmoments on the MOTLdLLMQ’ [ Mabhisson, 1937 ][schwartz, Théorie des dus&nbu&wns, 1950] [TulﬁajJew, 1959 ]
[Dixown, 1973] b

o _ 4z5(7)

Prove thatk V,7° =0 is equwaieh& Ec:;» Eke Makbhisson-
‘Papape&rau, equa&mhs

Dp® i
D §Sb Ry
DSab

— 9plag,d]
5l e

Trick: use aln &rb&rarv best veckor @q

g / d*z\/—gV o (T ¢p) = / d*2/—gV o T ¢y + / d*x\/—gT*°V (o by



Trick: use an arb&%rarv test vector Qq
0 = /d4x\/—gva(T“b¢b) s /d4x\/—gVaTa’bgbb+/d4a:\/—gT“bV(aqbb)
Therefore, conservation of the stress-tensor is equivalent to

0= [ d'av=gTV ity = [ dr (5s"Vagy + SV Tt )

1 D
Use p%% = plo? +o%p®. 8§99V .V, b = §ScaRca£l<bd DENL Y = = and integrate by parts to get
| e D@ aik] DS ;
4 ab i bc .d a a_ b
/d LA/ —gT V(a¢b) — _§/d7- _2( pe QS (V) Rbcd)¢a ( D~ 2p[ (Y ])V[a¢b]_
The two tesk o,. Vie®p are Lmd@.pea«d@\& on the worldine:
Fermi hormal coordinates
Ga—Gg T M X, Via®s) = Vi@ X — Ut 0, (1)x
P 1
oh ditt 2 ’ s _SbcRb davd
This is therefore equivalent to B ¢
ab
DS % 2p[%b]

[Special thanks to Harte, private communication]



SPLy;
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o Quadrupate and higher mu&éymt&s are ok
constrained by stress-tensor conservation, but by the
EM&QT‘MQL CivM.QMEﬁS [ Dixown,19%0]

o Dynamics of a spinning particle in Schwarzschild or
KQT“‘ E«S @h&@&&& [Susuki,Maeda, 1997 [ Hartl,2003]



