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PART I :

A QUICK REVIEW OF WHAT SHOULD BE KNOWN

1 Functional integral methods

1.1 Path integral in quantum mechanics

The usual description of quantum mechanics is in the Schrödinger picture where

[Qa, Pb] = i δab , Qa |q〉 = qa |q〉 , Pa |p〉 = pa |p〉 , 〈q |p〉 =
∏
a

eiqapa√
2π

. (1.1)

Go to the Heisenberg picture by Qa(t) = eiHtQae
−iHt and Pa(t) = eiHtPae

−iHt. The eigenstates of

these Heisenberg picture operators are

|q, t〉 = eiHt |q〉 , Qa(t) |q, t〉 = qa |q, t〉 ,
|p, t〉 = eiHt |p〉 , Pa(t) |p, t〉 = qa |p, t〉 . (1.2)

Note that these are not the Schrödinger states |q〉 or |p〉 evolved in time (which would be e−iHt |q〉,
resp. e−iHt |p〉). It follows that |q, t+ ∆t〉 = eiH∆t |q, t〉 and 〈q′, t+ ∆t| = 〈q′, t| e−iH∆t. Hence

〈q′, t+ ∆t |q, t〉 = 〈q′, t| e−iH∆t |q, t〉 = 〈q′, t|
(
1− iH∆t+O(∆t2)

)
|q, t〉 (1.3)

Now H = H(P,Q) = eiHtH(Q,P )e−iHt = H(Q(t), P (t)) and we assume that H is written with all

P ’s to the right of all q’s (by using PQ = QP − i if necessary). Then one has

〈q, t|H(Q(t), P (t)) |p, t〉 = H(q(t), p(t)〈q, t |p, t〉 , (1.4)

so that

〈q′, t+ ∆t |q, t〉 =

∫ (∏
a

d pa

)
〈q′, t|

(
1− iH(Q(t), P (t))∆t+O(∆t2)

)
|p, t〉 〈p, t |q, t〉

=

∫ (∏
a

d pa

)
〈q′, t|

(
1− iH(q′(t), p(t))∆t+O(∆t2)

)
|p, t〉 〈p, t |q, t〉

=

∫ (∏
a

d pa

)
e−iH(q′(t),p(t))∆t+O(∆t2)

∏
b

eipa(q′a−qa)

2π
. (1.5)

Now one can take a finite interval t′ − t and let ∆t = t′−t
N

. We write tk = t + k∆t with k = 0, . . . N

and t0 = t, tN = t′ as well as qN = q′, q0 = q. Then

〈q′, t′ |q, t〉 =

∫ ∏
dqa1 . . . dq

a
N−1〈qN , tN |qN−1, tN−1〉 〈qN−1, tN−1| . . . |q1, t1〉 〈q1, t1 |q0, t0〉

=

∫ ∏
dqa1 . . . dq

a
N−1

∏ dpa1
2π

. . .
dpaN
2π

exp

{
−i

N∑
k=1

H(qk, pk)∆t+ i

N∑
k=1

pk(qk − qk−1)

}
. (1.6)
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Then, for any “configuration” {q0, q1, . . . qN} define an ‘interpolating” q(τ), so that qk+1 − qk '
q̇(τ)∆τ . Also

∏
k,a dqak '

∏
aDqa and

∏
k,a

dpak
2π
'
∏

aDpa, so that finally

〈q′, t′ |q, t〉 =

∫
qa(t)=qa, qa(t′)=q′a

∏
a

Dqa
∏
b

Dpb exp

{
−i
∫ t′

t

dτ H(q(τ), p(τ)) + i

∫ t′

t

dτ p(τ)q̇(τ)

}
.

(1.7)

This can be easily generalized to yield not only transition amplitudes but also matrix elements of

products of operators. Going through the same steps again for

〈q′, t′| OA(Q(tA), P (tA))OB(Q(tB), P (tB)) . . . |q, t〉 with tA ≥ tB ≥ . . ., one easily sees that the path

integral just gets OA(q(tA), p(tA))OB(q(tB), p(tB)) . . . inserted. Thus

〈q′, t′|T {OA(Q(tA), P (tA))OB(Q(tB), P (tB)) . . .} |q, t〉

=

∫
qa(t)=qa, qa(t′)=q′a

∏
a

Dqa
∏
b

Dpb OA(q(tA), p(tA)) OB(q(tB), p(tB)) . . . ×

× exp

{
−i
∫ t′

t

dτ H(q(τ), p(τ)) + i

∫ t′

t

dτ p(τ)q̇(τ)

}
. (1.8)

1.2 Functional integral in quantum field theory

An advantage of the canonical formalism is that unitarity is manifest, but Lorentz invariance is

somewhat obscured (although guaranteed by general theorems). In the functional integral formalism

with covariant Lagrangians to be discussed next, Lorentz invariance is manifest, but unitarity is not

guaranteed, unless the formalism can be derived from the canonical one (and then extra terms might

be present).

1.2.1 Derivation of the Hamiltonian functional integral

The path integral formula for matrix elements in quantum mechanics immediately generalizes – at

least formally – to quantum field theory by the obvious generalizations of the labels a to include the

position in space:

a→ (n, ~x) ,
∑
a

→
∑
n

∫
d3x , etc. (1.9)

However, in field theory we do not want to compute transition amplitudes between eigenstates |ψ(~x)〉
of the field operator Ψ(~x)(the analogue of Q) but between in and out states having definite numbers

of particles, or often simply between the in and out vacuum states. In order to obtain these one

has to multiply the transition amplitudes obtained from generalizing (1.7) to field theory by the

appropriate vacuum wave functions which for a real scalar e.g. are

〈φ(~x),± |vac,±〉 = N exp

{
−1

2

∫
d3x d3y

∫
d3p

(2π)3
ei~p·(~x−~y)

√
~p 2 +m2 φ(~x)φ(~y)

}
. (1.10)

Note that, contrary to the exponentials appearing in the transition amplitudes or matrix elements,

the exponential in (1.10) is real. Note also that it only contains 3-dimensional space integrals (if it
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were not for the
√
~p 2 +m2 the whole expression would collapse to a single

∫
d3x integral), and in this

sense it is infinitesimal as compared to the 4-dimensional space-time integrals in the exponents of the

transition amplitudes or matrix elements. Hence we are let to expect that the effect of multiplying

with (1.10) is only to add terms of the form i× (infinitesimally small) to the exponent. It can

indeed be shown that they precisely provide the correct iε terms that result in the correct Feynman

propagator. Again, this was to be expected since this must be the role of the initial and final

conditions imposed by 〈φ,± |vac,±〉. Hence, one arrives at the functional integral representation for

the time-ordered product of Heisenberg picture operators between the in and out vacuum states:

〈vac, out| T
{
OA
(
Ψ(tA, ~xA),Π(tA, ~xA)

)
OB
(
Ψ(tB, ~xB),Π(tB, ~xB)

)
. . .
}
|vac, in〉

= |N |2
∫ ∏

l

Dψl
∏
n

Dπn OA
(
ψ(tA, ~xA), π(tA, ~xA)

)
OB
(
ψ(tB, ~xB), π(tB, ~xB)

)
. . . ×

× exp

{
i

∫ ∞
−∞

dτ

[∫
d3x

∑
l

∂0ψl(τ, ~x)πl(τ, ~x)−H(ψ(τ, ~x)π(τ, ~x)) + iε−terms

]}
, (1.11)

where we have denoted the fields and their conjugate momenta as ψl and πl while the corresponding

Heisenberg picture operators are Ψl and Πl. The functional measures can be thought of as being

Dψl =
∏
τ,~x

d (ψl(τ, ~x)) , Dπl =
∏
τ,~x

d (πl(τ, ~x)) . (1.12)

1.2.2 Derivation of the Lagrangian version of the functional integral

In many theories the Hamiltonian is a quadratic functional of the momenta πl:

H(ψ(τ, ~x)π(τ, ~x)) =
1

2

∑
n,m

∫
d3x d3y An,~x,m~y(ψ)πn(τ, ~x)πm(τ, ~y) +

∑
n

∫
d3xBn~x(ψ)πn(τ, ~y) +C(ψ) ,

(1.13)

with a real, symmetric, positive and non-singular kernel An,~x,m~y(ψ). Then the functional integral

over πn(τ, ~x) in the vacuum to vacuum amplitude is gaussian and can be performed explicitly. More

generally, if the OA only depend on the fields ψl and not on the πl, one can also perform the Dπn
-integration in (1.11). Before giving the result it is useful to recall the following remark on gaussian

integrations.

Let f(x) be a quadratic form in xi, i = 1, . . . N , i.e. f(x) = 1
2x

iaijx
j + bix

i + c, with a real, symmetric,
positive and non-singular matrix a. Then by straightforward computation (“completing the square”)∫ ∏

i

dxi e−f(x) = (2π)N/2 (det a)−1/2 e
1
2
bi(a
−1)ijbj−c . (1.14)

Now the exponent 1
2bi(a

−1)ijbj−c is just −f(x0) where xi0 is the value which minimizes f . Indeed, ∂f/∂xi =

aijx
j + bi and hence xi0 = −(a−1)ijbj and f(x0) = c − 1

2bi(a
−1)ijbj . This is just the statement that for a

gaussian integration the saddle-point approximation is exact. Indeed, expanding f(x) around its minimum
we have f(x) = f(x0) + 1

2(x− x0)iaij(x− x0)j from which follows immediately∫ ∏
i

dxi e−f(x) = (2π)N/2(det a)−1/2e−f(x0) . (1.15)
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We now apply this remark to the quadratic form given by∫ ∞
−∞

dτ

[∫
d3x

∑
l

∂0ψl(τ, ~x)πl(τ, ~x)−H(ψ(τ, ~x)π(τ, ~x))

]
, (1.16)

with H given by (1.13). Note that for the second term there is a double integral d3x d3y but only

a single dτ integral. We rewrite everything as full 4-dimensional integrals by adding a δ(τ − τ ′).

Hence the corresponding kernel is Anτ~x,mτ ′~y(ψ) = δ(τ − τ ′)An,~x,m~y(ψ). The saddle-point value of πl

extremizing (1.16) is the solution π̄l of ∂0ψl = δH
δπl

. But evaluating
∫

d3x
∑

l ∂0ψlπl − H(ψl, πl) at

πl = π̄l is exactly doing the (inverse) Legendre transformation that gives back the Lagrange function:∫
d3x

∑
l

∂0ψl π̄l(ψ, ∂0ψ)−H(ψl, π̄l(ψ, ∂0ψ)) = L(ψl, ∂0ψl) ≡
∫

d3xL(ψl, ∂µψl) . (1.17)

Putting everything together we find for Hamiltonians that are quadratic in the πl:

〈vac, out|T
{
OA
(
Ψ(tA, ~xA)

)
OB
(
Ψ(tB, ~xB)

)
. . .
}
|vac, in〉

= |N |2
∫ ∏

l

Dψl
(
Det [2πiA(ψ)]

)−1/2 OA
(
ψ(tA, ~xA)

)
OB
(
ψ(tB, ~xB)

)
. . . ×

× exp

{
i

∫
d4xL(ψl(x), ∂µψl(x)) + iε−terms

}
. (1.18)

A few remarks are in order:

• The overall constant |N |2 drops out when computing amplitudes that do not involve “vacuum bub-
bles”, which is achieved by dividing by 〈vac, out |vac, in〉. This is the case in particular for the
connected n-point amplitudes. Most of the times, this is implicitly understood, and we drop this
factor, as well as other overall constants. Similarly, if A is field independent, Det [2πiA(ψ)] is a con-
stant and can be dropped. Moreover, even if it is field-dependent, it can be replaced by Det [2πiA(ψ)]

× (Det [2πiA(0)])−1, which may be easier to handle.

• If A is field-dependent, e.g. Anx,my(ψ) = αnm(ψ(x)) δ(4)(x−y) it gives a contribution to an “effective
Lagrangian”. To see this note that

DetA = exp [Tr logA] . (1.19)

A is the quantum-mechanical operator whose matrix elements are

〈x, n| A |y,m〉 = Anx,my(ψ) = αnm(ψ(x)) δ(4)(x− y) = αnm(ψ(x)) 〈x |y〉 , (1.20)

with α(ψ(x)) an ordinary matrix-valued function. It follows that

〈x, n| logA |y,m〉 =
(

logα(ψ(x))
)
nm
〈x |y〉

⇒ Tr logA =

∫
d4x 〈x, n| logA |x, n〉 =

∫
d4x tr

(
logα(ψ(x))

)
〈x |x〉 , (1.21)

where tr is an ordinary matrix trace over the indices n = m, and 〈x |x〉 = δ(4)(0) is to be interpreted,

as usual, as
∫ d4p

(2π)4 (which is divergent, of course, and has to be regularized and renormalized). Thus

DetA = exp

[(∫
d4p

(2π)4

)∫
d4x tr

(
logα(ψ(x))

)]
, (1.22)

which can indeed be interpreted as an additional contribution to the Lagrangian.
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• As just mentioned, one encounters diverging expressions and there is the need to regularize and
renormalize as will be extensively discussed later-on. Actually, the need to renormalize occurs in any
interacting theory, whether there are divergences or not. In particular, the fields that appear in the
Lagrangian in the first place are so-called bare fields ψl,B. They are related to the renormalized fields
ψl,R by a multiplicative factor, ψl,B =

√
Zl ψl,R. For the time being, it is understood that the fields

ψl are bare fields, although we do not indicate it explicitly.

• In the presence of constraints, e.g. if some of the fields have vanishing canonical momentum, the
corresponding πl are absent in the Hamiltonian. Integrating over these πl when deriving (1.18) formally
still gives the r.h.s. of (1.18) but with the Lagrangian missing certain auxiliary fields. This can be
cured by adding in the Hamiltonian formulation a constant factor which is an integral over the auxiliary
fields. In the end one recovers (1.18) with the full Lagrangian.

• Functional integrals for anticommuting fields (fermions) can be defined similarly. The relevant formula
for fermionic gaussian integrals is∫

DψDψ exp
(
ψMψ + ηψ + ψη

)
= N DetM exp

(
− ηM−1η

)
. (1.23)

The power of the determinant is positive rather than negative because the integration variables are
anticommuting. Furthermore, it is +1 = 2 × 1

2 because the fields ψ and ψ are to be considered as

independent fields (just as bosonic φ and φ† are considered independent). Another difference with the
bosonic case is that the Hamiltonian is not quadratic in the momenta (they are anticommuting, too),
e.g. for the Dirac field the free Hamiltonian density is H = −πγ0(γj∂j +m)ψ, where π = −ψγ0. As
a result, to pass from the Hamiltonian formalism to the Lagrangian one, one should not integrate the
π but only rename π = −ψγ0. The analogue of our bosonic formula (1.18) for Dirac fields is

〈vac, out| T
{
OA
(
Ψ(tA, ~xA),Ψ(tA, ~xA)

)
OB
(
Ψ(tB, ~xB),Ψ(tB, ~xB)

)
. . .
}
|vac, in〉

= |N |2
∫ ∏

l

DψlDψl OA
(
ψ(tA, ~xA), ψ(tA, ~xA)

)
OB
(
ψ(tB, ~xB), ψ(tB, ~xB)

)
. . . ×

× exp

{
i

[∫
d4xL(ψ,ψ, ∂µψ) + iε−terms

]}
. (1.24)

1.2.3 Propagators

The free propagators – or simply propagators – are defined as

−i∆lk(x, y) = 〈vac, out|T (Ψl(x)Ψk(y)) |vac, in〉 |no interactions . (1.25)

They are not to be confused with the “complete propagators” (denoted ∆′)

−i∆′lk(x, y) = 〈vac, out|T (Ψl(x)Ψk(y)) |vac, in〉 , (1.26)

to be discussed later on. Recall that in a free theory we do not need to distinguish between the

Heisenberg picture and interaction picture field operators Ψl(x) and ψl(x). Evidently, the free prop-

agators are determined by the free part of the action, i.e. the part of the Lagrangian density that is

quadratic in the fields. Hence, the computation of the propagators reduces to computing a Gaussian
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integral. As before, we consider the bosonic case where the free action is of the form1∫
d4xL0 = −1

2

∫
d4x d4y

∑
l,l′

ψl(x)Dl,l′(x, y)ψl′(y) . (1.27)

For a hermitean scalar field e.g. D(x, y) = (−∂µ∂µ +m2− iε)δ(4)(x− y). The general formula (1.18)

(with A = 1) gives

−i∆lk(x, y) = Ñ
∫ ∏

l′

Dψl′ ψl(x)ψk(y) exp

{
i

∫
d4xL0

}
. (1.28)

In a free theory one has

1 = 〈vac, out |vac, in〉 |no interactions = Ñ
∫ ∏

l′

Dψl′ exp

{
i

∫
d4xL0

}
, (1.29)

which allows us to rewrite

−i∆lk(x, y) =

∫ ∏
l′ Dψl′ ψl(x)ψk(y) exp

{
i
∫

d4xL0

}∫ ∏
l′ Dψl′ exp

{
i
∫

d4xL0

} . (1.30)

Actually, in a free theory, it is not much more difficult to compute the n-point functions:

〈vac, out|T (Ψl1(x1) . . .Ψln(xn)) |vac, in〉 |no interactions

=

∫ ∏
l′ Dψl′ ψl1(x1) . . . ψln(xn) exp

{
i
∫

d4xL0

}∫ ∏
l′ Dψl′ exp

{
i
∫

d4xL0

}
=
(
Z0[0]

)−1
(−i)n δ

δJl1(x1)
. . .

δ

δJln(xn)
Z0[J ]

∣∣∣∣∣
J=0

, (1.31)

where

Z0[J ] =

∫ ∏
l′

Dψl′ exp

{
i

∫
d4x

[
L0(x) + Jl(x)ψl(x)

]}
. (1.32)

(One should not confuse the generating functional Z0[J ] with the field renormalization factors Zl.)

With the quadratic L0 given by (1.27), the integral is Gaussian and one gets

Z0[J ] =
(

Det
[iD̂
2π

])−1/2

exp

(
i

2

∫
d4xd4y Jl(x)D−1

lk (x, y)Jk(y)

)
= Z0[0] exp

(
i

2

∫
d4xd4y Jl(x)D−1

lk (x, y)Jk(y)

)
. (1.33)

We then get for the free propagator

−i∆lk(x, y) = (−i)2
(
Z0[0]

)−1 δ

δJl(x)

δ

δJk(y)
Z0[J ]

∣∣∣∣∣
J=0

= −iD−1
lk (x, y) , (1.34)

1As already mentioned, for the time being, our fields are bare fields. Indeed, the fact that the quadratic part of the
action equals the free action is true for the bare fields with a bare mass parameter, while for the renormalized fields
the quadratic part of the action contains the “free” part determining the free propagator, as well as a counterterm
part which is at least of first order in the coupling constant. This will be discussed in detail in section 2.
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or

∆lk(x, y) = (D−1)lk(x, y) . (1.35)

From translation invariance one has Dl,k(x, y) ≡ Dl,k(x−y) =
∫

d4p
(2π)4 e

ip(x−y)Dl,k(p) so that the inverse

operator (D−1)lk(x, y) is given by the Fourier transform of (D−1)lk(p), which is the inverse matrix of

Dlk(p):

∆lk(x, y) ≡ ∆lk(x− y) =

∫
d4p

(2π)4
eip(x−y)(D−1)lk(p) . (1.36)

For the scalar field with D(x, y) = (−∂µ∂µ + m2 − iε) δ(4)(x − y)

=
∫

d4p
(2π)4 e

ip(x−y)(p2 +m2 − iε) this leads to ∆(x− y) =
∫

d4p
(2π)4 e

ip(x−y) 1
p2+m2−iε .

1.3 Green functions, S-matrix and Feynman rules

1.3.1 Vacuum bubbles and normalization of the Green functions

It is a most important result that the n-point Green functions Gl1...ln
(n) (x1, . . . , xn)

= 〈vac, out|T
[
Ψl1(x1) . . .Ψln(xn)

]
|vac, in〉 (where the Ψl are Heisenberg picture operators of the

interacting theory) are given by the sum of all Feynman diagrams with n external lines terminating

at x1, . . . xn. We will now derive this result and at the same time obtain the Feynman rules from the

functional integral formalism.

It will be useful to consider “normalized” n-point Green functions (or simply n-point functions)

obtained by dividing by the 0-point function:

Ĝl1...ln
(n) (x1, . . . , xn) =

〈vac, out|T
[
Ψl1(x1) . . .Ψln(xn)

]
|vac, in〉

〈vac, out |vac, in〉
. (1.37)

Obviously, if the fields are bare fields, this is the so-called bare n-point function ĜB (n), while if

the fields are renormalized fields, this is the so-called renormalized n-point function ĜR (n). Since

Ψl,B =
√
Zl Ψl,R one simply has

Ĝl1...ln
B (n) (x1, . . . , xn) =

[
n∏
r=1

√
Zlr

]
Ĝl1...ln
R (n) (x1, . . . , xn) . (1.38)

For the time being, we will concentrate on the bare n-point functions, although we will not indicate

it explicitly.

We use the functional integral representation of the numerator and the denominator2 in the

Lagrangian formalism and obtain

Ĝl1...ln
(n) (x1, . . . , xn) =

∫
Dψ ψl1(x1) . . . ψln(xn) ei

∫
d4xL(x)∫

Dψ ei
∫

d4xL(x)
. (1.39)

2In the following we simply write Dψ instead of
∏
lDψl
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Note that the normalization constant |N |2 has been eliminated when dividing by

Svac,vac ≡ 〈vac, out |vac, in〉 = |N |2
∫
Dψ ei

∫
d4xL(x) . (1.40)

In the absence of time-varying external fields Svac,vac is just a number. Contrary to a free field theory,

however, in general this number is not just 1. Recall the definition of the in and out states: |vac, in〉
is the state that resembles the vacuum |0〉 of particles without interactions if an observation is made

at t→ −∞. Recall also that the separation of H into H0 and V must be such that H and H0 have

the same spectrum. In particular, H |vac, in〉 = 0 and H0 |0〉 = 0. Hence |vac, in〉 cannot contain any

particles that would necessarily contribute a positive energy. We will suppose that the vacuum is

unique3 and stable, so that there are no transitions 〈α, out |vac, in〉 for any α 6= vac. (For a unique

vacuum, this follows from energy conservation.) Hence,

Sα,vac = Svac,vac δα,vac . (1.41)

Unitarity of the S-matrix implies

1 =
∑
α

|Sα,vac|2 = |Svac,vac|2 ⇒ Svac,vac ≡ 〈vac, out |vac, in〉 = eiγvac . (1.42)

It is instructive to compute Svac,vac in perturbation theory and verify that it is a pure phase. Indeed,

Svac,vac = 〈0|T exp
(
−i
∫

d4xHint(x)
)
|0〉, which equals 1 plus all Feynman diagrams without external

lines, cf Fig. 1. One can convince oneself that the sum of all such diagrams equals the exponential

of the connected diagrams only:

Svac,vac = exp
[
sum of all connected vacuum-vacuum diagrams

]
(1.43)

In such a diagram, every propagator contributes a −i, and each vertex also gives a factor −i (since

Figure 1: Svac,vac is given by the sum of all vacuum bubbles which equals the exponential of the sum
of all connected vacuum bubbles.

3In many theories with symmetries, the vacuum is degenerate. In this case the present discussion is slightly more
complicated but can be adapted accordingly.
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Hint is real, but the vertex equals −i times the numerical factor). Finally, each loop contributes an i

due to the Wick rotation (to be discussed below). If we let I be the number of internal lines, V the

number of vertices and L the number of loops, this yields a total factor

(−i)I(−i)V iL = (−)V iV−I+L = (−)V i , (1.44)

where we used the diagrammatic identity

I − V = L− 1 , (1.45)

valid for each connected component of a diagram. Thus, every connected vacuum-to-vacuum diagram

is purely imaginary and Svac,vac is indeed pure phase.

What is the effect of normalizing the Green functions as in (1.37), i.e. of dividing by

〈vac, out |vac, in〉 ? Suppose the numerator in (1.37) is given by the sum of all Feynman diagrams

with n external lines (including propagators) terminating at x1, . . . xn. This sum then corresponds to

connected and disconnected diagrams. The disconnected diagrams, in particular, contain diagrams

with vacuum-bubbles. There may be 0, 1, 2, . . . vacuum bubbles. It is easy to convince oneself that

the sum of all diagrams is the product of a) the sum of diagrams without vacuum-bubbles and of

b) 1 plus the sum of all vacuum bubbles, i.e. of Svac,vac = 〈vac, out |vac, in〉. Thus Ĝ(n) as given by

(1.37) should exactly be the sum of all diagrams (connected and disconnected) with n external lines

(with their propagators) not containing any vacuum bubbles:

Ĝl1...ln
(n) (x1, . . . xn) is given by the sum of all Feynman diagrams with n external lines

(with propagators) terminating at x1, . . . xn and not containing any vacuum bubbles.
(1.46)

This is the result we will show starting from the identity (1.39). Actually, this result applies both

to the bare and the renormalized Green functions, provided one uses the Feynman rules with bare

propagators and interactions in the first case, and renormalized propagators and interactions (and

counterterms) in the second case. This will become clearer in section 2.

One can also rewrite Ĝ(n) in a simpler-looking way. Indeed, still assuming a non-degenerate

vacuum, |vac, in〉 and |vac, out〉 only differ by the phase factor eiγvac as is easily seen from (1.41) and

(1.42):

|vac, in〉 =
∑
α

|α, out〉 〈α, out |vac, in〉 =
∑
α

|α, out〉Sα,vac = eiγvac |vac, out〉 . (1.47)

It follows that for any operator or product of operators M one has

〈vac, out|M |vac, in〉
〈vac, out |vac, in〉

= 〈Ω|M |Ω〉 =
〈

Ω̃
∣∣∣M ∣∣∣Ω̃〉 , |Ω〉 ≡ |vac, in〉 ,

∣∣∣Ω̃〉 ≡ |vac, out〉 , (1.48)

and hence

Ĝl1...ln
(n) (x1, . . . , xn) = 〈Ω|T

[
Ψl1(x1) . . .Ψln(xn)

]
|Ω〉 ≡ 〈T

[
Ψl1(x1) . . .Ψln(xn)

]
〉vac . (1.49)
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1.3.2 Generating functional of Green functions and Feynman rules

Just as we defined Z0[J ] for a free theory, eq. (1.32), the generating functional for the interacting

theory is defined by

Z[J ] =

∫
Dψ exp

{
i

∫
d4x

[
L(x) + Jl(x)ψl(x)

]}
. (1.50)

Equation (1.39) can then be written as

Ĝl1...ln
(n) (x1, . . . , xn) =

1

Z[0]
(−i)n δ

δJl1(x1)
. . .

δ

δJln(xn)
Z[J ]

∣∣∣∣∣
J=0

. (1.51)

We see that indeed Z[J ], or rather Z[J ]/Z[0], generates the n-point Green functions Ĝ(n) by successive

functional derivatives. Conversely, the Ĝ(n) appear as the coefficients in the development of Z[J ] in

powers of the J :

Z[J ] = Z[0]
∞∑
n=0

1

n!

∫
d4x1 . . . d

4xn Ĝ
l1...ln
(n) ((x1, . . . , xn) iJl1(x1) . . . iJln(xn) . (1.52)

To make the relation with the Feynman diagrams, recall that the sum of Feynman diagrams corre-

sponds to a perturbative expansion in the coupling constant(s). So let us compute Z[J ] in pertur-

bation theory. To do so, separate

L
(
ψ(x), ∂µψ(x)

)
= L0

(
ψ(x), ∂µψ(x)

)
+ Lint

(
ψ(x), ∂µψ(x)

)
, (1.53)

with the free Lagrangian L0 given by the quadratic part, cf. (1.27), and develop ei
∫
Lint in a power

series.4 Hence

Z[J ] =

∫
Dψ

∞∑
N=0

iN

N !

[ ∫
d4xLint

(
ψ(x), ∂µψ(x)

)]N
exp

{
i

∫
d4x

[
L0(x) + Jl(x)ψl(x)

]}
=

∞∑
N=0

iN

N !

[ ∫
d4xLint

(
− i δ

δJ(x)
,−i∂µ

δ

δJ(x)

)]N ∫
Dψ exp

{
i

∫
d4x

[
L0(x) + Jl(x)ψl(x)

]}
=

∞∑
N=0

iN

N !

[ ∫
d4xLint

(
− i δ

δJ(x)
,−i∂µ

δ

δJ(x)

)]N
Z0[J ] . (1.54)

Z0[J ] is the generating functional of the free theory computed before, cf. eq. (1.33) with D−1 equal

to ∆(0):

Z0[J ] = Z0[0] exp

(
i

2

∫
d4xd4y Jl(x)∆lk(x, y)Jk(y)

)
= Z0[0] exp

(
1

2

∫
d4xd4y

(
iJl(x)

)(
− i∆lk(x, y)

)(
iJk(y)

))
. (1.55)

4As it stands, this applies to the computation of bare Green functions. To compute the renormalized Green
functions, one simply takes the corresponding L0 while including all counterterms into Lint, even the quadratic ones.

The bare and renormalized generating functionals then are the same provided one also defined JB,l = Z
−1/2
l JR,l so

that JB,lψB,l = JR,lψR,l.
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We see that −iδ/δJ(x) acting on Z0[J ] yields a propagator −i∆(x, y) “attached” to a vertex at x

(times iJ(y) and integrated over d4y). There are as many propagators attached to a vertex at x as

there are fields in Lint(x). All propagators are attached to some vertex or to an “external” iJ(zi).

Obviously, a term of given order N in (1.54) corresponds to a diagram with N vertices. It is also

not difficult to work out that the combinatorial factors accompanying a diagram are the usual ones.

Hence, Z[J ] is the product of Z0[0] and the sum of all Feynman diagrams with an arbitrary number

of external lines at the end of which are attached the factors iJ(zi) (integrated d4zi).

Let’s look at an example. Take a hermitean scalar field with an interaction Lint = − g
24
φ4, and

compute Z[J ] up to first order in g, meaning we only keep the terms of order N = 0 and N = 1 in

(1.54):

Z(g)[J ] = Z0[0]

{
1− i g

24

∫
d4x

(
− i δ

δJ(x)

)4

}
exp

(
1
2

∫
d4xd4y (iJl(x))(−i∆lk(x, y))(iJk(y))

)
= Z0[0]

{
1− i g

24

∫
d4x

[( ∫
d4z (−i∆(x, z)iJ(z)

)4
+ 6(−i∆(x, x)

( ∫
d4z (−i∆(x, z)iJ(z)

)2

+3(−i∆(x, x))2

]}
exp

(
1
2

∫
d4xd4y (iJl(x))(−i∆lk(x, y))(iJk(y))

)
.

(1.56)

First, take J = 0. At order g there is only one term and:

Z(g)[0] = Z0[0]
{

1− ig
8

∫
d4x (−i∆(x, x))2

}
(1.57)

The term of order g corresponds to a single vertex with 4 lines, joined two by two (two loops). This

is a vacuum-bubble diagram. The factor − ig
8

is in agreement with the usual combinatoric factor: the

vertex gives a factor −ig and the symmetry factor is 1
2
× 1

2
× 1

2
= 1

8
. More generally, Z[0] is the sum

of 1 and all vacuum-bubbles.

If one first takes the derivatives δ
δ(iJ(x1))

. . . δ
δ(iJ(xn))

of Z[J ] and only then sets J = 0, one generates

a sum of products of propagators (−i∆) attached either to the external xi or to internal x̃i of vertices

which are integrated. One sees that each vertex contributes i times the numerical factors in Lint,

and the symmetry factors again are automatically generated. As explained above, this sum of all

diagrams factorizes into a sum of diagrams without vacuum bubbles and the sum of 1 plus all vacuum

bubbles. Thus, dividing by Z[0] exactly eliminates these vacuum bubbles and we have shown (1.46)

for the n-point Green functions Ĝ(n) as defined by the functional integral (1.51).

Let us come back to the example of the scalar theory with Lint = − g
24
φ4. Here, we get for the
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4-point function up to order g:

δ

δ(iJ)(x1)
. . .

δ

δ(iJ)(x4)

Z(g)[J ]

Z(g)[0]

∣∣∣∣∣
J=0

= −i g
24

∫
d4x

[
24(−i∆(x, x1))(−i∆(x, x2))(−i∆(x, x3))(−i∆(x, x4))

+6(−i∆(x, x)) 2(−i∆(x, x1))(−i∆(x, x2))(−i∆(x3, x4)) + 5 permutations

]
. (1.58)

The two terms correspond to the two diagrams shown in Figure 2.

Figure 2: Diagrams corresponding to (1.58).

Loop-counting : It is sometimes convenient to introduce a loop-counting parameter λ by replacing

the action S → 1
λ
S and J → 1

λ
J . This multiplies all vertices by 1

λ
and all propagators by λ. Each

external line also gets a factor 1
λ

from the J
λ
. Thus external lines get a net factor λ0, and the overall

factor of a diagram is λI−V = λL−C , where I is the number of internal lines, V the number of

vertices, L the number of loops and C the number of connected components of the diagram and we

used (1.45). Thus for fixed C, λ is a loop-counting parameter. In particular, a connected diagram is

accompanied by a factor λL−1. Note that the exponent in the functional integral is i
~(S+

∫
Jψ) if one

does not use units where ~ = 1. One sees that ~ is a loop-counting parameter, and the limit ~→ 0

isolates the diagrams with L = 0, i.e. tree diagrams. In this sense, tree amplitudes are referred to

as classical, while loop corrections are quantum corrections. Note also that taking into account the

tree and one-loop diagrams often is referred to as semi-calssical approximation.

1.3.3 Generating functional of connected Green functions

The n-point (n > 0) Green functions Ĝ(n)(x1, . . . , xn) without vacuum-bubbles contain the impor-

tant subclass of connected n-point Green functions GC
(n)(x1, . . . , xn). They can be defined by an

algebraic recursion relation: by definition GC
(1)(x) = Ĝ(1)(x) and then GC

(2)(x1, x2) = Ĝ(2)(x1, x2) −
GC

(1)(x1)GC
(1)(x2), etc. One can show that this is equivalent to GC

(n)(x1, . . . , xn) being the sum of the

corresponding connected Feynman diagrams. The algebraic recursion relation is best summarized

as a relation between generating functionals. Let iW [J ] be the generating functional of connected
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Green functions, (cf. Fig. 3)

iW [J ] = iW [0] +
∞∑
n=1

1

n!

∫
d4x1 . . . d

4xn G
C, l1...ln
(n) (x1, . . . , xn) iJl1(x1) . . . iJln(xn) . (1.59)

Figure 3: W [J ] is the generating functional of connected Green functions.

We separated the part iW [0] which corresponds to connected 0 point Green function, i.e. to connected

vacuum-bubbles. Note that for n ≥ 1, the GC
n cannot contain vacuum-bubbles. As one sees from

Fig. 3 or the definition (1.59), the connected full propagator is given by

−i∆′C(x, y) ≡ GC
(2)(x, y) = −i δ

δJ(x)

δ

δJ(y)
W [J ]

∣∣∣
J=0
≡ −iW (2)(x, y) . (1.60)

Consider now exp
(
iW [0]

)
= 1 + iW [0] + 1

2

(
W [0]

)2
+ . . .. Here, iW [0] contains all vacuum-bubbles

with a single connected component, while 1
2

(
W [0]

)2
contains all vacuum-bubble diagrams with two

connected components (the factor 1
2

is the appropriate symmetry factor for those diagrams having

two identical components, while it is compensated by a factor 2 for the product of two different

components), etc. Hence, exp
(
iW [0]

)
is the sum of 1 and all possible vacuum-bubble diagrams,

connected or not, i.e. it equals Z[0]. In the same way one sees that exp
(
iW [J ]

)
equals 1 plus the

sum of all diagrams, connected or not, i.e. Z[J ] :

Z[J ] = exp
(
iW [J ]

)
. (1.61)

Let’s look at the example of connected 1- and 2-point functions. As already noted, the 1-point

function without vacuum-bubbles is necessarily connected:

Ĝ(1)(x) = GC
(1)(x) . (1.62)

Next, the relation (1.61) indeed leads to the correct relation between the 2-point functions (without

vacuum-bubbles) Ĝ(2) and the connected 1- and 2-point functions GC
(1) and GC

(2):

GC
(2)(x, y) =

δ

δ(iJ)(x)

δ

δ(iJ)(y)
iW [J ]

∣∣∣
J=0

=
δ

δ(iJ)(x)

δ

δ(iJ)(y)
logZ[J ]

∣∣∣
J=0

= 1
Z[J ]

δ
δ(iJ)(x)

δ
δ(iJ)(y)

Z[J ]
∣∣∣
J=0
−
(

1
Z[J ]

δ
δ(iJ)(x)

Z[J ]
) ∣∣∣

J=0

(
1

Z[J ]
δ

δ(iJ)(y)
Z[J ]

) ∣∣∣
J=0

= Ĝ(2)(x, y)− Ĝ(1)(x) Ĝ(1)(y)

= Ĝ(2)(x, y)−GC
(1)(x)GC

(1)(y) . (1.63)
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Loop-counting : If one introduces the loop-counting parameter as before, one also has W [J ] =∑∞
L=0 λ

L−1WL[J ], where WL[J ] is the L-loop contribution to W [J ]. In the limit λ → 0 one iso-

lates the contributions of the tree-diagrams. On the other hand, in this limit, one can evaluate

the functional integral in a saddle-point approximation (stationary phase) and then the integral is

dominated by those ψJ that solve δS
δψl

+ Jl = 0. It follows that

W0[J ] = S[ψJ ] +

∫
d4xJl(x)ψlJ(x) , (1.64)

i.e the tree contribution W0[J ] is the (inverse) Legendre transform of the classical action.

1.3.4 Relation between Green functions and S-matrix

The basic quantity in particle physics is the S-matrix from which measurable transition rates like

cross-sections and life-times can be extracted. The S-matrix elements are defined as

Sβα = 〈β, out |α, in〉 , (1.65)

and give the transition amplitudes between the in-states |α, in〉 and the out-states |β, out〉. Here,

α and β are short-hand for a complete collection of momenta pi, helicities σi and (anti)particle

types ni describing the state. Recall that the in-state |α, in〉 ≡ |p1, σ1, n1; p2, σ2, n2; . . . in〉 is a

(time-independent Heisenberg-picture) state that looks, if an observation is made at t → −∞, as

a collection of non-interacting particles with momenta pi, helicities σi and of type ni. A similar

definition holds for the out-states with t→ +∞.

To relate the S-matrix elements to the Green-functions, we first define the Fourier transform of

the latter as

G̃l1...ln
(n) (p1, . . . pn) =

∫
d4x1 . . . d

4xn e
i
∑n
i=1 pixi Gl1...ln

(n) (x1, . . . xn) , (1.66)

with all momenta pµi considered as entering the diagram. These momenta are off-shell and are those

of the propagators associated with the external lines. S-matrix elements are computed between on-

shell external states, i.e. precisely at those values of the momenta where the external propagators

of the Green functions have poles. We will see in the next sections, that loop-corrections to the

free propagators shift the pole from p2 = −m2
B (mB is the bare mass entering the Lagrangian) to

p2 = −m2, where m must be interpreted as the physical mass. Thus the full propagators have poles

at p2 = −m2. To get a finite result for on-shell external states, one obviously has to remove the full

external propagators. This can be done by multiplying with the inverse full propagators i(∆′)−1.

The result is called the amputated n-point Green function, cf. Fig. 4.

G̃l1...ln
(n,amp)(p1, . . . pn) =

[
n∏
j=1

i(∆′)−1(pj)

]
G̃l1...ln

(n) (p1, . . . pn) . (1.67)

Again, this definition holds with all Green functions and full propagators being the bare or renor-

malized ones.
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Figure 4: n-point Green function (left) and corresponding amputated n-point Green function (right)

It can be shown that the S-matrix elements are obtained from the on-shell amputated renormal-

ized Green functions simply by multiplication with the appropriate “wave-functions” of the initial

and final (anti)particles. More precicely, to obtain the S-matrix element with r (anti)particules in

the initial state and n− r in the final state : (i) take the corresponding amputated renormalized n-

point Green function (with ψ† for any initial particle or final antiparticle and ψ for any final particle

or initial antiparticle), (ii) take the pi on-shell for the initial (anti)particles, and similarly the −pj
on-shell for the final (anti)particles, (iii) multiply with the appropriate wave-function factors u(pi,σi)

(2π)3/2

etc., that enter in the expansions of the corresponding free fields. Thus

Sp′1,σ′1,n′1,...;p1,σ1,n1,... =

[
n−r∏
j=1

u∗l′j
(p′j, σ

′
j)/vl′j(p

′
j, σ
′
j)

(2π)3/2

][
r∏
i=1

uli(pi, σi)/v
∗
li
(pi, σi)

(2π)3/2

]

×G̃l1...lrl′1...l
′
n−r

R (n,amp) (p1, . . . pr,−p′1, . . .− p′n−r) .

(1.68)

It follows from (1.38) that ∆′B = Z ∆′R and, combining with the definition of the amputated Green

function (1.67) one immediately sees that

G̃l1...ln
B (n,amp)(p1, . . . pn) =

[
n∏
j=1

Z
−1/2
lj

]
G̃l1...ln
R (n,amp)(p1, . . . pn) . (1.69)

Thus we can rewrite the relation between the S-matrix elements and the amputated Green functions

in terms of the bare amputated Green functions as

Sp′1,σ′1,n′1,...;p1,σ1,n1,... =
[ n−r∏
j=1

u∗l′j
(p′j, σ

′
j)/vl′j(p

′
j, σ
′
j)

(2π)3/2

√
Zl′j

][ r∏
i=1

uli(pi, σi)/v
∗
li
(pi, σi)

(2π)3/2

√
Zli

]

× G̃
l1...lrl′1...l

′
n−r

B (n,amp) (p1, . . . pr,−p′1, . . .− p′n−r) .

(1.70)

It is in this second form that the relation, first derived by Lehman, Symanzik and Zimmermann, is

usually referred to as LSZ reduction formula. However, (1.68) has the advantage of expressing the

finite S-matrix elements solely in terms of renormalized quantities that have a finite limit as the

regularization is removed.
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1.4 Quantum effective action

1.4.1 Legendre transform and definition of Γ[ϕ]

We already defined the generating functional Z[J ] of Green functions and the generating functional

W [J ] of connected Green functions. They correspond to the sum of all Feynman diagrams and of

connected diagrams only. Connected diagrams are more basic since all diagrams can be constructed

from them. The algebraic relation was simply Z[J ] = eiW [J ]. Here we will define yet another

generating functional Γ[ϕ] that generates an even smaller subclass of connected diagrams, namely

the one-particle-irreducible diagrams, or 1PI for short. A 1PI diagram is a connected diagram that

does not become disconnected by cutting a single line. (There is a slight subtlety with this definition

for the 1PI 2-point diagram to be discussed below.) Since a tree diagram becomes disconnected by

cutting a single line, tree diagrams are not 1PI. A one-loop diagram with the external propagators

removed always is 1PI. Higher-loop diagrams may or may not be 1PI. For n ≥ 3, a 1PI n-point

diagram is also called an n-point proper vertex.

The functional Γ[ϕ] is defined as the Legendre transform of W [J ]. First, let

φrJ(x) ≡ δ

δJr(x)
W [J ] = −i δ

δJr(x)
logZ[J ] =

1

Z[J ]

(
− i δ

δJr(x)
Z[J ]

)
. (1.71)

The expression on the r.h.s. is similar to the one-point Green function without vacuum bubbles

(which is the connected one-point function) Ĝ r
(1)(x) ≡ GC

(1), r(x) except that we have not set J = 0.

Not setting J = 0 amounts to keeping the additional interaction terms φrJr in the Lagrangian. Thus

φrJ(x) is the connected one-point function in the presence of the additional interactions generated by

the sources. This is also called the vaccum expectation value of the corresponding Heisenberg field

Φr in the presence of the sources J :

φrJ(x) = 〈Φr(x)〉vac, J ≡ 〈Ω|Φr(x) |Ω〉J ≡
〈vac, out|Φr(x) |vac, in〉J
〈vac, out |vac, in〉J

. (1.72)

One can invert the relation φrJ(x) = δ
δJr(x)

W [J ] to get Jr(x) as a function of φr(x). More precisely, for

every (c-number) function ϕr(x), we let jϕr(x) be the (c-number) function such that φrJ(x) = ϕr(r) if

Jr(x) = jϕr(x), i.e. jϕr(x) is the current such that the vacuum expectation value of Φr equals ϕr(x).

We can now use ϕ as variable5 and define the Legendre transform of W as

Γ[ϕ] = W [jϕ]−
∫

d4xϕr(x)jϕr(x) . (1.73)

Γ is called the quantum effective action. Let us show why: one has

δ

δϕs(y)
Γ[ϕ] =

∫
d4x

δjϕr(x)

δϕs(y)

δW [jϕ]

δjϕr(x)
− jϕs(y)−

∫
d4xϕr(x)

δjϕr(x)

δϕs(y)
(1.74)

Now
δW [jϕ]

δjϕr(x)
=

δW [J ]

δJr(x)

∣∣∣∣∣
Jr = jϕr

= φrJ(x)
∣∣∣
Jr = jϕr

= ϕr(x) , (1.75)

5Since JB,s = Z
−1/2
s JR,s one obviously has (φsJ)B =

√
Zs (φsJ)R and thus also ϕsB =

√
Zs ϕ

s
R.
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so that the first and third terms in (1.74) exactly cancel. Hence,

δ

δϕs(y)
Γ[ϕ] = −jϕs(y) . (1.76)

Suppose that for a given function ϕ one has δΓ[ϕ]
δϕs(y)

= 0, i.e. the corresponding jϕr vanishes. This

means that the vacuum expectation values of the Φr(x), in the absence of any current, equal ϕr(x).

Conversely, the vacuum expectation values of Φr, for vanishing current, must be solutions of δΓ[ϕ]
δϕs(y)

=

0, i.e. be stationary points of Γ[ϕ]. This shows that Γ can indeed be interpreted as some quantum

action.

Note that the preceding careful discussion usually is simply summarized as

δW

δJr
= ϕr ,

δΓ

δϕr
= −Jr , Γ[ϕ] = W [J ]−

∫
d4xϕr(x)Jr(x) (1.77)

Note also that all these manipulations involving functional derivatives δ
δJ

, δ
δϕ

, etc remain valid for

fermionic fields and sources, provided one correctly uses left or right derivatives, paying attention to

the order of the fields. Thus one should define e.g δRW
δJr

= ϕr and δLΓ
δϕr

= −Jr

1.4.2 Γ[ϕ] as quantum effective action and generating functional of 1PI-diagrams

The interpretation of Γ[ϕ] as quantum effective action is confirmed further if we recall that in the

classical limit, i.e. at tree-level, W [J ] is just the inverse Legendre transform of the classical action, cf.

(1.64). Since Γ[ϕ] is the Legendre transform of W [J ], it follows that, in the classical limit, Γ[ϕ] just

is the classical action. Thus Γ[ϕ] equals the classical action S[ϕ] plus quantum-, i.e. loop-corrections.

Actually, in a sense, Γ[ϕ] captures all loop effects since one has the following property:

One may compute iW [J ] as a sum of connected tree diagrams with vertices and propagators
determined as if the action were Γ[ϕ] rather than S[ϕ].

To prove this, let us proceed as for the loop-counting above: we compute the generating functional

of connected Green functions WΓ[J, λ] using as action Γ[φ] and having divided Γ and J by λ:

exp
{
iWΓ[J, λ]

}
=

∫
Dφ exp

{ i
λ

(
Γ[φ] +

∫
d4xφr(x)Jr(x)

)}
. (1.78)

If one does a perturbative (Feynman diagram) expansion of WΓ[J, λ], the propagators are given by

the inverse of the quadratic piece in Γ
λ

and hence contribute a factor λ, while every vertex gets a

factor 1
λ

as does an external line. This yields an overall factor λI−V = λL−1 where L is the number

of loops. Thus the loop-expansion of WΓ[J, λ] reads

WΓ[J, λ] =
∞∑
L=0

λL−1W
(L)
Γ [J, λ = 1] . (1.79)
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One isolates the tree graphs (L = 0) by taking the limit λ→ 0 : limλ→0

(
λWΓ[J, λ]

)
= W

(0)
Γ [J, λ = 1].

But iW
(0)
Γ [J, λ = 1] = iW

(0)
Γ [J ] is the sum of connected tree diagrams computed as if the action were

Γ[φ]. On the other hand, in the limit λ → 0, one can use the stationary phase (saddle point) to

evaluate (1.78) and get

exp
{ i
λ
W

(0)
Γ [J ]

}
∼ exp

{ i
λ

(
Γ[φJ ] +

∫
d4xφrJ(x)Jr(x)

)}
where

δΓ

δφ

∣∣∣∣∣
φ = φJ

= −J . (1.80)

There is some constant of proportionality which has some finite limit as λ→ 0 and which contributes

an order λ0 piece to the exponent, but nothing at order 1
λ
. We see that W

(0)
Γ is the (inverse) Legendre

transform of Γ. On the other hand, the (inverse) Legendre transform of Γ is the ordinary W [J ]. We

conclude that

W [J ] = W
(0)
Γ , (1.81)

and the full generating functional of connected Green functions is indeed given as a sum of connected

tree diagrams computed with propagators and vertices taken from the effective action Γ.

If we let

Γ[ϕ] =
∞∑
n=0

1

n!

∫
d4x1 . . . d

4xn Γ(n)
r1...rn

(x1, . . . , xn) ϕr1(x1) . . . ϕrn(xn) , (1.82)

the Γ(n) for n ≥ 3 are the so-called proper vertices, and the complete (connected) propagators

GC
(2)(x, y) are given (cf. (1.27) and (1.35)) by −i

(
−Γ(2)

)−1
(x, y). This can also be seen more formally

as

GC, r,s
(2) (x, y) = −i δ

δJr(x)

δ

δJs(y)
W [J ] = −i δ

δJr(x)
φsJ(y)

Γ(2)
r,s (x, y) =

δ

δϕr(x)

δ

δϕs(y)
Γ[ϕ] = − δ

δϕr(x)
jϕs(y) . (1.83)

It follows that

GC
(2) ≡ −i∆′ = i

(
Γ(2)
)−1

. (1.84)

Since an arbitrary connected diagram is obtained once and only once as a tree diagram using these

complete propagators and proper vertices, the proper vertices must be one-particle irreducible (1PI)

amputated n-point functions:

Γ[ϕ] is the generating functional of one-particle irreducible (1PI) diagrams.

As an example, consider a hermitean scalar field. The full propagator is of the form −i∆′(p) =

−i
(
p2 + m2 − Π∗(p)

)−1
so that Γ(2)(p) = −p2 −m2 + Π∗(p). Clearly, −p2 −m2 is the contribution

from the quadratic part of the classical action and Π∗ contains the loop-contributions.

A few remarks:
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• In later sections, we will be much concerned with possible divergences occurring in loop-

diagrams and their cancellation by counterterms. Since a tree diagram is never divergent

if the vertices and propagators are finite, it is clear that any diagram will be finite if the Γ(n)

are. Hence the issue of renormalisation can be entirely discussed at the level of the Γ(n). More

precisely, one can expand Γ in powers of the bare ϕsB or of the renormalized ϕsR related by the

same relation as the fields ψB and ψR, namely

ϕsB =
√
Zs ϕ

s
R , (1.85)

implying

Γ
(n)
B r1...rn

(x1, . . . , xn) =

[
n∏
j=1

Z−1/2
rj

]
Γ

(n)
R r1...rn

(x1, . . . , xn) . (1.86)

The Γ
(n)
B and Γ

(n)
R are called the bare and renormalized n-point vertex functions. The vertex

functions that should be finite after removing the regularization are the Γ
(n)
R .

• Quite often one encounters a somewhat different notion of effective action: in a theory with

two sorts of fields, say φ and ψ, one might only be interested in Green functions of one sort

of fields, say the φ. This happens in particular if the other sort corresponds to very heavy

particles that do not appear as asymptotic states in a scattering experiment, though they still

do contribute to intermediate loops. Let S[φ, ψ] = S1[φ] +S2[ψ] +S12[φ, ψ]. We only introduce

sources J for the φ and define

Z[J ] =

∫
DφDψ exp

{
i
(
S[φ, ψ]+

∫
φrJr

)}
=

∫
Dφ exp

{
i
(
S1[φ]+W̃ [φ]+

∫
φrJr

)}
, (1.87)

where

exp
{
iW̃ [φ]

}
=

∫
Dψ exp

{
i
(
S2[ψ] + S12[φ, ψ]

)}
. (1.88)

Then, for reasons that are obvious from (1.87), S1[φ] + W̃ [φ] is referred to as the effective

action for the field φ obtained after integrating out the field ψ. Note that often W̃ [φ] still

allows to obtain certain Green function of the ψ-field. Suppose e.g. that the coupling between

the two sorts of fields is S12[φ, ψ] ∼ φF(ψ). Then, by taking functional derivatives of W̃ [φ]

with respect to φ one generates vacuum expectation values of time-ordered products of the

F(Ψ). A standard example is spinor quantum electrodynamics with ψ playing the role of the

fermions and φ of the gauge field. It is relatively easy to integrate out the fermions since they

only appear quadratically in the action. This yields a determinant which can be exponentiated

into W̃ and is interpreted as a single fermion loop with arbitrarily many gauge fields attached.

• There is a different, sometimes more direct way to compute the quantum effective action Γ[ϕ]:

exp
(
iΓ[ϕ]

)
=

∫
1PI only

Dφ exp
(
iS[ϕ+ φ]

)
, (1.89)
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where the subscript “1PI” instructs us to keep only 1PI diagrams in a perturbative evaluation

of the functional integral. To see why this equation is correct, it is best to look at an example.

Consider a scalar φ4-theory with S[φ] =
∫

(−1
2
(∂µφ)2 − m2

2
φ2 − g

24
φ4). Then

S[ϕ+φ] = S[ϕ]+

∫
(∂2ϕ−m2ϕ−g

6
ϕ3)φ−1

2

∫
((∂φ)2+m2φ2)−

∫
(
g

4
ϕ2φ2+

g

6
ϕφ3+

g

24
φ4) . (1.90)

If one computes the functional integral (1.89) in perturbation theory one sees that (i) S[ϕ] can

be taken in front of the integral, (ii) the (free) φ-propagator is the same as before, (iii) one now

has vertices with one, two, three and four φ-lines attached. However, the vertices with only one

line attached cannot lead to 1PI-diagrams and we can drop the term linear in φ. Thus only the

interactions quadratic, cubic and quartic in φ remain and they exactly generate all diagrams

where at every vertex one has either two external ϕ and two internal φ-lines, or one external

ϕ and three internal φ-lines or only four internal φ-lines. With the restriction to 1PI diagrams

only, the perturbation theory will exactly yield the generating functional of all 1PI diagrams,

connected or not, i.e. exp
(
iΓ[ϕ]

)
. It should also be clear that the cubic and higher terms

in φ only contribute to two- and higher-loop 1PI diagrams. Thus if we are only interested in

the one-loop approximation to Γ[ϕ] it is enough to keep only the part of the interactions that

is quadratic in φ. On the other hand, this quadratic part cannot generate any contributions

beyond one loop and the latter are necessarily 1PI. We have in general:

eiΓ1−loop[ϕ] = eiS[ϕ]

∫
Dφ exp

(
i

2

∫
d4xd4y φ[x]

δ2S[ϕ]

δϕ(x)δϕ(y)
φ(y)

)
= eiS[ϕ]

(
Det

δ2S[ϕ]

δϕ(x)δϕ(y)

)∓1/2

, (1.91)

with the power of the determinant depending on whether φ is bosonic or fermionic.

1.4.3 Symmetries and Slavnov-Taylor identities

Symmetries of the classical action lead, via Noether’s theorem, to conserved currents, at least clas-

sically, and in many cases also at the quantum level. Since the quantum effective action equals the

classical action plus quantum corrections, one might expect that the former shares the symmetries

of the latter. We will show when this is indeed the case.

Suppose that under the infinitesimal transformation

φr(x)→ φ
′r ≡ φr(x) + εF r(x, φ) (1.92)

the action and the functional integral measure are invariant:

S[φ′] = S[φ] , Dφ′ ≡
∏
r

Dφ′r = Dφ ≡
∏
Dφr . (1.93)

One then has (suppressing the indices r)

Z[J ] =

∫
Dφ eiS[φ]+i

∫
φJ =

∫
Dφ′ eiS[φ′]+i

∫
φ′J =

∫
Dφ eiS[φ]+i

∫
(φ+εF )J

=

∫
Dφ eiS[φ]+i

∫
φJ(1 + iε

∫
FJ) = Z[J ] + iε

∫
Dφ

∫
FJ eiS[φ]+i

∫
φJ , (1.94)
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where we first renamed the integration variable from φ to φ′ and then identified φ′ with the trans-

formed field (1.92). Hence,

0 =

∫
Dφ

∫
d4xF r(x, φ)Jr(x) eiS[φ]+i

∫
φJ = Z[J ]

∫
d4x 〈F r(x)〉J Jr(x) , (1.95)

for every J . Recall that δΓ
δϕr

= −Jϕ,r with Jϕ,r such that 〈Φr〉J = ϕr. Choosing Jr in (1.95) to equal

this Jϕ,r, we can rewrite (1.95) as

∫
d4x 〈F r(x)〉Jϕ

δΓ

δϕr(x)
= 0 . (1.96)

This identity is called Slavnov-Taylor identity. It states that Γ[ϕ] is invariant under ϕr → ϕr +

ε〈F r(x)〉Jϕ . In general, for a non-linear transformation, 〈F r(x)〉Jϕ is different from F r(x, ϕ), and the

symmetry of the quantum effective action is different (“quantum-corrected”) from the symmetry of

the classical action. For a linear classical symmetry, one can go further. Suppose now that F r(x, φ) =

f r(x) +
∫

d4y trs φ
s(y). Then 〈F r(x)〉Jϕ = f r +

∫
d4y trs 〈φs(y)〉Jϕ = f r +

∫
d4y trs ϕ

s(y) ≡ F r(x, ϕ).

In this case, (1.96) states that Γ[ϕ] is invariant under ϕr(x)→ ϕ
′r ≡ ϕr(x) + εF r(x, ϕ) :

If the action and measure are invariant under a linear field transformation,
then so is the quantum effective action Γ[ϕ].

1.5 Functional integral formulation of QED

We will now apply the functional integral formalism to the particularly important example of quan-

tum electrodynamics. We will consider Lagrangian densities of the form

L = −1

4
FµνF

µν + JµAµ + Lmatter(Ψ
l, ∂µΨl) , (1.97)

where Jµ is a conserved matter current (i.e. ∂µJ
µ = 0 by the classical Euler-Lagrange equations).

Lagrangians of the form (1.97) include in particular those of spinor electrodynamics, which describe

the coupling of a charged spin 1
2

Dirac field to the electromagnetic fields.6

1.5.1 Coulomb gauge

Due to the gauge symmetry Aµ → Aµ + ∂µλ and Ψl → eiqlλΨl, the “naive” canonical formalism

does not apply. In particular, the canonical momenta are Πµ = F µ0 and obviously then Π0 = 0 :

A0 has a vanishing canonical momentum. A vanishing momentum is a constraint on the canonical

variables. One has to distinguish so-called first class and second class constraints. The first class

constraints always correspond to a local (gauge) symmetry and can be eliminated by a gauge choice.

6They do not include scalar electrodynamics though, which has couplings ∼ φ†φAµA
µ or, equivalently, in which

case the current Jµ depends on Aµ.

Adel Bilal : Advanced Quantum Field Theory 21 Lecture notes - October 6, 2014



Possibly remaining second class constraints can be dealt with either by Dirac quantization or by the

functional integral formalism in the way we will see now.

We adopt the Coulomb gauge ~∇· ~A = 0. This fixes A0 in terms of J0 and thus eliminates A0 and

Π0 as canonical pair, hence eliminates the first class constraints. It leaves as second class constraint

the Coulomb gauge condition itself and a corresponding condition on the momenta: ~∇ · ~Π⊥ = 0,

where Π⊥,j = Πj − ∂jA0 = Ȧj. Upon working out the Hamiltonian one finds that it is given by

H( ~A, ~Π⊥,Ψ
l, Pl) =

∫
d3x

[
1

2
~Π2
⊥ +

1

2
(~∇∧ ~A)2 − ~J · ~A

]
+ VCoulomb +Hmatter(Ψ

l, Pl) ,

VCoulomb =

∫
d3x

1

2
J0A0 =

1

2

∫
d3x d3y

J0(t, ~x)J0(t, ~y)

4π|~x− ~y|
, (1.98)

where Hmatter is the part of the Hamiltonian that does not depend on the gauge field or the Π⊥.

Our starting point for the functional integral formulation is the Hamiltonian formalism. The

two constraints ~∇ · ~A = 0 and ~∇ · ~Π⊥ = 0 will be enforced by inserting the factors
∏

x δ(
~∇ · ~a) ≡∏

~x,t δ
(
(~∇ · ~a)(~x, t)

)
and

∏
x δ(

~∇ · ~π) inside the integral. (We write a instead of A and ~π instead of
~Π⊥ for the integration variables.) To simplify the discussion suppose the matter Hamiltonian Hmatter

is quadratic in the Pl (with a constant matrix Alk) and that the operators OAj do not depend on the

Pl, so that they can be straightforwardly integrated out. Hence7

〈T
{
OAOB . . .

}
〉vac

=

∫
D~a D~π

∏
l

Dψl
∏
x

δ(~∇ · ~a)
∏
x

δ(~∇ · ~π) OA OB . . . ×

× exp

{
i

∫
d4x

[
~π · ∂0~a−

1

2
~π2 − 1

2
(~∇∧ ~a)2 +~j · ~a+ Lmatter

]
− i
∫

dtVCoulomb

}
. (1.99)

To appreciate the role of the δ(. . .), recall the formula δ(f(x)) =
∑

a
1

|f ′(xa)|δ(x − xa) with the xa being

the solutions of f(x) = 0. For N variables xi, this reads δ(N)(f i(x)) =
∑

a
1

| det J(xa)|δ
(N)(xi − xia) with

J ij = ∂f i/∂xj . Thus,
∏
x δ(

~∇ · ~a) = 1
|Det∂3|

∏
x δ
(
a3 + ∂−1

3 (∂1a1 + ∂2a2)
)
, and we see that imposing the

Coulomb gauge amounts to eliminating the functional integration over one out of the 3 fields aj(t, ~x), as

expected. Similarly, the insertion of
∏
x δ(

~∇·~π) eliminates the integration over the corresponding canonically

conjugate momentum.

It is often useful to rewrite a functional δ as a functional integral over an auxiliary field, e.g.∏
x

δ(~∇ · ~π) =

∫
Df exp

{
i

∫
d4x f(x)~∇ · ~π(x)

}
. (1.100)

We will also suppose that the operators O do not depend on the ~π. Then the only part in (1.99)

7Above we denoted 〈(. . .)〉vac = 〈Ω| (. . .) |Ω〉 = 〈vac,out|(...)|vac,in〉
〈vac,out|vac,in〉 . Since 〈vac, out |vac, in〉 = eiγvac is just a (constant)

phase, we will drop it together with other constants and simply write 〈(. . .)〉vac instead of 〈vac, out| (. . .) |vac, in〉, with
the understanding that overall constants are either unimportant or should be fixed in the end by dividing by the same
expression without the operators OAOB . . ..
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that does depend on the ~π is∫
D~π
∏
x

δ(~∇ · ~π) exp

{
i

∫
d4x

[
~π · ∂0~a−

1

2
~π2

]}
=

∫
D~πDf exp

{
i

∫
d4x

[
−~∇f · ~π + ~π · ∂0~a−

1

2
~π2

]}
=

∫
Df exp

{
i

∫
d4x

1

2

(
∂0~a− ~∇f

)2
}

= exp

{
i

∫
d4x

1

2
(∂0~a)2

}∫
Df exp

{
i

∫
d4x

[
−1

2
f ~∇2f + f ~∇ · ∂0~a

]}
, (1.101)

up to an irrelevant overall multiplicative constant which we do not write explicitly. This expression

(1.101) is to be inserted into the remaining integral. But then ~a is constrained by ~∇ · ~a = 0 which

implies ~∇ · ∂0~a = 0 and the term f ~∇ · ∂0~a in the exponent in the third line of (1.101) does not

contribute. The integral over Df then only gives another irrelevant constant. We arrive at

〈T
{
OAOB . . .

}
〉vac =

∫
D~a

∏
l

Dψl
∏
x

δ(~∇ · ~a) OA OB . . . ×

× exp

{
i

∫
d4x

[
1

2
(∂0~a)2 − 1

2
(~∇∧ ~a)2 +~j · ~a+ Lmatter

]
− i
∫

dtVCoulomb

}
. (1.102)

1.5.2 Lorentz invariant functional integral formulation and α-gauges

Let us rewrite this functional integral in a manifestly Lorentz invariant form. First note that∫
Da0 exp

{
i

∫
d4x

[
−a0j0 +

1

2
(~∇a0)2

]}
= exp

{
i

∫
d4x

1

2
j0(~∇2)−1j0

}
= exp

{
−i
∫

dt
1

2

∫
d3x d3y

j0(t, ~x)j0(t, ~y)

4π|~x− ~y|

}
= exp

{
−i
∫

dt VCoulomb

}
. (1.103)

Furthermore,

−1

4
fµνf

µν = −1

2
∂µaν∂

µaν +
1

2
∂µaν∂

νaµ

=
1

2
∂0ai∂0ai −

1

2
∂iaj∂iaj +

1

2
∂ia0∂ia0 +

1

2
∂iaj∂jai −

1

2
∂0ai∂ia0 −

1

2
∂ia0∂0ai

=
1

2
(∂0~a)2 +

1

2
(~∇a0)2 − 1

2
(~∇∧ ~a)2 − ~∇(∂0~aa0) + a0

~∇ · (∂0~a) . (1.104)

The last term of the last line vanishes due to the constraint, and the next to last term is a total

derivative. Inserting the expression (1.103) of exp
{
−i
∫

dt VCoulomb

}
into (1.102) one gets

〈T
{
OAOB . . .

}
〉vac =

∫ ∏
µ

Daµ
∏
l

Dψl
∏
x

δ(~∇ · ~a) OA OB . . . ×

× exp

{
i

∫
d4x

[
1

2
(∂0~a)2 − 1

2
(~∇∧ ~a)2 +~j · ~a− a0j0 +

1

2
(~∇a0)2 + Lmatter

]}
=

∫ ∏
µ

Daµ
∏
l

Dψl
∏
x

δ(~∇ · ~a) OA OB . . . exp
{
i
[
S[aµ, ψl]

]}
, (1.105)
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with

S[aµ, ψl] =

∫
d4xL[aµ, ψl] =

∫
d4x

(
−1

4
fµνf

µν + jµa
µ + Lmatter

)
. (1.106)

Now everything is manifestly Lorentz invariant except the insertion
∏

x δ(
~∇ · ~a) which fixes the

gauge. Let us now suppose that not only the action S[aµ, ψl] is gauge invariant but also the operators

OA OB . . ., e.g.8 O1(x) = Fµν(x)F µν(x) or O2 = exp
( ∮

dxµAµ(x)
)
. Moreover, we will assume that

the product of the mesures
∏

µDaµ et
∏

lDψl is gauge invariant. One can show rather easily that∏
µDaµ is gauge invariant, but the invariance of Dψl is not always warranted. As we will see later-on,

in the presence of chiral fermions, this measure generally is not invariant and one has an anomaly.

Different chiral fermions contribute additively to the anomaly and, in a consistent theory, the sum

of all anomalous contributions must vanish so that
∏

lDψl indeed is gauge invariant. With these

assumptions, the only gauge non-invariant term in (1.105) is the gauge-fixing term
∏

x δ(
~∇·~a). Recall

that the gauge transformations act as

aµ → aµΛ = aµ + ∂µΛ , ψl → ψl,Λ = eiqlΛψl , (1.107)

with Λ = Λ(x) completely arbitrary. It could even depend on the aµ themselves.9

One can rewrite the functional integral (1.105) by first changing the names of the integration

variables from aµ and ψl to aµΛ and ψl,Λ, then identifying the latter with the gauge transformed

fields (1.107). The gauge invariance of the action and the operators O gives

〈T
{
OAOB . . .

}
〉vac =

∫ ∏
µ

DaµΛ
∏
l

Dψl,Λ
∏
x

δ(~∇ · ~aΛ) OA OB . . . exp {iS[aµ, ψl]} . (1.108)

Since the Λ-dependence came about by a simple change of integration variables, we know that the

expression on the r.h.s. actually does not depend on Λ, whatever this function may be. Let us choose

Λ(t, ~x) = Λ̃(t, ~x)−
∫

d3y
∂0a

0(t, ~y)

4π|~y − ~x|
, (1.109)

with an aµ independent Λ̃.

Let us check what happens to the measure
∏
µDaµ under this field-dependent gauge transformation. One

has

aµΛ(t, ~x) = aµ(t, ~x) + ∂µΛ̃(t, ~x)− ∂

∂xµ

∫
d3y

∂0a
0(t, ~y)

4π|~y − ~x|

= aµ(t, ~x) + ∂µΛ̃(t, ~x) +
∂

∂xµ

∫
d3y dt′

(
∂

∂t′
δ(t− t′)

)
a0(t′, ~y)

4π|~y − ~x|
, (1.110)

8The definition of composite operators like Fµν(x)Fµν(x) requires some normal order type prescription preserving
the gauge invariance. In practice, one most often computes 〈T

{
OAOB . . .

}
〉vac with OAi that are not gauge invariant,

as e.g. the propagator 〈T
{
Aµ(x)Aν(y)

}
〉vac. Nevertheless, such gauge non-invariant quantities should only appear at

an intermediate stage, and the final result should be gauge invariant.
9A familiar example of Λ depending on aµ is the transformation that allows oneself to go to a given gauge, e.g.

Λ(t, ~x) = 1
4π

∫
d3y

~∇·~a(t,~y)
|~x−~y| to go to Coulomb gauge.
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so that

δa0Λ(t, ~x)

δa0(t′, ~y)
= δ(4)(x− y) +

1

4π|~y − ~x|
∂t∂t′δ(t− t′)

δaiΛ(t, ~x)

δa0(t′, ~y)
=

∂

∂xi
1

4π|~y − ~x|
∂t′δ(t− t′) ,

δaµΛ(t, ~x)

δai(t′, ~y)
= δiµ δ

(4)(x− y) , (1.111)

resulting in a non-trivial Jacobian.∏
µ

DaµΛ =
∏
µ

Daµ × Det

(
δ(4)(x− y)− 1

4π|~y − ~x|
δ′′(t− t′)

)
. (1.112)

Although non-trivial, this Jacobian only contributes an irrelevant field- and Λ̃-independent constant to the

functional integral (which we drop as usual). Similarly, in the absence of anomalies,
∏
lDψl,Λ =

∏
lDψl.

Thus the only effect of this gauge transformation with Λ is

δ(~∇ · ~aΛ) = δ(~∇ · ~a+ ~∇2Λ̃ + ∂0a
0) = δ(∂µa

µ + ~∇2Λ̃) , (1.113)

which allows to write (1.108) as

〈T
{
OAOB . . .

}
〉vac =

∫ ∏
µ

Daµ
∏
l

Dψl
∏
x

δ(∂µa
µ + ~∇2Λ̃) OA OB . . . exp {iS[aµ, ψl] + iε−terms} .

(1.114)

By construction, both sides of this equation are independent of Λ̃. We can multiply both sides by

exp
[
−iα

2

∫
d4x (~∇2Λ̃)2

]
(with α > 0) and integrate DΛ̃ =

(
Det~∇2

)−1

D(~∇2Λ̃). On the l.h.s. this

results in yet another irrelevant constant factor. Interchanging the order of integrations on the r.h.s.,

we finally arrive at

〈T
{
OAOB . . .

}
〉vac =

∫ ∏
µ

Daµ
∏
l

Dψl OA OB . . . exp {iSeff [aµ, ψl]} , (1.115)

with

Seff [aµ, ψl] = S[aµ, ψl]−
α

2

∫
d4x (∂µa

µ)2 , (1.116)

where the parameter α is often called the gauge parameter. Starting from the manifestly uni-

tary canonical formalism in Coulomb gauge, we have obtained a manifestly Lorentz invariant func-

tional integral representation of the vacuum expectation values of time-ordered products of gauge

invariant Heisenberg operators. As already noted, we will use this equation (1.115) to compute

〈T
{
OAOB . . .

}
〉vac even if the O are not gauge invariant. In this case, one has to remember that the

result is unphysical and depends on the gauge-parameter α. Nevertheless, any final physical result

(like S-matrix elements) must be gauge invariant and independent of α.
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Let us now determine the propagator of the gauge field 〈T
[
Aµ(x)Aν(y)

]
〉libre
vac = −i∆µν(x, y).

According to (1.36), the propagator is given by the inverse of the quadratic part of the action Seff :

Seff |quadratic =

∫
d4x

[
−1

4
fµνf

µν − α

2
(∂µa

µ)2

]
+ (iε− terms)

=
1

2

∫
d4x aµ [ηµν∂ρ∂

ρ − (1− α)∂µ∂ν ] a
ν + (iε− terms)

≡ −1

2

∫
d4x d4y aµ(x)Dµν(x, y)aν(y) , (1.117)

with

Dµν(x, y) =

[
−ηµν

∂

∂xρ
∂

∂xρ
+ (1− α)

∂

∂xµ
∂

∂xν
− iε ηµν

]
δ(4)(x− y)

=

∫
d4q

(2π)4

[
ηµνq

2 − (1− α)qµqν − iε ηµν
]
eiq(x−y) . (1.118)

The propagator is −i∆µν(x, y) where ∆ = D−1, i.e.

∆µν(x, y) ≡ ∆µν(x− y) =

∫
d4q

(2π)4
∆µν(q)e

iq(x−y) , (1.119)

with

∆µν(q) =
ηµν

q2 − iε
+

1− α
α

qµqν
(q2 − iε)2

. (1.120)

As expected for a gauge-dependent quantity, the propagator depends explicitly on α. Note that

the limit α → 0 is singular since it would remove the gauge-fixing. The choice α = 1 is called

Feynman gauge and yields ∆µν(q) = ηµν
q2−iε which is particularly simple, while α→∞ gives ∆µν(q) =

ηµν
q2−iε −

qµqν
(q2−iε)2 and is called the Landau or Lorenz gauge (since α → ∞ strictly enforces the Lorenz

gauge condition ∂µa
µ = 0).

1.5.3 Feynman rules of spinor QED

Let us now specify the matter part of the action to be that of an electron Dirac field (of charge

q = −e with e > 0) interacting with the electromagnetic field:

L = −1

4
FµνF

µν − ψ(∂/+ ieA/+m)ψ , (1.121)

and

Leff = L − α

2
(∂µa

µ)2 . (1.122)

The Feynman rules for S-matrix elements then are:

• photon propagator :
−i

(2π)4

(
ηµν

q2 − iε
+

1− α
α

qµqν
(q2 − iε)2

)
,
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• electron/positron propagator :
−i

(2π)4

1

ik/+m− iε
≡ −i

(2π)4

(−ik/+m)

k2 +m2 − iε

• vertex : (2π)4eγµδ(4)(k − k′ + q) ,

• initial photon :
eµ

(2π)3/2
√

2p0
, final photon :

e∗µ

(2π)3/2
√

2p0
,

• initial electron :
u

(2π)3/2
, final electron :

ū

(2π)3/2
,

• initial positron :
v̄

(2π)3/2
, final positron :

v

(2π)3/2
,

• integrate over all internal four-momenta.

The Feynman rules for Green-functions are the same, except that one associates propagators to the

external lines instead of the initial/final particle wave-function factors u, v or ε.

Most of the integrations over internal momenta are fixed by the δ(4)’s from the vertices. Of course,

one overall δ(4) only enforces conservation of the external four-momenta and thus cannot serve to

fix any internal momentum. Thus the number of unconstrained internal momenta is I − V + 1 if

the number of vertices is V and the number of internal lines I. We have already seen that there is

the general topological relation (1.45) between I, V and the number of independent loops L in a

diagram, I − V = L− 1. It follows that in any Feynman diagram there are exactly L unconstrained

four-momenta to be integrated, one for every loop.

Note that in spinor QED all vertices are tri-valent (3 lines attached). This gives another relation

between V , I and the number E of external lines: 3V = 2I + E. Thus in spinor QED

3V = 2I + E , I − V = L− 1 ⇒ V = 2L+ E − 2 , (1.123)

and for a given S-matrix element or given Green function (fixed number of external lines) one gets an

additional factor of e2 for every additional loop: one sees very clearly that the perturbative expansion

is an expansion in the number of loops and the expansion parameter is the fine structure constant α

(not to be confused with the gauge parameter) 10

α =
e2

4π
' 1

137
. (1.125)

10One can argue that the expansion parameter for a given S-matrix element is α
4π rather than α: every vertex

contributes a factor (2π)4e and every internal line a (2π)−4. Every integration over a loop momentum d4k can be
expected to give a factor π2 (the angular integration is estimated to give the volume 2π2 and k3dk = 1

2k
2dk2 gives

another 1
2 ). Altogether, one has a factor

(2π)4V eV (2π)−4Iπ2L = (2π)4eE−2
(

e2

16π2

)L
= (2π)4eE−2

( α
4π

)L
, (1.124)

so that every loop can be expected to yield a factor e2

16π2 = α
4π ' 6× 10−4 � 1.
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2 A few results independent of perturbation theory

2.1 Structure and poles of Green functions

There are a few statements that can be made about the structure of the various Green functions

independently of any explicit (perturbative) computation, just based on arguments of symmetry, in

particular Poincaré invariance. Consider the Fourier transform of a general n-point (Green) function11

Ĝ(n)(q1, . . . qn) ≡
∫

d4x1 . . . d
4xne

i
∑
r qnxn〈T

(
O1(x1) . . .On(xn)

)
〉vac . (2.1)

Recall that 〈T (. . .)〉vac = 〈Ω|T (. . .) |Ω〉 where 〈Ω| and |Ω〉 are both the in-vacuum. (In perturbation

theory, this would be given by the sum of all the corresponding Feynman diagrams with n external

lines but excluding all diagrams with vacuum bubbles.) From translational invariance, this Green

function must be a product of δ(4)(
∑

r qr) times some G̃(n)(q1, . . . qn). The latter may contain pieces

which are again proportional to some δ(4) (corresponding to a disconnected part of the Green function)

and pieces without such further δ(4)-singularities, but with various poles and branch cuts in various

combinations of the momenta. We will concentrate on the poles and their residues. As an example,

consider a free scalar theory where G̃(2) is just the propagator with a pole at q2
1 = q2

2 = −m2 and

residue −i.
Here we will establish the general structure of the 2-point Green functions close to their poles and then

just state the corresponding result for the n-point functions. To begin with, we write explicitly

Ĝ(2)(q1, q2) =

∫
d4x1 d4x2 e

iq1x1+iq2x2

[
θ(x0

1 − x0
2) 〈Ω| O1(x1)O2(x2) |Ω〉

+ θ(x0
2 − x0

1) 〈Ω| O2(x2)O1(x1) |Ω〉
]
, (2.2)

We now insert a complete set of states in the in-basis of the Hilbert space. This basis contains, besides the

in-vacuum, the one-particle states
∣∣∣Ψin

~p,σ,n

〉
, as well as all the multi-particle states. These one-particle states

correspond to the physical particles with masses mn that one can measure as m2
n = −p2 ≡ −pµpµ and where

Pµ

∣∣∣Ψin
~p,σ,n

〉
= pµ

∣∣∣Ψin
~p,σ,n

〉
. Thus

1 = |Ω〉 〈Ω|+
∑
n,σ

∫
d3p

∣∣Ψin
~p,σ,n

〉 〈
Ψin
~p,σ,n

∣∣+ . . . , (2.3)

where + . . . indicates all the contributions from multi-particle states. These are defined as states depending
on the total momentum ~ptot, as well as at least one more continuous variable. Thus

〈Ω| O1(x1)O2(x2) |Ω〉 = 〈Ω| O1(x1) |Ω〉 〈Ω| O2(x2) |Ω〉

+
∑
n,σ

∫
d3p 〈Ω| O1(x1)

∣∣Ψin
~p,σ,n

〉 〈
Ψin
~p,σ,n

∣∣O2(x2) |Ω〉+ . . . . (2.4)

By translational invariance one has

〈Ω| O1(x1)
∣∣Ψin

~p,σ,n

〉
= 〈Ω| e−iPµx

µ
1O1(0)eiPµx

µ
1
∣∣Ψin

~p,σ,n

〉
= eipµx

µ
1 〈Ω| O1(0)

∣∣Ψin
~p,σ,n

〉
, (2.5)

11Here we use the same notation Ĝ(n) for Ĝ(n)(x1, . . . xn) and its Fourier transform Ĝ(n)(q1, . . . qn). Also, we consider
general Heisenberg operators Oj rather than just the “elementary” fields Ψlj , since most of the argument does not
depend on the form of the operators.
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as well as 〈Ω| O1(x1) |Ω〉 = 〈Ω| O1(0) |Ω〉. Most often, the Oj transform non-trivially under the Lorentz
group or some internal symmetry group (that leaves the vacuum invariant) in which case 〈Ω| Oj(0) |Ω〉 = 0.
In general, one has

〈Ω| O1(x1)O2(x2) |Ω〉 = 〈Ω| O1(0) |Ω〉 〈Ω| O2(0) |Ω〉

+
∑
n,σ

∫
d3p eip(x1−x2) 〈Ω| O1(0)

∣∣Ψin
~p,σ,n

〉︸ ︷︷ ︸
≡ MO1

(~p,σ,n)

〈
Ψin
~p,σ,n

∣∣O2(0) |Ω〉︸ ︷︷ ︸
≡ M∗

O†2
(~p,σ,n)

+ . . . . (2.6)

Let us insist that the p0 are “on-shell”, i.e. p0 =
√
~p2 +m2

n ≡ ωn(~p). When inserted into (2.2), the first line

of (2.6), if non-vanishing, yields a contribution ∼
∫

d4x1d4x2e
−iq1x1−iq2x2 ∼ δ(4)(q1)δ(4)(q2) corresponding

to a disconnected piece. Concentrate now on the contributions of the one-particle states. Writing

θ(x0
1 − x0

2) = −
∫ ∞
−∞

dω

2πi

e−iω(x0
1−x0

2)

ω + iε
, (2.7)

they are

Ĝ(2)(q1, q2)
∣∣∣
one particle

=
∑
n,σ

i

2π

∫
dω

ω + iε
d3p

∫
d4x1 d4x2 e

iq1x1+iq2x2 ×

×
[
eip(x1−x2)e−iω(x0

1−x0
2)MO1(~p, σ, n)M∗O†2

(~p, σ, n) + e−ip(x1−x2)e+iω(x0
1−x0

2)MO2(~p, σ, n)M∗O†1
(~p, σ, n)

]
= i(2π)7δ(4)(q1 + q2)

∑
n,σ

∫
dω

ω + iε
d3p ×[

δ(3)(~p− ~q2)δ(ω − q0
2 + p0)MO1(~q2, σ, ν)M∗O†2

(~q2, σ, n) + δ(3)(~p− ~q1)δ(ω − q0
1 + p0)MO2(~q1, σ, n)M∗O†1

(~q1, σ, n)
]

= i(2π)7δ(4)(q1 + q2)
∑
n,σ

[
MO1(~q2, σ, n)M∗

O†2
(~q2, σ, n)

q0
2 − ωn(~q2) + iε

+
MO2(~q1, σ, ν)M∗

O†1
(~q1, σ, n)

q0
1 − ωn(~q1) + iε

]
(2.8)

This expression clearly exhibits the poles due to the one-particle intermediate states. The poles are at
q0

1 = −q0
2 = ±ωn(~q1) = ±

√
m2
n + ~q2

1, i.e. on the mass shell of the intermediate physical particle. One can
show that the multi-particle intermediate states do not lead to poles but to branch cuts.

We will be mostly interested in the case where the Heisenberg operators Oj correspond to the elementary

fields Ψl appearing in the Lagrangian, specifically O1 = Ψl and O2 = Ψ†k so that the above result reads

Ĝ(2)(q1, q2)
∣∣∣
poles

= i(2π)7δ(4)(q1 +q2)
∑
n,σ

MΨl(~q2, σ, n)M∗Ψk(~q2, σ, n)

q0
2 − ωn(~q2) + iε

+
M

Ψ†k
(~q1, σ, n)M∗

Ψ†l
(~q1, σ, n)

q0
1 − ωn(~q1) + iε

 . (2.9)

Let us compare with the result that would have been obtained in a free theory of a field of species n∗ and

mass m∗ where Ψl(x) = ψl(x) =
∑

σ

∫ d3p
(2π)3/2

(
ul(~p, σ, n

∗)a(~p, σ, n∗)eipx+vl(~p, σ, n
∗)a†c(~p, σ, n∗)e−ipx

)
. In this

case, the only intermediate states that contribute are the one-particle states of species n∗ created by a† and

a†c. Furthermore, Mψl(~q2, σ, n
∗) = 1

(2π)3/2 ul(~q2, σ, n
∗) and M

ψ†k
(~q1, σ, n

∗) = 1
(2π)3/2 v

∗
k(~q1, σ, n

∗), so that

Ĝfree
(2) (q1, q2) = i(2π)4δ(4)(q1 + q2)

∑
σ

[
ul(~q2, σ, n

∗)u∗k(~q2, σ, n
∗)

q0
2 − ωn∗(~q2) + iε

+
vl(~q1, σ, n

∗)v∗k(~q1, σ, n
∗)

q0
1 − ωn∗(~q1) + iε

]
≡ −i(2π)4δ(4)(q1 + q2) ∆m∗

lk (q2) (2.10)

where −i∆m∗
lk (q) is the usual free propagator with mass m∗. The similarity between (2.9) and (2.10) is

no coincidence. Indeed, by Lorentz invariance, the matrix element MΨl(~q1, σ, n) is constraint to equal
the corresponding ul(~q1, σ, n), up to a normalization, and similarly for the M

Ψ†k
(~q1, σ, n) and v∗l (~q1, σ, n).
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(Recall that for every irreducible representation of the Lorentz group one can determine the corresponding
coefficients ul and vl solely from the transformation properties – up to a normalization). Hence:

MΨl(~q2, σ, n) = Nn
Ψ

ul(~q2, σ, n)

(2π)3/2
, M

Ψ†l
(~q1, σ, n) = Nn

Ψ†
v∗l (~q1, σ, n)

(2π)3/2
, (2.11)

where the normalization constants Nn
Ψ and Nn

Ψ†
may differ at most by a phase. In (2.9), the contributions

to the residue of a given pole at some12 q2
2 = −m2

∗ come from those one-particle states n that have a mass

mn equal to m∗.

Combining the results (2.9), (2.11) and (2.10), we finally get for the behaviour of the 2-point

function:

Ĝlk
(2)(q1, q2)

∣∣∣
pole at q2

1=−m2
∗

∼ (2π)4δ(4)(q1 + q2)
[ ∑
n |mn=m∗

|Nn
Ψ|2
]
(−i) ∆m∗

lk (q1)

= |Nm∗
Ψ |

2 Ĝlk
(2)free,m∗(q1, q2) . (2.12)

The lesson to remember is the following: in general, the 2-point function of the interacting theory

is very complicated, with branch cuts and poles. Equation (2.12) states that, as q2
2 → −m2, where

m is the mass of a physical one-article state such that 〈Ω|Ψl(0)
∣∣Ψin

~p,σ,n

〉
6= 0, the 2-point function

behaves as the 2-point function of a free field of mass m, up to a normalization constant.

These results can be generalized to an arbitrary n-point function depending on momenta q1, . . . qn:

Such an n-point function has a pole whenever, for any subset I of {1, . . . n}, the combination qI =∑
j∈I qj is such that q2

I = −m2 with m being equal to the mass of any one-particle state
∣∣Ψin

~p,σ,n

〉
that has non-vanishing matrix elements with

∏
j∈I O

†
j |Ω〉 and with

∏
j /∈I Oj |Ω〉. More precisely, if

we suppose I = {1, . . . r}, q ≡ qI = q1 + . . .+ qr = −qr+1 − . . .− qn then, as q0 →
√
~q2 +m2

G ∼ −2i
√
~q 2 +m2

q2 +m2 − iε
(2π)7δ(4)(q1 + . . .+ qn)

∑
σ

M0|qσ(q2, . . . qr)Mq,σ|0(qr+2, . . . qn) , (2.13)

with

(2π)4δ(4)(
r∑
s=1

qs − p)M0|pσ(q2, . . . qr)=

∫
d4x1 . . . d

4xr e
i
∑r
s=1 qsxs × 〈Ω|T

(
O1(x1) . . .Or(xr)

)
|Ψp,σ〉

(2π)4δ(4)(
n∑

s=r+1

qs + p)Mpσ|0(qr+2, . . . qn)=

∫
d4xr+1 . . . d

4xn e
i
∑n
r+1 qsxs ×

×〈Ψp,σ|T
(
Or+1(xr+1) . . .On(xn)

)
|Ω〉 . (2.14)

Again, the proof uses only translation invariance, the causal structure implied by the time-ordering

and the fact that multiparticle intermediate states produce branch cuts rather than poles. Note that

the above pole structure is exactly what one expects from a Feynman diagram with a single internal

line for a particle of mass m connecting a part of the diagram, with the first r operators Oi attached,

to another part, with the last n − r operators Oi attached, as shown in the figure. However, the

above property is much more general in that the particle of mass m need not be one corresponding

to an elementary field in the Lagrangian but could correspond to a complicated bound state.

12This is an abuse of language: when we say a pole at q2 = −m2, since −1
q2+m2 = 1

2ωm(~q)

(
1

q0+ωm(~q) −
1

q0−ωm(~q)

)
, we

really mean a pole at q0 = ωm(~q) and a pole at q0 = −ωm(~q).

Adel Bilal : Advanced Quantum Field Theory 30 Lecture notes - October 6, 2014



n1

2

3

r
r+1

r+2

2.2 Complete propagators, the need for field and mass renormalization

In the above formula (2.12) the 2-point function on the left-hand-side is the Fourier transform of

〈T
(
Ψl(x1)Ψ†k(x2)

)
〉vac where the Ψl(x) are the Heisenberg operators that evolve with the full Hamilto-

nian. This is also referred to as the full or complete propagator, while on the right-hand-side appears

the free propagator as entering the Feynman rules. More precicely, the Heisenberg operators Ψl cor-

respond to the fields as they appear in the (interacting) Lagrangian and are accordingly normalized.

Such fields will be called bare fields and we write Ψl,B(x). Actually, in most theories (at least in

perturbation theory) the only one-particle states Ψin
~p,σ,n that are such that

〈
Ψin
~p,σ,n

∣∣Ψl,B(0) |Ω〉 6= 0 all

have the same mass, and then there is only a pole at q2
1 = −m2, with m being in general different

from the mass parameter appearing in the Lagrangian of the bare field Ψl,B and which we call the

bare mass mB. Hence, we can rewrite (2.12) as∫
d4x1 d4x2 e

iq1x1+iq2x2〈T
(
Ψl,B(x1)Ψ†k,B(x2)

)
〉vac

∣∣∣
q2
1→−m2

∼ −i∆m
lk(q1) |Nψ|2 (2π)4δ(4)(q1+q2) . (2.15)

We can get rid of the factor |Nψ|2 on the right-hand-side by deviding by it and defining

Ψl,R =
1

Nψ

Ψl,B . (2.16)

Then, close to its pole at q2
1 = −m2, the two-point function of Ψl,R behaves as the two-point function

of a free field with mass m. A field with this behaviour is called a renormalized field and m the

renormalized mass. In the sequel, to simplify the notation, we will not write the subscript R for the

renormalized fields and masses. We will study in some detail how this goes for the different types of

fields.

2.2.1 Example of a scalar field φ

Call the interacting real scalar φB with Lagrangian

L = −1

2
(∂µφB)2 − 1

2
m2
Bφ

2
B − VB(φB) . (2.17)

There is no reason to expect that φB has a correctly normalized two-point function or that this

function has a pole at −m2
B. Let

φB =
√
Z φ ⇔ φ = Z−1/2 φB

m2 = m2
B + δm2 ,

(2.18)
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and require that φ is correctly normalized, i.e. that 〈Ω|φ(0)
∣∣Ψin

~q

〉
= 1

(2π)3/22
√
~q 2+m2

and that its two-

point function have a pole at −m2. This will fix Z and δm2 as functions of m2
B and the couplings.

Then φ is called the renormalized field and m the renormalized mass. A straightforward rewriting

of the Lagrangian yields

L = −1

2
Z(∂µφ)2 − 1

2
(m2 − δm2)Zφ2 − VB(

√
Zφ)

=

(
−1

2
(∂µφ)2 − 1

2
m2φ2

)
︸ ︷︷ ︸+

(
−1

2
(Z − 1)

(
(∂µφ)2 +m2φ2

)
+

1

2
Zδm2φ2 − VB(

√
Zφ)

)
︸ ︷︷ ︸ .

L0 L1 (2.19)

The strategy is to treat L0 as the free part of the Lagrangian and L1 as the interaction. All the

terms in L1 involving factors of (Z − 1) or δm2 will be called “counterterms”.

The full propagator of the renormalized field is called ∆′(q). It is conveniently expressed in terms

of the one-particle irreducible propagator. In general, a one-particle irreducible (1PI) diagram is a

connected diagram that will not become disconnected by just cutting a single line. More precisely,

let i(2π)4Π∗(q2) be the complete one-particle irreducible propagator of φ with two external free

propagators − i
(2π)4

1
q2+m2−iε removed. Graphically, with a φ4 interaction Π∗ is given by

=Π
∗
(q
2
) = + + + +

The first term equals −(Z − 1)(q2 + m2) + Zδm2 and is entirely due to the counterterms, while

the other terms involve loops (possibly including counterterms inside the loops) and contribute to

Π∗loops(q
2). The full propagator then is related to the one-particle irreducible propagator13 by (see

Figure below)

+= ++

− i

(2π)4
∆′(q)

= − i

(2π)4

1

q2 +m2 − iε
+

(
− i

(2π)4

1

q2 +m2 − iε

)
i(2π)4Π∗(q2)

(
− i

(2π)4

1

q2 +m2 − iε

)
+ . . .

= − i

(2π)4

1

q2 +m2 − iε

(
1− Π∗(q2)

q2 +m2 − iε

)−1

= − i

(2π)4

1

q2 +m2 − Π∗(q2)− iε
. (2.20)

In summary:

∆′(q) =
(
q2 +m2 − Π∗(q2)− iε

)−1
, (2.21)

13To simplify the discussion, we exclude the possibility of tri-linear self-interactions ∼ φ3 which would lead to
“tadpole” diagrams.
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with

Π∗(q2) = −(Z − 1)(q2 +m2) + Zδm2 + Π∗loop(q2) . (2.22)

The so far arbitrary constants Z and δm2 must be fixed by the normalization requirements: we

required that ∆′ has a pole at q2 = −m2. This implies

Π∗(−m2) = 0 . (2.23)

Correct normalization of the two-point function translates into the residue of the pole of ∆′ be one:

∆′(q)
∣∣∣
q2=−m2+δq2

=
(
δq2 − Π∗(−m2 + δq2)− iε

)−1

=

(
δq2 − δq2 dΠ∗

dq2
(−m2) +O((δq2)2)− iε

)−1

∼
(

1− dΠ∗

dq2
(−m2)

)−1
1

δq2 − iε
, (2.24)

which leads to

d

dq2
Π∗(q2)

∣∣∣
q2=−m2

= 0 . (2.25)

Inserting (2.22) into (2.23) and (2.25) yields

Zδm2 = −Π∗loop(−m2) (2.26)

Z = 1 +
d

dq2
Π∗loop(q2)

∣∣∣
q2=−m2

, (2.27)

which determines Z and δm2 in terms of Π∗loop.

Clearly, in any generic interacting theory, Π∗loop will be non-vanishing (and in particular non-

vanishing at q2 = −m2 with a non-vanishing first derivative). Hence, in such a generic interacting

theory there will always be renormalization of the wave-function (Z 6= 1) and of the mass (δm2 6= 0).

The necessity of renormalization has nothing to do with diverging, infinite loop-integrals, but is a

generic feature of interacting theories in order to have correctly normalized two-point functions with

poles at physical values of q2.

It is interesting to substitute the values (2.26) and (2.27) of Z and Zδm2 into eq. (2.22) for Π∗(q2)

to get

Π∗(q2) = Π∗loop(q2)− Π∗loop(−m2)− d

dq2
Π∗loop(q2)

∣∣∣
q2=−m2

(q2 +m2) . (2.28)

We see that the (renormalized) one-particle irreducible complete propagator Π∗ is given by its loop

contribution Π∗loop with its two first terms in a Taylor series expansion around q2 = −m2 subtracted!

To be completely clear, let us insist that −i∆′ is the full propagator of the renormalized field φ,

related to the full propagator −i∆′B of the bare field φB by

−i∆′(x− y) = 〈Tφ(x)φ(y)〉 =
1

Z
〈TφB(x)φB(y)〉 =

1

Z
(−i)∆′B(x− y) . (2.29)
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From our previous relations one finds

∆′(q) =
(
q2 +m2 − Π∗(q2)− iε

)−1

=
(
q2 +m2 + (Z − 1)(q2 +m2)− Zδm2 − Π∗loop(q2)− iε

)−1

=
1

Z

(
q2 +m2 − δm2 − 1

Z
Π∗loop(q2)− iε

)−1

=
1

Z

(
q2 +m2

B − Π∗B, loop(q2)− iε
)−1

, (2.30)

where we defined

Π∗B, loop =
1

Z
Π∗loop . (2.31)

Comparing (2.29) and (2.30) we see that

∆′B(q) =
(
q2 +m2

B − Π∗B, loop(q2)− iε
)−1

∆′(q) =
(
q2 +m2 − Π∗(q2)− iε

)−1

∆′B(q) = Z ∆′(q) .

(2.32)

In particular, in the bare propagator ∆′B one has Π∗B, loop, missing the contributions from the countert-

erms. Nevertheless the relation between the full bare propagator and the full renormalized propagator

is very simple: they only differ by the factor Z. Let us insist that the renormalization conditions

(2.23) and (2.25) are such that the renormalized propagator satisfies

∆′(q) =
1

q2 +m2 − iε

[
1 +O(q2 +m2)

]
= ∆(q)

[
1 +O(q2 +m2)

]
, (2.33)

i.e. up to corrections that vanish on shell, the full renormalized propagator equals the free propagator.

2.2.2 Example of a Dirac field

The Lagrangian is

L = −ψ̄B(∂/+mB)ψB − VB(ψB) , (2.34)

with

ψ = Z
−1/2
2 ψB ⇔ ψB =

√
Z2 ψ , m = mB + δm . (2.35)

As above, we rewrite L as

L = L0 + L1 , L0 = −ψ̄(∂/+m)ψ

L1 = −(Z2 − 1)ψ̄(∂/+m)ψ + Z2δmψ̄ψ − VB(
√
Z2ψ) . (2.36)

Denote by i(2π)4Σ∗(k/) the one-particle irreducible complete fermion propagator.14 Let the complete

propagator be −i
(2π)4S

′(k). Then

S ′(k) =
1

ik/+m− iε
+

1

ik/+m− iε
Σ∗(k/)

1

ik/+m− iε
+ . . . =

1

ik/+m− Σ∗(k/)− iε
, (2.37)

14When we write Σ∗(k/) we mean the following: we will see that Σ∗ is of the form Σ∗ = f(k2) ik/ + g(k2)1 =

f(k/
2
) ik/+ g(k/

2
)1, which is indeed a function of k/.
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and

Σ∗(k/) = −(Z2 − 1)(ik/+m) + Z2δm+ Σ∗loop(k/) . (2.38)

The correct normalization for the complete propagator (pole at k2 = −m2 and the residue condition)

yields

Σ∗(im) = 0 ,
∂

∂k/
Σ∗(k/)

∣∣∣
k/=im

= 0 . (2.39)

This fixes Z2 and δm as

Z2 δm = −Σ∗loop(im) , (2.40)

Z2 = 1− i ∂
∂k/

Σ∗loop(k/)
∣∣∣
k/=im

. (2.41)

Again, if we insert these values for Z2 and Z2 δm into (2.38) we get

Σ∗(k/) = Σ∗loop(k/)− Σ∗loop(im)− 1

i

∂

∂k/
Σ∗loop(k/)

∣∣∣
k/=im

(ik/+m) , (2.42)

showing again that the renormalized Σ∗(k/) is given by its loop-contributon with its two first terms

in a Taylor expansion around k/ = im subtracted.

2.3 Charge renormalization and Ward identities

The Lagrangian for charged particles is invariant under phase rotations of the associated fields. This

leads, as usual to a conserved current Jµ and associated conserved charge Q =
∫

d3x J0 which, upon

quantization, become operators acting on the states. Since Q commutes with the Hamiltonian we

can take all (one-particle) states |Ψp,σ,n〉 to be eigenstates of Q with

Q |Ψp,σ,n〉 = qn |Ψp,σ,n〉 , (2.43)

as well as Q |Ω〉 = 0. The eigenvalue qn is called the charge of the particle. On the other hand, in

the Lagrangian L appear parameters q̃l via the covariant derivatives Dµψl = (∂µ − iq̃lAµ)ψl of ψl.

How are they related?

From the definition of J0 = ∂L[ψl,Dµψl]

∂A0
= ∂L

∂∂0ψl
(−iq̃l)ψl = −iq̃lPlψl and the canonical commutation

relations we get [Q,Ψl] = −q̃lΨl. Hence

0 = 〈Ω|QΨl |Ψp,σ,n〉 = 〈Ω| (ΨlQ+ [Q,Ψl]) |Ψp,σ,n〉 = (qn − q̃l) 〈Ω|Ψl |Ψp,σ,n〉 . (2.44)

Thus, whenever 〈Ω|Ψl |Ψp,σ,n〉 6= 0 we must have q̃l = qn : the charge qn as measured by the eigenvalue

of Q equals the parameter q̃n appearing in the covariant derivatives of ψn in the Lagrangian. Suppose

now we rescale Aµ → γAµ = A′µ. Then Jµ → (J ′)µ = γ−1Jµ and hence qn → q′n = γ−1qn. According

to the previous argument, then also q̃n → q̃′n = γ−1q̃n. As a result, q̃′nA
′
µ = q̃nAm and the covariant
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derivative remains unchanged. It follows that if Aµ is renormalized by some multiplicative factor, all

charges are renormalized by the inverse of this factor:

Aµ = Z
−1/2
3 AµB ⇔ ql =

√
Z3 qB,l ∀ l . (2.45)

The charge renormalization is the same for all fields! Of course, this is related to the gauge invariance

which forces all charged particles to couple in the same way – via the covariant derivative – to the

electromagnetic field Aµ. In particular (2.45) shows that if qB,l = qB,l′ then also ql = ql′ , even if

ψl and ψl′ have very different non-electromagnetic couplings like e.g. a proton and a positron, as

shown in Fig. 5 for a quark and a positron/electron. One sometimes writes qB =
√
Zqq so that (2.45)

implies

ZqZ3 = 1 . (2.46)

Figure 5: Contributions to the electromagnetic vertex function for a quark (left) and an elec-
tron/positron (right). The solid lines are fermion propagators, the wavy lines photon propagators
and the dashed lines gluon propagators.

One defines the vertex function Γµmn(p, p′) by∫
d4x d4y d4z e−ipx−iky+ilz 〈Ω|T

(
Jµ(x)Ψn(y)Ψ̄m(z)

)
|Ω〉

≡ −iq S ′nn′(k)Γµn′m′(k, l)S
′
m′m(l) (2π)4 δ(4)(p+ k − l) . (2.47)

It follows from this definition that Γµ is the sum of all vertex graphs (with the two complete Dirac

propagators removed, and also no photon propagator): it is the one-particle irreducible 3-point

function. To lowest order (free fields) the l.h.s. of (2.47) is 1
ik/+m−iε(−iqγ

µ) 1
il/+m−iεδ

(4)(p + k − l), so

that

Γµ
∣∣
tree

= γµ . (2.48)

Above we have derived identities due to the universal coupling of the electromagnetic field through the

covariant derivative. One of the tools was the commutation relation of the charge operator with the

Heisenberg picture quantum fields. Similarly, we now derive a relation between the vertex function

and the full fermion propagators, known as Ward identity. Using ∂µJ
µ = 0 and [J0(t, ~x),Ψn(t, ~y)] =
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−qδ(3)(~x− ~y) Ψn(t, ~y) we get

∂

∂xµ
T
(
Jµ(x)Ψn(y)Ψ̄m(z)

)
= T

(
∂µJ

µ(x)Ψn(y)Ψ̄m(z)
)

+

+ δ(x0 − y0)T
(

[J0(x),Ψn(y)]Ψ̄m(z)
)

+ δ(x0 − z0)T
(

Ψn(y)[J0(x), Ψ̄m(z)]
)

= 0− q δ(4)(x− y)T
(
Ψn(y)Ψ̄m(z)

)
+ q δ(4)(x− z)T

(
Ψn(y)Ψ̄m(z)

)
. (2.49)

This, together with the definition (2.47), and recalling that 〈Ω|T
(
Ψn(y)Ψ̄m(z)

)
|Ω〉

= −iS ′nm(y − z) = −i
∫

d4q
(2π)4 e

iq(y−z)S ′nm(q), yields

(l − k)µS
′(k)Γµ(k, l)S ′(l) = iS ′(l)− iS ′(k) , (2.50)

or

(l − k)µΓµ(k, l) = iS ′
−1

(k)− iS ′−1
(l) , (2.51)

which is known as the generalized Ward identity. The original form of the Ward identity is obtained

by letting l→ k so that

Γµ(k, k) = −i ∂
∂kµ

S ′
−1

(k) = γµ + i
∂

∂kµ
Σ∗(k/) . (2.52)

Due to (2.39), the last term vanishes on-shell, i.e. for k/ = im, and hence when evaluated between

on-shell spinors one simply has

ū(k)Γµ(k, k)u(k) = ū(k)γµu(k) , (2.53)

so that radiative corrections to the vertex function for the interaction of an on-shell fermion with a

zero-momentum photon vanish. But this is exactly the way the electric charge of particles is defined,

and we find again that qγµAµ is not renormalized. Similarly, (2.51) leads to

(l − k)µ ū(k)Γµ(k, l)u(l) = 0 . (2.54)

2.4 Photon propagator and gauge invariance

Gauge invariance implied that the current Jµ is conserved, ∂µJ
µ = 0. Then, much as above, one has

∂

∂xµ
T
(
Jµ(x)Jν(y)Jρ(z) . . .

)
= δ(x0 − y0)T

(
[J0(x), Jν(y)]Jρ(z)

)
+ δ(x0 − z0)T

(
Jµ(x)[J0(y), Jρ(z)]

)
+ . . . . (2.55)

Now Jν is a neutral operator and hence [J0(x), Jν(y)] = 0. This could be violated by so-called

Schwinger terms from defining Jν properly in terms of the elementary fields at coinciding points. For

Dirac fermions and using dimensional regularization, however, no such Schwinger terms arise and

one indeed has

[J0(x), Jν(y)] = 0 (2.56)
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as an operator identity. As a consequence, the r.h.s. of (2.55) vanishes. Let

Mµν...
βα (q1, q2, . . .) =

∫
d4x1 . . . e

−iq1x1−...
〈
Ψ−β
∣∣T(Jµ(x1)Jν(x2) . . .

) ∣∣Ψ+
α

〉
. (2.57)

Then (2.55) implies

(qi)µM
µν...
βα (q1, q2, . . .) = 0 . (2.58)

Now any S-matrix element in electrodynamics is of the form

Sβα ∼
∫

d4q1 d4q2 . . .∆µ1ν1(q1)∆µ2ν2(q2) . . . ε∗ρ1
(k1)ε∗ρ2

(k2) . . . εσ1(l1)εσ2(l2) . . .×

× M̂µ1ν1µ2ν2...ρ1ρ2...σ1σ2...
βα (q1, q2, . . . , k1, k2 . . . , l1, l2 . . .) , (2.59)

with M̂ being the matrix element of all the matter currents as defined above but with all electro-

magnetic interactions turned off. Clearly, (2.58) still holds for M̂ and we see that the S-matrix is

unchanged if we replace any of the photon propagators ∆µν(q) or any of the polarization vectors

according to

∆µν(q) → ∆µν(q) + aµqν + qµbν ,

ερ(k) → ερ(k) + c kρ , (2.60)

with arbitrary four-vectors aµ, bµ or scalar c.

The complete photon propagator necessarily is given by

∆′µν(q) = ∆µν(q) + ∆µρ(q)M
ρσ(q)∆σν(q) :

+
. (2.61)

where Mρσ ∼
∑

n M̂
ρσµ1...µ2n
vac,vac ∆µ1µ2 . . .∆µ2n−1µ2n . Indeed, the first term in (2.61) just is the free

propagator, and all higher-order corrections are summarized in the second term. Of course, Mρσ is

not one-particle irreducible. Obviously, it follows from (2.58) that qρM
ρσ = Mρσqσ = 0. In a general

gauge we had ∆µν(q) = 1
q2−iε

(
ηµν − ξ(q2) qµqν

q2

)
and hence,

∆′µν(q) = ∆µν(q) +
1

(q2 − iε)2
Mµν . (2.62)

Then qµ∆′µν(q) = qµ∆µν(q) = 1−ξ(q2)
q2−iε qν .

In terms of the complete one-particle irreducible photon propagator Π∗µν = Π∗νµ one has (with

obvious index contractions)

∆′ = ∆ + ∆Π∗∆ + . . . = (1−∆Π∗)−1∆ , (2.63)

but also

∆′ = ∆ + ∆Π∗∆ + ∆Π∗∆Π∗∆ + . . . = ∆ + ∆Π∗(∆ + ∆Π∗∆ + . . .) = ∆ + ∆Π∗∆′ . (2.64)
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Contracting the last equation with qµ on the left yields15 0 = 1−ξ(q2)
q2−iε q

νΠ∗νρ∆
′ρσ, hence qνΠ∗νρ = 0. It

follows that

Π∗µν(q) = (q2ηµν − qµqν)π(q2) . (2.65)

Then (∆Π∗)ρσ = 1
q2−iεΠ

∗ρσ so that (1 − ∆Π∗)µν = 1
q2−iε (q2ηµν(1− π) + qµqνπ) whose inverse is

(1−∆Π∗)−1
µν = 1

1−π(q2)

(
ηµν − π(q2) qµqν

q2

)
. Using this in (2.63) gives

∆′µν =
[
(1−∆Π∗)−1∆

]
µν

=
ηµν − [ξ(q2)(1− π(q2)) + π(q2)] qµqν

q2

(1− π(q2))(q2 − iε)
≡

ηµν − ξ̃(q2) qµqν
q2

(1− π(q2))(q2 − iε)
(2.66)

As before, we require that the complete photon propagator should have a pole at the physical

mass and close to this pole be normalized as the free propagator. Of course, we expect the physical

mass to be still zero, although this needs to be verified. Here we do not prove this statement but

give evidence for it. Indeed, since Π∗µν is one-particle irreducible it is not expected to have any poles

at q2 = 0. It certainly has branch cut singularities and it could, at least in principle, also have poles

at q2 = −M2 due to intermediate bound states of mass M . However, we do not expect the latter

to have zero mass. If Π∗µν has no pole at q2 = 0, then π(q2) does not have such a pole either, and

then ∆′µν keeps its pole at q2 = 0. Note that if π(q2) had a pole at q2 = 0, say π(q2) ∼ a
q2 − b then

∆′ ∼ 1
q2(1−a/q2+b)

= 1
q2−a+bq2 = 1

1+b
1

q2− a
1+b

would have its pole shifted to q2 = a
1+b

. On the other hand,

if π(q2) has a pole at q2 = −M2 with M2 6= 0, say π(q2) ∼ a
q2+M2 −b then ∆′ keeps its pole at q2 = 0,

but there is an additional pole that appears at q2 = −M2 + a
1+b

. Clearly, this is undesirable, too.

Henceforth we assume that indeed π(q2) does not have any pole. Then, for the correctly normalized

Aµ the residue of ∆′ at the pole should be ηµν − ξ(q2) qµqν
q2 which requires

π(0) = 0 and π(q2) should not have a pole . (2.67)

As for the scalar or Dirac fields we can rewrite the (bare) Lagrangian, originally written in terms of

the bare fields AµB, in terms of the renormalized fields Aµ and the constant Z3, and then separate a

free and an interaction part. In order to do so, we also need to start with a bare parameter αB for

the “gauge-fixing” term:

L = −1

4
FB
µνF

µν
B −

αB
2

(∂µA
µ
B)2 + . . . = −1

4
Z3 FµνF

µν − αBZ3

2
(∂µA

µ)2 + . . .

= −1

4
FµνF

µν − α

2
(∂µA

µ)2 − 1

4
(Z3 − 1)FµνF

µν + . . . , (2.68)

with α = Z3 αB. The terms + . . . involve the couplings to the matter fields and enter only in the

loop-corrections to the photon propagator. We see that the free propagator for the renormalized

field Aµ now is the same ∆µν with the same ξ(α) as before, while the quadratic “counterterm”

15Except for α→∞ one has ξ 6= 1.
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−1
4
(Z3 − 1)FµνF

µν gives a purely transverse contribution to the one-particle irreducible propagator

Π∗µν . Hence it contributes a piece 1− Z3 to π(q2) and we conclude

π(q2) = 1− Z3 + πloop(q2) . (2.69)

The residue condition (2.67) then determines Z3 in terms of πloop as

Z3 = 1 + πloop(0) . (2.70)

We have shown how all the renormalization constants Z, Z2 and now Z3 are determined by the

renormalization conditions in terms of the loop contributions to the various one-particle irreducible

functions. In practice though, if one wants to compute these one-particle irreducible functions one

does not need to explicitly determine the Z’s, as we have seen above for Π∗ (for the scalar) or for Σ∗

for the fermions. Similarly, for the photon, inserting the value (2.70) of Z3 into (2.69) simply gives

π(q2) = πloop(q2)− πloop(0) , (2.71)

which clearly satisfies (2.67), and we see (again) that the renormalized π(q2) is given by its loop-

contribution, with its first Taylor coefficient subtracted.
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3 One-loop radiative corrections in φ4 and QED

We will first work out the one-loop radiative corrections in some detail for QED and at the end of

this section quickly consider those of scalar φ4 theory.

3.1 Setup

Recall that the renormalized fields are those that have correctly normalized residues of their propaga-

tors close to their poles. They are related to the bare fields which appear in the original Lagrangian

by field renormalization factors. The renormalized masses are defined as the positions of the poles of

the complete propagators (poles at q2 = −m2) and are related to the bare masses appearing in the

Lagrangian. Finally, coupling constants are also renormalized. For electrodynamics with charged

Dirac fermions ψ

ψ = Z
−1/2
2 ψB , m = mB + δm

Aµ = Z
−1/2
3 AµB , e = Z

1/2
3 eB , (3.1)

while for scalars

φ = Z−1/2φB , m2 = m2
B + δm2 . (3.2)

The original Lagrangian is always written in terms of the bare fields and bare masses, with the same

numerical coefficients as for the free fields, plus the usual interactions with bare coupling constants.

For spinor QED we have

L = −1

4
FB
µνF

µν
B − ψ̄B(∂/+mB)ψB − ieBABµψ̄BγµψB −

αB
2

(∂µA
µ
B)2 . (3.3)

We have included the gauge-fixing term with a bare parameter as discussed above (2.68). Using (3.1)

together with α = Z3αB, L is rewritten as

L = L0 + L1 + L2 , (3.4)

L0 = −1

4
FµνF

µν − ψ̄(∂/+m)ψ − α

2
(∂µA

µ)2 , (3.5)

L1 = −ieAµψ̄γµψ , (3.6)

L2 = −1

4
(Z3 − 1)FµνF

µν − (Z2 − 1)ψ̄(∂/+m)ψ + Z2δmψ̄ψ − ie(Z2 − 1)Aµψ̄γ
µψ .

(3.7)

Clearly, L0 is exactly like the free Lagrangian but now with renormalized fields and masses. Similarly,

L1 is exactly like the original interaction term but now with renormalized fields and couplings, resp.

charges. The third term, L2 is due to the difference between bare and renormalized quantities. Its

terms are called the counterterms. If we would take all couplings to zero so that all fields become

free, there no longer would be a distinction between bare and renormalized quantities and in this

limit L2 would vanish.
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The complete propagators for the renormalized fields are −iS ′(k/), −i∆′µν(q) and −i∆′(q) with

for ψ : S ′(k/) =
(
ik/+m− Σ∗(k/)− iε

)−1
, (3.8)

for Aµ : ∆′µν = (1−∆Π∗)−1
µρ∆ρ

ν with ∆µν(q) =
ηµν − ξ qµqνq2

q2 − iε
Π∗µν(q) = (q2ηµν − qµqν)π(q2) (3.9)

or ∆′µν(q) =
ηµν − [ξ + (1− ξ)π(q2)] qµqν

q2

(1− π(q2))(q2 − iε)
, (3.10)

(3.11)

for φ : ∆′(q) =
(
q2 +m2 − Π∗(q2)− iε

)−1
. (3.12)

The Σ(k/), π(q2) and Π∗(q2) get contributions from the loops (including also counterterms in the

loops) and from the counterterms at tree-level:

fermions : Σ∗(k/) = −(Z2 − 1)(ik/+m) + Z2 δm+ Σ∗loop(k/) , (3.13)

photons : π(q2) = −(Z3 − 1) + πloop(q2) , (3.14)

scalars : Π∗(q2) = −(Z − 1)(q2 +m2) + Z δm2 + Π∗loop(q2) . (3.15)

One imposes the renormalization conditions (correct poles and residues)

fermions : Σ∗(im) = 0 , ∂
∂k/

Σ∗(k/)
∣∣
k/=im

= 0 , (3.16)

photons : π(0) = 0 and π(q2) should have no pole at any q2 , (3.17)

scalars : Π∗(−m2) = 0 , d
dq2 Π∗(q2)

∣∣
q2=−m2 = 0 . (3.18)

3.2 Evaluation of one-loop integrals and dimensional regularization

When evaluating one-loop diagrams one typically encounters integrals of the type

IN =

∫
d4k

1

D1D2 . . . DN

and Iµ1...µr
N =

∫
d4k

kµ1 . . . kµr

D1D2 . . . DN

, (3.19)

where

Di = [(k − pi)2 +m2
i − iε] . (3.20)

The pi are combinations of the external momenta and the mi are the masses appearing in the

propagators. Since each Di contains a k2 the integrand of Iµ1...µr
N behaves for large k as ∼ d4k kr

k2N ∼
k3+r−2N dk. (This is easy to see once the integral has been continued to Euclidean signature, but the

following discussion is equally valid in Minkowski signature.) Hence:

• The integral diverges for 3 + r − 2N > −1, i.e. 2N − r < 4.

• The integral diverges logarithmically for 3 + r − 2N = −1, i.e. 2N − r = 4.

• The integral converges for 3 + r − 2N < −1, i.e. 2N − r > 4.
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The 4 comes from the space-time dimension and would have to be replaced by d in d space-time

dimensions. Actually, one can formally continue to non-integer and more-over to complex dimensions

d where the integral can be evaluated and yields a meromorphic function of d with poles when d is

an even integer. This is the basis for dimensional regularization.

In dimensional regularization one replaces∫
d4k (. . .) →

∫
ddk (. . .) . (3.21)

As we will see, this makes convergent all our integrals (which we continue to call IN and Iµ1...µr
N ) for

d 6= 2, 4, . . . . The indices µ, ν, ρ, . . . formally become d-dimensional indices. One still has kµkµ = k2

but this now is a sum of d terms. In particular, ηµνηµν = δµµ = d or, when dealing with γ-matrices,

γµγµ = δµµ = d. Also, the usual rules for replacements in tensor integrals have to be accordingly

modified, e.g. ∫
ddk kµkν f(k2) =

∫
ddk

1

d
ηµνk2 f(k2) , (3.22)

where the factor 1
d

can be checked by contracting with ηµν . Dimensional regularization can be

consistently implemented except when the antisymmetric 4-index tensor εµνρσ plays an important

role, as in the definition of γ5 and of chiral fermions.16

Feynman’s trick : To facilitate the integration, one rewrites the denominators appearing in the

integrals (3.19), using the formula

1

Da1
1 Da2

2 . . . DaN
N

=
Γ(a1 + . . . aN)

Γ(a1) . . .Γ(aN)

∫ 1

0

dx1 . . .

∫ 1

0

dxNδ(1−
∑

xj)
xa1−1

1 . . . xaN−1
N

[x1D1 + . . .+ xNDN ]
∑
aj
. (3.23)

(Recall Γ(x + 1) = xΓ(x), Γ(n) = (n− 1)!, in particular Γ(1) = Γ(2) = 1, Γ(3) = 2.) Note that the

iε terms in
∑
xjDj add up to

∑
xj iε = iε. If all aj = 1 eq. (3.23) simplifies:

1

D1D2 . . . DN

= (N − 1)!

∫ 1

0

dx1 . . .

∫ 1

0

dxN
δ(1−

∑
xj)

[x1D1 + . . .+ xNDN ]N
, (3.24)

and in particular

1

D1D2

=

∫ 1

0

dx
1

[xD1 + (1− x)D2]2
,

1

D1D2D3

= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[xD1 + yD2 + (1− x− y)D3]3
.

(3.25)

Since Dj = (k − pj)2 +m2
j − iε = k2 − 2kpj + p2

j +m2
j − iε, one has

x1D1 + . . .+ xNDN = k2 − 2kP (xj) +M2(xj)− iε = (k − P (xj))
2 +M2(xj)− P 2(xj)− iε , (3.26)

16This is one way to see why chiral fermions can lead to anomalies: one cannot simply use the gauge invariant
dimensional regularization in the presence of chiral fermions.
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with

P (xj) = x1p1 + x2p2 + . . .+ (1− x1 − . . .− xN−1)pN

M2(xj) = x1(p2
1 +m2

1) + x2(p2
2 +m2

2) + . . .+ (1− x1 − . . .− xN−1)(p2
N +m2

N) . (3.27)

Then

IN =

∫
ddk (N − 1)!

∫ 1

0

dx1 . . .

∫ 1

0

dxN
δ(1−

∑
xj)

[(k − P (xj))2 +M2(xj)− P 2(xj)− iε]N
(3.28)

One interchanges the now convergent k-integration with the xj-integrations, so that

IN = (N − 1)!

∫ 1

0

dx1 . . .

∫ 1

0

dxN δ(1−
∑

xj) ĨN
(
P (xj),M

2(xj)
)
, (3.29)

with

ĨN(P,M) =

∫
ddk

[(k − P )2 +M2 − P 2 − iε]N
=

∫
ddk′

[k′2 +R2 − iε]N
, (3.30)

where we set R2 = M2 − P 2 and shifted the integration variables form k to k′ = k − P . Note that

such shifts are justified only because we have a convergent integral. Of course, one has an analogous

formula for the Iµ1...µr
N with

Ĩµ1...µr
N (P,M) =

∫
ddk

kµ1 . . . kµr

[(k − P )2 +M2 − P 2 − iε]N
=

∫
ddk′

(k′ + P )µ1 . . . (k′ + P )µr

[k′2 +R2 − iε]N
, (3.31)

At this point one needs to make a Wick rotation, to be discussed in the next subsection. This

results in a factor of i and the four-momentum kµ then is a Euclidean four-momentum, which we

denote by kµE. (Strictly speaking, the P µ appearing as argument in ĨN(P,M) should then also be

continued to a Euclidean P µ
E .) The last expression in (3.30) for the integral is easily evaluated due

to its spherical symmetry. Using ddkE = dΩd−1k
d−1
E dkE and∫

Sd−1

dΩd−1 = vol(Sd−1) =
2πd/2

Γ(d
2
)
, (3.32)

we get

ĨN(P,M) = i
2πd/2

Γ(d
2
)

∫ ∞
0

kd−1
E dkE

[kE
2 +R2]N

= i
πd/2

Γ(d
2
)

∫ ∞
0

x
d
2
−1dx

[x+R2]N

= i
πd/2

Γ(d
2
)
(R2)

d
2
−N
∫ ∞

0

dy y
d
2
−1(1 + y)−N . (3.33)

The last integral is ∫ ∞
0

dy y
d
2
−1(1 + y)−N = B

(d
2
, N − d

2

)
≡

Γ(d
2
) Γ(N − d

2
)

Γ(N)
, (3.34)

so that finally (R2 = M2 − P 2)

ĨN(P,M) = i πd/2
Γ(N − d

2
)

(N − 1)!

(
M2 − P 2

) d
2
−N

. (3.35)
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Inserting this into (3.29) and performing the integrations over the Feynman parameters xj then

yields IN . Performing explicitly these xj integrations is often the less obvious part of the story. Let

us summarize: so far, we have shown that, using Feynman’s trick, the dimensionally regularized

momentum integration reduces to

∫
ddk

[k2 +R2 − iε]N
= i πd/2

Γ(N − d
2
)

Γ(N)
(R2)

d
2
−N . (3.36)

By differentiating ĨN(P,M) with respect to the Pµ one can generate the integrals with factors of

kµ in the numerator. Indeed, rewriting the integrand in (3.30) as [k2 − 2kP + M2]−N it is obvious

that

Ĩµ1...µr
N (P,M) =

(N − r − 1)!

2r(N − 1)!

∂

∂Pµ1

. . .
∂

∂Pµr
ĨN−r(P,M) . (3.37)

Plugging in the explicit expression (3.35) for ĨN−r(P,M) one gets

Ĩµ1...µr
N (P,M) = i πd/2

Γ(N − r − d
2
)

2r(N − 1)!

∂

∂Pµ1

. . .
∂

∂Pµr

(
M2 − P 2

) d
2
−N+r

(3.38)

Integrating this expression, with M2 = M2(xj) and P 2 = P 2(xj), over
∫ 1

0
dx1 . . .

∫ 1

0
dxN δ(1−

∑
xj)

yields the Iµ1...µr
N .

The most commonly encountered cases are r = 1 with

ĨµN(P,M) = i πd/2
Γ(N − d

2
)

(N − 1)!
P µ
(
M2 − P 2

) d
2
−N

, (3.39)

and r = 2 where17

ĨµνN (P,M) = i πd/2
{Γ(N − d

2
− 1)

2(N − 1)!
ηµν
(
M2−P 2

) d
2
−N+1

+
Γ(N − d

2
)

(N − 1)!
P µP ν

(
M2−P 2

) d
2
−N
}
. (3.40)

There is an alternative, often simpler way, to compute the integrals IµN , IµνN , etc. First note that a

slight generalization of equations (3.33) to (3.36) yields the useful formula

∫
ddk (k2)s

(k2 +R2 − iε)N
= i πd/2

Γ(d
2

+ s)Γ(N − d
2
− s)

Γ(d
2
)Γ(N)

(R2)
d
2

+s−N . (3.41)

Next, it follows from Lorentz (resp. Euclidean rotational) invariance (cf. (3.22)) that

∫
ddk

kµ

(k2 +R2 − iε)N
= 0 ,

∫
ddk

kµkν

(k2 +R2 − iε)N
=

1

d
ηµν
∫

ddk k2

(k2 +R2 − iε)N
. (3.42)

17In the Euclidean, one should replace ηµν by δµν .
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One then has from (3.31), e.g. for r = 2

ĨµνN (P,M) =

∫
ddk

(kµ + P µ)(kν + P ν)

(k2 +R2)N
=
ηµν

d

∫
ddk k2

(k2 +R2)N
+ P µP ν

∫
ddk

(k2 +R2)N

= i πd/2
{
ηµν

Γ(N − d
2
− 1)

2(N − 1)!
(R2)

d
2

+1−N + P µP ν Γ(N − d
2
)

(N − 1)!
(R2)

d
2
−N
}
, (3.43)

which, of course, coincides with (3.40).

Finally one needs the expansions of the various Γ-factors as d→ 4. We always let

d = 4− ε . (3.44)

Then

Γ
(

2− d

2

)
=

2

ε
− γ +O(ε) ,

Γ
(

1− d

2

)
=

2

2− d
Γ
(

2− d

2

)
= −2

ε
+ γ − 1 +O(ε) ,

(3.45)

where γ ' 0.5772 . . . is Euler’s constant.

3.3 Wick rotation

In the previous subsection we had to evaluate integrals like

ĨN(P,M) =

∫
ddk

[k2 +R2 − iε]N
, (3.46)

where R2 = M2 − P 2. Furthermore, ddk = dk0 dd−1~k and k2 = ~k2 − k2
0. Thus the integral explicitly

is

ĨN(P,M) =

∫
dd−1~k

∫ ∞
−∞

dk0

 −1(
k0 −

(√
~k2 +R2 − iε′

))(
k0 +

(√
~k2 +R2 − iε′

))
N . (3.47)

The integrand has poles at
√
~k2 +R2 − iε′ and at −

√
~k2 +R2 + iε′, as shown on the left of Fig. 6.

As it is also clear from this figure, one can deform the k0-integration contour away from the real axis

without crossing any of these poles until on gets the integration contour depicted on the right part

of the figure and denoted Γ1 ∪ Γ2 ∪ Γ3:

∫ ∞
−∞

dk0(. . .) =

∫
Γ1

dk0(. . .) +

∫
Γ2

dk0(. . .) +

∫
Γ3

dk0(. . .) . (3.48)

Now with Γ1 and Γ3 being “quarter”-circles of radius going to infinity, the corresponding integrals

vanish, so that only the integral over Γ2 remains. But Γ2 is the imaginary axis in the complex k0

plane, and if one sets

k0 = ikE0 , (3.49)
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Γ

Γ

Γ

1

2

Figure 6: The integration contours for the k0-integration

then, as kE0 runs from −∞ to +∞, k0 runs along the imaginary axis, i.e. along Γ2. Hence∫
Γ2

dk0f(k0) = i

∫ ∞
−∞

dkE0 f(ikE0 ) . (3.50)

Applying this to (3.47) or directly to (3.46) finally gives

ĨN(P,M) = i

∫
dd−1~k

∫ ∞
−∞

dkE0

 −1(
ikE0 −

(√
~k2 +R2

))(
ikE0 +

(√
~k2 +R2 − iε′

))
N

= i

∫
ddkE

[k2
E +R2]N

, (3.51)

where, of course, k2
E = (kE0 )2 + ~k2.

What happens if the integrand contains some expression involving kµp
µ = ~k · ~p− k0p0 ? Obviously, this

becomes ~k · ~p− ikE0 p0 = ~k · ~p+ kE0 p
E
0 ≡ kEµ pEµ if we also let p0 = ipE0 . Finally, consider

ĨµνN (P,M) =

∫
ddk kµ kν

[k2 +R2 − iε]N
. (3.52)

Doing the Wick rotation yields

ĨjkN (P,M) = i

∫
ddkE kjE k

j
E

[kE
2 +R2]N

, Ĩ00
N (P,M) = i

∫
ddkE (−)k0

E k
0
E

[kE
2 +R2]N

Ĩ0j
N (P,M) = i

∫
ddkE (−i)k0

E k
j
E

[kE
2 +R2]N

.

(3.53)
Due to the spherical symmetry of the Euclidean integral one has∫

ddkE kµE k
ν
E

[kE
2 +R2]N

=
1

d
δµν

∫
ddkE k2

E

[kE
2 +R2]N

, (3.54)

which together with (3.53) gives

ĨµνN,d(P,M) =
1

d
ηµν i

∫
ddkE k2

E

[kE
2 +R2]N

. (3.55)

This is consistent with what would have been obtained by first replacing kµ kµ by 1
dη

µνk2, and then doing

the Wick rotation. One can summarize all this as the following
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Recipe for the Wick rotation: do the continuation k0 = i kE0 in the integrand, replace similarly all

external momenta that may appear in scalar products by their Euclidean counterparts, replace ddk

by ddkE (with all components of kµE real), and multiply the whole integral by a factor of i. Integrands

involving kµ kν × f(k2) can be replaced by 1
d
ηµν k2 × f(k2), independently of the Wick rotation.

3.4 Vacuum polarization

The computation of the one-loop vacuum-polarization diagram shown in Fig. 7 is straighforward. To

order e2 this is the only contribution to Π∗µνloop(q), while at order e4 one would get 2-loop diagrams,

as well as one-loop diagrams with counterterms inserted, as shown in Fig. 8.

ν

k

k−q

q q

µ

Figure 7: The one-loop vacuum polarization diagram. Of course, although we have drawn the
external photon propagators, they are not to be included in Π∗µν .

Figure 8: Loop contributions to the vacuum polarization at order e4. The two upper diagrams are
two-loop diagrams, while the two lower diagrams are one-loop diagrams with O(e2) counterterms
inserted

Now, applying the Feynman rules to the order e2 diagram of Fig. 7 we get

i(2π)4Π∗µνloop,e2(q) = −
∫

d4k tr

{
(−i)
(2π)4

−ik/+m

k2 +m2 − iε
(2π)4eγµ

(−i)
(2π)4

−i(k/− q/) +m

(k − q)2 +m2 − iε
(2π)4eγν

}
,

(3.56)

where the overall minus sign is due to the fermion loop. Simplifying a bit gives

Π∗µνloop,e2(q) =
−i e2

(2π)4

∫
d4k

tr [(−ik/+m)γµ(−i(k/− q/) +m)γν ]

[k2 +m2 − iε][(k − q)2 +m2 − iε]
. (3.57)
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This integral clearly diverges for large |k| where the integrand behaves like ∼ |k|−2 while the

integration measure goes like |k|3d|k|. If we simply “cut off” the large |k| values et |k|max = Λ we

expect the resulting integral to be dominated by a term ∼
∫ Λ |k|3d|k| × |k|−2 ∼ Λ2. If this is the

case one says the integral is quadratically divergent. We have seen that gauge invariance requires

Π∗µν(q) = (q2ηµν − qµqν)π(q2) and hence also Π∗µνloop,e2(q) = (q2ηµν − qµqν)πloop,e2(q2). As long as our

regularization procedure does not destroy gauge invariance this must still be true for the regularized

integrals. In order to manifestly preserve gauge invariance we will use dimensional regularization.

Before doing the computation, let us argue a bit more what we should expect. It is not difficult to

see that taking a derivative of Π∗µνloop,e2(q) with respect to qρ results in an integrand behaving as |k|−3

for large |k| and hence an integral that is less divergent, i.e. behaves as ∼ Λ rather than Λ2. Taking

one more derivative with respect to qσ results in an integral that is only logarithmically divergent,

and taking a third derivative with respect to a qλ gives a convergent integral. This means that the

diverging part of the integral is annihilated by 3 derivatives with respect to the external momentum.

Thus the diverging part of Π∗µνloop,e2(q) must be a polynomial of second degree in the q, and by gauge

invariance:

Π∗µνloop,e2,div(q) = (q2ηµν − qµqν)πloop,e2,div ,
∂

∂qσ
πloop,e2,div = 0 . (3.58)

Hence, although πloop,e2 will be a non-trivial function of q2, its diverging part (the coefficient of the

poles in ε) will be constant. From (3.58) we see that we can e.g. extract this divergent part of πloop,e2

by taking two derivatives of (3.57) and setting q = 0. The resulting integral clearly is logarithmically

divergent. One often says that gauge invariance has reduced the degree of divergence of the vacuum

polarization from 2 (quadratic) to 0 (logarithmic).

Let us now do the computation. As already mentioned, we choose dimensional regularization as explained
above. Applying also the Feynman trick yields

Π∗µν
loop,e2

(q) =
−i e2

(2π)4

∫ 1

0
dx

∫
ddk

tr [. . .]

[(k − xq)2 +m2 + x(1− x)q2 − iε]2
. (3.59)

The Dirac trace can still be evaluated as in 4 dimensions18 so that

tr [. . .] = 4
[
−kµ(k − q)ν − kν(k − q)µ + k(k − q)ηµν +m2ηµν

]
. (3.60)

Shifting the integration variable k − xq → k this becomes

Π∗µν
loop,e2

(q) =
−4i e2

(2π)4

∫ 1

0
dx

∫
ddk
[
− (k + xq)µ(k − (1− x)q)ν − (k + xq)ν(k − (1− x)q)µ

+(k + xq)(k − (1− x)q)ηµν +m2ηµν
] 1

[k2 +m2 + x(1− x)q2]2
. (3.61)

Now one can do the Wick rotation. As explained in the previous subsection, in order for this to make
sense one must also continue the external qµ to a Euclidean qµE . Furthermore, due to rotational symmetry,

18All one needs is that {γµ, γν} = 2ηµν1 and the only issue concerns tr1 which can be chosen to be 2d/2 = 4×2−ε/2

or just 4. The ambiguity consisting in an overall 2−ε/2 is of the same type as the ambiguity in choosing to continue
also the factors 1

(2π)4 to 1
(2π)d

. In the end this only changes the renormalization constants Zi by finite amounts and

does not affect the renormalized Π∗ or Σ∗.
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terms linear in kµ don’t contribute to the integral, while terms kµ kν can be replaced by 1
d η

µνk2 which

become 1
d η

µνk2
E after the continuation. Hence

Π∗µν
loop,e2

(qE) =
−4i e2

(2π)4

∫ 1

0
dx i

∫
ddkE

[
m2 − x(1− x)q2

E + (1− 2
d)k2

E

]
ηµν + 2x(1− x)qµEq

ν
E[

k2
E +m2 + x(1− x)q2

E

]2 . (3.62)

Using the formula (3.41) for s = 0 and s = 1 with R2 = m2 +x(1−x)q2
E (and taking into account that here

we already have done the Wick rotation19) yields

Π∗µν
loop,e2

(qE) =
4e2

(2π)4

∫ 1

0
dx

{[[
m2 − x(1− x)q2

E

]
ηµν + 2x(1− x)qµEq

ν
E

]
πd/2 Γ

(
2− d

2

)
(R2)

d
2
−2

+
(

1− 2

d

)
ηµν πd/2

Γ(d2 + 1)Γ(1− d
2)

Γ(d2)
(R2)

d
2
−1

}
. (3.63)

Observing that (1− 2
d)

Γ( d
2

+1)Γ(1− d
2

)

Γ( d
2

)
= (1− 2

d) d2 Γ(1− d
2) = (d2 − 1)Γ(1− d

2) = −Γ(2− d
2) we get

Π∗µν
loop,e2

(qE) =
4e2

(2π)4
Γ
(

2− d

2

)
πd/2

∫ 1

0
dx
[ [
m2 − x(1− x)q2

E −R2
]︸ ︷︷ ︸ ηµν + 2x(1− x)qµEq

ν
E

]
(R2)

d
2
−2

−2x(1− x)q2
E

=
8e2

(2π)4
Γ
(

2− d

2

)
πd/2

(
qµEq

ν
E − q2

Eη
µν
) ∫ 1

0
dxx(1− x)

[
m2 + x(1− x)q2

E

] d
2
−2

. (3.64)

Recall that Π∗µν(q) =
(
q2ηµν − qµqν

)
π(q2), so that we read from (3.64), upon changing back the argument

from qE to q,

πloop,e2(q2) = − 8e2

(2π)4
Γ
(

2− d

2

)
πd/2

∫ 1

0
dxx(1− x)

[
m2 + x(1− x)q2

] d
2
−2

. (3.65)

Note that, when doing the dimensional regularization, one has various options. In addition to continuing

d4k → ddk one can also continue 1
(2π)4 → 1

(2π)d
and, as already mentioned, tr1 = 4 → 2

d
2 . Furthermore,

in d dimensions the coupling e no longer would be dimensionless. In order to avoid this, one replaces e by

µ̃2− d
2 e where µ̃ is some mass scale and then e remains dimensionless. All this results in an additional factor

(Cµ̃)4−d where C possibly includes the additional factors 2π or 1/
√

2, so that

πloop,e2(q2) = − e2

2π2
Γ
(

2− d

2

)
πd/2−2C4−d

∫ 1

0
dxx(1− x)

[
m2 + x(1− x)q2

µ̃2

] d
2
−2

. (3.66)

Next one sets d = 4−ε and expands the result in ε. Recall from (3.45) that Γ(2− d
2) = Γ( ε2) = 2

ε−γ+O(ε),

and also aε = eε log a = 1 + ε log a+O(ε2), so that

Γ
(

2− d

2

)
πd/2−2C4−d[. . .]

d
2
−2 =

(2

ε
− γ +O(ε)

)(
1− ε

2
log π − ε

2
log[. . .] + ε logC +O(ε2)

)
=

2

ε
− γ − log π + 2 logC − log[. . .] +O(ε) . (3.67)

Since
∫ 1

0 dxx(1− x) = 1
6 , we finally get

πloop,e2(q2) = − e2

6π2

(
1

ε
− γ

2
+ log

C√
π
− 3

∫ 1

0

dx x(1− x) log

[
m2 + x(1− x)q2

µ̃2

]
+O(ε)

)
. (3.68)

19Indeed in eq. (3.41) the l.h.s. is still Minkowskian, so in using (3.41) for our present Euclidean integral one has to
omit the i on the r.h.s. of (3.41).
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Recall from (2.69) that π also contains the contribution from the counterterm 1− Z3, and hence

πe2 includes these contributions up to order e2:

πe2(q2) = (1− Z3)e2 + πloop,e2(q2) . (3.69)

The renormalization condition (2.70) then gives

(Z3 − 1)e2 = πloop,e2(0) = − e2

6π2

(
1

ε
− γ

2
+ log

C√
π
− 1

2
log

[
m2

µ̃2

]
+O(ε)

)
. (3.70)

For later reference we note that the divergent part simply is

(Z3 − 1)e2
∣∣∣
div

= − e2

6π2

1

ε
. (3.71)

Finally (cf (2.71)),

πe2(q2) = πloop,e2(q2)− πloop,e2(0)

=
e2

2π2

∫ 1

0

dx x(1− x) log

[
1 + x(1− x)

q2

m2

]
+O(ε) .

(3.72)

This now has a finite limit as ε→ 0, so that one can remove the regularization and simply set ε = 0.

Note that this renormalized πe2(q2) does not depend on µ̃ nor on the arbitrariness of the continuation

which showed up through the constant C. We also note that πe2(q2) is a monotonuous function of

q2.

Note that πe2(q2) is positive for q2 > 0 and negative for −4m2 < q2 < 0, while it develops an

imaginary part for q2 < −4m2. This imaginary part translates the possibility that a photon with

such q can yield an on-shell electron-positron pair. More precisely, if viewed as a function of the

complex variable q2, the function πe2(q2) , and thus also the full photon propagator, has a branch cut

along the negative real axis for q2 < −4m2. Thus the intermediate two-particle e+ e− physical state

yields a branch cut singularity at the corresponding values of q2, in agreement with the discussion in

section 2.1.

3.5 Electron self energy

The electron self-energy diagram shown in Fig. 9 gives after dimensional regularization

i(2π)4 Σ∗loop,e2(p/) =

∫
ddk

(−i)
(2π)4

ηρσ
k2 − iε

(2π)4eγρ
(−i)
(2π)4

(
− i(p/− k/) +m

)
(p− k)2 +m2 − iε

(2π)4eγσ , (3.73)

or after simplifying:

Σ∗loop,e2(p/) = ie2

∫
ddk

(2π)4

1

k2 − iε
γρ
(
− i(p/− k/) +m

)
γρ

(p− k)2 +m2 − iε

= ie2

∫
ddk

(2π)4

1

k2 − iε
(d− 2)i(p/− k/) + dm

(p− k)2 +m2 − iε
(3.74)
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k

p
p−k

p

Figure 9: The electron self-energy diagram. As before, the external propagators are not to be
included in Σ∗.

Introducing the Feynman parameter and shifting the integration variables gives

Σ∗loop,e2(p/) = ie2

∫ 1

0
dx

∫
ddk

(2π)4

(d− 2)i(p/− k/) + dm

[(k − xp)2 + x(1− x)p2 + xm2 − iε]2

= ie2

∫ 1

0
dx

∫
ddk′

(2π)4

(d− 2)i
(
(1− x)p/− k/′

)
+ dm

[k′2 + x(1− x)p2 + xm2 − iε]2

= ie2

∫ 1

0
dx [(d− 2) (1− x)ip/+ dm]

∫
ddk

(2π)4

1

[k2 + x(1− x)p2 + xm2 − iε]2

= − e2

(2π)4
πd/2 Γ

(
2− d

2

)∫ 1

0
dx [(d− 2) (1− x)ip/+ dm]

[
xm2 + x(1− x)p2

] d
2
−2

. (3.75)

As for the vacuum polarization, we introduce (Cµ̃)4−d to keep e dimensionless and to allow for the other
options in doing the dimensional continuation. Expanding in ε = 4− d as above in eq. (3.67) gives

Σ∗loop,e2(p/) = − e2

16π2

∫ 1

0
dx

(
2

ε
− γ + log

C2

π
− log

xm2 + x(1− x)p2

µ̃2

)
[(d− 2) (1− x)ip/+ dm]

= − e2

16π2

{(
2

ε
− γ + log

C2

π

)[
d− 2

2
ip/+ dm

]

−
∫ 1

0
dx [(d− 2) (1− x)ip/+ dm] log

xm2 + x(1− x)p2

µ̃2

}
. (3.76)

Now we can drop the O(ε) terms to get

Σ∗loop,e2(p/) = − e2

16π2

{
2

ε
(ip/+ 4m)− ip/− 2m+

(
log

C2

π
− γ
)

(ip/+ 4m)

−
∫ 1

0

dx [2(1− x)ip/+ 4m] log
xm2 + x(1− x)p2

µ̃2

}
. (3.77)

As discussed in general above, the self-energy Σ∗(p/) also receives contributions from the counterterms,

cf. eq. (2.38):

Σ∗e2(p/) = −(Z2 − 1)e2(ip/+m) + (Z2δm)e2 + Σ∗loop,e2(p/) . (3.78)

The renormalization conditions then fix Z2 and δm according to (2.40) and (2.41) which now read

(Z2 − 1)e2 = −i ∂
∂p/

Σ∗loop,e2(p/)
∣∣∣
p/=im

, δme2 = −Σ∗loop,e2(im) , (3.79)
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so that

δme2 =
e2

8π2
m

{
3

ε
− 1 + 3γ

2
+ 3 log

C√
π
−
∫ 1

0

dx(1 + x) log
x2m2

µ̃2

}
, (3.80)

and

(Z2 − 1)e2 = − e2

8π2

{
1

ε
− 1 + γ

2
+ log

C√
π
−
∫ 1

0

dx

[
(1− x) log

x2m2

µ̃2
+

2(1− x2)

x

]}
. (3.81)

Note that the dx-integral for Z2 diverges as x → 0. This is actually an infrared divergence which

occurs for on-shell electrons and is related to the possibility of emitting soft (very low energy) photons.

The proper treatment of such infrared divergences would be a chapter by itself. Let us only say that

when summing appropriate diagrams corresponding to physically measurable and distinguishable

situations such infrared divergences cancel. Note that the UV-divergent part simply is

(Z2 − 1)e2
∣∣∣
div

= − e2

8π2

1

ε
. (3.82)

We finally get

Σ∗e2(p/) =
e2

8π2

∫ 1

0

dx

{[
(1− x) ip/+ 2m

]
log
[m2 + (1− x)p2

xm2

]
− 2(1− x2)

x
(ip/+m)

}
. (3.83)

Although there are infrared divergences as x→ 0 as just discussed, all ultraviolet divergences (1
ε

poles)

have cancelled.

3.6 Vertex function

p’−k

p’

p

p−p’k

p−k

Figure 10: The one-loop vertex function diagram. The external photon and electron propagators are
not to be included in Γµ(p′, p).

The vertex function Γµ(p′, p) was defined in (2.47). Since we are computing with renormalized fields

(and not bare fields) we will automatically compute the renormalized vertex function, and not the

bare one. Note that Γµ(p′, p) is normalized such that its lowest order contribution is just γµ, cf.
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eq. (2.48), while the tree vertex Feynman diagram would give a (2π)4eγµ. Taking this into account

and applying the Feynman rules to the one-loop diagram shown in Fig. 10 gives

Γµloop,e2(p′, p) =

∫
d4k (2π)4eγν

(−i)
(2π)4

−i(p/′ − k/) +m

(p′ − k)2 +m2 − iε
γµ

(−i)
(2π)4

−i(p/− k/) +m

(p− k)2 +m2 − iε
×

×(2π)4eγν
(−i)
(2π)4

1

k2 − iε

= i e2

∫
d4k

(2π)4
γν

−i(p/′ − k/) +m

(p′ − k)2 +m2 − iε
γµ

−i(p/− k/) +m

(p− k)2 +m2 − iε
γν

1

k2 − iε
. (3.84)

For large |k| the integral behaves like
∫

d4k
k4 which diverges logarithmically. We have to introduce

again some regularization, e.g. dimensional regularization as before. Actually, this diagram could

also be regularized by simply including an additional factor M2

k2+M2 into the photon propagator with

M being taken to ∞ in the end. It can be shown that this does not affect the gauge invariance. Of

course, there is also a contribution from the counterterm −ie (Z2 − 1)Aµψ̄γ
µψ in L2:

Γµe2(p′, p) = Γµloop,e2(p′, p) + (Z2 − 1)γµ . (3.85)

We will not do the complete computation of Γµloop,e2(p′, p) here. However, we will extract its divergent

piece and show that it is precisely cancelled by the counterterm with the same Z2 as already deter-

mined from the self-energy. We will also extract a certain finite part which gives the first higher-order

correction to the magnetic moment of the electron, the famous g − 2.

3.6.1 Cancellation of the divergent piece

The divergent part of Γµloop,e2(p′, p) arises from the large |k| limit of the integrand. In this limit one

can neglect the external momenta and the mass so that with dimensional regularization

Γµloop,e2(0, 0)
∣∣∣
m=0

= i e2

∫
ddk

(2π)4
γν

ik/

k2 − iε
γµ

ik/

k2 − iε
γν

1

k2 − iε

= −i e2 (d− 2)

∫
ddk

(2π)4

k2γµ − 2kµkνγν
(k2 − iε)3

= −i e2 γµ
(d− 2)2

d

∫
ddk

(2π)4

1

(k2 − iε)2
. (3.86)

The trouble with this integral is that for d < 4 it is UV convergent but IR divergent, and vice versa

for d > 4 (and UV and IR divergent for d = 4). To avoid the IR divergence, we should have kept

the electron mass m. If we are only interested in the UV divergent behavior it is enough to keep m

in the denominators so that

Γµloop,e2(0, 0)
∣∣∣
div
∼ −i e2 γµ

(d− 2)2

d

∫
ddk

(2π)4

1

(k2 +m2 − iε)2

∼ e2 γµ
(d− 2)2

d

πd/2

(2π)4
Γ
(

2− d

2

)
(m2)

d
2
−2

∼ e2

8π2
γµ

1

ε
. (3.87)
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This divergence should be cancelled by the diverging part of (Z2 − 1)γµ. However, Z2 is already

determined from the above computation of the electron self-energy and, hence, it is by no means

obvious that this cancellation does indeed take place. Nevertheless, we know from the Ward identity

(2.52) that if Σ∗ is finite, then Γµ(p, p), and in particular Γµ(0, 0) must also be finite. It follows

that the divergences must cancel between (3.87) and (Z2 − 1)γµ. Of course, this is confirmed by the

explicit expression (3.82) of Z2: (Z2 − 1)e2
∣∣∣
div

= − e2

8π2
1
ε
. We conclude that the renormalized vertex

function is finite (at least to the order we computed).

3.6.2 The magnetic moment of the electron: g − 2

Historically, the computation of the vertex function has played an important role since it gives the

first correction to the magnetic moment of the electron. This magnetic moment µ is usually expressed

through the g-factor as µ = g e
2m
s, where s ≡ j = 1

2
is the spin of the electron. The tree-level result

which can also be obtained from studying the Dirac equation in a magnetic field is g = 2. Let us

sketch how to obtain the corrections to this result.

First note that one is interested in evaluating Γµ(p′, p) between on-shell wave-functions ū(p′, σ′)

and u(p, σ) as appropriate when computing e.g. the S-matrix elements between an incoming electron

of momentum p and polarization σ and an outgoing one with p′ and σ′. The interaction is with an

electromagnetic field Aµ(q) where q = p′ − p. Now Γµ(p′, p) can involve various products of γµ, p/

and p/′, together with pµ and p
′µ. Moving all p/ to the right till one can use p/u(p, σ) = imu(p, σ) and

moving all p/′ to the left until ū(p′, σ′)p/′ = ū(p′, σ′)im, one is left with the general structure

ū(p′, σ′)Γµ(p′, p)u(p, σ) = ū(p′, σ′)
{
F (q2) γµ− i

2m
G(q2) (p+p′)µ+

1

2m
H(q2) (p−p′)µ

}
u(p, σ) , (3.88)

where the coefficient functions can depend on the only scalar available, i.e. q2 = −2m2− 2p · p′ and,

of course, on m. If one contracts this equation with (p−p′)µ, the left-hand-side vanishes by the Ward

identity (2.54), while the right-hand-side equals q2

2m
H(q2)ūu and thus

H(q2) = 0 . (3.89)

The following identity is valid between the on-shell wave-functions ū(p′, σ′) and u(p, σ) :

i[γµ, γν ](p′ − p)ν = iγµ(p/′ − p/) − i(p/′ − p/)γµ = 2i(p + p′)µ + 4mγµ. We can use it to rewrite

(3.88) as

ū(p′, σ′)Γµ(p′, p)u(p, σ) = ū(p′, σ′)
{(
F (q2) +G(q2)

)
γµ − i

4m
G(q2) [γµ, γν ](p′ − p)ν

}
u(p, σ)

= ū(p′, σ′)
{
− i

2m

(
F (q2) +G(q2)

)
(p+ p′)µ

+
i

4m
F (q2) [γµ, γν ](p′ − p)ν

}
u(p, σ) , (3.90)

This form is particularly useful when studying the limit where q = p′ − p → 0. The Ward identity

(2.53) states ū(p, σ′)Γµ(p, p)u(p, σ) = ū(p, σ′)γµu(p, σ), so that

F (0) +G(0) = 1 . (3.91)
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Indeed, the vertex function captures the quantum corrections to the coupling of the electron to the

electromagnetic field. It contributes ie ū(p′, σ′)Γµ(p′, p)u(p, σ)Aµ(q) to an “effective” −Lint = Hint.

For p = p′ and in the rest frame of the electron this is just +eA0 = (−e)A0, stating that −e is indeed

the charge of the electron one can measure. To determine the magnetic moment, consider the second

rewriting in (3.90). The term ∼ (p+p′)µ is blind to the spin σ and cannot contribute to the magnetic

moment. The second term yields a contribution to the effective interaction Hamiltonian

i

4m
F (q2) ū(p′, σ′)[γµ, γν ]u(p, σ)(p′ − p)ν ieAµ(q) =

ie

8m
F (q2) ū(p′, σ′)[γµ, γν ]Fµν(q)u(p, σ) , (3.92)

where Fµν(q) = iqµAν(q) − iqνAµ(q). In an almost static situation (i.e. to first order in q), one has

ū(0, σ′)[γµ, γν ]Fµν(0)u(0, σ) = 8i ~B · ~Sσ′σ so that the spin-dependent terms in Hint are − e
m
F (0) ~B · ~S ≡

− ~B · ~µ, with the magnetic moment of the electron being

~µ =
e

m
F (0) ~S ≡ g

e

2m
~S , (3.93)

so that the celebrated g-factor equals

g = 2F (0) = 2− 2G(0) , (3.94)

where we used (3.91).

It remains to explicitly compute G(0) at one loop. To do so, we only need to keep the part

∼ (p + p′)µ in Γµ(p′, p), while we can drop the part ∼ γµ. Due to the explicit factor (p + p′)µ we

expect this part to be given by a finite (converging) integral. We start with (3.84) and introduce

dimensional regularization and Feynman parameters as usual:

Γµloop,e2(p′, p)

= − 2i e2

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

γν
(
(p/′ − k/) + im

)
γµ
(
(p/− k/) + im

)
γν{

x
[
(p′ − k)2 +m2

]
+ y
[
(p− k)2 +m2

]
+ (1− x− y)k2 − iε

}3 . (3.95)

The actual computation is a bit lengthy: First one does the γ-matrix algebra in the numerator. The

denominator is
[
(k−xp′− yp)2 + (x+ y)2m2 +xyq2− iε

]3
and one shifts k → k+xp′+ yp and drops

the terms linear in k. The result still contains many terms, but taking Γµ between ū(p′) and u(p)

this can be further simplified as above. Dropping then the terms ∼ γµ one gets

ū(p′)Γµloop,e2(p′, p)u(p)
∣∣∣
p+p′

=
e2

2π4
m

∫ 1

0

dx

∫ 1−x

o

dy ū
[
(x+y)

(
(1−y)pµ+(1−x)p′

µ)−ypµ−xp′µ]u Id(x, y, q2)

(3.96)

where Id(x, y, q
2) is a convergent integral for d < 6. For d = 4 it equals

I4(x, y, q2) =

∫
d4k

[
k2 + (x+ y)2m2 + xyq2 − iε

]−3
=
iπ2

2

[
(x+ y)2m2 + xyq2

]−1
. (3.97)

Writing
∫ 1

0
dx
∫ 1−x

0
dy f(x, y) =

∫ 1

0
dx
∫ 1

0
dy θ(1− x− y)f(x, y) =

∫ 1

0
dx
∫ 1

0
dy θ(1− x− y)f(y, x), we

see that we can symmetrize the integrand of (3.96) in x and y, and thus in p and p′:

ū(p′)Γµloop,e2(p′, p)u(p)
∣∣∣
p+p′

=
ie2

8π2
m ū(p+ p′)µu

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y)(2− x− y)− (x+ y)

(x+ y)2m2 + xyq2
, (3.98)
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from which we identify

G(q2) = − e2

4π2
m2

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y)(2− x− y)− (x+ y)

(x+ y)2m2 + xyq2
. (3.99)

We only need

G(0) = − e2

4π2

∫ 1

0

dx

∫ 1−x

0

dy
1− x− y
x+ y

= − e2

8π2
, (3.100)

so that

g = 2

(
1 +

e2

8π2

)
= 2

(
1 +

α

2π

)
⇔ g − 2 =

α

π
. (3.101)

This is the classical result of Schwinger. Since then, the art of measuring and computing g − 2 has

been pushed to an extreme refinement (four loops in QED!) – with an excellent agreement.

3.7 One-loop radiative corrections in scalar φ4

The Ward identity of QED linked the charge or coupling constant renormalization to the photon

wave-function renormalization, see eq. (3.1). In general though, such a relation is not expected, and

here we will briefly discuss scalar φ4 theory where the coupling constant gets renormalized separately.

We start with (cf. eqs. (2.17), (2.18) and (2.19))

L = −1

2
(∂νφB)2 − 1

2
m2
Bφ

2
B −

gB
4!
φ4
B , (3.102)

and let

φB =
√
Z φ , m2

B = m2 − δm2 , gB =
Zg
Z2

g , (3.103)

so that

L = L0 + L1 + L2 , (3.104)

L0 = −1

2
(∂νφ)2 − 1

2
m2φ2 , (3.105)

L1 = − g
4!
φ4 , (3.106)

L2 = −1

2
(Z − 1)(∂νφ)2 − 1

2
(Z − 1)m2φ2 +

1

2
Zδm2φ2 − g

4!
(Zg − 1)φ4 . (3.107)

Propagator: Recall that the complete propagator is ∆′(q) =
(
q2 + m2 − Π∗(q2) − iε

)−1

with

Π∗(q2) = −(Z−1)(q2+m2)+Zδm2+Π∗loop(q2) = Π∗loop(q2)−Π∗loop(−m2)−(q2+m2) d
dq2 Π∗loop(q2)|q2=−m2 .

Then the one-loop contribution of order g to the one-particle irreducible complete propagator Π∗ is

given by20

i(2π)4Π∗loop,g(q
2) =

k

q q =
1

2

∫
ddk

(−i)
(2π)4

1

k2 +m2 − iε
(
− ig(2π)4

)
= − i

2
g

∫
ddkE

k2
E +m2 − iε

,

(3.108)

20There are also one-loop contributions with additional insertions of the counterterms. These are higher order in g.
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where the factor 1
2

comes from the symmetry factor of the diagram. In dimensional regularization

we get21

Π∗loop,g(q
2) = −g

2
µ̃4−d π

d/2

(2π)4
Γ
(

1− d

2

)
md−2

= −g
2
m2 π2

(2π)4

(
1− ε

2
log π

)(
− 2

ε
+ γ − 1 +O(ε)

)(
1− ε

2
log

m2

µ̃2

)
=

g

16π2
m2

(
1

ε
− γ + log π − 1

2
− 1

2
log

m2

µ̃2

)
. (3.109)

Since this is q-independent, Z = 1 at this order (cf. (2.27)):

Z = 1 +O(g2) . (3.110)

For the mass renormalization we then get from (2.26)

δm2
g = −Π∗loop,g(−m2) = − g

16π2
m2

(
1

ε
− γ + log π − 1

2
− 1

2
log

m2

µ̃2

)
(3.111)

so that

Π∗g(q
2) = 0 . (3.112)

4-point function: We define F (q1, q2 → q′1, q
′
2) as the amputated four-point function, i.e. with

the external (full) propagators removed and normalized such that to lowest order F = g. Then the

connected two-particle to two-particle scattering S-matrix element is given by

Sc(q1, q2 → q′1, q
′
2) = −i(2π)4δ(4)(q1 + q2 − q′1 − q′2)

1

(2π)6
√

16E1E2E ′1E
′
2

F (q1, q2 → q′1, q
′
2) , (3.113)

with all momenta being on-shell. In the present φ4 theory, the amputated 4-point function is just

the renormalized 1PI 4-point vertex function Γ(4) and, taking into account the normalization of F

we have22

Γ(4)(q1, q2,−q′1,−q′2) = −(2π)4δ(4)(q1 + q2 − q′1 − q′2)F (q1, q2 → q′1, q
′
2) . (3.114)

It follows that, up to this order g2, the four-point function −i(2π)4F is given by the tree-level vertex

−i(2π)4g, the one-loop diagrams shown in Fig. 11, as well as the contribution from the counterterms

−i(2π)4g(Zg − 1). Hence

F = (q1, q2 → q′1, q
′
2) = g + Floop(q1, q2 → q′1, q

′
2) + g(Zg − 1) , (3.115)

where in dimensional regularization

−i(2π)4Floop,g2(q1, q2 → q′1, q
′
2)

=
1

2

[
−i(2π)4g

]2 [ (−i)
(2π)4

]2
{∫

ddk
1

[(k + q1) +m2 − iε][(q2 − k)2 +m2 − iε]

+(q2 → −q′1) + (q1 → −q′2)

}
. (3.116)

21Just as in QED, if we want to keep a dimensionless coupling constant for d 6= 4 we must replace the coupling in
the d-dimensional Lagrangian by gµ̃4−d, where µ̃ is some arbitrary mass scale.

22Recall that we usually take the arguments of Green functions or vertex functions as incoming four-momenta, i.e.
an outgoing qi appears as −qi.
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q 1 q 2

q’1 q’2

q’1

q 1

q’2

q 2 q 1

q’1 q’2

q

Figure 11: The three one-loop contributions at order g2 to the 4-point function. Other one-loop
contributions also involve counterterm insertions and are of higher order in g.

Introducing the Feynman parameter, as well as the standard notation

s = −(q1 + q2)2 , t = −(q1 − q′1)2 , u = −(q1 − q′2)2 , (3.117)

the denominator written explicitly in (3.116) becomes

[. . .][. . .] =
[
k2 + 2xq1k + xq2

1 − 2(1− x)q2k + (1− x)q2
2 +m2 − iε

]2
=

[(
k + xq1 − (1− x)q2

)2 − (xq1 − (1− x)q2

)2
+ xq2

1 + (1− x)q2
2 +m2 − iε

]2
=

[(
k + xq1 − (1− x)q2

)2 − x(1− x)s+m2 − iε
]2
. (3.118)

We then get

Floop,g2(q1, q2 → q′1, q
′
2) =

i g2

2(2π)4

∫ 1

0
dx

{∫
ddk

[k2 +m2 − sx(1− x)− iε]2
+ (s→ t) + (s→ u)

}
, (3.119)

or after the by now familiar Wick rotation and evaluation of the Euclidean integral:

Floop,g2(q1, q2 → q′1, q
′
2) = − g2

2(2π)4
πd/2Γ

(
2− d

2

)∫ 1

0
dx

{
[m2−sx(1−x)]

d
2
−2+(s→ t)+(s→ u)

}
. (3.120)

As already mentioned, if we want to keep a dimensionless coupling constant for d 6= 4 we must replace the
coupling in the d-dimensional Lagrangian by gµ̃4−d, where µ̃ is some arbitrary mass scale. This results in an
extra factor µ̃4−d accompanying every factor of g. However, we want to normalize F such that its tree-level

value is just g, not gµ̃4−d, so that we just need to include a single factor of µ̃4−d = (µ̃2)2− d
2 in the r.h.s.

of (3.120). This then nicely combines with the terms in the braces to make them dimensionless. Finally,
expanding in ε = 4− d we get

Floop,g2(q1, q2 → q′1, q
′
2)=− g2

32π2

{(
2

ε
− log π − γ −

∫ 1

0
dx log

m2 − sx(1− x)

µ̃2

)
+ (s→ t) + (s→ u)

}

= − 3g2

32π2

(
2

ε
− log π − γ

)
+

g2

32π2

∫ 1

0
dx

{
log

m2 − sx(1− x)

µ̃2
+ (s→ t) + (s→ u)

}
. (3.121)

The full four-point function up to order g2 is given by adding the tree-level and the counterterm

contributions according to (3.115). Just as the wave-function renormalization factors Z, Z2 and Z3

are fixed by requiring the full propagator to satisfy certain normalization conditions, we must impose

some condition on the full four-point function to fix Zg. A rather standard condition is to require
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that it equals g at the symmetric (off-shell) point s = t = u = −4
3
µ2, where µ is some mass scale

(which may or maynot equal the µ̃ already introduced):

F

(
s = t = u = −4

3
µ2

)
= g . (3.122)

Using this condition in (3.115) fixes Zg as

g(Zg − 1) = −Floop

(
s = t = u = −4

3
µ2

)
. (3.123)

Up to the order we computed this gives

(Zg − 1)order g =
3g

32π2

(
2

ε
− log π − γ −

∫ 1

0

dx log
m2 + 4

3
µ2x(1− x)

µ̃2

)
. (3.124)

Substituting this back into (3.115) or, equivalently, subtracting (3.123) from (3.115) finally gives

Fg2(q1, q2 → q′1, q
′
2) = g +

g2

32π2

∫ 1

0

dx

{
log

m2 − sx(1− x)

m2 + 4
3
µ2x(1− x)

+ (s→ t) + (s→ u)

}
. (3.125)

Note that the argument of the logarithm may be negative for
√
s ≥ 2m, so that F then has an

imaginary part. This is in agreement with the optical theorem (unitarity). Note also that the

dependence on the scale µ̃ has cancelled upon imposing the renormalization condition. However, the

latter condition has introduced a physically relevant scale µ: it is the scale where the measurable

coupling g is defined. In a massive theory, one could conveniently take µ = m or µ = 0, but let’s

stay more general.
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PART II :

RENORMALIZATION AND RENORMALIZATION GROUP

4 General renomalization theory

In section 2, we have seen that the notion of renormalization arises in order to keep correctly nor-

malized full propagators, with their poles at the physical masses. This discussion was independent

of any divergences arising in loop integrals. In the previous section, we have computed various one-

loop two-, three- and four-point functions. The one-loop contributions were divergent and had to be

regulated. We have observed that after performing the renormalization, according to the conditions

formulated in section 2, the renormalized quantities turned out to be finite (i.e. have finite limits

even if the regulator is removed). The purpose of the general renormalization theory is to show

that this is no accident but remains valid to all orders in perturbation theory, at least for so-called

renormalizable theories as QED or scalar φ4-theory.

4.1 Degree of divergence

The superficial degree of divergence D characterizes the behaviour of the momentum integral∫
d4k1 . . . d

4kL[. . .] when all |ki| → ∞ with a common k → ∞. More precicely: if the integral

behaves as ∼
∫
kD−1dk then D is the superficial degree of divergence. An integral with D ≥ 0 is

called superficially divergent, and one with D < 0 is called superficially convergent. This does not

necessarily mean the integral really diverges or converges, but we will see that the superficial degree

of divergence D nevertheless plays an important role. Often, we will talk somewhat loosely about

the superficial degree of divergence D of a diagram, meaning the D of the associated integral. To

determine D let

• If be the number of internal lines of the field f ,

• Ef be the number of external lines of the field f ,

• Ni the number of vertices of type i with di derivatives and nif fields f attached.

Now, for large momenta the propagators behave as ∆f (k) ∼ k−2+2sf , were

• for scalars: sf = 0,

• for spin 1/2: sf = 1/2,

• for massive spin 1: sf = 1 since ∆(q)µν ∼ 1
q2

(
ηµν − qµqν

m2

)
• and for photons or gravitons: sf = 0, since: ∆(q)µν ∼ 1

q2

(
ηµν − ξ qµqν

q2

)
.
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It follows that

D = 4L+
∑
i

Nidi +
∑
f

If (−2 + 2sf ) . (4.1)

Now use the relation (cf. (1.45)) L = I − V + 1 =
∑

f If −
∑

iNi + 1 to obtain

D = 4 +
∑
i

Ni(di − 4) +
∑
f

If (2 + 2sf ) . (4.2)

Use further
∑
Ninif = 2If + Ef to get

D = 4 +
∑
i

Ni

(
(di − 4 +

∑
f

nif (sf + 1)
)
−
∑
f

Ef (sf + 1) , (4.3)

or

D = 4−
∑
f

Ef (sf + 1)−
∑
i

Ni∆i , (4.4)

with

∆i = 4− di −
∑
f

nif (sf + 1) . (4.5)

One can repeat this argument in an arbitrary space-time dimension d. One simply has to replace

4L→ dL in (4.1). The final formula then is modified as

D = d−
∑
f

Ef

(
sf +

d− 2

2

)
−
∑
i

Ni∆i (4.6)

∆i = d− di −
∑
f

nif

(
sf +

d− 2

2

)
. (4.7)

There is an alternative derivation of (4.4), which works easily as long as only scalars, spin 1
2

particles, photons or gravitons are involved (no massive spin 1). Define the dimension of a field

f as given by the behavior of its propagator: 〈T (f(x) f(y))〉 ∼
∫

d4k e
ik(x−y)

k
2−2sf

has (mass) dimension

4 − (2 − 2sf ) = 2(1 + sf ) and hence the field f has (mass) dimension Df = 1 + sf . (This does not

work for massive spin 1 fields that have sf = 1 but (mass) dimension 1, just as photons - it is the

explicit appearence of the mass m which messes up the argument.) Then any interaction of type i

involving nif fields f and di derivatives has dimension
∑

f nifDf + di. Since the Lagrangian must

have dimension 4, the coupling constant gi must have dimension [gi] = 4−
∑

f nifDf − di or

[gi] = ∆i . (4.8)

Now in a diagram with Ni interactions of type i and Ef external lines for fields of type f the

corresponding 〈T (f(x1) . . .)〉 has dimension
∑

f EfDf . Its Fourier transform then has dimension∑
f Ef (Df−4). This dimension must arise from the products of an overall δ(4)(

∑
pj) of dimension−4,

propagators for the external lines of total dimension
∑

f Ef (−2+2sf ) =
∑

f Ef (2Df−4), the coupling

constants of dimension
∑

iNi∆i and the momentum integrals whose dimension equals the superficial
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degree of divergence D of the diagram. Hence
∑

f Ef (Df−4) = −4+
∑

f Ef (2Df−4)+
∑

iNi∆i+D,

or

D = 4−
∑
f

EfDf −
∑
i

Ni∆i , (4.9)

in agreement with (4.4). As an example, in Table 2, we consider the various interactions in QED,

where one has Dψ = 3
2

and DAµ = 1 and one indeed verifies that the ∆i coincide with the dimensions

of the coupling constants.

−ieψ̄A/ψ ∆ = 4− 2× 3
2
− 1 = 0

(Z3 − 1)FµνF
µν ∆ = 4− 2− 2 = 0

(Z2 − 1)ψ̄∂/ψ ∆ = 4− 2× 3
2
− 1 = 0

[−(Z2 − 1)m+ Z2δm]ψ̄ψ ∆ = 4− 2× 3
2

= 1

Table 1: The values of ∆ for the various interactions in QED

One can similarly assign ∆comp
a to composite operators Oa(x) inserted in a diagram. ∆comp

a is the

same as one would define for the corresponding interaction, and eq. (4.4) would be replaced by

D = 4−
∑

f EfDf −
∑

iNi∆i −
∑

aNa∆
comp
a .

The importance of the notion of superficial degree of divergenceD resides in the following remarks:

• If ∆i ≥ 0 for all i then only Green’s functions with 4 −
∑

f EfDf ≥ 0 can have D ≥ 0 and,

hence, there are only finitely many superficially divergent Green’s functions. Note that, unless

∆i > 0, ∀i, these are still infinitely many diagrams (arbitrary Ni for fixed Ef ).

• Interactions with ∆i ≥ 0 are called renormalizable interactions. Theories with only renormaliz-

able interactions are called renormalizable theories. In such theories only finitely many Green’s

functions are superficially divergent. We will see that in such theories all Green’s functions

can be rendered finite by a finite number of counterterms corresponding to the redefinition of

a finite number of physical constants (couplings and masses) and the (re)normalizations of the

fields.

• If ∆i < 0 for some interaction, then an infinite number of Green’s functions (arbitrary numbers

Ef of external fields) are superficially divergent. In general, one then needs an infinite number

of counterterms to make them finite. Such theories are called non-renomalizable.

The importance of the notion of superficial divergence is partly due to the following

Theorem (Weinberg): If D < 0 for the complete integration and any sub-integration (i.e. holding

some linear combination of momenta fixed) then the integral is really convergent.

In particular, at one-loop, there are no sub-integrations and, hence, by this theorem, any one-loop

integral with D < 0 is convergent. Note also that this theorem does not say anything about the

divergence of integrals with D > 0. We have seen examples in QED where the integrals are less

divergent than expected. The vacuum polarization diagram e.g. had D = 2, but gauge invariance

allows one to “pull out” two factors of external momentum by writing Π∗µν = (q2ηµν−qµqν)π(q2) with
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π(q2) only logarithmically divergent (D = 0). More generally, symmetries may result in cancellations

between the divergences arising from individual diagrams yielding less divergent or even finite Green’s

functions.

4.2 Structure of the divergences

Suppose an integral has D < 0, i.e. it is superficially convergent. This means that if all k are

simultaneously taken to be large the integral converges. Thus the only possibility for this integral not

to converge is that it diverges if some combination of momenta is held fixed and the divergence is due

to the sub-integration over the other momenta. This must necessarily correspond to a subdiagram.

Hence a superficially convergent diagram can only be divergent due to a diverging subdiagram (with

D′ ≥ 0), as shown e.g. in Fig. 12. However, such subdiagrams are of lower order in perturbation

theory. If they have already been rendered finite by the addition of appropriate conterterms at the

lower order in perturbation theory, one no longer has to worry about such diverging subdiagrams

any more. Henceforth, we will assume that such diverging subdiagrams have been taken care of and

that superficially convergent diagrams are convergent.

Figure 12: A superficially convergent diagram containing a divergent vacuum-polarization subdia-
gram.

If an integral I(pi) depending on external momenta pi has superficial degree of divergence D ≥ 0,

then by differentiating with respect to the external momenta lowers D by one unit since

∂

∂pµi

1

(k + pi)2 +m2 − iε
=

−2(k + pi)µ
[(k + pi)2 +m2 − iε]2

. (4.10)

(There is a caveat to this argument to be discussed soon.) Differentiating D + 1 times results in

an integral having degree of divergence −1, i.e. which is superficially convergent. According to the

above remarks it is then convergent. Hence

∂

∂pµ1

i1
. . . ∂p

µ1+1

iD+1

I(pi) = J(pi) , (4.11)

where J(pi) is convergent. Upon integrating with respect to the external momenta pi we get

I(pi) = PD(pi) + Î(pi) , (4.12)
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with PD(pi) a polynomial of order D in the external momenta with (a priori) divergent coefficients

and Î(pi) a convergent integral. Obviously, the diverging part PD(pi) is entirely contained in the

first D + 1 terms in a Taylor expansion of I(pi). We may then rephrase this by saying that I(pi)

minus the first D + 1 terms in a Taylor expansion in the external momenta is finite. We have seen

examples of this in our one-loop computations, see e.g. (3.78) and (3.79) for the electron self-energy

which one can rewrite as

Σ∗loop,e2(p/) = (Z2 − 1)e2(ip/+m)− (Z2δm)e2 + Σ∗e2(p/)

= −i ∂
∂p/

Σ∗loop,e2(p/)
∣∣∣
p/=im

(ip/+m) + Σ∗loop,e2(im) + Σ∗e2(p/) . (4.13)

The first two terms indeed constitute a first order polynomial in the external p/ which are the first

two terms in a Taylor expansion of Σ∗loop,e2 in p/ around p/ = im, while the last term Σ∗e2(p/) is the

renormalized finite electron self-energy.

It is very important that the divergent part of the integral I(pi) is a polynomial in the external

momenta since it is precisely such divergences that can be cancelled by local counterterms. Indeed,

a local counterterm is of the form∏
f

Ef∏
i=1

(∂µi,f )
di,ff(x) ,

∑
di,f = d , (4.14)

being the product of Ef fields of type f with a total number of d derivatives. Such a counterterm

gives a (tree-level) contribution to the diagram with Ef external lines of type f which is a polynomial

of order d in the momenta. Thus, to cancel the diverging PD(pi) one can always find a sum of such

a local counterterms involving up to D derivatives. Now, such a counterterm will also appear as

a new vertex in loop diagrams and it is important to check that it does not render the theory less

renormalizable. Indeed, with at most D derivatives, we have ∆c.t. ≥ 4 −
∑

f EfDf − D. But in

a renormalizable theory the possible values of D are constrained by D ≤ 4 −
∑

f EfDf so that

4−
∑

f EfDf −D ≥ 0 and ∆c.t. ≥ 0, so the counterterm is part of the finitely many renormalizable

interactions. Moreover, if one includes all (finitely many) renormalizable interactions in the bare

Lagrangian, then all possible counterterms are necessarily of the same form as the terms already

present, and they just renormalize the couplings, masses and wave-functions

ν
q q

p+q

p p’

p’+q

p−p’µ

Figure 13: A two-loop diagram with overlapping divergences: two divergent subdiagrams share a
common propagator.

There is a caveat in the argument that taking a derivative with respect to the external momenta

lowers the superficial degree of divergence by one unit and which has to do with so-called overlapping
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divergences. An overlapping divergence occurs if two divergent subdiagrams share a common line

(propagator), see e.g. the two-loop cotribution to the vacuum polarization shown in Fig. 13. Then

taking a derivative with respect to an external momentum typically results in a sum of terms with

the large momentum behaviour in one of the sub-loops improved in one term but not in the other,

and vice versa for the other sub-loop. To be specific, for the example of Fig. 13 one has (neglecting

the electron mass for simplicity)

Π∗overlap
µν (q) ∼

∫
d4p d4p′

(p− p′)2
tr

[
1

p/′
γν

1

p/′ + q/
γρ

1

p/+ q/
γµ

1

p/
γρ
]
. (4.15)

Taking a derivative with respect to the external momenum q gives a sum of two integrals:

∂

∂qσ
Π∗overlap
µν (q) ∼

∫
d4p d4p′

(p− p′)2
tr

[
1

p/′
γν

γσ

(p′ + q)2
γρ

1

p/+ q/
γµ

1

p/
γρ +

1

p/′
γν

1

p/′ + q/
γρ

γσ

(p+ q)2
γµ

1

p/
γρ
]
.

(4.16)

In the first term the large p′ behavior is improved but not the large p behaviour, while in the second

term things are reversed. Of course, the superficial degree of divergence is lowered by one unit, and

taking two more derivatives would result in a sum of terms all with a D′ = −1, but the criteria of

the theorem cited above are not satisfied and one cannot conclude that up to a divergent subgraph

the integral is convergent. Although this is true for each individual term in the sum, the trouble is

that for each term the diverging subgraph is a different one. For example, in a given term in the

sum, the divergence may be traced to a divergent p sub-integration corresponding to the divergent

subgraph γ1 in Fig. 14, while in another term the divergence would be due to the p′ sub-integration

corresponding to the subdiagram γ2 in Fig. 14.

3

γ 1 γ 2
γ

Figure 14: The nested sequences of subdiagrams used in the BPHZ construction: γ1 ⊂ γ3 and
γ2 ⊂ γ3.

Although such overlapping divergences are more complicated, the previous discussion shows that

one still has a sum of divergences associated with the various subdiagrams. To deal with such overlap-

ping divergences in a systematic way and show that the usual counterterms are exactly sufficient to

cancel these divergences, too, was the achievement of Bogoliubov, Parasiuk, Hepp and Zimmermann

(BPHZ).
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4.3 Bogoliubov-Parasiuk-Hepp-Zimmermann prescription and theorem

One defines a forest U as a family of nested (sub)graphs γi: if γ1 ∈ U and γ2 ∈ U then either

γ1 ⊂ γ2 or γ2 ⊂ γ1 or γ1 ∩ γ2 = 0/. For the diagram of Fig. 14 e.g., γ1 and γ2 cannot be in the same

forest. More generally, overlapping loops cannot be in the same forest. On the other hand, in Fig. 12

the vacuum polarization subdiagram and the whole diagram can be in the same forest. Hence the

notion of forest is exactly what one needs to distinguish overlapping subdiagrams (divergences) from

non-overlapping ones. Again, in Fig. 14 the list of all forests is:

U0 = 0/ , U1 = {γ1} , U2 = {γ2} , U3 = {γ3} , U4 = {γ1, γ3} , U5 = {γ2, γ3} . (4.17)

For each diagram G one then considers such a family F(G) of all forests of G. Then we have the

BPHZ prescription: For each forest Ui ∈ F(G) consider the nested sequence γa ⊂ γb ⊂ . . . of the

(sub)graphs in Ui. Starting with the innermost γa, one defines a subtraction term S(Ui) by replacing

the integrand Ib of each subdiagram γb (in the nested sequence) with superficial degree of divergence

Db by the first Db + 1 terms in its Taylor expansion (e.g. around 0) in the momenta flowing into

(or out of) this subdiagram. Since at each step one only keeps a polynomial in the corresponding

momenta, the final subtraction term is still a polynomial in the external momenta.

To see how this works, consider the diagram of Fig. 13, resp. Fig. 14:

• U0 = 0/ : no subtraction, S(U0) = 0.

• U1 = {γ1} : This subdiagram is just the vertex function eΓµ1−loop(p′+q, p′) and we know from our

one-loop computations that eΓµ1−loop(p′+ q, p′) = eLγµ + eΓµfinite(p
′+ q, p′), with Γµfinite(p

′+ q, p′)

being the finite (renormalized) vertex function and L = −(Z2 − 1)e2 . This subdiagram has

D = 0 and hence the corresponding subtraction term is just the first term in the Taylor

expansion: S(U1) = −e[(Z2 − 1)e2 + c]γµ with c = −Γµfinite(0, 0) and (Z2 − 1)e2 given in (3.81).

Obviously, this corresponds to a counterterm ∼ Aµψ̄γ
µψ.

• U2 = {γ2} : This similarly gives the same subtraction term S(U2) = −e[(Z2 − 1)e2 + c]γµ.

• U3 = {γ3} : This is just the full diagram we want to study. It has D = 2 and thus the

subtraction term must be a second-order polynomial in the q. By gauge invariance this must

be of the form (ηµνq
2 − qµqν)C with C = πoverlap(q2 = 0). We are not claiming that this is the

only divergence of this diagram, but BPHZ tell us that this is the subtraction term for this

forest: S(U3) = (ηµνq
2 − qµqν)× πoverlap(q2 = 0). This corresponds to an order e4 contribution

to Z3.

• U4 = {γ1, γ3} : Here we must first replace the integrand of the γ1-part by S(U1) as defined

above, so that the integrand for the γ3 part is the same as for Πµν
1−loop but with eγµ in the

left vertex replaced by e[−(Z2 − 1)e2 − c]γµ. Then the subtraction term is S(U4) = (q2ηµν −
qµqν)[−(Z2 − 1)e2 − c](Z3 − 1)e2 . This also corresponds to an order e4 contribution to Z3.

• U5 = {γ2, γ3} : same subtraction term as for U4.
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BPHZ theorem: The original (regularized) diagram minus the sum of all subtraction terms is finite.

The latter is exactly generated by the (usual) counterterms.

We will not give the proof of this theorem, but just mention that it proceeds by recursion. One

assumes that all diagrams at order N are made finite by the counterterms. Then one finds a recursion

relation for the large momentum behavior at the next order N + 1 (including on subspaces p′µ||pµ,

etc, as relevant for overlapping divergences). The solution to this recurrence relation uses the sum

over forests. It can then be shown that the original diagram minus the sum of all subtraction terms

is indeed finite.

4.4 Summary of the renormalization program and proof

• ∆i is the (mass) dimension of the coupling gi (provided one only deals with scalars, spin-1
2
,

photons or gravitons). Renormalizable interactions have ∆i ≥ 0, a renormalizable theory only

has interactions with ∆i ≥ 0. The superficial degree of divergence (divergence in the region

where all ki → ∞) is D = 4 −
∑

f EfDf −
∑

iNi∆i. In a renormalizable theory only a finite

set of Ef gives D ≥ 0. Diagrams with D < 0 are superficially convergent.

• A superficially convergent diagram can be divergent only due to divergent subdiagrams. Then

the same counterterms that render finite these subdiagrams also make the whole diagram finite.

Thus we only have to deal with superficially divergent diagrams, i.e. only with finitely many

Ef if the theory is renormalizable.

• Ignoring overlapping divergences for the moment, a superficially divergent diagram with D ≥ 0

is made superficially convergent by D + 1 derivatives with respect to the external momenta.

This implies that its diverging part is a polynomial in the external momenta and this can

be subtracted by a local counterterm. In a renormalizable theory, even though at each order

in perturbation theory there are new diverging diagrams, for fixed Ef , the degree D cannot

increase and the structure of the polynomial, i.e. of the counterterms remains the same, only

the coefficients (the Z’s) get higher and higher order contributions. Since D ≥ 0 only for

finitely many Ef , only finitely many counterterms are needed. Adding these counterterms

renders all these diagrams finite to all orders in perturbation theory. On the other hand, in

a non-renormalizable theory, at every order in perturbation theory, diagrams with more and

more external lines become divergent and one needs an infinite number of counterterms to

render them all finite.

• To deal with overlapping divergences, BPHZ define the forests with nested boxes (subdiagrams)

γa of degree Da = D(γa), each forest giving a subtraction term obtained by replacing each

subdiagram in the nested sequence by its Da + 1 first terms in a Taylor series in the “external”

momenta. This corresponds to the same counterterms as defined above. BPHZ show that

this procedure renders also finite these diagrams with overlapping divergences to all orders in

perturbation theory. Again, in a renormalizable theory, finitely many counterterms make all

diagrams finite.
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4.5 The criterion of renormalizability

Renormalizability restricts interactions to those with ∆i = 4 − di −
∑

f nif (1 + sf ) = 4 − di −∑
f nifDf ≥ 0 only. For a finite number of fields these are only finitely many interactions. Of

course, there are also other restrictions on the possible interactions like Lorentz invariance or other

symmetries one might want to preserve.

If the regulator preserves a given symmetry then the finite and the diverging parts of any Green’s

function (not necessarily of individual diagrams) at any order in perturbation theory must also

preserve this symmetry. Hence the counterterms also respect this symmetry.

What if one allowed to include non-renormalizable interactions, like e.g. adding a term ψ̄γµνψF
µν

to the QED Lagrangian? This interaction indeed has dimension 5 so that ∆ = −1 and it is non-

renormalizable. For dimensional reasons its coupling constant must be of the form ρ
M

with dimen-

sionless ρ and some mass scale M . Such a term would change the magnetic moment of electrons by

an additional amount ∼ ρ me
M

which would thus become an adjustable parameter. From experiment

we know that this quantity must be extremely small. Said differently, if we take ρ of the same order

as e, the mass scale M must be very large compared to me.

More generally, a non-renormalizable interaction has ∆i < 0 and coupling constants of dimension

∆i = −|∆i|. Write gi = g̃i
M |∆i|

. Then non-renormalized diagrams have divergences that behave as

(g̃i)
N ( Λ

M

)|∆i|N at order N in perturbation theory, Λ being some UV cutoff. Also, infinitely many

Green’s functions are divergent and we need infinitely many counterterms, possibly with an arbitrary

number of derivatives. However, once these divergences are cancelled, we have renormalized Green’s

functions G(pi), and at order N in perturbation theory (in gi) they will behave as (g̃i)
N ( pj

M

)|∆i|N .

Thus, as long as |pj| �M one can neglect the effect of these non-renormalizable interactions.

Theories like QED are presently thought to be only effective theories, in the sense that they

provide the effective description of electromagnetic interactions at energies that are low compared

to some scale at which new physics could be expected, like e.g. the grand unification scale of 1015

GeV or even the Planck scale of 1019 GeV. Such an effective theory then has an effective Lagrangian

obtained by “integrating out” the very heavy additional fields that are present in such theories. (We

will discuss such integrating out a bit in the next section). This necessarily results in the generation

of (infinitely) many non-renormalizable interactions in this effective Lagrangian with couplings g̃i
M |∆i|

,

M being e.g. the grand unification scale. From the previous argument it is then clear that at energies

well below this scale these additional non-renormalizable interactions are completely irrelevant, and

this is why we only “see” the renormalizable interactions. Our “low-energy” world is described by

renormalizable theories like QED not because such theories are somehow better behaved, but because

these are the only relevant ones at low energies:

Renormalizable interactions are those that are relevant at low energies, while non-renormalizable

interactions are irrelevant at low energies.

This is also the teminology in statistical mechanics where one studies infrared physics at scales

|p| � 1
a
≡ Λ, where a is the lattice spacing.
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5 Renormalization group and Callan-Szymanzik equations

5.1 Running coupling constant and β-function: examples

5.1.1 Scalar φ4-theory

Consider the 4-point vertex function F in the scalar φ4-theory we computed in section 3. At tree-level

it equals g, independent of the momenta, while up to order g2 it was given by (cf. (3.125))

Fg2(q1, q2 → q′1, q
′
2) = g +

g2

32π2

∫ 1

0

dx

{
log

m2 − sx(1− x)

m2 + 4
3
µ2x(1− x)

+ (s→ t) + (s→ u)

}
, (5.1)

which depends on the momenta or, equivalently, on s, t and u. It also depends on the scale µ used

to fix the renormalization condition (3.122). Below, we will consider different scales, so let us call

the present scale µ∗. To emphasize the dependence of F on µ∗ we will write F (s, t, u;µ∗) and call

the corresponding coupling g∗. Thus

F

(
s = t = u = −4

3
µ2
∗ ; µ∗

)
= g∗ , (5.2)

and eq. (5.1) is rewritten as

F (s, t, u;µ∗) = g∗ +
g2
∗

32π2

∫ 1

0

dx

{
log

m2 − sx(1− x)

m2 + 4
3
µ2
∗ x(1− x)

+ (s→ t) + (s→ u)

}
. (5.3)

Recall from section 3, that this is essentially the 1PI 4-point function, since Γ(4)(q1, q2,−q′1,−q′2) =

−(2π)4δ(4)(q1 + q2 − q′1 − q′2)F (q1, q2 → q′1, q
′
2).

Let us remark that the condition (5.2) can be viewed as defining what we mean by the coupling

constant of our theory. It is one convenient definition and obviously one might have chosen a

different one. For example, one might have defined g∗ in terms of the function F and a scale µ∗ but

at css = ctt = cuu = −µ2
∗ with some unequal coefficients cs, ct, cu. One might also have defined the

coupling not in terms of F , resp. Γ(4), but in terms of the 4-point Green function at some convenient

off-shell point. We will come back to this later-on, for the time being we keep the definition (5.2).

To make the discussion of the following paragraph more intuitive, suppose m 6= 0 and that

one has chosen µ∗ = m. Then, as long as the momenta remain of the same order of magnitude

as m, the argument of the logarithm is of order 1, and
∫ 1

0
dx{. . .} = O(1), so that the one-loop

correction is small with respect to the tree contribution as long as g
32π2 � 1. If, on the other hand,

one is interested in extreme high-energy scattering with s, |t|, |u| � m2, then the logarithms will

be large: log
1− s

m2 x(1−x)

1+ 4
3
x(1−x)

' log −s
m2 − log x(1−x)

1+ 4
3
x(1−x)

. To fix the ideas, suppose m is of the order of 1

MeV and
√
s of the order of 100 MeV. Then log s

m2 ' 10 which is large but is easily compensated

by the 1
32π2 ' 3 × 10−3, and the one-loop contribution will certainly be small with respect to the

tree-level result if g is small. However, as one considers higher and higher energy scales, the log

will increase further. For
√
s,
√
|t|,
√
|u| ' 10 TeV e.g. the sum of the 3 logarithms is about 100.

Eventually, perturbation theory will break down as one goes to very high energies. Actually, like
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for most quantum field theories, the perturbation series in g has a vanishing radius of convergence.

Nevertheless, the series is asymptotic, meaning that one gets a good approximation, if g is small

enough, by computing the first few orders in g. The approximation will be better for smaller g

or, at fixed g, if large logarithms like the ones discussed do not appear. In this sense, to improve

perturbation theory one has to avoid such large logarithms. This can be done as follows.

If one is only interested in the high-energy scattering, one might define the coupling constant g∗

right away at a scale µ∗ comparable to
√
s,
√
|t|,
√
|u|. Then no large logarithms will ever appear23.

In general, however, one wants to be able to compute at different scales and most often the original

definition of the coupling g∗ is at low or zero momentum, like the definition of the elementary charge e

in QED. The solution is to define a different coupling g(µ) for every scale µ as the value of F (s, t, u;µ∗)

at s = t = u = −4
3
µ2 :

g(µ) = F

(
s = t = u = −4

3
µ2 ; µ∗

)
= g∗ +

3g2
∗

32π2

∫ 1

0

dx log
m2 + 4

3
µ2x(1− x)

m2 + 4
3
µ2
∗ x(1− x)

. (5.4)

Again, if µ � µ∗ the logarithm will be large, but this can be easily avoided by first defining g(µ1)

at some µ1 just slightly larger than µ∗, and then use this gµ1 to compute a gµ2 at a scale µ2 slightly

larger than µ1, etc. More precisely, introduce intermediate µ0 = µ∗, µ1, . . . µN−1, µN = µ and define

g(µn+1) = g(µn) +
3g(µn)2

32π2

∫ 1

0

dx log
m2 + 4

3
µ2
n+1x(1− x)

m2 + 4
3
µ2
n x(1− x)

. (5.5)

Iterating this relation allows us to go from g(µ∗) = g∗ to g(µN) = g(µ) while keeping the logarithms

small at every step.24 Thus eq. (5.5) provides the desired relation between the g(µ) at different

scales. Let us insist that no large logarithms will appear when computing scattering amplitudes at

typical s, t, u of order µ2 if one uses this coupling g(µ) and, in this sense, g(µ) is the natural coupling

constant at this scale. Obviously, as µ increases, g(µ) also increases.

It is much more convenient to turn this relation into a differential equation by considering µn = µ

and µn+1 = µ+ δµ with infinitesimal δµ. We get

µ
d

dµ
g(µ) =

3

16π2
g(µ)2

∫ 1

0

dx
4
3
µ2x(1− x)

m2 + 4
3
µ2x(1− x)

≡ β(µ,m) . (5.6)

Let us be slightly more precise. What one does is to express g(µ′) in terms of µ′, g(µ) and µ and

take the derivative with respect to µ′ at fixed µ (and fixed g(µ)) and set µ′ = µ in the end. With

this being understood, one simply writes µ d
dµ
g(µ). In general one defines the functions β(µ,m) and

β(µ) as

β(µ,m) = µ
d

dµ
g(µ) , β(µ) = β(µ, 0) . (5.7)

23except in certain kinematical regions like forward scattering
24Note that g(µn+1) differs from g(µn) only by a term of order g2. Thus, to the order we work, we could just as

well replace the g(µn) in front of the integral by g(µ0) = g∗. If one does so, iterating eq. (5.5) N times exactly yields
eq. (5.4).
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Obviously, if µ � m one can neglect the effect of the mass m and approximate β(µ,m) by β(µ).

Equation (5.6) yields for the φ4-theory:

β(µ) =
3

16π2
g(µ)2 ≡ β0 g(µ)2 . (5.8)

For the present φ4-theory, the β-function is positive and the differential equation shows that for

positive (negative) β-function the coupling increases (decreases) when the scale µ increases. It is

easy to solve the differential equation (5.7) with β(µ,m) replaced by (5.8):

d

d log µ
g(µ) = β0g(µ)2 ⇒ 1

g(µ1)
− 1

g(µ2)
= log

(
µ2

µ1

)β0

. (5.9)

One sees again that g(µ) increases when µ increases. A useful rewriting of this solution is as follows:

µ exp
( 1

β0g(µ)

)
≡M , independent of µ. (5.10)

The quantity M is called the renormalization group invariant scale, since the change in g(µ) is exactly

such that this quantity does not depend on µ. Being independent of µ, we expect the quantity M

to have a physical meaning. Indeed, if µ = M we have 1
β0g(µ)

= 0 and we see that M is the scale

where g(µ)→∞. Of course, we have only done a one-loop computation and as g(µ) becomes large

we no longer can trust a one-loop result. What one can say is the following: even if one starts at

some scale µ∗ with a small g(µ∗), as the scale is increased, the coupling grows and for scales of the

order of M the theory enters a strong-coupling regime. We may rewrite eq. (5.9) as

g(µ) = g(µ0)
[
1− β0g(µ0) log

µ

µ0

]−1

. (5.11)

This is valid for any µ0 � m (since we neglected the mass) and as long as g(µ) is small, whether

g(µ0) log µ
µ0

is small or not.

It is useful to note that, in practice, one can compute β(µ,m) directly form (5.4) by taking

µ d
dµ

and replacing g2
∗ by g(µ)2. Note though, that one should not take µ∗

d
dµ∗

of (5.3) as this would

result in the opposite sign. If one traces back our computation one sees that the β-function is the

coefficient of the log µ-term which is minus the coefficient of the log µ̃-term in Floop which, in turn is

the coefficient of the 1
ε
-pole of the Zg-factor times g, cf. (3.124). :

β(µ)1−loop = coefficient of
1

ε
in Zgg. (5.12)

We have also seen that, at one loop in the φ4 theory, the wave function renormalization factor is

Z = 1. Thus, we can just as well say that the one-loop β-function is the coefficient of 1
ε

of Zg
Z2 g = gB :

β(µ)1−loop = coefficient of
1

ε
in gB when expressed in terms of g. (5.13)

If we go to two loops, however, Z 6= 1 and the two expressions for the β-function become different.

Also in other theories, like φ3 in 6 dimensions, Z 6= 1 already at one loop. Does this mean that
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in general (5.12) is right and (5.13) is wrong? The answer depends on how exactly one defines the

coupling constant g. Obviously, if it is defined in terms of the 1PI vertex function, eq. (5.12) should

be correct. More generally, one might define couplings gn in terms of the renormalized amputated

n-point Green functions as is relevant for computing (on-shell) S-matrix elements at typical energy

scales µ. On the other hand, 1PI vertex functions and full propagators at off-shell momenta appear

as building blocks of larger Feynman diagrams, as we have extensively discussed in the previous

section. Thus one not only has to avoid large logarithms in the 1PI vertex functions but also in

the full propagators. It then makes sense to include corrections from the full propagators into the

definition of the coupling g(µ). Since each propagator is linked to two 1PI vertex function, its

contributions should be split between the two vertices, assigning half its contribution to each. Again,

if one traces the appearance of the log µ and 1
ε

terms, one sees that taking into account half the

contribution of a full propagator amounts to picking the coefficient25 of the 1
ε
-pole in 1√

Z
. In a φk

theory this results in an extra factor of 1
Zk/2

and with this new definition of the coupling g the

β-function would indeed be given by (5.13).

Since the coefficients of the 1
ε

poles are determined by the divergent parts of the one-loop integrals

only, this actually gives a very easy way to get the leading coefficient of the β-function in a large

class of theories. We will discuss this in somewhat more detail below.

5.1.2 QED

To see how the effective coupling of QED evolves with the scale of energy, consider how the tree-level

coupling of a photon to an electron gets corrected by one-loop effects. Following the above discussion,

we think of a complicated Feynman diagram built from 1PI-vertices Γµ, complete electron propagators

and complete photon propagators, all with off-shell momenta, as shown in Fig. 15. (Note that we

use only the electron-electron-photon 1PI vertex explicitly, not the higher vertex functions. Hence

the resulting diagram is not necessarily a tree diagram.)

Then we need to include half of the corrections coming from the propagators and the entire

correction coming from the 1PI-vertex function to define what we mean by the running coupling

e(µ). At the one-loop level, there are the following diagrams to take into account. First, the photon

propagator gets corrected by the one-loop vacuum-polarization diagram. We have seen that this

modifies e2 → e2

1−π(q2)
' e2(1 + π(q2)) or e → e(1 + 1

2
π(q2)). Next, the electron propagators get

corrected by the self-energy diagrams Σ∗ on the fermion lines (there are two of them but each counts

half). Finally, there is the one-loop corrected vertex Γµ. The latter two are related by the Ward

identity. Recall that their divergencies were cancelled by the same counterterm ∼ Z2 − 1 and,

similarly, one can see that their contributions to the β-function cancel. (Schematically, the vertex

diagram contributes the coefficient of 1
ε

in Z2, while each of the two electron self-energy diagrams

contribute the coefficient of 1
ε

in 1√
Z2

, giving a vanishing total contribution.) Thus, the effective

25Recall that Z = 1 + z with z of order g at least. Thus 1√
Z
' 1− z

2 .

Adel Bilal : Advanced Quantum Field Theory 73 Lecture notes - October 6, 2014



Figure 15: A complicated Feynman diagram in QED is built from the 1PI electron-electron-photon
vertex functions, the full electron propagators and the full photon propagators.

coupling is entirely determined by the vacuum polarization diagram:

e→ e(q2) = e
(

1 +
1

2
π(q2)

)
= e+

e3

4π2

∫ 1

0

dx x(1− x) log
[
1 + x(1− x)

q2

m2

]
. (5.14)

Repeating the argument done for the coupling in the φ4-theory, we get

e(µ) = e+
e3

4π2

∫ 1

0

dx x(1− x) log
[
1 + x(1− x)

µ2

m2
e

]
, (5.15)

and

β(µ,m) = µ
d

dµ
e(µ) =

e3

2π2

∫ 1

0

dx
x2(1− x)2

m2

µ2 + x(1− x)
, (5.16)

which yields the β-function of QED

βe(µ) =
e3

12π2
. (5.17)

Note that in QED we have eB = Z
−1/2
3 e with Z3 = 1− e2

6π2

(
1
ε

+ finite
)

so that eB = e+ e3

12π2

(
1
ε

+ finite
)

and again

βe(µ)1−loop = coefficient of
1

ε
in eB when expressed in terms of e. (5.18)

The β-function is again positive and e grows with the energy scale. Sometimes, this is written in

terms of the running of the fine-structure constant α = e2

4π
as βα = d

d log µ
α = e

2π
βe(µ):

βα(µ) =
2

3π
α2 , (5.19)
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which is of the same form as (5.8) with β0 = 2
3π

. The β-function (5.17) or (5.19) governs the

running of e(µ) or α(µ) for values of µ much larger than me, say µ∗ = 10me. To get the running

for 0 ≤ µ ≤ µ∗, one should use the explicit expression (5.15) instead. The latter is perturbatively

valid in this region since e2

4π2 log µ2
∗

m2
e
. α

π
log 100 ' 0.01. As discussed in connection with the Ward

identity, the renormalized charge of the electron is defined at zero momentum, hence eR = e(0) and

αR = α(0) ≡ α ' 1
137

. Thus (
∫ 1

0
dx x(1− x) log x(1− x) = − 5

18
)

α(µ∗) = α +
2α2

π

∫ 1

0

dx x(1− x) log
[
1 + x(1− x)

µ2
∗

m2
e

]
' α +

2α2

π

∫ 1

0

dx x(1− x)
[

log x(1− x) + log
µ2
∗

m2
e

]
= α +

2α2

3π

[
− 5

6
+ log

µ∗
me

]
' α

[
1− 2

3π
α
(

log
µ∗
me

− 5

6

)]−1

. (5.20)

For µ > µ∗, one can safely use the solution of µ d
dµ
α(µ) = βα(µ) with initial value given by (5.20)

and βα given by (5.19):

α(µ) = α(µ∗)
[
1− 2

3π
α(µ∗) log

µ

µ∗

]−1

. (5.21)

Combining (5.20) and (5.21) yields

α(µ) = α
[
1− 2

3π
α
(

log
µ

me

− 5

6

)]−1

. (5.22)

This equation is valid even when α log µ
me

is of order 1. However, just as for the scalar φ4 theory, it

shows that the coupling becomes strong as µ 'M = me exp
(

3π
2α

)
' 10280me. Of more experimental

relevance is the value of α(µ) at present day collider energies. For µ = 100 GeV e.g. (LEP) one gets

α(µ) ' 1
134.6

. This is the result when taking into account the electron field only. Including the effects

of the two other lepton families (as well as the quarks) one gets α(100 GeV) ' 1
128

.

5.2 Running coupling constant and β-functions: general discussion

Having seen the running of the coupling and the corresponding β-functions in two explicit examples,

we will now try to make some more general statements.

5.2.1 Several mass scales

We have seen in the example of QED with only electrons and positrons that the running of e(µ) or

α(µ) was well determined by the β-function for scales µ above a few electron masses. Below, one

had to use the exact form (5.15) or its approximation (5.20). However, in the real world, there are

many more charged particles of higher masses that also contribute to the β-function. Let us consider

the case of two well-separated mass scales, 0 < m1 � m2, the generalization to more than two mass

scales will be obvious.
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Suppose the one-loop computation yields (cf. (5.4) with µ∗ = 0 or (5.15) written for α(µ) instead

of e(µ))

g(µ) = g∗ + g2
∗

∫
dx
{
f1(x) log

[
1 + h1(x)

µ2

m2
1

]
+ f2(x) log

[
1 + h2(x)

µ2

m2
2

]}
, (5.23)

where x could stand for multiple Feynman parameters xi, and thefj(x) and hj(x) are some polyno-

mials. Let, much as before

β1,2(µ,m1,m2) = µ
d

dµ
g(µ) = g2

∗

∫
dx
{
f1(x)

2h1(x)µ2

m2
1 + h1(x)µ2

+ f2(x)
2h2(x)µ2

m2
2 + h2(x)µ2

}
, (5.24)

Then, as long as µ� m1 � m2, one sees from (5.23) that g(µ) ' g∗. As µ becomes comparable

to m1 one still has µ � m2, and one can neglect the second logarithm. Actually, as long as µ is

considerably smaller than m2 (exactly how much smaller depends on h2 and f2/f1), one can continue

to neglect the second term in the braces: in this region, the heavy particle does not contribute to

the running of g(µ). If, in this region, the first logarithm becomes large for m1 � µ� m2, one must

use the differential equation with β(µ,m1,m2) to evolve g(µ). However, for m1 � µ� m2, one can

neglect the second term in the braces in (5.24), while in the first term one can set m1 = 0. Hence,

in this region, the running is effectively governed by

β1(µ) = β1,2(µ, 0,∞) = g2
∗

∫
dx 2f1(x) . (5.25)

As µ becomes of the order of m2, one has to use an expression similar to (5.23) with µ∗ 6= 0 to evolve

g(µ) from some µ∗ < m2 to some µ > m2 beyond which it is reasonable to neglect the effect of m2

and one can use

β1+2(µ) = β1,2(µ, 0, 0) = g2
∗

∫
dx
(
2f1(x) + 2f2(x)

)
(5.26)

to evolve g(µ) further to even larger scales µ. It is often enough to simply evolve g(µ) with β1(µ)

from m1 to m2 and then with β1+2(µ) above m2.

The general lesson to remember is that at a given scale µ the running of the coupling is determined

by the β-function due to loops of only those particles that have masses below µ while particle with

masses much larger than µ do not influence the running.

5.2.2 Relation between the one-loop β-function and the counterterms

We have already seen in the φ4-theory and in QED that, with the appropriate definition of the

running coupling constant, the one-loop β-function coincided with the coefficient of the 1
ε

pole in the

expression of the bare coupling in terms of the renormalized one. We will now establish this relation

more generally.

According to the above discussion, in general, we define the one-loop corrected n-point coupling as

given by the value of an appropriate proper n-point vertex function Γ(n), plus half of the propagator

corrections (as shown in Fig. 15 for the example of QED), all computed up to one loop and evaluated

at some conveniently chosen momenta pj(µ):

g(µ) = Γ(n)
(
pj(µ)

)
+

1

2

n∑
j=1

g∆j(pj) Π∗j
(
pj(µ)

)
. (5.27)
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As before, Γ(n) and Π∗ are the renormalized vertex function and 1PI propagator (“self-energy”).

It will be useful here to separate the contributions from the one-loop diagrams and those of the

counterterms:

Γ(n)(pj) = g + (Zg − 1)g + Γ
(n)
1−loop(pj)

Π∗j(pj) = −(Zj − 1) ∆j(pj)
−1 + Zj δm

2
j + Π∗j,1−loop(pj) . (5.28)

We will restrict ourselves to the cases where the one-loop contribution Γ
(n)
1−loop diverges logarithmically

and the original coupling g is dimensionless in 4 dimensions. This includes most of the interesting

theories. Moreover, since we want to compute β(µ) = µ d
dµ
g(µ)

∣∣
mj=0

, i.e. we are interested in the

region where |p2
j | � m2

i , we can drop all terms involving the masses right away (except maybe to

regulate IR divergences). In particular, δm2
j ∼ m2

j , so these terms will also be dropped. Thus

g(µ) = g + (Zg − 1)g + Γ
(n)
1−loop

(
pj(µ)

)
+

1

2

n∑
j=1

[
−g (Zj − 1) + g∆j(pj) Π∗j,1−loop

(
pj(µ)

)]
. (5.29)

The β-function will be given by the coefficient of log µ in this expression. We will show shortly that

each log µ in a one-loop contribution is accompanied by a −1
ε

with the same coefficient, and that the

finite renormalization conditions require that this is also the coefficient of +1
ε

in the corresponding

combination of the counterterms. Hence:

β1−loop(µ) = coefficient of
1

ε
in

[
g(Zg − 1)− 1

2

n∑
j=1

g(Zj − 1)

]
. (5.30)

Note that, since Zg− 1 and Zj − 1 are always at least O(g), one has to the order we are interested in

gB ≡ g
Zg

Πj

√
Zj

= g
1 + (Zg − 1)

Πj

√
1 + (Zj − 1)

= g
[
1 + (Zg − 1)− 1

2

∑
j

(Zj − 1)
]
, (5.31)

and, hence

β1−loop(µ) = coefficient of
1

ε
in gB when expressed in terms of g. (5.32)

Let us now give the argument: Using dimensional regularization and Feynman parameters, the one-loop
contribution to the 1PI vertex function is of the form

Γ
(n)
1−loop(pj) = −cn gn

(
2

ε
+ a

)∫ ∏
j

dxj f(xj)

(
R(pj , xj)

µ̃2

)−ε/2
, (5.33)

where R(pj , xj) is some quadratic form in the momenta and masses and µ̃ is some scale introduced to keep
g dimensionless after dimensionally continuing to d = 4− ε. We let

b0 = 2cn

∫ ∏
j

dxj f(xj) , (5.34)

so that

Γ
(n)
1−loop(pj) = −b0

ε
gn − a

2
b0 g

n + cn g
n

∫ ∏
j

dxj f(xj) log

(
R(pj , xj)

µ̃2

)
. (5.35)
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As before, we impose a renormalization condition that Γ(n) should equal g for some fixed p∗j ≡ pj(µ∗).

Combining (5.28) and (5.35) fixes Zg as

(Zg − 1)g =
b0
ε
gn +

a

2
b0 g

n − cn gn
∫ ∏

j

dxj f(xj) log

(
R(pj(µ∗), xj)

µ̃2

)
. (5.36)

The (renormalized) n-point vertex function then reads

Γ(n)(pj) = g + cn g
n

∫ ∏
j

dxj f(xj) log

(
R(pj , xj)

R(pj(µ∗), xj)

)
. (5.37)

We need the coefficient of logµ in this expression when pj = pj(µ), for µ sufficiently large so that we can
neglect all masses. Now, R(pj(µ), xj) necessarily is of the form

R(pj(µ), xj) = r(xj)µ
2 +

∑
r,s

prs(xj)mrms ⇒ µ
d

dµ
logR(pj(µ), xj)

∣∣∣
mr=0

= 2 , (5.38)

Thus the coefficient of logµ in Γ(n)(pj(µ)) is 2cn g
n
∫ ∏

j dxj f(xj) = b0g
n which is also the coefficient of

1
ε in (Zg − 1)g, cf. (5.36). The same argument can be repeated to show that the coefficient of logµ in

∆j

(
pj(µ)

)
Π∗j
(
pj(µ)

)
is the same as the coefficient of 1

ε in −(Zj − 1). This completes the argument.

5.2.3 Scheme independence of the first two coefficients of the β-function

We have just seen that the result for the β-function does not depend much on the details of the

renormalization conditions. One might ask what happens if one uses a different regularization or

makes coupling constant redefinitions. We will show the following result:

As long as one defines the coupling such that

β(g) = b0g
2 + b1g

3 + b2g
4 + . . . , (5.39)

the first two coefficients b0 and b1 are universal, i.e. are unchanged by changing the renormalization

scheme or redefining the coupling by higher-order terms.

To prove this, assume that in a different scheme with a different coupling g̃ one finds

β̃(g̃) = b̃0g̃
2 + b̃1g̃

3 + b̃2g̃
4 + . . . . (5.40)

Now, the bare coupling is scheme independent and must equal g and g̃ to lowest order: gb = g +

a1g
2 + O(g3) and gb = g̃ + ã1g̃

2 + O(g3). Then g̃ = g + ag2 + O(g3) with a = a1 − ã1. Hence
dg̃
dg

= 1 + 2ag +O(g2). Also, g̃µ should be a function of gµ only and not of µ
m

e.g. It follows

β̃(g̃µ) = µ
d

dµ
g̃µ = µ

d

dµ
gµ

dg̃

dg
= β(g)

dg̃

dg
=
(
b0g

2 + b1g
3 + . . .

)(
1 + 2ag + . . .

)
= b0g

2 +
(
b1 + 2ab0

)
g3 + . . . = b0

(
g̃ − ag̃2 + . . .

)2

+
(
b1 + 2ab0

)
g̃3 + . . .

= b0g̃
2 + b1g̃

3 + . . . . (5.41)

Hence b̃0 = b0 and b̃1 = b1, as was claimed.
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5.3 β-functions and asymptotic behaviors of the coupling

Let us now study the different asymptotic behaviours of the running coupling constant, given the

different possible forms of the β-function. Here we will be mainly interested in the UV asymptotics,

i.e. the behaviour as the scale µ becomes very large. In a massless theory, however, the limit where

µ becomes very small (IR behaviour) is also of interest, in particular in the description of critical

phenomena in statistical physics.

The β-function being defined as β(g(µ)) = µ d
dµ
g(µ) = d

d log µ
g(µ), this gives a differential equation

for g(µ) if β(g) is known. This differential equation is integrated as

∫ g(µ2)

g(µ1)

dg

β(g)
= log

µ2

µ1

. (5.42)

5.3.1 case a : the coupling diverges at a finite scale M

Suppose β(g) > 0. Then the coupling g(µ) increases as the scale µ is increased. Suppose furthermore

that β(g) increases fast enough with g so that the integral
∫∞
g(µ1)

dg
β(g)

converges. Let the value of

this integral be log M
µ1

. Comparing with (5.42) we see that at the scale M the coupling diverges:

g(M) =∞. This is shown in the left part of Fig. 16. Explicitly, M is given by

M = µ exp

(∫ ∞
g(µ)

dg

β(g)

)
. (5.43)

Of course, the running of g(µ) is precisely such that the r.h.s. does not depend on µ. For this reason,

M is called the renormalization group invariant mass. Note that, even if we start with a massless

theory, the renormalization group equation (5.42) asserts that there is a well-defined mass scale in

this theory! Equation (5.43) allows to trade g(µ) for M and vice versa. This is sometimes referred

to as dimensional transmutation.

We have seen that this would be the behaviour in scalar φ4-theory or QED if we could trust

the one-loop result β(g) = b0g
2 with b0 > 0 (g = α for QED) since then

∫∞
g(µ)

dg
β(g)

= 1
b0g(µ)

and

M = µ exp
(

1
b0g(µ)

)
. We have also remarked that for QED this M is extremely large and certainly

well beyond the energy scales at which QED has to be embedded in a larger and/or more fundamental

theory. Of course, as already emphasized, unless one knows β(g) exactly, perturbation theory must

break down as µ gets closer to M and g(µ) becomes large. In any case, as µ becomes of the order of

M , the theory enters a strong-coupling regime.

5.3.2 case b : the coupling continues to grow with the scale

Suppose β(g) > 0 but β(g) increases slowly enough with g so that the integral
∫ g
g(µ1)

dg′

β(g′)
diverges as

g →∞. In this case, (5.42) shows that g(µ)→∞ as µ→∞, but for any finite µ the coupling g(µ)

remains finite. This situation is depicted in the right part of Fig. 16.
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Figure 16: Shown are the β-functions and corresponding scale dependence of the couplings for case
a (left) and case b (right).

5.3.3 case c : existence of a UV fixed point

Suppose that β(g) starts out positive for small g and has a zero at some finite g∗ with β′(g∗) < 0

(see the left part of Fig. 17):

β(g∗) = 0 , β′(g∗) ≡ −a < 0 . (5.44)

Then, if one starts with some initial g(µ1) < g∗, the β-function is positive and the coupling will

increase as µ is increased. For some large enough µ2, g(µ2) will become close to g∗ and we can

approximate β(g) ' −a(g − g∗). Equation (5.42) then gives

log
µ

µ2

=

∫ g(µ)

g(µ2)

dg

β(g)
' −a log

g(µ)− g∗
g(µ2)− g∗

⇒ g(µ)− g∗ ' (g(µ2)− g∗)
(
µ2

µ

)a
. (5.45)

We see that, as µ → ∞, the coupling g(µ) is driven to g∗. For this reason, g∗ is called a UV fixed

point:

g∗ > 0 is a UV fixed point if β(g∗) = 0 and β′(g∗) < 0. (5.46)

So far, we have considered positive β(g) for small enough g. This resulted in a coupling that

increased as µ was increased.
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Figure 17: Shown are the β-functions and corresponding scale dependence of the couplings for case
c (left) and case d (right).

5.3.4 case d : asymptotic freedom

Now suppose that β(g) < 0 at least for 0 < g < g∗. Then, as long as we start with a g(µ1) < g∗, the

coupling g(µ) will decrease as µ is increased (see the right part of Fig. 17).

To be more specific, suppose
∫ g(µ1)

g
dg′

β(g′)
diverges as g → 0. This will be always realized in

perturbation theory since β(g) ∼ gn +O(gn+1) with n ≥ 0. Then (5.42) tells us that as µ→∞ one

has g(µ)→ 0: the theory becomes a free theory in the UV limit. This is called asymptotic freedom.

To see this in more detail, suppose (with b0 < 0)

β(g) = −|b0|gn +O(gn+1) , n ≥ 2 . (5.47)

Neglecting the higher order contributions to β (since g becomes small this will be more and more

justified as µ becomes large!), we have

log
µ1

µ
= − 1

|b0|

∫ g(µ1)

g(µ)

dg

gn
=

1

(n− 1)|b0|

(
1

g(µ1)n−1
− 1

g(µ)n−1

)
. (5.48)

One sees that as µ→∞ one must have g(µ)→ 0. Indeed

g(µ) = g(µ1)

[
1 + (n− 1)|b0|g(µ1)n−1 log

µ

µ1

]− 1
n−1

. (5.49)
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On the other hand, as µ is decreased, the coupling g(µ) increases. It is easy to see at which scale the

coupling must become strong. Again, we see from (5.48) that the combination

M = µ exp

(
− 1

(n− 1)|b0|g(µ)n−1

)
= µ exp

(
1

(n− 1)b0g(µ)n−1

)
(5.50)

does not depend on µ (at least, as long as one can trust the lowest order result for β(g)). It is again

a renormalization group invariant scale. As µ→ M the argument of the exponent must vanish and

hence g(M)→∞. Of course, perturbation theory breaks down before µ reaches M , but this shows

that M is the scale where the coupling becomes large. The difference with case a considered before

is that now this strong coupling region is approached from large values of µ as µ is decreased.

Figure 18: Shown are the β-function and corresponding scale dependence of the coupling for case e
(IR fixed point).

5.3.5 case e : IR fixed point

Finally, consider a situation where the β-function starts out negative for small g and then has a

zero for some g∗, necessarily with β′(g∗) = a > 0. In this case, if at some initial scale µ1 one has

g(µ1) < g∗, the β-function is negative. This means that g(µ) decreases as µ is increased, and g(µ)

increases as µ is decreased, just as for case d, above. However, as µ gets smaller, and g(µ) gets larger,

the β-function becomes less negative and as g(µ) approaches g∗ it can be well approximated by its

linearized form (just as for case c): β(g) ' a(g − g∗). Suppose that g(µ2) is close enough to g∗ so

that the linearized approximation is good enough. Then

log
µ2

µ
' a log

g(µ2)− g∗
g(µ)− g∗

, (5.51)

and g(µ)→ g∗ as µ→ 0, i.e. g∗ is an IR fixed point:

g∗ > 0 is an IR fixed point if β(g∗) = 0 and β′(g∗) > 0. (5.52)

Such IR fixed points are of particular interest in the study of critical phenomena in statistical physics.
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5.4 Callan-Symanzik equation for a massless theory

I most textbooks, when presenting the Callan-Symanzik equation, the discussion is somewhat simpli-

fied by switching from dimensional regularization to an explicit UV cut-off Λ. This has the advantage

that one does not have to deal with the extra mass scale µ̃ introduced in dimensional regularization

(to keep the coupling g dimensionless) and which is different from the renormalization group scale

µ. Thus with an explicit UV cut-off one only has to deal with Λ and µ, while in dimensional regular-

ization one has to deal with ε, µ and µ̃. We will nevertheless derive the Callan-Symanzik equations

entirely within the framework of dimensional regularization. Indeed, the presence of µ̃ presents only

a slight complication of the discussion.

5.4.1 Renormalization conditions at scale µ

We have seen that one can define a running coupling constant g(µ) as the value of (a certain com-

bination of 1PI propagators and) appropriate vertex function evaluated at the scale µ, cf eq. (5.27).

Of course, this equation (5.27) can be viewed as imposing a renormalization condition on the vertex

function at the scale µ. It is then most convenient to also impose the renormalization condition on

the full propagator at scale µ and accordingly require for the corresponding 1PI propagator that

∂

∂p2
Π∗(p2)

∣∣∣
p2=µ2

= 0 , (5.53)

while still keeping the condition that the pole be at the physical mass:

Π∗(−m2) = 0 . (5.54)

(Note that p2 = µ2 corresponds to a space-like momentum.) These two equations are for scalars,

but their generalization to Dirac fields or the electromagnetic field is obvious as can be seen on the

examples to follow.

We will now restrict ourselves to the massless case. This will also include the case where µ, pj � m

and m can be neglected, just as in our computation of β(µ) = β(µ,m = 0). Let’s look at the example

of massless QED. Then one has for the electron self energy (cf. (3.77) and (3.78))

Σ∗e2(p/) = −(Z2 − 1)e2 ip/+ (Z2δm)e2 −
e2

16π2
ip/
[2

ε
+ log

C2

π
− γ + 1− log

p2

µ̃2

]
, (5.55)

where µ̃ was some fixed mass scale introduced to keep the coupling e dimensionless in d = 4− ε. For

m = 0 the condition Σ∗(im) = 0 simply yields

δm = 0 . (5.56)

This was to be expected for a massless theory.26 The normalization condition (5.53) now reads
∂
∂p/

Σ∗(p/)
∣∣∣
p/=iµ

= 0 and yields

(Z2 − 1)e2 = − e2

8π2

[1

ε
+ log

C√
π
− 1 + γ

2
− log

µ

µ̃

]
, (5.57)

26Although expected, it is generally not true if we use a different regularization.
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and

Σ∗e2(p/) =
e2

16π2
ip/
[

log
p2

µ2
− 2
]
. (5.58)

In particular, this is now free from infrared divergences!

Similarly, for the vacuum polarization (photon propagator) one gets from (3.68) and (3.69), now

with m = 0

πe2(q2) = −(Z3 − 1)e2 −
e2

6π2

[1

ε
+ log

C√
π
− γ

2
+

5

6
− 1

2
log

q2

µ̃2

]
. (5.59)

Our new condition (5.53) can be easily seen to translate into π(µ2) = 0, i.e. (Z3 − 1) = πloop(µ2).

One gets

(Z3 − 1)e2 = − e2

6π2

[1

ε
+ log

C√
π
− γ

2
+

5

6
− log

µ

µ̃

]
, (5.60)

and

πe2(q2) =
e2

12π2
log

q2

µ2
. (5.61)

What is the general lesson we learn from these examples? First, we note the obvious fact that

the 1PI functions are simpler in the massless case than in the massive one. Second, we see that the

renormalized 1PI functions only depend on the coupling e, or rather e(µ), and explicitly on µ via the

dimensionless combination p2

µ2 or q2

µ2 . In addition, they may depend polynomially on the momenta.

They have a well-defined finite limit as ε → 0 and they do not depend on µ̃. Third, the Z-factors

depend on ε (they have poles ∼ 1
ε
), on the coupling e(µ) and on the dimensionless ratio µ

µ̃
.

Finally, we must formalize a bit more the definition of the β-function of the preceding subsection.

We will assume that the coupling is dimensionless as appropriate for a renormalizable coupling.

As explained above, the running coupling should be defined in terms of the appropriate vertex

function and half the sum of the corresponding 1PI propagators evaluated at some reference momenta

pj(µ) ≡ θjµ. Let us call F the corresponding combination of vertex function and 1PI propagators.

Obviously, at tree level we simply have F = g. Beyond tree level, F will depend on g as well as

on the momenta pj. Note that for dimensionless g the function F also is dimensionless and can

depend on the pj only through dimensionless ratios like pj/µ or pj/µ̃. Just as in the examples of

the 1PI propagators above, the loop-contributions will depend on g and pj/µ̃, but there are also the

counterterm contributions. If we write the renormalization condition for the coupling at scale µ0

(more precisely for pj = pj(µ0) ≡ θjµ0) then the counterterms are fixed such that the dependence on

µ̃ will cancel out and

F ≡ F
(
g(µ0),

pj
µ0

)
with F

(
g(µ0), θj

)
= g(µ0) . (5.62)

This then allows us to define (at least for µ close to µ0)

g(µ) = F
(
g(µ0), θj

µ

µ0

)
. (5.63)

The β-function is defined in terms of this running coupling g(µ) as

β(g(µ0)) = µ
d

dµ
g(µ)

∣∣∣
µ=µ0

= µ
d

dµ
F
(
g(µ0), θj

µ

µ0

)∣∣∣
µ=µ0

. (5.64)
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Note that β is a function of g only with no explicit µ dependence. The definition (5.64) implies that

the β-function is obtained by taking µ d
dµ

of g(µ) keeping g(µ0) fixed. Now, for finite regularization,

i.e. ε 6= 0, one can express g(µ0) in terms of the bare coupling gB, ε and µ0. Thus one sees that one

can also write

β(g(µ)) = µ
∂

∂µ

∣∣∣
gB ,ε

g(µ) . (5.65)

5.4.2 Callan-Symanzik equations

It is now relatively easy to establish the Callan-Symanzik equations for proper vertices Γ(n) or n-point

Green functions. They express that the choice of renormalization scale µ is arbitrary. Indeed, the bare

action, expressed in terms of bare fields and bare couplings (as well as bare masses if we considered

a massive theory), equals the renormalized action which is expressed in terms of renormalized fields

and couplings (and masses). Thus when computing normalized Green functions Ĝ(n) (cf. (1.37)),

i.e. excluding vacuum bubbles, of bare fields or of renormalized fields one uses the same functional

integral with the same action, the only difference being the explicit Z-factors. Any difference in the

measures due to the different normalizations of the fields cancels in the normalized Green-functions.

Thus (cf. (1.38))

Ĝl1...ln
B (n) (p1, . . . , pn) =

[
n∏
r=1

√
Zlr

]
Ĝl1...ln

(n) (p1, . . . , pn) , (5.66)

and thus for amputated Green functions

Ĝl1...ln
B (n,amp)(p1, . . . , pn) =

[
n∏
r=1

Z
−1/2
lr

]
Ĝl1...ln

(n,amp)(p1, . . . , pn) , (5.67)

As for the fields, a subscript B indicates the bare quantity, while we have dropped the subscript

R for the renormalized ones. Often, the amputated Green functions coincide with the 1PI vertex

function and, obviously, the latter must satisfy the same relation as the former:

Γ
(n)
B, l1...ln

(p1, . . . , pn) =

[
n∏
r=1

Z
−1/2
lr

]
Γ

(n)
l1...ln

(p1, . . . , pn) . (5.68)

One can also derive this relation more formally by working with the generating functionals: eiW [J ] ∼∫
Dφ eiS[φ]+i

∫
Jφ and eiWB [JB ] ∼

∫
DφB eiSB [φB ]+i

∫
JBφB . Observing that S[φ] = SB[φB] and φB =√

Zφ we findWB[JB] = W [
√
ZJB] up to an irrelevant additive constant. Upon Legendre transforming

W [J ] and WB[JB] one finds

Γ[ϕ] = ΓB[
√
Zϕ] . (5.69)

Expanding in powers of ϕ yields the relations (5.68).

To simplify the notation, we consider just one type of field and suppress all indices. However, we

will explicitly indicate the other quantities on which the vertex functions depend:

Γ
(n)
B (pj, gB, ε) =

[
Z
(
g(µ),

µ

µ̃
, ε
)]−n/2

Γ(n)
(
pj, g(µ), µ

)
. (5.70)
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This is to be thought as the asymptotics for small ε where the renormalized Γ(n) are ε-independent.

On the left-hand side, nothing depends on µ. More precisely, if we take µ ∂
∂µ

, holding gB (and ε)

fixed, we get zero. Thus

0 =

[
µ
∂

∂µ

∣∣∣
gB ,ε
− n

2

(
µ
∂

∂µ

∣∣∣
gB ,ε

logZ

)]
Γ(n)

(
pj, g(µ), µ

)
. (5.71)

One has

µ
∂

∂µ

∣∣∣
gB ,ε

Γ(n)
(
pj, g(µ), µ

)
=

[
µ
∂

∂µ

∣∣∣
g(µ)

+

(
µ
∂

∂µ

∣∣∣
gB ,ε

g(µ)

)
∂

∂g(µ)

]
Γ(n)

(
pj, g(µ), µ

)
=

[
µ
∂

∂µ

∣∣∣
g(µ)

+ β(g(µ))
∂

∂g(µ)

∣∣∣
µ

]
Γ(n)

(
pj, g(µ), µ

)
, (5.72)

where we have used (5.65). Similarly, we have

η ≡ µ
∂

∂µ

∣∣∣
gB ,ε

logZ
(
g(µ),

µ

µ̃
, ε
)

=

[
µ
∂

∂µ

∣∣∣
g(µ),ε

+ β(g(µ))
∂

∂g(µ)

∣∣∣
µ,ε

]
logZ

(
g(µ),

µ

µ̃
, ε
)
. (5.73)

A priori, η can depend on the same arguments as Z, but looking at the above one-loop examples of

Z2 or Z3, we see that the corresponding η2 and η3 are functions only of the renormalized coupling

g(µ). We will shortly see that, in general, η can only be a function of g(µ), just as is the case for

β(µ). Combining the last three equations, we get

0 =

[
µ
∂

∂µ

∣∣∣
g(µ)

+ β
(
g(µ)

) ∂

∂g(µ)

∣∣∣
µ
− n

2
η
(
g(µ)

)]
Γ(n)

(
pj, g(µ), µ

)
. (5.74)

This is the Callan-Symanzik equation for the n-point vertex function. It is now clear that η cannot

depend on ε or µ̃ since nothing else in this equation depends on these quantities. Since the explicit

µ-dependence of Z is only via the combination µ
µ̃

it follows, since η does not depend on µ̃ it cannot

have any explicit µ-dependence either. Thus η is a function of the dimensionless coupling g(µ) only:

η
(
g(µ)

)
= µ

∂

∂µ

∣∣∣
gB ,ε

logZ . (5.75)

The generalization of (5.74) to the case of a vertex function involving several fields is obvious. Each

type of field comes with its own Zr factor and corresponding ηr-function, so that the Callan-Symanzik

equation becomes

0 =

[
µ
∂

∂µ

∣∣∣
g(µ)

+ β
(
g(µ)

) ∂

∂g(µ)

∣∣∣
µ
− 1

2

n∑
j=1

ηj
(
g(µ)

)]
Γ

(n)
l1,...ln

(
pj, g(µ), µ

)
. (5.76)

Note that there is an analogous equation for the n-point Green function Ĝ(n)(pj, g(µ), µ) with simply

the sign in front of the ηj being + rather than −.
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As an example, let us work out the Callan-Symanzik equation for the electron-electron-photon

vertex function Γµ of QED (in the limit where one can neglect the electron mass, i.e. µ� me), includ-

ing the contributions to β, η2 and η3 up to one loop. One has from (5.60), logZ3 = − e(µ)2

6π2

[
C̃− log µ

µ̃

]
.

Then µ ∂
∂µ

∣∣∣
g(µ),ε

logZ3 = e(µ)2

6π2 while β(g(µ)) ∂
∂g(µ)

∣∣∣
µ,ε

logZ3 gives a contribution ∼ e(µ)4 comparable to

a two-loop contribution. Hence, at leading order

η3 =
e(µ)2

6π2
+O

(
e(µ)4

)
. (5.77)

Similarly, from (5.57)

η2 =
e(µ)2

8π2
+O

(
e(µ)4

)
. (5.78)

Thus 2η2 + η3 = 5e(µ)2

12π2 . Finally, recall the one-loop β-function of QED, eq. (5.17), β(e(µ)) = e(µ)3

12π2 , so

that

0 =

[
µ
∂

∂µ

∣∣∣
e(µ)

+
e(µ)3

12π2

∂

∂e(µ)

∣∣∣
µ
− 5 e(µ)2

24π2

]
Γµ
(
pj, e(µ), µ

)
. (5.79)

5.4.3 Solving the Callan-Symanzik equations

To solve (5.74) or (5.76) one first needs to find the running coupling constant as the solution g(µ) of

the first order ordinary differential equation with some initial condition

µ
d

dµ
g(µ) = β

(
g(µ)

)
, g(µ0) = g0 . (5.80)

We have already seen that the solution simply is given by
∫ g(µ)

g0

dg
β(g)

= log µ
µ0

. With this g(µ) the

partial differential equations (5.74) or (5.76) are turned into ordinary ones:

0 =

[
µ

d

dµ
− 1

2

n∑
j=1

ηj
(
g(µ)

)]
Γ

(n)
l1,...ln

(
pj, g(µ), µ

)
. (5.81)

This shows that

exp

[
−1

2

n∑
j=1

∫ µ

µ0

dµ′

µ′
ηj
(
g(µ′)

)]
Γ

(n)
l1,...ln

(
pj, g(µ), µ

)
= γ

(n)
l1,...ln

(pj) (5.82)

does not depend on µ. Obviously, γ
(n)
l1,...ln

(pj) = Γ
(n)
l1,...ln

(pj, g0, µ0). Hence, the Callan-Symanzik

equation (5.76) is solved by

Γ
(n)
l1,...ln

(
pj, g(µ), µ

)
= exp

[
1

2

n∑
j=1

∫ µ

µ0

dµ′

µ′
ηj
(
g(µ′)

)]
Γ

(n)
l1,...ln

(pj, g0, µ0) . (5.83)

This is a powerful result. Suppose we have a good approximation for Γ(n) for some g(µ0), like in

an asymptotically free theory for µ0 → ∞. One can then use (5.83) to reliably compute Γ(n) with
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coupling g(µ) at scale µ, as long as one can trust the approximations made when computing β and

ηj.

One can make further statements if one uses “dimensional analysis”. Every vertex function or

Green function has some well-defined “engineering dimension” which is its mass dimension. We say

that some function Γ(n) has engineering dimension ∆n if Γ(n)/µ∆n is a dimensionless quantity. In

4 dimensions, a scalar field has dimension 1 and a scalar n-point Green function G(n)(x1, . . . xn)

has ∆ = n, its Fourier transform has dimension n − 4n. The vertex function Γ(n) is obtained by

multiplying with n inverse propagators which add a total of 2n to the dimension. Hence Γ(n) has

scaling dimension −n. If one writes Γ(n)(pj) = Γ̂(n)(pj) δ
(4)(
∑
pj), as we did e.g. in QED for Γµ, we

see that the engineering dimension of Γ̂(n) is 4− n. More generally, let the engineering dimension of

Γ(n) be ∆n. Then

Γ(n)
(
pj, g(µ), µ

)
= µ∆n Γ(n)

(pj
µ
, g(µ), 1

)
, (5.84)

since the dimensionless quantity Γ(n)/µ∆n can only depend on the dimensionless combinations
pj
µ

and

on g(µ).

5.4.4 Infrared fixed point and critical exponents / large momentum behavior in asymp-
totic free theories

Suppose one has an infrared fixed point at g = g∗. Recall that this occurs if β(g∗) = 0 and β′(g∗) =

a > 0. Then as µ → 0 one has g(µ) → g∗. Let ηj(g∗) = η∗j . The integral
∫ µ
µ0

dµ′

µ′
ηj
(
g(µ′)

)
for

µ → 0 is dominated by the small values of µ′ and one can approximate ηj
(
g(µ′)

)
' η∗j . Hence∫ µ

µ0

dµ′

µ′
ηj
(
g(µ′)

)
' cj(µ0) + η∗j log µ

µ0
. Combining (5.83) and (5.84) yields

Γ
(n)
l1,...ln

(pj, g0, µ0) = exp

[
−1

2

n∑
j=1

∫ µ

µ0

dµ′

µ′
ηj
(
g(µ′)

)]
µ∆n Γ(n)

(pj
µ
, g(µ), 1

)
. (5.85)

We now let µ = λµ1 and pj = λqj with fixed µ1 and qj while letting λ → 0. Then µ → 0 and

g(µ)→ g∗ so that

Γ
(n)
l1,...ln

(λqj, g0, µ0) ' exp

[
−1

2

n∑
j=1

(
cj(µ0) + η∗j log

λµ1

µ0

)]
λ∆nµ∆n

1 Γ(n)
( qj
µ1

, g∗, 1
)

= λ∆n− 1
2

∑
j η
∗
j exp

[
−1

2

n∑
j=1

(
cj(µ0) + η∗j log

µ1

µ0

)]
µ∆n

1 Γ(n)
( qj
µ1

, g∗, 1
)
. (5.86)

Thus as λ→ 0, the Γ(n) scale as λ∆n− 1
2

∑
j η
∗
j . The naive scaling exponent ∆n has been corrected by

−1
2

∑
j η
∗
j .

Recall that for Green functions one has to switch the sign in front of the ηj. For the two-point

function there is only a single η involved. Finally recall that the momentum-space propagator is the

two-point functions without the δ(4) so that ∆ = −2 for scalars and ∆ = −1 for Dirac propagators.

Then e.g. for a scalar propagator

∆′(λq, g0, µ0) ' λ−2+η∗ ×
[
ec(µ0)

(
µ1

µ0

)η∗
µ−2

1 ∆′
( qj
µ1

, g∗, 1
)]

as λ→ 0 . (5.87)
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This infrared scaling behavior ∼ λ2+η∗ is as if the field had dimension 1 + η∗/2. This is why η∗/2 is

called the anomalous dimension of the field. When the critical point of the (four-dimensional) Ising

model is described by the massless φ4 theory, η∗ is called a critical exponent.

The previous arguments are easily adapted to the large momentum behavior of vertex or cor-

relation functions in asymptotic free theories. One now considers the large λ asymptotics. Then

g(λµ1)→ 0 and it is enough to compute Γ(n)
(
qj
µ1
, g(λµ1), 1

)
to the lowest non-trivial order in pertur-

bation theory (i.e. tree-level if non-vanishing). Similarly η∗j is to be replaced by the one-loop result

evaluated at the (small) coupling g(λµ1).

5.5 Callan-Symanzik equations for a massive theory

5.5.1 Operator insertions and renormalization of local operators

It is often useful to consider composite operators like e.g. O(x) = φ2(x) in a scalar theory. (As

always, φ denotes the renormalized field.) One should think of this operator as being obtained from

φ(y)φ(x) in the limit where y → x. One can then compute correlation functions (Green functions)

of O(x) with the elementary fields φ(xi) by first computing 〈T
[
φ(y)φ(x)φ(x1) . . . φ(xn)

]
〉vac and then

letting y → x. Of course, this limit is singular as one already sees for n = 0. Even in a free

theory one has limy→x〈T
[
φ(y)φ(x)

]
〉vac = −i limy→x

∫
d4p

(2π)4
eip(y−x)

p2+m2−iε = −i
∫

d4p
(2π)4

1
p2+m2−iε . This can

be interpreted as a “vertex” with two lines attached that are joined by a propagator, i.e. a one-loop

diagram.

To get finite Green functions in the presence of such operators, one should work with the corre-

sponding renormalized operators OR(x):

O(x) = ZOOR(x) = OR(x) + (ZO − 1)OR(x) . (5.88)

The second term is interpreted, as usual, as a counterterm. One can then show that with appropri-

ately chosen ZO the Green functions involving OR are finite.

In the example of O = φ2 we actually already know this counterterm. If we start with a massive

theory and consider all terms in the action that involve the mass terms as a small perturbation, we

see that inserting −m2φ2 + Zδm2φ2 − (Z − 1)m2φ2 in any correlator must give a finite result. Thus

Oφ2,R(x) =
[
1− 1

m2
Z δm2 + (Z − 1)

]
Oφ2(x) = Z

[
1− δm2

m2

]
Oφ2(x) ⇒ Zφ2 =

1

Z

[
1− δm2

m2

]−1

.

(5.89)

Of course, this is just such that

m2Oφ2,R(x) = m2
B ZOφ2(x) = m2

B φ
2
B(x) . (5.90)

In the φ4-theory, eqs (3.110) and (3.111) yield, up to order g : Zφ2 = 1 + δm2

m2 = 1 − g
16π2

(
1
ε
−

γ+log π−1
2

− 1
2

log m2

µ̃2

)
. Note that this is in a massive theory. If we are in a massless theory, δm2 = 0,

as already observed above, and Zφ2 = 1 at this order.

As another example, consider Oφ4(x) = φ4(x). Again, we know from the renormalized perturba-

tion theory of φ4-theory that insertions of gBφ
4
B(x) in correlation functions lead to finite expressions.
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Recall that gB = Zg
Z2 g and φB =

√
Zφ, hence gBφ

4
B(x) = gZgφ

4(x). Since g is finite, we see that the

operator which will yield finite results when inserted into correlators is

Oφ4,R(x) = Zg φ
4(x) ⇒ Zφ4 = Z−1

g . (5.91)

One sometimes defines m2
B = Zm

Z
m2 so that Zm = Z

[
1− δm2

m2

]
. From eq. (5.89) one sees that then

Zφ2 = Z−1
m , in complete analogy with (5.91)

Note that our definition (5.88) of ZO expresses a relation between the renormalized operator

OR(x) and the operator formed from the elementary renormalized fields. One could further express

the latter in terms of the bare fields, e.g. φn(x) = Z−n/2φnB(x), and define the bare composite

operators in terms of the bare fields only, e.g. OB(x) = φnB(x). Thus

OB(x) =
(∏

l

√
Zl

)
O(x) =

(
ZO
∏
l

√
Zl

)
OR(x) ≡ Z̃OOR(x) . (5.92)

5.5.2 Callan-Symanzik equations in the presence of operator insertions

It is now straightforward to derive Callan-Symanzik equations for Green functions or vertex functions

that involve insertions of local operators as just discussed. Again one writes that the bare functions

with the bare operators OB inserted into the correlation functions of the bare fields φB cannot

depend on the renormalization group scale µ. This is then translated into a differential equation for

the correlation functions of renormalized fields with renormalized operators inserted.

To simplify the notation, we will only consider one type of field, denoted φ, and one type of

operator, denoted O. We let

G
(n,l)
R (x1, . . . , xn; y1, . . . yl) = 〈T

[
φ(x1) . . . φ(xn)OR(y1) . . .OR(yl)

]
〉vac ,

G
(n,l)
B (x1, . . . , xn; y1, . . . yl) = 〈T

[
φB(x1) . . . φB(xn)OB(y1) . . .OB(yl)

]
〉vac . (5.93)

They are related by

G
(n,l)
B = Zn/2 Z̃ l

O G
(n,l)
R . (5.94)

If several fields and/or operators are present, one has the appropriate products of the Z factors. If

one amputates these Green functions by multiplying with n inverse propagators, one gets a similar

relation between the bare and renormalized quantities, but with Zn/2 replaced by Z−n/2. The same

relation holds for the 1PI vertex functions with operator insertions:

Γ
(n,l)
B = Z−n/2 Z̃ l

O Γ
(n,l)
R . (5.95)

As before (cf. eq. (5.69)), this relation can also be proven more properly by working through the

relations between the generating functional, now with an extra source/current for the operator OB =

Z̃OOR. Doing the Legendre transform – but only with respect to the elementary fields and not with

respect to this extra current, one gets a relation between the generating functional of 1PI diagrams

with additional insertions of O. Expanding this relation yields (5.95).
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In addition to the definition (5.75) of η, we also define

η̃O
(
g(µ)

)
= µ

∂

∂µ

∣∣∣
gB ,ε

log Z̃O . (5.96)

It is then straightforward to generalize (5.74) to

0 =

[
µ
∂

∂µ

∣∣∣
g(µ)

+ β
(
g(µ)

) ∂

∂g(µ)

∣∣∣
µ
− n

2
η
(
g(µ)

)
+ l η̃O

(
g(µ)

)]
Γ(n,l)

(
pj, g(µ), µ

)
. (5.97)

The solution of this equation and study of the asymptotic behaviors of the Γ(n,l) proceeds just as for

l = 0 with the obvious replacement n
2
η → n

2
η − l η̃O.

5.5.3 Massive Callan-Symanzik equations

Let us now consider a massive scalar theory and consider the mass term
∫

d4z
(
− 1

2

)
m2
Bφ

2
B(z) =

−1
2

∫
d4z m2Oφ2,R(z) (cf. (5.90)) as a perturbation. Then any Green function of the massive theory

with l insertions of Oφ2 can be written as

G
(n,l)
massive(x1, . . . xn; y1, . . . yl) =

∞∑
r=0

(−i)r (m2)r

2r r!

∫
d4z1 . . . d

4zrG
(n,l+r)
massless(x1, . . . xn; y1, . . . yl, z1, . . . zr) .

(5.98)

Each term in the sum on the right-hand side satisfies a Callan-Symanzik equation (5.97) with the

last term in the bracket being (l + r)η̃φ2 . But we can generate exactly this expression for each term

in the sum by acting on the sum with η̃φ2

(
l +m2 ∂

∂m2

)
. We find that the left-hand side satisfies the

massive Callan-Symanzik equation:

0 =

[
µ
∂

∂µ

∣∣∣
g(µ),m

+ β
(
g(µ)

) ∂

∂g(µ)

∣∣∣
µ,m

+
n

2
η
(
g(µ)

)
+ η̃φ2

(
g(µ)

) (
l +m2 ∂

∂m2

∣∣∣
µ,g(µ)

)]
G

(n,l)
massive

(
pj, g(µ), µ

)
. (5.99)

The relation between the bare and renormalized 1PI functions with l insertions of an operator O was

obtained before. In particular, this also applies for the insertions of the mass operator and we get,

in analogy with the preceeding Callan-Symanzik equation for the Green functions,

0 =

[
µ
∂

∂µ

∣∣∣
g(µ),m

+ β
(
g(µ)

) ∂

∂g(µ)

∣∣∣
µ,m
− n

2
η
(
g(µ)

)
+ η̃φ2

(
g(µ)

) (
l +m2 ∂

∂m2

∣∣∣
µ,g(µ)

)]
Γ

(n,l)
massive

(
pj, g(µ), µ

)
. (5.100)
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PART III :

NON-ABELIAN GAUGE THEORIES

6 Non-abelian gauge theories: formulation and quantiza-
tion

Gauge invariance, and in particular non-abelian gauge invariance, plays a most important role in the

formulation of the quantum field theories that seem to describe (almost?) all of the particle physics as

it is known today: quantum electrodynamics to begin with and its embedding into the electro-weak

theory based on the gauge group SU(2) × U(1), as well as the theory of strong interactions based

on the gauge group SU(3). Here, we will briefly show how to construct (classical) actions that are

invariant under non-abelian gauge symmetries. Then we will discuss how to quantize these theories

using the functional integral approach. This will involve the issues of gauge-fixing, Faddeev-Popov

procedure and the appearance of so-called ghost fields. The gauge-fixed action no longer is gauge

invariant but instead has a new symmetry, the BRST-symmetry which we will identify. This BRST

symmetry will play a crucial role when showing that these gauge theories are renormalizable.

6.1 Non-abelian gauge transformations and gauge invariant actions

Recall from quantum electrodynamics that the classical action is invariant under the following gauge

transformation:

ψl(x)→ ψ′l(x) = eiα(x)qlψl(x) , Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x) = Aµ(x) +
i

ql
eiα(x)ql∂µ e

−iα(x)ql .

(6.1)

This is often called a U(1) gauge invariance because obviously g(x) = eiα(x)ql ∈ U(1). There seems

to be a different g(x) for every different charge ql, but note that ql is the eigenvalue of the charge

operator Q when acting on ψl. Hence we can write g(x) = eiα(x)Q. Using this g(x) we can rewrite

the transformations (6.1) as

ψ(x)→ ψ′l(x) = g(x)ψ(x) , QAµ(x) → QA′µ(x) = QAµ(x) + ig(x)∂µ g(x)−1 . (6.2)

Of course, gauge invariant terms then are built from covariant derivatives, i.e.

Dµψ = (∂µ − iQAµ)ψ , (6.3)

since this transforms as

Dµψ → D′µψ
′ =

(
∂µ − iQAµ + (g∂µg

−1)
)
gψ = g

(
∂µψl + (g−1∂µg)− iQAµ + (∂µg

−1g)
)
ψ

= g
(
∂µ − iQAµ

)
ψ = gDµψ. (6.4)

Indeed, since g is just a phase, |Dµψ|2 obviously is invariant.
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We have rewritten the simple U(1) gauge transformation of the electromagnetic (gauge) field

Aµ and of the matter fields ψ, as well as the definition of the covariant derivative, in a way that

makes their generalization to other gauge groups almost obvious. Let us now consider the case

where the abelian U(1) group is replaced by some, generally non-abelian Lie group G, called the

gauge group. In general this can be a product of so-called simple groups and U(1) factors, like e.g.

SU(3)×SU(2)×U(1) for the standard model of electro-weak and strong interactions, or even some

more exotic groups like e.g. E8. For simplicity, one might simply think of SU(N), the group of

unitary N × N matrices with unit determinant. The structure of a Lie group is almost entirely

captured by the commutators of its generators: the group elements close to the identity are always

of the form eiθ
ata with dimG small parameters θa and dimG generators ta. The latter must satisfy

closed (Lie algebra) commutation relations

[tα, tβ] = iCγ
αβtγ , (6.5)

with real structure constants Cγ
αβ which satisfy the Jacobi identity Cδ

[αβC
ε
γ]δ = 0. It may happen

that several groups like e.g. SU(2) and SO(3) have the same Lie algebra. In this case the groups

are locally identical but not globally. We will be not so much concerned with the group elements

themselves but rather with their representations. If we use a specific representation R we write tRα
or (tRα ) l

k for the dimR × dimR matrices of this representation. For compact Lie algebras (i.e. if

tr tαtβ is positive-definite), all finite dimensional representations are hermitian. This is the case of

most interest in gauge theories and, hence, (tRα )† = tRα . Of course, the corresponding representations

of the group then are unitary. In this case one can also find a basis for the generators for which the

Cγ
αβ are antisymmetric in all 3 indices and one may then drop the distinction between upper and

lower indices. Note that the Jacobi identity implies that the

(tadj
α )βγ = −iCαβγ (6.6)

satisfy the algebra (6.5). This special representation is called the adjoint representation.

Consider a collection of matter fields ψl, l = 1, . . . r transforming in some r-dimensional repre-

sentation R of G:

ψl(x)→ ψ′l(x) = UR(g(x)) k
l ψk(x) , (6.7)

where UR(g(x)) is the r × r matrix associated to the group element g(x) ∈ G in the representation

R. For G = SU(N), the simplest example is the so-called fundamental (or “vector”)) representation

for which U(g(x)) j
i = g(x) j

i with i and j running simply from 1 to N . In the following, we will not

write the indices explicitly so that we simply write

ψ(x)→ ψ′(x) = UR(g(x)) ψ(x) , (6.8)

with the understanding that ψ is a dimR-dimensional column vector of matter fields. We want to

construct a covariant derivative Dµ involving ∂µ and some gauge field Aµ. In the abelian case the

relevant combination was AµQ with Q the generator of the U(1) group. Let us try

Aµ = Aαµt
R
α ≡ ARµ , (6.9)
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since this can act on the dimR-dimensional column vector of matter fields ψ, and a definition of the

covariant derivative as

DRµ ψ =
(
∂µ − iARµ

)
ψ . (6.10)

One often drops the superscript R on Dµ or Aµ, but one should remember that these quantities

take values in the representation R of the gauge group determined by the matter fields. We want

to determine the gauge transformation properties of Aµ in such a way that the covariant derivative

simply transforms as

Dµ ψ → D′µψ
′ = UR(g)Dµψ . (6.11)

First, we look at the transformation of ∂µψ. To further simplify the notation we will simply assume

that the representation is the fundamental representation where D(g(x)) = g(x), but one could

replace everywhere g by DR(g)). Also we will drop the arguments x, although g, ψ and Aµ all

depend on x. One has

∂µψ → ∂µψ
′ = ∂µ(gψ) = g∂µψ + (∂µg)ψ = g

(
∂µ +

(
g−1∂µg

))
ψ (6.12)

On the other hand,

−iAµψ → −iA′µψ′ = −iA′µgψ = −ig
(
g−1A′µg

)
ψ . (6.13)

It is then obvious that the covariant derivative will transform covariantly, i.e. as in (6.12) provided Aµ

transforms as −ig−1A′µg + g−1∂µg = −iAµ, i.e. A′µ = gAµg
−1 − i∂µgg−1. Since ∂µg

−1 = −g−1∂µgg
−1

one has −∂µgg−1 = g∂µg
−1 so that one gets

A′µ = gAµg
−1 + ig∂µg

−1 = g
(
Aµ + i∂µ

)
g−1 . (6.14)

Note that for G = U(1) and g = eiαQ and the replacement Aµ → QAµ one gets back (6.1). For a

general matter representation one simply has

ψ′ = UR(g)ψ , A
′R
µ = UR(g)

(
ARµ + i∂µ

)
UR(g−1)

DRµ = ∂µ − iARµ ,
(
DRµ ψ

)′
= UR(g)DRµ ψ .

(6.15)

For a unitary representation, (Dµψ)†Dµψ then is obviously invariant. This will be the ingredient to

write gauge invariant matter kinetic terms.

It is often enough and simpler to consider only infinitesimal gauge transformations with g(x) =

eiε
αtα or UR(g) = eiε

α(x)tRα . It is convenient to define εR = εαtRα . Then the previous equations yield

δψ = ψ′ − ψ = iεRψ
δARµ = A

′R
µ − ARµ = ∂µε

R − i
[
ARµ , ε

R] .
(6.16)

The latter equation reads in components

δAαµ = ∂µε
α + C α

βγ A
β
µε
γ , (6.17)
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which shows that, of course, the transformation of the gauge field components does not depend on

the representation R of the matter fields. Using the generators of the adjoint representation (6.6)

one may also write this as

δAαµ = (Dadj
µ )αγ ε

γ . (6.18)

We still need to define the field strength Fµν . Since Dνψ transforms exactly as ψ, taking a further

covariant derivative Dµ is defined in exactly the same way:

DRµ D
R
ν ψ = (∂µ − iARµ )(∂ν − iARν )ψ = ∂µ∂νψ − i∂µARν ψ − iARν ∂µψ − iARµ ∂νψ − ARµARν ψ . (6.19)

Antisymmetrizing in µ and ν eliminates all terms with a derivative of ψ. Hence

[DRµ , D
R
ν ]ψ = −iFRµνψ , (6.20)

with

FRµν = ∂µA
R
ν − ∂νARµ − i[ARµ , ARν ] , (6.21)

or with FRµ,ν = Fα
µνt
R
α :

Fα
µν = ∂µA

α
ν − ∂νAαµ + C α

βγ A
β
µ, A

γ
ν . (6.22)

It follows from (6.20) that Fµν transforms covariantly:

FRµν → F
′R
µν = UR(g)FRµν U

R(g−1) or δFRµν = i[εR, FRµν ] (6.23)

Obviously then, a gauge invariant scalar density is trFRµνF
Rµν . For compact groups we can choose

a basis of generators such that

tr tRα t
R
β = CR δαβ ⇒ trFRµνF

Rµν = CRF
α
µνF

αµν . (6.24)

With the appropriate normalization, this will be the gauge kinetic term, generalizing −1
4
FµνF

µν .

Note that, contrary to the abelian gauge theory of QED, in the non-abelian case, Fα
µνF

αµν contains

cubic and quartic terms in the gauge fields. This will lead to cubic and quartic vertices involving

only gauge boson lines.

In QED, the coupling constant is given by the electric charge, i.e. the eigenvalue of the charge

operator Q. In analogy we may include the Yang-Mills coupling constant gYM in the generators tα

and their representations tRα . In this case CR ∼ g2
YM and C α

βγ ∼ gYM. This is what Weinberg does,

and we will follow this convention. Alternatively one can use conventionally normalized Lie algebra

generators (where the CR do not include any factors of gYM). Then a factor of gYM does appear

explicitly in front of the Aµ in the covariant derivative, and similarly in front of the quadratic term

in Fµν . This explicit factors of gYM can then be removed by rescaling ARµ → 1
gYM

ARµ . The only

appearance of the coupling then is a factor 1
gYM

in front of every Fµν . If the gauge group is simple,

there is only a single coupling constant gYM. However, in the general case where the gauge group is a

product of simple and U(1) factors, every simple or U(1) factor can have its own coupling constant.
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The unique Lorentz and gauge invariant Lagrangian quadratic in the field strength then is

Lgauge[Fµν ] = −1
4
Fα
µνF

αµν . Of course, there is one more possibility, θαβε
µνρσFα

µνF
β
ρσ but this is a

total derivative. Hence the Lagrangian for matter and gauge fields is

L[Aµ, ψ] = −1

4
Fα
µνF

αµν + Lmatter[ψ,Dµψ] , (6.25)

where we collectively denoted all matter fields by ψ. If temporarily ψ denotes spin 1
2

fields and φ

scalars, an example of Lmatter would be

Lmatter[ψ,Dµψ, φ,Dµφ] = −ψ̄(γµDµ +m)ψ − (Dµφ)†Dµφ− m̃2φ†φ− V (φ†φ) . (6.26)

We only need the fact that the matter Lagrangian is gauge invariant. This will be the case if

Lmatter[ψ, ∂µψ, φ, ∂µφ] is invariant under global (rigid) transformation by elements of G.

6.2 Quantization

Just as with QED, direct canonical quantization does not work due to the presence of constraints, in

particular one again has Πµ
α = F µ0

α and hence Π0
α = 0 which is a primary constraint. Together with a

secondary constraint which does not involve A0 these are first class constraints. As usual, they have

to be eliminated by a gauge choice. In the non-abelian case, a convenient choice is the axial gauge

Aα3 = 0 . (6.27)

Then Aα1 and Aα2 become canonical variables, while Aα0 is given by the solution of the secondary con-

straint. One can then go through the canonical formulation of the functional integral in Hamiltonian

form, as we did for QED. To begin with one only integrates over the canonical fields Aαi i = 1, 2 and

their conjugate fields Πα
i . Proceeding through similar steps as we did for QED27 , one ends up with

a Lagrangian version of the functional integral as (C is a normalization constant)

〈T
(
Oa . . .ON

)
〉vac = C

∫
DAαµ Dψl

∏
x,α

δ(Aα3 ) Oa . . .ON ei
∫

d4xL[Aµ,ψ] (6.28)

where one integrates over all 4 components with the manifestly gauge invariant action
∫

d4xL[Aµ, ψ].

Of course, the integration over Aα3 is effectively suppressed by the functional δ(Aα3 ) which imposes

our gauge choice. Note that the derivation ensures that this gives a manifestly unitary theory. On

the other hand, Lorentz invariance is not manifest.

One is usually interested in computing the vacuum expectation valued of (time-oredered) gauge

invariant operators O1, . . .ON , although, at intermediate stages one may also compute and use

non-gauge invariant objects as e.g. the gauge field propagator 〈T
(
Aαµ(x)Aβν (y)

)
〉vac. Note that the

measure DAαµ is gauge invariant: It is easy to show that the Jacobian for the gauge transformation

(6.17) equals one.28 In the absence of (massless) chiral fermions one can also show that the matter

27Just as when discussing QED, in this section, we will simply write 〈(. . .)〉vac instead of 〈vac, out| (. . .) |vac, in〉.
28Jαµx,βνy =

δA
′α
µ (x)

δAβν (y)
= δ(4)(x − y) δµν

[
δαβ + C α

βγ ε
γ(x)

]
, and due to the antisymmetry of the structure constants

C α
αγ = 0 and DetJ = exp Tr log J = exp(O(ε2)).
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measure is gauge invariant. However, if chiral fermions are present this is no longer guaranteed. If

the matter measure is not invariant, one has a so-called anomaly, and the entire following discussion

breaks down. It is thus important that, if present, gauge anomalies cancel between the contributions

of the different chiral matter fields.

6.2.1 Faddeev-Popov method

We want to show that one can rewrite the expectation values (6.28) in different equivalent ways,

corresponding to different gauge choices. First it is useful to rewrite (6.28) as

〈T
(
Oa . . .ON

)
〉vac = C

∫
DAαµ

∏
x,α

δ(Aα3 ) G[Aαµ] with G[Aαµ] =

∫
DψlO1 . . .ON ei

∫
d4xL[Aµ,ψ] ,

(6.29)

the important point being that G[Aαµ] is gauge invariant. Indeed, with a gauge invariant matter

measure and gauge invariant Oi we have G[A
′α
µ ] =

∫
DψlOa . . .ON ei

∫
d4xL[A′µ,ψ]. Upon changing

the integration variable from ψl to the gauge transformed ψ′l and using the gauge invariance of the

measure this is G[A
′α
µ ] =

∫
DψlOa . . .ON ei

∫
d4xL[A′µ,ψ

′] = G[Aαµ], where we used the gauge invariance

of the action in the last step.

The expression of eq. (6.29) is of the general form

IG = C

∫
DAµ B

[
f [Aµ]

]
DetF [Aµ] G[Aµ] , Fαβ(x, y) =

δfα[A′(x)]

δεβ(y)

∣∣∣
ε=0

, (6.30)

where A′ denotes the gauge transformed A with parameter ε. Indeed, if we let fα[A] = Aα3 and

B[f ] =
∏

x,α δ(f
α(x)), we have A

′α
3 = ∂3ε

α (since A3 = 0) so that Fαβ(x, y) = δαβ
∂
∂x3 δ

(4)(x− y) and

DetF is just an irrelevant constant.

We want to show that IG does not depend on the choice of the gauge-fixing function f or on

B. Intuitively, what happens is the following: due to the gauge invariance of G[Aµ] there are many

gauge-equivalent configurations and integrating over all Aµ would result in an infinite factor equal

to the “volume” of a “gauge slice”. The gauge-fixing condition restricts the functional integration to

exactly one configuration among the gauge equivalent ones. There are many different ways to do this

and the factor DetF ensures the independence of the specific choice of f or B. This is the functional

analogue of the well known fact that
∫

dx δ(f(x))f ′(x)g(x) = g(x0) does not depend on f , as long

as f has a single root x0.

Faddeev-Popov theorem : For gauge invariant G[Aµ], the functional integral IG is independent of the

gauge-fixing function f and depends on B only through an irrelevant overall factor.

To prove this theorem we first change variables from Aµ to some A′µ ≡ Agµ which we identify with

Aµ gauge transformed by some g(x) ∈ G. Using the invariance of the measure and of G[Aµ] we get

IG = C

∫
DAµ B

[
f [Agµ]

]
DetF [Agµ] G[Aµ] . (6.31)

Since we only introduced g by a change of variables, this cannot depend on g. We multiply both

sides by some weight function ρ[g] such that
∫
Dg ρ[g] = C0 is finite:

C0 IG =

∫
DAµ G[Aµ]H[Aµ] , H[Aµ] =

∫
Dg ρ[g]B

[
f [Agµ]

]
DetF [Agµ] , (6.32)
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where now (suppressing the α, β, . . . labels but showing the x, y, . . ., and using the fact that the gauge

transformations form a group)

F [Agµ](x, y) =
δf [(Ag)′(x)]

δε(y)

∣∣∣
ε=0

=
δf [Ag̃(g,ε)(x)]

δε(y)

∣∣∣
ε=0

=

∫
d4z

δf [Ag̃(x)]

δg̃(z)

∣∣∣
g̃=g
× δg̃(g, ε; z)

δε(y)

∣∣∣
ε=0

. (6.33)

We let G[g](z, x) = δg̃(g,ε;z)
δε(y)

∣∣∣
ε=0

. Obviously, this only depends on g(x) and one can show that ρ[g] =(
DetG

)−1
yields a reasonable weight function. With this choice, (6.32) yields

H[Aµ] =

∫
Dg ρ[g]B

[
f [Agµ]

]
Det

δf [Agµ]

δg
DetG =

∫
Dg B

[
f [Agµ]

]
Det

δf [Agµ]

δg
=

∫
DfB[f ] ≡ CB .

(6.34)

Obviously, this is independent of the choice of f and depends on B only through the constant CB.

Substituting this result into the first equation (6.32), the same is also true for IG, i.e IG/CB is

independent of f and B, which was to be proven.

Since for the special choice fα[Aµ] = Aα3 and B[f ] =
∏

x,α δ(f) (in this case CB = 1) the integral

IG equals (6.29), the theorem tells us that the vacuum expectation value of a time-ordered product

of gauge invariant operators can be evaluated with any choice of gauge-fixing function and function

B, provided
∫
Df B[f ] converges and f indeed fixes the gauge:

〈T
(
Oa . . .ON

)
〉vac =

C

CB

∫
DAµ B

[
f [Aµ]

]
DetF [Aµ]

∫
DψlO1 . . .ON ei

∫
d4xL[Aµ,ψ] , (6.35)

6.2.2 Gauge-fixed action, ghosts and Feynman rules

Let us now make a convenient choice of gauge-fixing function f and function B which, in particular,

will be manifestly Lorentz invariant:

fα = ∂µA
µ
α , B[f ] = exp

[
− i

2ξ

∫
d4x fα(x)fα(x)

]
. (6.36)

As one can see from (6.35), the factor B[f ] just contributes an extra term

Lg.f. = − 1

2ξ
fαfα (6.37)

to the classical Lagrangian. One can then read off the gauge boson propagator −i∆αµ,β,n(p) from

the quadratic part of L+ Lg.f. and finds

∆αµ,β,ν(p) = δαβ

(
ηµν + (ξ − 1)

pµpν
p2

)
1

p2 − iε
. (6.38)

Except for the extra δαβ this is just like the photon propagator, which should not be surprising, given

our choice of fα.

Next, we must evaluate F and compute its determinant. Since a fermionic gaussian integral

equals the determinant of the quadratic form, it is a convenient trick to rewrite DetF as

DetF =

∫
DωDω∗ exp

[
i

∫
d4x d4y ω∗α(x)Fα,β(x, y)ωβ(y)

]
, (6.39)
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where ωα and ω∗α are anticommuting, i.e. fermionic fields. On the other hand, given the nature of

F we will soon see that they cannot be spin 1
2

fields but must be scalars. Moreover, ωα and ω∗α are

independent real scalars. They do not obey the usual spin statistics relation and hence are named

ghosts. However, this is not a problem since we do not want to obtain any Lorentz invariant S-matrix

for scattering of these ghost fields. More precisely, ωα is called a ghost and ω∗α an anti-ghost. Note

that the ghost and anti-ghost carry an index α just like the gauge field Aµ. One sometimes says that

they are in the adjoint representation of G, just as Aµ. One has fα[A′µ] = ∂µ
(
∂µεα + C α

γβ A
γ
µε
β
)

and

hence

Fα,β(x, y) =
δfα[A′µ](x)

δεβ(y)
=

∂

∂xµ

(
∂

∂xµ
δαβ + C α

γβ A
γ
µ(x)

)
δ(4)(x− y) . (6.40)

Using (6.39) we get

DetF =

∫
DωDω∗ exp

[
i

∫
d4xLghost(x)

]
, Lghost = −∂µω∗α∂µωα − C α

γβ ∂µω
∗
αA

µ
γωβ . (6.41)

Thus the effect of the so-called Faddeev-Popov determinant DetF is to add the ghost Lagrangian

Lghost to the classical Lagrangian L and gauge-fixing Lagrangian Lg.f.:

Lmod = L+ Lg.f. + Lghost . (6.42)

Note that for an abelian theory like QED, the structure constants C α
βγ vanish and the ghosts do

not couple to any of the other fields. Equivalently then, their functional integral only leads to the

determinant of ∂µ∂
µ which is an irrelevant constant. This is why we did not have to bother about

the ghosts in QED. In the non-abelian gauge theory, with our choice of gauge-fixing function, the

ghosts do couple to the gauge fields and do make important contributions to loop diagrams.29 Their

propagator −i
(2π)4 ∆αβ(p) can be read off from (6.42) to be the same as for a massless spin-0 fermion:

∆αβ =
δαβ

p2 − iε
, (6.43)

while the ghost - anti-ghost - gauge field vertex involves the structure constant C α
βγ as well as a

factor of momentum. More precisely, taking all momenta as incoming (q for the ghost with label β,

p for the anti-ghost with label α and k for the gauge boson with labels µ and γ), one reads from

(6.41) that this vertex contributes

i(2π)4δ(4)(p+ q + k) ipµCαβγ . (6.44)

We already gave the gauge boson propagator. The cubic and quartic gauge boson couplings simply

follow from the cubic and quartic terms in −1
4
FµνF

µν . Again, with all momenta taken as incoming,

the vertex for the coupling of three gauge bosons with (p, µ, α), (q, ν, β) and (k, ρ, γ) is

i(2π)4δ(4)(p+ q + k) (−iCαβγ)
[
pνηµρ − pρηµν + qρηνµ − qµηνρ + kµηρν − kνηρµ

]
, (6.45)

29Of course, in axial gauge, A3 = 0, one finds Fαβ(x, y) = δ
δx3 δ

(4)(x − y)δαβ and the ghost Lagrangian simply is
−∂3ω∗αωα so that the ghosts again decouple.
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while the vertex for the coupling of four gauge bosons (the fourth one having (l, λ, δ)) is

i(2π)4δ(4)(p+ q + k + l)
[
−CεαβCεγδ(ηµρηνλ − ηµληνρ)
−CεαγCεδβ(ηµληρν − ηµνηλρ)

−CεαδCεβγ(ηµνηρλ − ηµρηλν)
]
. (6.46)

Note that the Lagrangian preserves the ghost-number which translates into the fact that every vertex

with one incoming ghost line also has exactly one outgoing ghost line.

6.2.3 BRST symmetry

One can now start computing Feynman diagrams and generating functionals using the Lagrangian

Lmod = L+Lg.f.+Lghost of (6.42) and integrating over the matter fields, gauge and ghost fields. Note

that Lmod no longer is gauge invariant: this was the whole point about gauge-fixing. All terms in Lmod

have ∆ = 0 and hence this Lagrangian is renormalizable by power-counting as discussed in section

4: there are only finitely many divergent Green’s functions and they are made finite by the addition

of finitely many counterterms with their coefficients fixed at any given order in perturbation theory.

Moreover, these counterterms themselves all have ∆ct ≥ 0 and do not upset the renormalizability.

However, we want more than this: the counterterms should be of the form of the initial terms in

the Lagrangian. In particular, one should still be able to interpret Lmod + Lct as arising from the

gauge-fixing of some gauge invariant Lagrangian, but now with renormalized parameters. We must

find out what is the remnant of the gauge invariance of the original classical Lagrangian. This turns

out to be the BRST-symmetry.

Let us first do one more rewriting of our Lagrangian. Introducing an auxiliary field hα we can

rewrite the gauge-fixing term as ξ
2
hαhα+hαfα since doing the gaussian integration over hα reproduces

− 1
2ξ
fαfα. Thus, our starting point is

Lnew = L+
ξ

2
hαhα + hαfα + ω∗αρα , (6.47)

where

ρα(x) = ∂µ∂
µωα(x) + C α

βγ ∂µ(Aµβ(x)ωγ(x)) =

∫
d4yFαβ(x, y)ωβ(y) . (6.48)

The BRST symmetry is defined to act on the “ordinary” fields, i.e. the matter and gauge

fields, just like an ordinary infinitesimal gauge transformation but with the (real) parameter εα

replaced by the (real) ghost field ωα. It is thus a fermionic symmetry that increases the ghost-number

by one unit. To begin with, we simply set εα(x) = θωα(x) with θ an anticommuting parameter

(θω = −ωθ, θAµ = Aµθ, etc, and θθ = 0). Then

δθA
α
µ = θ

(
∂µω

α + C α
βγ A

β
µω

γ
)

δθψ = i θ ωαtRα ψ

δθψ
† = −iθ ωαψ†tRα = iθ ψ† tRα ω

α . (6.49)
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This is conveniently rewritten by defining a fermionic operator s such that for any functional F we

simply let

δθF = θ sF . (6.50)

Consistency with the fermionic character requires

s(FG) = (sF )G± F sG , (6.51)

with a minus sign if F is fermionic (contains an odd number of anticommuting fields). We write

furthermore ωR = ωαtRα , so that we can reformulate (6.49) as sARµ = Dµω
R and s ψ = iωRψ or,

dropping the superscript R, simply

sAµ = ∂µω − i[Aµ, ω]

s ψ = i ω ψ , s ψ† = iψ†ω .
(6.52)

Note that sψ† is not the hermitian conjugate of sψ, but rather (sψ)† = (iωψ)† = −iψ†ω = −sψ†.
More generally, one sees that (sF )† = ∓sF † with a minus sign if F is fermionic. Let us complete

(6.52) by the rules how s acts on the ghosts, chosen in such a way that s is a nilpotent operation,

i.e. s2 = 0 on all fields. Choosing

s ω = iω ω , s ω∗ = −h , s h = 0 , (6.53)

where h is the auxiliary field introduced above, we have

s2Aµ = s
(
∂µω − i[Aµ, ω]

)
= ∂µ(sω)− i(sAµ)ω − iAµsω + i(sω)Aµ − iωsAµ

= i∂µ(ωω)− i(∂µω − iAµω + iωAµ)ω − iAµiωω − ωωAµ − iω(∂µω − iωAµω + iωAµ) = 0 ,

s2ψ = s(iωψ) = i(sω)ψ − iω sψ = −ωωψ + ωωψ = 0 ,

s2ω = s(iωω) = i(sω)ω − iω(sω) = −ωωω + ωωω = 0 ,

s2ω∗ = s(−h) = 0 , (6.54)

which shows that the BRST operator s is nilpotent:

s2 = 0 . (6.55)

It is now easy to show that Lnew is BRST invariant. First note that on functionals of Aµ and

the matter fields ψ only the BRST transformation is simply a gauge transformation with ε replaced

by ω. Thus any gauge invariant functional of the gauge and matter fields only automatically also is

BRST invariant. Hence

sL = 0 . (6.56)
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Next note that Fε was defined as the gauge variation of f (which only depends on Aµ) and hence

ρα = sfα ⇒ sρ = 0 . (6.57)

It follows that

sLnew = s
(ξ

2
hαhα + hαfα + ω∗αρα

)
= hαsfα + (sω∗α)ρα = hαρα − hαρα = 0 . (6.58)

Actually one has

Lnew = L+ sΨ , Ψ = −ω∗αfα −
ξ

2
ω∗αhα , (6.59)

with L being the gauge invariant Lagrangian of the gauge and matter fields only. In this form, BRST

invariance is obvious. This also suggests how to obtain more general gauge-fixings: Any Lnew of this

form with an arbitrary functional Ψ of ghost-number −1 will provide a BRST invariant starting point

for quantizing the gauge theory (provided the quadratic term in the gauge fields is non-degenerate

so that one can define a propagator).

Below, we will use this BRST invariance to show that all conterterms also must respect this BRST

invariance (but with a renormalized coupling constant which we had hidden in the normalization of

the Lie algebra generators). Hence

Lnew + Lct = L̃+ sΨ̃ , (6.60)

respects the same symmetries as the original Lnew with a renormalized Yang-Mills coupling constant

and yields finite Green’s functions.

6.3 BRST cohomology

We already noted that the BRST symmetry is nilpotent, i.e. s2 = 0. Obviously also, it increases the

ghost-number by one unit.

At an algebraic level, this is quite similar to the behavior of the exterior derivative d = dxµ∂µ acting on

differential forms30 of degree p and yielding a differential form of degree p + 1. As is well known, one has

d2 ≡ dd = 0 (which just states that ∂µ∂ν = ∂ν∂µ). A p-form ξ(p) is called closed if dξ(p) = 0. If there exists

a (globally well-defined) (p − 1)-form ζ(p−1) such that ξ(p) = ζ(p−1) then ξ(p) is called exact. Since d2 = 0,

obviously every exact form is also closed. It is then interesting to find out which p-forms are closed without

being exact. As an example consider a space-time with space being just the two-dimensional sphere with

coordinates θ and φ defined in the usual way. Then dφ is well-defined everywhere except at θ = 0 or θ = π

(north and south pole), and the 2-form Ω = sin θ dθ ∧ dφ is well-defined everywhere. One has dΩ = 0, so

it is closed. Although one has Ω = d(− cos θ dφ) or Ω = d(− sin θ dθ φ), neither cos θ dφ nor sin θ dθ φ are

well-defined everywhere on the sphere and one finds that Ω 6= dζ(1). Hence Ω is closed but not exact. Up

to multiplication by a constant31 this is the only closed and non-exact 2-form on the sphere. Actually, Ω

30In exterior calculus, one defines an antisymmetric “wedge product” so that dxµ ∧ dxν = −dxν ∧ dxµ. For every
rank-p antisymmetric tensor field ξµ1µ2...µp(x) one can then define a p-form as ξ(p) = 1

p!ξµ1µ2...µpdxµ1 ∧dxµ2 ∧ . . . dxµp .

In d dimensions, the maximal degree of a form is p = d.
31For example, cos θΩ = cos θ sin θ dθ ∧ dφ = dα with a = 1

2 sin2 θ dφ a well-defined one-form. Hence cos θΩ is
exact.
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is the volume-form on the sphere, and the volume form on any compact manifold is always closed but not

exact. For a given (compact) manifold M, the vector space of closed p-forms that are not exact is called

the pth de Rham cohomology and is denoted H(p)(M).

Similarly, one defines the classes of BRST-closed functionals and BRST-exact functionals as

follows:

The functional F [Aµ, ψ, ω, ω
∗, h] is BRST closed if s F = 0,

it is BRST exact if there exists a functional G such that F = sG.
(6.61)

Of course, a BRST-closed functional is a BRST invariant functional. Moreover, the ghost-number of

a given monomial of the fields is defined as the number of ghost-fields minus the number of anti-ghost

fields. The Lagrangian Lnew e.g. has ghost-number zero. The BRST operator s always increases

the ghost-number by one unit. Since one cannot have cancellations between terms of different ghost-

numbers it follows that one can define the space of BRST-closed functionals of a fixed ghost-number

and, similarly the space of BRST-exact functionals of a fixed ghost-number. Hence, the ghost-

number plays a role analogous to the degree p of the differential forms. In particular, one defines the

BRST-cohomology classes at ghost-number n :

The BRST-cohomology at ghost-number n is given by

the BRST-closed functionals of ghost-number n, modulo the BRST-exact functionals.
(6.62)

We have seen above that the gauge invariant Lagrangian L[A,ψ] is BRST invariant, i.e. sL[A,ψ] = 0,

so it is BRST closed. Moreover, it is of ghost-number zero. The gauge-fixing and ghost terms are

of the form sΨ with Ψ of ghost-number −1, i.e. are BRST-exact terms. Since correlation functions

of gauge invariant operators do not depend on Ψ (as long as it provides some gauge-fixing), the

physics determined by Lnew = L[A,ψ] + sΨ depends only on the BRST-closed L and is independent

of the BRST-exact terms sΨ: it only depends on the BRST cohomology class of Lnew. Later-on we

will show that the BRST-cohomology at ghost-number zero is precisely given by the gauge invariant

functionals of Aµ and ψ (and ψ†) only, i.e. independent of the ghost, anti-ghost and h-fields.

BRST-charge :

One can introduce a fermionic BRST charge operator (acting on a “Hilbert space”) by demanding

that for any (Heisenberg picture) field operator Φ one has

δθΦ(x) = i[θQ,Φ(x)] . (6.63)

The right-hand-side equals iθ[Q,Φ(x)]∓, i.e. a commutator if Φ is bosonic and an anti-commutator if

Φ is fermionic, while the left-hand-side equals θsΦ(x). Hence the BRST-charge operator must have

the following (anti)commutation relations with the field operators:

sΦ(x) = i[Q,Φ(x)]∓ . (6.64)
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By taking the hermitian conjugate of either (6.63) (θ is real) or (6.64) and comparing with the

corresponding relations for Φ†, one sees that Q† = −Q. This then implies (θQ)† = Q†θ = −Qθ = θQ

as expected for a symmetry generator. Using the Jacobi identity, one finds that

0 = −s sΦ = −is[Q,Φ]∓ = [Q, [Q,Φ]∓]± =
1

2
[[Q,Q]+,Φ]− = [Q2,Φ]− ∀ Φ . (6.65)

An operator that commutes with all fields is either the identity or has to vanish. Since Q increases

the ghost-number by one, the first option is excluded and one concludes

Q2 = 0 . (6.66)

The “Hilbert space” on which Q acts is some “big” space of states which must include the

Hilbert space of physical states, but also states including an arbitrary number of ghost and anti-

ghost excitations, as well as non-physical polarization states of the gauge bosons. This is the space

which naturally arises upon the Faddeev-Popov quantization of the gauge theory. In particular, this

is not a Hilbert space in the strict mathematical sense since the inner product cannot be positive

definite: for any state |γ〉 6= 0 the state Q |γ〉 has zero norm. One must then characterize the

Hilbert space of physical states. This can be conveniently done using this BRST charge as follows.

Matrix elements between physical states must be gauge invariant, i.e. independent of the “gauge-

fixing functional” Ψ. Hence, under an infinitesimal variation Ψ(x)→ Ψ(x) + δΨ(x), the gauge-fixed

Lagrangian changes by δLnew = sδΨ(x) and any matrix element changes by

δ〈α |β〉 = i 〈α| s δΨ |β〉 = −〈α| [Q, δΨ]+ |β〉 = −〈α|QδΨ |β〉 − 〈α| δΨQ |β〉 . (6.67)

If 〈α| and |β〉 are physical states this should vanish. Since δΨ(x) is arbitrary one concludes Q |β〉 = 0

and 〈α|Q = 0. Hence, physical states |phys〉 must obey

Q |phys〉 = 0 . (6.68)

Also, changing |β〉 → |β〉+Q |γ〉 does not change 〈α |β〉 if 〈α| is physical since 〈α|Q |γ〉 = 0. Moreover,

a physical state should have ghost-number zero. In conclusion, physical states are determined by

Q |phys〉 = 0 subject to the equivalence relation |phys〉 ' |phys〉+Q |γ〉 and the condition of having

ghost-number zero:

Physical states are given by the ghost-number zero cohomology class of the BRST-operator Q.

(6.69)

Of course, we have only shown that this cohomology class contains the physical Hilbert space, i.e.

that the above conditions are necessary. However, one can also show that they are sufficient and thus

(6.69) exactly defines the physical Hilbert space. Note that in any covariant quantization, the modes

of the fields Aa0, when acting on the vacuum, generate states of negative norm (since η00 = −1). One

can then also show that the space of physical state as defined by (6.69) has a positive definite norm.

Remarks :
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• The Faddeev-Popov procedure always leads to a Lagrangian Lnew that is bilinear in the ghost

and anti-ghost fields. (Recall that the ghosts appeared from expressing the Faddeev-Popov

determinant DetF as an integral over ω and ω∗ of ei
∫
ω∗Fω.) Then, calling these fields the bare

fields and rewriting Lnew in terms of renormalized fields will generate various counterterms

of the same form as the original terms contained in Lnew. In particular, one will only get

counterterms that are at most bilinear in the ghost and anti-ghost fields. This turns out to be

sufficient with the gauge choice fα = ∂µA
µ
α, but for more general choices of fα one might need

counterterms that involve two ghost and two anti-ghost fields. Although one does not have

to worry about diagrams with 4 external (anti)ghost lines, such diagrams can well appear as

divergent subgraphs, requiring a corresponding counterterm.

• One can consider more general gauge-fixing functionals that do not rely on the Faddeev-Popov

procedure. As we have seen, all that is needed for BRST invariance is to define some BRST-

operation s such that s acts on Aµ and ψ as a gauge transformation with the parameter replaced

by a ghost field, and with the action on the ghost and other fields (anti-ghost, h-field, and pos-

sibly others) defined such that s2 = 0. Then for any Ψ̃ of ghost-number −1 and gauge invariant

L, a BRST-ivariant Lagrangian is L̃new = L+sΨ̃. Then just as before, there is a corresponding

BRST charge Q that defines the physical states as the zero ghost-number cohomology class

and matrix elements between physical states (in particular also vacuum expectation values of

time-ordered products of gauge invariant operators) do not depend on the choice of Ψ̃. In

particular, they are the same as with the Ψ from the Faddeed-Popov procedure and thus the

same as in axial gauge.

• One can prove independently of comparison with any particular gauge, that the space of phys-

ical states, defined as the zero ghost-number cohomology of Q, has a positive definite norm,

contains no ghosts or anti-ghosts and has a unitary S-matrix.

• Finally let us just mention that this BRST formalism can be rather straightforwardly extended

to other local symmetries as appear e.g. in general relativity or in string theory. If the natural

formulation of these symmetries is “too large” in the sense that one has introduced too many

“gauge” parameters and actually not all symmetries are independent, one has to introduce

“ghosts of ghosts”. In all these setting, the BRST operator always increases the ghost-number

by one unit.

We have already mentioned that the BRST invariant functionals of ghost-number zero are just the

gauge invariant functionals of Aµ and the matter fields, up to adding BRST-exact terms. Let us now

prove this result.

Cohomology theorem :

The zero ghost-number cohomology consists of gauge invariant functionals of Aµ and ψ (and ψ†)

only, i.e. the most general BRST invariant functional of ghost-number zero is of the form I =

I0[Aµ, ψ] + sΨ[Aµ, ψ, ω, ω
∗, h].
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The proof is relatively simple: suppose sI = 0. Write I =
∑∞

N=0 IN where IN contains all terms that

have a total number of fields ω∗ and h equal to N . (Of course, we do not allow negative powers of

the fields.) Since s ω∗ = −h and s h = 0, s does not change this total number N and one cannot

have any cancellations between the different sIN . Hence sIN = 0 for all N separately. Introduce

t = ω∗α
δ
δhα

. One may similarly write s = −hβ δ
δω∗β

+ . . . where the unwritten terms do not involve ω∗

or h. It follows that st+ ts = −N̂ where N̂ = ω∗α
δ
ω∗α

+ hα
δ
δhα

is such that N̂IN = NIN . Thus

−NIN = −N̂IN = (s t+ t s)IN = s t IN , (6.70)

and we conclude that for every N 6= 0 one has IN = s
(
− 1

N
t IN), i.e. IN is BRST-exact. Hence,

I = I0 + sΨ with Ψ =
∑∞

N=1

(
− 1

N
t IN). Now, I0 cotains no h and no ω∗ and, having ghost-number

zero, it cannot contain any ω either. Thus I0 = I0[Aµ, ψ], as was to be proven. Finally, I0 cannot

be BRST exact. Indeed, it is easy to see that a BRST exact functional of ghost number one must

contain at least either an hα or an ω∗α.
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7 Renormalization of non-abelian gauge theories

7.1 Slavnov-Taylor identities and Zinn-Justin equation

7.1.1 Slavnov-Taylor identities

Recall that the vacuum expectation values of time-ordered products of field operators can be obtained

from the generating functional

Z[J ] =

∫
DAµDψDψDωDω∗Dh exp

[
i

∫
d4x (Lnew + χ̃nJn)

]
, (7.1)

where, to simplify the notation, χ̃n stands collectively for any of the fields Aµ, ψ, ψ, ω, ω
∗ or h.

Of course, we do not really need to compute ghost correlation functions to get S-matrix elements

between physical states, but they certainly can and do appear in subdiagrams. Also, the form of Lnew

originally was derived only for time-ordered products of gauge invariant operators, but we can take

(7.1) as a definition for the gauge-dependent vacuum expectation values of time-ordered products

of the gauge non-invariant field operators. We have seen in the last subsection that the BRST

invariance implies that in the end matrix elements between gauge invariant states do not depend on

the gauge-fixing functional. We will now derive the implications of BRST invariance of the action

(and measure) for the generating functional Z[J ] as defined in (7.1). These are the Slavnov-Taylor

identities.

As usual, we define Z[J ] = eiW [J ], as well as χn = δRW [J ]
δJn

= 〈χ̃noperator〉 with Jn,χ being the solution

of this equation for given χn. Then the Legendre transform is Γ[χ] = W [Jχ] −
∫

d4xχnJn,χ. Note

that, since χn can be either bosonic or fermionic (i.e. anticommuting), one must specify whether

functional derivatives should act from the left (L) or from the right (R). Indeed, for fermionic χn one

has δLΓ
δχn

= − δRΓ
δχn

.

As shown in general in section 1.4.3, the invariance of
∫
Lnew and of the functional integral

measure under

δθχ
n = θ∆n , ∆n = s χn , (7.2)

(dropping the tilde on the χn) implies the Slavnov-Taylor identity∫
d4x 〈∆n(x)〉Jχ

δLΓ

δχn(x)
= 0 . (7.3)

Of course, invariance of the functional integral measure under BRST transformations is not guaran-

teed and needs to be verified. This will be discussed at the end of this subsection. The conclusion

will be that the measure is indeed invariant under BRST transformations provided the measure for

the matter fields is gauge invariant, i.e. there are no gauge anomalies. For now, we assume that

this is the case and the Slavnov-Taylor identity (7.3) does hold. As discussed in sect. 1.4.3, for a

linear symmetry (∆n = cnmχ
m) one would have 〈∆n(x)〉Jχ = cnm 〈χm(x)〉Jχ = cnm χ

m, and then the

Slavnov-Taylor identity just states that Γ is invariant under this symmetry. At present, however, the

BRST symmetry is non-linear, e.g. sψ = iωω, etc, and the Slavnov-Taylor identity (7.3) does not

tell us that the effective action Γ is also BRST invariant.
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7.1.2 Zinn-Justin equation

In order to nevertheless exploit the content of the Slavnov-Taylor identity, one uses the trick to also

introduce sources for the “composite” fields ∆n. (This is somewhat similar to what we did when

discussing the renormalization of composite operators and the Callan-Symanzik equations for vertex

functions Γ(n) with l additional insertions of some composite operator like e.g. φ2.) To begin with,

one defines

Z[J,K] ≡ eiW [J,K] =

∫
Dχn exp

[
i

∫
d4x (Lnew + χnJn + ∆nKn)

]
, (7.4)

The Kn are like additional (position-dependent) coupling constants. In particular,

δRW [J,K]

δKn(x)
= 〈∆n(x)〉J,K . (7.5)

The effective action Γ[χ,K] is obtained by performing the Legendre transformation with respect to

the sources Jn only, while keeping these extra couplings Kn:

Γ[χ,K] = W [Jχ,K , K]−
∫

d4xχn(x)Jnχ,K(x) , (7.6)

where Jnχ,K is the solution of
δRW [J,K]

δJn
= χn (7.7)

for given χn. (For obvious notational reasons, we write Jnχ,K rather than (Jn)χ,K .) Note that these

definitions imply on the one hand, that χn and Jn have the same statistics (both bosonic or both

fermionic) and ∆n and Kn also have the same statistics. On the other hand, any field from the first

group (χn or Jn) has opposite statistics from the corresponding field of the second group (∆n or Kn).

Through the usual manipulations one finds from (7.6)

δRΓ[χ,K]

δKn(x)
=
δRW [J,K]

δKn(x)

∣∣∣
J=Jχ,K

+

∫
d4y

δRW [J,K]

δJm(y)

∣∣∣
J=Jχ,K

δRJ
m
χ,K(y)

δKn(x)
−
∫

d4y χm(y)
δRJ

m
χ,K(y)

δKn(x)
. (7.8)

The last two terms cancel by (7.7) while, by (7.5), the first term is just 〈∆n(x)〉Jχ,K ,K . Hence

δRΓ[χ,K]

δKn(x)
= 〈∆n(x)〉Jχ,K ,K . (7.9)

It is completely straightforward to generalize the Slavnov-Taylor identity to the case where the

additional couplings ∼ ∆nKn are present:∫
d4x 〈∆n(x)〉Jχ,K ,K

δLΓ[χ,K]

δχn(x)
= 0 . (7.10)

Using (7.9), we get the Zinn-Justin equation:

∫
d4x

δRΓ[χ,K]

δKn(x)

δLΓ[χ,K]

δχn(x)
= 0 . (7.11)
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7.1.3 Antibracket

The Zinn-Justin equation displays a nice symmetry between the roles of Kn and χn. This is further

emphasized by introducing the notion of antibracket. The antibracket of two (bosonic) functionals32

F [χ,K] and G[χ,K] depending on two sets of arguments χn and Kn having opposite statistics is

defined as

(F,G) =

∫
d4x

(
δRF [χ,K]

δχn(x)

δLG[χ,K]

δKn(x)
− δRF [χ,K]

δKn(x)

δLG[χ,K]

δχn(x)

)
. (7.12)

This is somewhat similar to the definition of the Poisson bracket but, as we will see, it is symmetric

rather than antisymmetric under the exchange of F and G. Since the χn always have the opposite

statistics from the Kn, one of the two functional derivatives in the definition of the antibracket

always yields an anticommuting expression while the other is commuting. Since exchanging a left

with a right derivative yields a minus sign for an anticommuting expression, we can flip left and right

derivatives in either of the two terms in (7.12) provided we include one extra minus sign. Thus

(F,G) =

∫
d4x

(
δRF [χ,K]

δχn(x)

δLG[χ,K]

δKn(x)
+
δLF [χ,K]

δKn(x)

δRG[χ,K]

δχn(x)

)
=

∫
d4x

(
δRF [χ,K]

δχn(x)

δLG[χ,K]

δKn(x)
+
δRG[χ,K]

δχn(x)

δLF [χ,K]

δKn(x)

)
= −

∫
d4x

(
δRG[χ,K]

δKn(x)

δLF [χ,K]

δχn(x)
+
δRF [χ,K]

δKn(x)

δLG[χ,K]

δχn(x)

)
. (7.13)

This shows that the antibracket is symmetric under the interchange of F and G:

(F,G) = (G,F ) . (7.14)

As is obvious from the last line in (7.13), the Zinn-Justin equation (7.11) can then be written as

(Γ,Γ) = 0 . (7.15)

7.1.4 Invariance of the measure under the BRST transformation

Let us now come back to the question of whether the functional integral measure is invariant under

the BRST transformation or not. Clearly, even if the measure is invariant under gauge transfor-

mations, this does not immediately imply invariance under BRST transformations. The reason is

that the latter are non-linear transformations of the fields Aµ, ψ, ψ, ω, ω
∗, h while the former are lin-

ear transformations of Aµ, ψ and ψ only. A further technical complication appears since the BRST

transformation mixes commuting and anticommuting field variables. Nevertheless, we will now show

that the relevant Jacobian equals unity provided the measure for the matter fields alone is gauge

invariant.

32A bosonic functional is a sum of terms each of which contains an even number of anticommuting fields. Hence it
is commuting. Similarly, a fermionic functional is made from terms containing an odd number of anticommuting fields
and hence is anticommuting.

Adel Bilal : Advanced Quantum Field Theory 109 Lecture notes - October 6, 2014



We want to compute the Jacobian for a change of integration variables of the form χn → χ
′n =

χn + θ∆n ≡ χn + θsχn where χn stands for the various commuting and anticommuting fields and θ

is a single anticommuting parameter satisfying θ2 = 0. Although the ∆n depend non-linearly on the

χr, the fact that θ2 = 0 will simplify the Jacobian enormously. We let

Jnr(x, y) =
δLχ

′n(x)

δχr(y)
= δnr δ

(4)(x− y) +
δL
(
θ∆n(x)

)
δχr(y)

≡ δnr δ
(4)(x− y) +Rn

r(x, y) . (7.16)

Note that R is linear in θ, i.e. R ≡ θR̂, and hence R2 = 0, so that log(1 +R) = R. We can then use

the standard relation between the determinant and the trace of the logarithm to get

Det J = exp
(

Tr log(1 +R)
)

= exp
(

TrR
)

= 1 + TrR , (7.17)

where Tr includes a sum over the different field types of functional traces for every field. Now, for

anticommuting χr (i.e. the ghost, antighost or matter fermions), one has δLθ∆
n

δχr
= −θ δL∆n

δχr
. It follows

that one has

TrR = θ Str R̂ , (7.18)

where Str is a functional “supertrace” which is just an ordinary functional trace but with minus signs

inserted for the anticommuting fields. With obvious notations we have

StrR̂ = Tr R̂A − Tr R̂ψ − Tr R̂ψ + Tr R̂h − Tr R̂ω − Tr R̂ω∗ . (7.19)

Recall that A′µ = Aµ + θsAµ = Aµ + θ(∂µω − i[Aµ, ω]) so that ∆Aµ = (∂µω − i[Aµ, ω]). Similarly,

∆ω = iωω and ∆ω∗ = −h, as well as ∆ψ = iωψ and ∆h = 0. Obviously then, Tr R̂ω∗ = Tr R̂h = 0.

Also (R̂ω)αβ(x, y) = Cαβγω
γ(x)δ(4)(x − y) so that its trace vanishes (after an appropriate gauge

invariant regularization). Similarly,

(R̂A)µαβν(x, y) =
δ∆µ

α(x)

δAνβ(y)
= δµν Cαβγ ω

γ δ(4)(x− y) . (7.20)

This is again antisymmetric and its trace vanishes (after an appropriate gauge invariant regular-

ization). Actually, this is the same operator as the one we encountered when we discussed the

invariance of the gauge field measure under gauge transformations (except that now ε → ω). Ob-

viously, Tr R̂A = 0 is equivalent to the statement that the gauge field measure is gauge invariant.

Finally, one has to study TrRψ and TrRψ. Once more, the vanishing of the trace is equivalent to

the gauge invariance of the matter measure. Although formally this trace vanishes, just as for the

other fields, here we may encounter a problem if it is not possible to regularize the trace in a gauge

invariant way. This is precisely the case for chiral fermions and one has a so-called anomaly as we

will extensively discuss in the next section.

We conclude that in the absence of anomalies (no chiral matter fermions), the full functional

integral measure is indeed invariant under BRST transformations. Moreover, the BRST invariance

of the measure is equivalent to the gauge invariance of the matter measure alone.
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7.2 Renormalization of gauge theories theories

7.2.1 The general structure and strategy

As already emphasized, non-abelian gauge theories are renormalizable by power counting. As dis-

cussed in sect. 4, it follows from power counting that there only are finitely many Green-functions

(or equivalently only finitely many 1PI n-point vertex functions Γ(n)) that are divergent with their

superficial degree of divergence being some fixed finite number (independent of the order of pertur-

bation theory). Relying on the BPHZ theorem, we then know that all divergences can be removed by

finitely many local counterterms whose coefficients can be determined order by order in perturbation

theory. However, what this does not tell us is whether the divergent parts of the Green functions or

of the Γ(n) – and hence the corresponding counterterms – share the same symmetries as the original

action. If one needed to add non gauge invariant (or actually non BRST invariant) counterterms at

some order N of perturbation theory to cancel some non-invariant divergence, these non-invariant

counterterms would almost certainly lead to non-invariant contributions at some higher order N ′ > N

of perturbation theory. Thus, when one asks whether a (non-abelian) gauge theory is renormalizable

the question is whether all counterterms share the same symmetries as the original (gauge-fixed)

action, namely the BRST symmetry.

The proof of the renormalizability of non-abelian gauge theories thus amounts to showing that

the divergent parts Γ∞ of the quantum effective action Γ (which generates the 1PI vertex functions

Γ(n)) due to the loops still has the BRST symmetry, or some deformation thereof obtained after

changing the coupling constant and field normalizations. Instead of actually computing the loop

diagrams, we will exploit the algebraic structure coded in the Zinn-Justin equation to show that this

is indeed the case.

As usual, we rewrite the original bare action (including now the extra couplings ∼
∫

∆nKn) in

terms of renormalized fields and coupling constants and masses:

SB[χB, KB] = S[χ,K] = S
(0)
R [χ,K] + Sc.t.[χ,K] , (7.21)

where S
(0)
R has the same form as the original (bare) action but with all masses and couplings equal

to their renormalized values, and Sc.t. are the counterterms, c.f. the general discussion and examples

studied in sections 2 and 3. There are now two ways to rephrase the question of renormalizability

of the non-abelian gauge theories. If one insists that SB is BRST invariant, as well as the “tree-

level” renormalized action S
(0)
R , then the counterterms will also be BRST invariant. The non-trivial

question then is whether these counterterms are enough to cancel all the divergent parts that arise

in any N -loop diagram. Equivalently, we may just begin with the usual BRST invariant S
(0)
R and

compute the divergent parts Γ∞ of Γ and adjust the counterterms Sc.t. order by order in perturbation

theory to cancel these divergent parts. The question then is whether these counterterms are BRST

invariant, i.e. whether the bare action can be BRST invariant.

Actually, there is is slight subtlety here: in the non-abelian case, the gauge and BRST transfor-

mations explicitly depend on the gauge coupling constant (which we have hidden in the generators

tα, respectively in the structure constants). Thus, when one states that some quantity is gauge or
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BRST invariant, one has to specify what is the coupling constant. Now the bare action SB is BRST

invariant using the bare coupling constant, while the renormalized action S
(0)
R should be BRST in-

variant using the renormalized coupling constant. The precise formulation of renormalizability then

is whether we can find counterterms that cancel the divergent part Γ∞ and which equal the differ-

ence of the gB-BRST invariant bare action SB and the gR-BRST invariant action S
(0)
R . Equivalently,

starting from a gR-BRST invariant S
(0)
R , we must show that S

(0)
R − Γ∞ is gB-BRST invariant. In the

sequel, we will call a conterterm or Γ∞ simply “BRST-invariant” if it fulfills this requirement.

In perturbation theory, Γ has an expansion

Γ[χ,K] =
∞∑
N=0

ΓN [χ,K] , Γ0 = S
(0)
R , ΓN = ΓN−loop +

N∑
M=1

Γc.t.,M
(N−M)−loop , (7.22)

where Γc.t.,M
(N−M)−loop is an (N−M)-loop contribution involving “vertices” from lower-order counterterms

of total order M , resulting in a contribution at the same order in perturbation theory as ΓN−loop.

(In QED e.g., the order α2 contributions to the vacuum polarisation correspond to Γµν2 and are given

by the genuine two-loop diagrams (Γµν2−loop), one-loop diagrams with one-loop (order α) counterterms

inserted (Γµν c.t.,1
1−loop ), as well as a new order-α2 counterterm (Γµν c.t.,2

0−loop ).

One can again introduce a loop-counting parameter λ and formally replace S
(0)
R by 1

λ
S

(0)
R . Then an

N -loop term will have a coefficient λN−1, and ΓN−loop will be multiplied by λN−1. We can similarly

assign a factor λM to every counterterm that arises from an M -loop diagram, in addition to an

overall 1
λ

in front of Sc.t.:
1
λ
Sc.t. = 1

λ

∑∞
M=1 λ

MSMc.t.. Then Γc.t.,M
(N−M)−loop will be accompanied by a

factor λN−M−1λM = λN−1. As a result, we see that Γ =
∑∞

N=0 λ
N−1ΓN . Inserting this into the

Zinn-Justin equation (Γ,Γ) = 0 and collecting the coefficients of the λN−2-terms (recall that the

antibracket is symmetric) yields

N∑
N ′=0

(ΓN ′ ,ΓN−N ′) = 0 , N ≥ 0 . (7.23)

We want to show that Γ can be made finite by choosing “BRST-invariant” local counterterms

order by order in perturbation theory. We will show this by induction in N . First, for N = 0 one

has Γ0 = S
(0)
R . Now, S

(0)
R is expressed in terms of the renormalized (finite) parameters (couplings and

masses) and the renormalized fields. Obviously, no counterterms are needed at this order. Suppose

then that all ΓN ′ with N ′ ≤ N − 1 are finite, i.e. we assume that all divergences in ΓN ′−loop have

been cancelled by the contributions
∑N ′

M=1 Γc.t.,M
(N ′−M)−loop, induced by appropriately chosen (“BRST-

invariant”) counterterms SMc.t. with M ≤ N ′. This shows that in the sum (7.23) the only terms that

can involve divergences are the terms N ′ = 0 and N ′ = N . Thus, isolating the possibly divergent

parts, eq. (7.23) yields

(S
(0)
R ,ΓN,∞) = 0 . (7.24)

In agreement with our above remark, we can interpret this constraint in two different ways.

• First, we may consider that ΓN contains the N -loop contributions ΓN−loop, the contributions

from lower-order counterterms in loops
∑N−1

M=1 Γc.t.,M
(N−M)−loop (the corresponding counterterms are
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“BRST-invariant” by the induction hypothesis) and an order-N counterterm Γc.t.,N
tree . The latter

is taken “BRST invariant” and we must then show that it can indeed cancel the divergent part

from the other contributions. This will be the case if the latter are “BRST invariant”. Since

the counterterm is already supposed to be “BRST invariant”, it is equivalent to show that the

divergent part ΓN,∞ of the full ΓN is “BRST invariant”. (Of course, if this is the case, the

divergent parts just cancel and ΓN,∞ = 0.)

• Second, we may consider that we have not yet included an order-N counterterm Γc.t.,N
tree in the

computation of ΓN which now only contains ΓN−loop and the contributions from lower-order

counterterms in loops
∑N−1

M=1 Γc.t.,M
(N−M)−loop. Then, to be able to cancel the divergent part ΓN,∞

of ΓN by an appropriate “BRST invariant” counterterm, we must show that ΓN,∞ is “BRST

invariant”.

We see that, whatever interpretation we adopt, it is necessary and sufficient to show that ΓN,∞ is

“BRST invariant”. This will be done by :

• exploiting the content of (7.24) which we derived from the Zinn-Justin equation,

• using the various linear symmetries33 of the tree-level action S
(0)
R which must be also be sym-

metries of the effective action Γ at every order, i.e. of ΓN , and in particular also of its diverging

part,

• using the fact that ΓN,∞ is a local functional of the fields of dimension less or equal to 4 (here

we rely of course on BPHZ to exclude any trouble with overlapping divergences).

Let us recall that all computations are done in the presence of the extra couplings ∼ ∆nKn, i.e. with

S
(0)
R [χn, Kn] =

∫
(Lnew,R[χn] + ∆nKn). Here ∆n = sχn with the BRST-transformation s being the

one involving the same renormalized coupling as appears in S
(0)
R . Let us also insist, that eq. (7.24)

will only tell us something about the diverging part of ΓN , not its finite part.

7.2.2 Constraining the divergent part of Γ

Let us now constrain the divergent part ΓN,∞ of ΓN using dimensional arguments, the linear sym-

metries and equation (7.24). We begin by showing that ΓN,∞ can depend at most linearly on the

various Kn.

Dimensional arguments

The gauge field Aµ has dimension 1, just as scalar matter fields. The fermionic matter fields, ψ and

ψ have dimension 3
2
. The dimensions of the ghost and antighost fields can be read from their kinetic

term (or their propagator). This depends on the choice of gauge-fixing function fα. If fα = ∂µA
µ+. . .,

the ghost Lagrangian is ∼ ω∗∂µD
µω + . . . and dimω∗ + dimω = 2. Since in any ghost-number zero

33These are Lorentz transformations, global gauge transformations, ghost phase transformations related to ghost
number conservation and possibly antighost translations for certain choices of the gauge-fixing function like e.g.
fα = ∂µA

µ
α.
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functional one always has as many ghosts as antighosts it does not matter how we distribute the

2 between the ghost and antighost and we can choose dimω = dimω∗ = 1. As one sees from

sAµ = Dµω, sψ = iωψ, etc, s changes dimensions by dimω = 1. It follows that for any field χn one

has dim ∆n = dimχn + 1. Finally, ∆nKn must have dimension 4 so that dimKn = 4− dim ∆n. To

summarize:

dimAµ = dimω = dimω∗ = 1 , dimψ = dimψ =
3

2
,

dim ∆A = dim ∆ω = dim ∆ω∗ = 2 , dim ∆ψ = dim ∆ψ =
5

2
,

dimKA = dimKω = dimKω∗ = 2 , dimKψ = dimKψ =
3

2
. (7.25)

Since the divergent part of Γ must be a local functional of all the fields of at most dimension 4, we

see that it can be at most quadratic in the Kn.

Ghost number conservation

Since Lnew is invariant under global ghost/antighost phase rotations ω → eiαω, ω∗ → e−iαω∗ it

follows that the ghost number is conserved (ω has ghost number +1 and ω∗ ghost number −1). This

will remain true in the presence of the extra couplings ∼ ∆nKn if we assign ghost numbers to the

Kn which are the opposite of the ghost numbers of ∆n. Since ∆n = s χn and s increases the ghost

numbers by one unit, one has ngh∆n = nghχ
n + 1. Thus

ngh(Aµ) = ngh(ψ) = ngh(ψ) = 0 , ngh(ω) = 1 , ngh(ω∗) = −1 ,

ngh(∆A) = ngh(∆ψ) = ngh(∆ψ) = 1 , ngh(∆ω) = 2 , ngh(∆ω∗) = 0 ,

ngh(KA) = ngh(Kψ) = ngh(Kψ) = −1 , ngh(Kω) = −2 , ngh(Kω∗) = 0 , . (7.26)

Hence, for all Kn have negative or zero ghost number.

Now, ΓN,∞ must have ghost number zero and we have seen above that it can be at most quadratic

in the Kn. Let’s see which quadratic terms could appear. Terms involving two KA, Kω or Kω∗ have

dimension 4 and hence cannot involve any other field. Such terms have negative ghost numbers and

are excluded except for Kω∗Kω∗ . The latter term, however, is excluded since ∆ω∗ ≡ sω∗ = −h is a

linear transformation so that δRΓ
δKω∗

= 〈∆ω∗〉 = ∆ω∗ ≡ −h tells us that Γ[χn, Kn] must be linear in

Kω∗ and cannot have a term ∼ Kω∗Kω∗ . Actually, this argument tells us even a bit more: the Kω∗

dependence of Γ[χ,K] must be precisely a term
∫

d4x (−h)Kω∗ . This is just the (finite) term already

present in the tree-level action S
(0)
R [χ,K] and, in particular, the diverging part Γ∞ cannot contain

any term linear in Kω∗ . Similarly, ∆h = sh = 0 and we conclude that Γ∞ cannot contain a term

linear in Kh either.

Next, since the ghost is a Lorentz scalar, all ∆n transform under the same representation of the

Lorentz group as the fields χn and the Kn must transform in such a way that ∆nKn is a Lorentz

scalar. It follows that Kω and Kω∗ are Lorentz scalars, KAµ is a four-vector and Kψ transforms as

the spinor ψ, while Kψ transforms as ψ. Thus a term quadratic in the Kn and involving at least

one Kψ or Kψ must necessarily involve both of them, i.e. be ∼ KψKψ. This expression has ghost
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number −2 and dimension 3. There is no dimension 1 field of ghost number +2 available to make a

dimension 4, ghost number 0 term. Thus we conclude that ΓN,∞ is at most linear in any of the Kn:

ΓN,∞[χ,K] = ΓN,∞[χ] +

∫
d4x ∆̃n

N(x)Kn(x) , (7.27)

with ΓN,∞[χ] ≡ ΓN,∞[χ, 0] =
∫

d4x γN,∞(x) . Similarly, we had for the (tree-level) action

S
(0)
R [χ,K] = S

(0)
R [χ] +

∫
d4x∆n(x)Kn(x) . (7.28)

Just as ∆n is a local expression in the fields χn, the same must be true for the ∆̃n
N . Note also that

the ∆̃n
N must have the same ghost numbers and dimensions as the ∆n. Finally, we have seen above

that ΓN,∞ cannot contain any terms linear in Kω∗ or Kh and we conclude that

∆̃ω∗

N = ∆̃h
N = 0 . (7.29)

Exploiting (S
(0)
R ,ΓN,∞) = 0

In order to get further information on the form of γN,∞(x) and ∆̃n
N(x), we insert (7.27) and (7.28)

into (S
(0)
R [χ,K],ΓN,∞[χ,K]) = 0:

0 =

∫
d4x

(
δRS

(0)
R [χ,K]

δKn(x)

δLΓN,∞[χ,K]

δχn(x)
+
δRΓN,∞[χ,K]

δKn(x)

δLS
(0)
R [χ,K]

δχn(x)

)

=

∫
d4x

{
∆n(x)

(
δLΓN,∞[χ]

δχn(x)
+

∫
d4y

δL∆̃m
N(y)

δχn(x)
Km(y)

)

+ ∆̃n
N(x)

(
δLS

(0)
R [χ]

δχn(x)
+

∫
d4y

δL∆m(y)

δχn(x)
Km(y)

)}
. (7.30)

The terms without Km and the coefficients of Km(y) must vanish separately, giving two equations:∫
d4x

(
∆n(x)

δLΓN,∞[χ]

δχn(x)
+ ∆̃n

N(x)
δLS

(0)
R [χ]

δχn(x)

)
= 0 , (7.31)

and ∫
d4x

(
∆n(x)

δL∆̃m
N(y)

δχn(x)
+ ∆̃n

N(x)
δL∆m(y)

δχn(x)

)
= 0 . (7.32)

The second equation (7.32) is a set of functional first-order partial linear differential equations for

the ∆̃n
N . Note that these equations do constrain the functional form of the ∆̃n

N but not their overall

normalization. Inserting the solutions ∆̃n
N into the first equation then should determine the functional

form of ΓN,∞[χ]. Note that these two equations (7.31) and (7.32) do not explicitly involve the Kn

anymore. Indeed, all we really want to determine in the end is the form of ΓN,∞[χ] = ΓN,∞[χ, 0]

although, once we know ∆̃n
N(x), we also know ΓN,∞[χ,K] = ΓN,∞[χ, 0] +

∫
∆̃n
N(x)Kn(x).
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To solve these equations in practice, it is useful to give them a more physical interpretation.

Define

Γ
(ε)
N [χ] = S

(0)
R [χ] + εΓN,∞[χ] and ∆

(ε)n
N (x) = ∆n(x) + ε ∆̃n

N(x) . (7.33)

Consider the “deformed BRST transformation”

s(ε)χn(x) = ∆
(ε)n
N (x) . (7.34)

Obviously, for ε = 0 this reduces to the ordinary BRST transformation. It is then not difficult to see

that, up to first order in ε, Γ
(ε)
N [χ] is invariant under this transformation and that this transformation

is nilpotent:

s(ε)Γ
(ε)
N [χ] = 0 +O(ε2) by (7.31) and s(ε)s(ε)χn = 0 +O(ε2) by (7.32) . (7.35)

Deformed BRST symmetry

First note (again) that, since ∆̃n
N couples to Kn in ΓN,∞[χ,K], in the same way as ∆n couples to Kn

in S
(0)
R , both ∆̃n

N and ∆n must have the same ghost numbers, dimensions and Lorentz transformation

properties.

The strategy now is to write the most general nilpotent transformation of the fields that increases

the ghost numbers of the fields by one unit, increases their dimensions by dimω and that is a

deformation of the usual BRST transformation in the sense that it depends on some small parameter

ε and reduces to the ordinary BRST transformation in the ε → 0 limit. (Of course, nilpotency is

only required up to terms of order ε2.) These requirements will turn out to be stringent enough

to show that any such deformed BRST transformation must be identical to the ordinary BRST

transformation, up to changes in the normalization of the fields and a change of the gauge coupling

constant.

It is easy to see that the deformed BRST symmetry must act as

δθψ = iθ ωαTαψ ,

δθAαµ = θ
(
Bαβ ∂µωβ +Dαβγ Aβµωγ

)
,

δθωα = −1

2
θ Eαβγ ωβωγ . (7.36)

(Having the correct ghost number would also allow e.g. a term of the form δψ ∼ iωαωβω
∗
γF

δ
αβγTδψ,

but this is excluded by the argument about the dimensions.) Recall from (7.29) that ∆̃ω∗
N = ∆̃h

N = 0

and, hence, the deformed BRST transformation of ω∗ and h just equals the undeformed one:

δω∗α = −hα , δhα = 0 . (7.37)

Let us now exploit the nilpotency of these transformations (7.36) and (7.37). First, δθ1δθ2ω = 0

yields EαβγEβδε ωδωεωγ = 0 so that EαβγEβδε must vanish after antisymmetrizing in δ, ε, γ. i.e. the

Eαβγ satisfy the Jacobi identity and must be the structure constants of some Lie algebra. As ε→ 0,
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these are just the Cαβγ and we conclude that this Lie algebra is the same as the original Lie algebra

G and the Eαβγ differ from the Cαβγ just by the normalization:

Eαβγ = Z Cαβγ . (7.38)

(Note that if the Lie algebra is semi-simple one may have a different Zi for every simple factor.) Next,

looking at δθ1δθ2Aµ gives DαβγDβδε−DαβεDβδγ = EβεγDαδβ = Z CβεγDαδβ and BαβEβγδ = DαβδBβγ.

The first equation implies that the matrices D̂γ with (D̂γ)αβ = 1
ZDγαβ are the generators of the

adjoint representation of the Lie algebra G, so that

Dαβγ = ZCαβγ . (7.39)

Hence, Dαβγ = Eαβγ and the second condition involving Bαβ just states that the matrix B commutes

with all matrices D̂ and thus is proportional to the unit matrix:

Bαβ = Z N δαβ . (7.40)

(Again, for a semi-simple G we can have a different Ni for every simple factor.) Finally, looking at

δθ1δθ2ψ implies [Tα, Tβ] = iEαβγTγ = iZCαβγTγ and we identify

Tα = Z tα . (7.41)

We conclude that, apart from the new constants Z and N , the deformed BRST symmetry s̃ must

act exactly as the ordinary BRST symmetry s we started with. Let us summarize:

s̃ ψ = iZ ω ψ ,

s̃ Aµ = Z
(
N∂µω − i[Aµ, ω]

)
,

s̃ ω = iZ ω ω
s̃ ω∗ = −h
s̃ h = 0 . (7.42)

We can absorb these new constants by redefining the normalizations of the ghost fields and redefining

the coupling constant (hidden in the Cαβγ) as follows:

ω̃α = Z N ωα , Ãαµ = Aαµ , C̃αβγ =
1

N
Cαβγ . (7.43)

Then the generators are redefined accordingly by t̃α = 1
N tα and thus ω̃ = ω̃αt̃α = Zωαtα = Zω and

Ãµ = 1
NAµ. Furthermore, one can redefine the normalization of ψ by some factor and the one of ω∗

and h by another (common) factor. These latter factors are not yet determined by (7.42). In terms

of the redefined fields and couplings, the deformed BRST transformations (7.42) take exactly the

form of the undeformed ones. In particular, we have

s̃2 = 0 (7.44)

and any gauge invariant functional F [Ãµ, ψ] (with structure constants C̃αβγ) automatically also is s̃

invariant.
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Constructing a Lagrangian invariant under the deformed BRST symmetry : constraining LN,∞

Let us now construct Γ
(ε)
N [χ] =

∫
L(ε)
N [χ] with a Lagrangian L(ε)

N that is invariant under the deformed

BRST transformation s̃. As we have just seen, the latter is the same as the original BRST transfor-

mation – up to changes of normalizations. Hence, our task amounts to constructing the most general

BRST invariant Lagrangian in the redefined fields and couplings. Strictly speaking, we should only

require invariance to first order in the deformation parameter ε, but because of the rather rigid alge-

braic structure, this actually results in invariance to all orders in ε. Of course, as explained before, we

also require that it is of dimension less or equal to four and invariant under all linear symmetries of

SR, namely Lorentz symmetry, global gauge symmetry, ghost phase rotations (implying total ghost

number zero), and (in most gauges) antighost translations, in which case ω∗ must appear as ∂µω
∗.

Obviously, once we have constrained the form of L(ε)
N = Lnew + εLN,∞ we also have constrained the

form of the diverging part LN,∞ of LN .

It now follows from the above cohomology theorem applied to s̃ that the most general s̃ invariant

local function is of the form L(ε)
N = L′N [A,ψ]+ s̃Ψ̃ with L′N [A,ψ] invariant under the gauge symmetry

with the redefined coupling and Ψ̃ of ghost number −1. The additional requirements cited above

imply that L′N [A,ψ] is of dimension less or equal four, while Ψ̃ must be of dimension less or equal

3 and contain ω∗ only as ∂µω
∗. Taking also into account Lorentz and global gauge invariance, we

arrive at

L(ε)
N = −1

4
ZA F̃ µν

α F̃αµν + L̃′N [ψ, D̃µψ] + s̃

(
−ξ
′

2
ω∗αhα +

Zω
ZN

∂µω
∗
αA

µ
α

)
= −1

4
ZA F̃ µν

α F̃αµν + L̃′N [ψ, D̃µψ] +
ξ′

2
hαhα +

Zω
ZN

hα∂µA
µ
α −Zω ∂µω∗α

(
D̃µω

)
α
, (7.45)

where

F̃α
µν = ∂µA

α
ν−∂νAαµ+C̃αβγA

β
µA

γ
ν , D̃µψ = ∂µψ−iAaµt̃Rα ψ , (D̃µω)α = ∂µω

α+C̃αβγA
β
µω

γ . (7.46)

This is of the same form as the initial Lnew except for the appearence of the “renormalization

constants” ZA, Zω, a changed coupling via the 1
N in C̃αβγ, as well as further “renormalization

constants” hidden in L̃′N [ψ, D̃µψ], and the replacement ξ → ξ′. Let us insist that, on the redefined

fields, the deformed BRST symmetry is just a BRST symmetry with a redefined coupling constant

g̃ = g/N , and L(ε)
N is invariant under this g̃-BRST symmetry for all ε.

7.2.3 Conclusion and remarks

It is enough to recall that L(ε)
N = Lnew + εLN,∞ to see that the diverging part LN,∞ of LN is “BRST-

invariant” in the sense explained above, i.e. it is the difference of a g̃-BRST and a g-BRST invariant

local term. Since ε was arbitrary, the same is true for −LN,∞ which is the required counterterm.

One can now redo the argument order by order in the loop-expansion to see that the sum of all

counterterms up to a given order N is “BRST-invariant” in this sense. Hence we conclude that to

any order in perturbation theory the renormalized action is g-BRST invariant precisely if the bare

action is gB-BRST invariant. Said differently, by appropriately choosing the field renormalization
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constants and coupling constant renormalization we get a finite quantum effective action ΓN at every

order N of perturbation theory.

Let us look more explicitly at the renormalization of the gauge field and of the gauge coupling

constant g. Recall that the latter was included in the Lie algebra generators as tα = g t̂α and

accordingly in the structure constants as Cαβγ = g Ĉαβγ with t̂α and Ĉαβγ the more conventionally

normalized, coupling-independent generators and structure constants. Thus Fα
µν = ∂µA

α
ν − ∂νAαµ +

g Ĉ α
βγ A

β
µA

γ
ν , and similarly for Fα

Bµν with AB and gB. If we let

AαBµ =
√
ZA A

α
µ , gB =

√
Zg g , (7.47)

the relation between the bare and renormalized F 2 term is

−1

4
Fα
BµνF

αµν
B = −1

4
Fα
µνF

αµν−1

4
(ZA − 1) (∂µA

α
ν − ∂νAαµ)(∂µAαν − ∂νAαµ)

−1

2
g(
√
ZgZ

3/2
A − 1) (∂µA

α
ν − ∂νAαµ)Ĉ α

βγ A
βµAγν

−1

4
g2(ZgZ

2
A − 1) Ĉ α

βγ A
β
µA

γ
ν Ĉ

α
δε A

δµAεν . (7.48)

To determine only ZA, at a given order, it is enough to compute the two-gauge boson function, i.e.

the vacuum-polarization. However, to determine Zg and hence the renormalization of the coupling

constant, one has to determine two of the three counterterms on the rhs of (7.48) and hence compute

e.g. the vacuum-polarization and the 3-gauge boson vertex function. This is related to the fact that

the bare and renormalized actions have their BRST invariance defined with different couplings. In

an abelian gauge theory like QED, there is no coupling dependence of the BRST symmetry and the

Ward identity implies (ZgZA)abelian = 1 so that we could read the coupling constant renormalization

from the vacuum-polarization. Below, we will discuss a special type of gauge fixing, the so-called

background gauge, where an analogous relation holds also in the non-abelian theory and, hence, it

is enough to compute a single Green’s function to obtain the coupling constant renormalization and

the β-function.

We have used the anti-ghost translation invariance of the so-called ξ-gauges fα = ∂µA
µ
α, and this

is why we get back this form. However, if one uses a gauge-fixing with fα = ∂µA
µ
α + aαβγA

µ
βAβµ

with some global G-tensor aαβγ, there is no ω∗-translation invariance to enforce the absence of BRST

invariant terms with two ghosts and two anti-ghosts, like e.g. s̃
(
bαβγω

∗
αω
∗
βωγ
)

= −bαβγ
(
2hαω

∗
βωγ +

1
2
ZCγδεω∗αω∗βωδωε

)
. Hence, such terms must be allowed in the action (and counterterms) from the

beginning. However, such terms cannot be obtained from the Faddeev-Popov procedure (which

always gives a ghost term linear in the ghost and linear in the anti-ghost). To get these terms

necessitates a more general Lagrangian Lnew = L[A,ψ] + sΨ[A,ψ, ω, ω∗, h], as already discussed

above.

We can conclude that, as long as we start with a general Lagrangian of this form, with gauge

invariant L of dimension less or equal 4, there is a counterterm available to cancel any divergence at

any loop order, and the theory is renormalizable in the usual sense.

Heavy use was made of the Slavnov-Taylor identity
∫

d4x 〈s χn〉 δΓ
δχn

= 0 from which the Zinn-

Justin equation was obtained. The derivation of the Slavnov-Taylor identity assumed that
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Dχnei
∫
Lnew[χn] is BRST invariant and in particular that DψDAµei

∫
L[A,ψ] is gauge invariant. Now∫

L[A,ψ] is gauge invariant by construction but it may happen that Dψ is not gauge invariant. This

typically shows up at one loop and then (SR,Γ1) 6= 0. Equivalently, certain one-loop diagrams are

then seen to violate the corresponding Ward identities of covariant current conservation. In this case

the theory is said to be anomalous. Anomalies are the subject of the next chapter. Fortunately, as

we will see, anomalies can only appear for certain gauge groups and only in the presence of chiral

fermions. Moreover, in potentially anomalous theories, by carefully arranging the content of the

chiral matter fermions, the anomalies can be made to cancel. This is the case, in particular, for the

standard model based on the gauge group SU(3)× SU(2)× U(1) with the content of chiral matter

fermions observed in nature.

7.3 Background field gauge

Suppose we can find a gauge-fixing procedure such that the one-loop quantum effective action34

Γ1−loop[a, ψ0, ω0, ω
∗
0] must be gauge invariant under the same transformation as was the tree-level

renormalized action S
(0)
R , i.e. δaαµ = ∂µε

α + g Ĉ α
βγ a

β
µε
γ and δψ0 = ig εα t̂Rα ψ0, as well as some

appropriate transformations for ω0 and ω∗0. Then necessarily we have

S
(0)
R [A, . . .] + S1−loop

c.t. [A, . . .] + . . . = −1

4
Fα
µνF

αµν − 1

4
(ZA − 1)Fα

µνF
αµν + . . . = −1

4
ZAF

α
µνF

αµν + . . . .

(7.49)

On the other hand, this must be the bare action. Comparing with (7.48), we see that then ZgZA = 1

and, hence, gB = (ZA)−1/2g. Since the one-loop β-function is given by the coefficient of 1
ε

in the

expression of gB in terms of g, we then find that35

β1−loop = −1

2
g ×

(
coeff of

1

ε
in ZA

)
. (7.50)

This will allow us to extract the one-loop β-function from the computation of the single coefficient

of the F 2-term in Γ1−loop.

With this motivation in mind, let us now introduce the background field gauge. Recall equations

(1.89) and (1.91) which compute Γ[a] from S[a+A] by integrating over the quantum gauge field Aµ

(with the restriction to 1PI diagrams - which is irrelevant at one loop). We want to find a gauge-fixing

for Aµ such that Γ[a] still is invariant under gauge transformations of the “background” field aµ.

We introduce two types of gauge transformations: the “background field gauge transformations”

δB and the “quantum field gauge transformations” δg. The background field gauge transformation

is defined to act on the background and quantum fields as follows:

δBaµ = ∂µε− i[aµ, ε] ≡ DB
µ ε ⇔ δBa

α
µ = ∂µε

α + Cα
βγa

β
µε
γ ,

δBAµ = −i[Aµ, ε] ⇔ δBA
α
µ = Cα

βγA
β
µε
γ . (7.51)

34Although we do not want to compute scattering amplitudes or Green’s functions for external ghosts, nothing
prevents us from computing Γ also with ghost “background fields” ω0 and ω∗0 .

35To lowest order in perturbation theory gB = (ZA)−1/2g = (1 + (ZA − 1))−1/2g ' (1− 1
2 (ZA − 1))g.
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Thus under this background gauge transformation aµ transforms as a gauge field and Aµ as an adjoint

matter field. Obviously, on the sum of both fields δB acts as an ordinary gauge transformation:

δB(aµ + Aµ) = ∂µε− i[aµ + Aµ, ε] . (7.52)

Similarly, the action on the matter quantum and background fields is defined as

δBψ0 = iεαtRα ψ0 , δBψ = iεαtRα ψ ⇒ δB(ψ0 + ψ) = iεαtRα (ψ0 + ψ) , (7.53)

and for the ghost fields

δBω
α
0 = Cα

βγω
β
0 ε
γ , δBω

α = Cα
βγω

βεγ ⇒ δB(ωα0 + ωα) = Cα
βγ(ω

β
0 + ωβ)εγ , (7.54)

and idem for the antighost fields. On the other hand, the quantum field gauge transformations δg

should not act on the background fields and will be defined such that they do act as standard gauge

transformations on the sums aµ + Aµ and ψ0 + ψ. Thus

δgaµ = δgψ0 = δgω0 = δgω
∗
0 = 0 , (7.55)

and

δgAµ = ∂µε− i[aµ + Aµ, ε] ⇒ δg(aµ + Aµ) = ∂µε− i[aµ + Aµ, ε]

δgψ = iεαtRα (ψ0 + ψ) ⇒ δg(ψ0 + ψ) = iεαtRα (ψ0 + ψ) . (7.56)

In order to compute the one-loop quantum effective action as the functional integral (1.91) one

has to choose a gauge-fixing function fα in the action S. The choice for the background field gauge

is

fα = (DB
µA

µ)α ≡ ∂µA
µ
α + Cαβγa

β
µA

γµ . (7.57)

Note that this is a generalization of the standard gauge fixing function to a non-vanishing background

field aµ. It is an appropriate choice for the present purpose, since DB
µ is covariant under δB and thus

DB
µA

µ transforms as Aµ under δB :

δBfα = Cαβγf
βεγ ⇒ δB(fαfα) = 0 , (7.58)

and we see that the gauge-fixing term is invariant under the background gauge transformations δB.

On the other hand, if fα is to fix the gauge in the functional integral, it better be not invariant under

the quantum field gauge transformations δg. Indeed, we have

δgfα = δg(D
B
µA

µ)α = (DB
µ δgA

µ)α = (DB
µD

µ
Bε)α − i(D

B
µ [Aµ, ε])α , (7.59)

from which we read the corresponding ghost Lagrangian

Lgh[aµ, Aµ, ω, ω
∗] = −

(
DB
µ ω
∗)
α

(
Dµ
Bω − [Aµ, ω]

)
α
. (7.60)

Since ω, ω∗ and Aµ transform as adjoint matter fields under δB, and since DB
µ is covariant with

respect to δB, we conclude that this ghost Lagrangian is invariant under the background field gauge
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transformations, δBLgh = 0. Since also ω0 and ω∗0 transform as adjoint matter fields under δB, the

same remains true if one replaces ω by ω0 + ω and ω∗ by ω∗0 + ω∗:

δBLgh[aµ, Aµ, ω0 + ω, ω∗0 + ω∗] = 0 , (7.61)

so that finally

δBLmod[aµ, Aµ, ψ0 + ψ, ω0 + ω, ω∗0 + ω∗] = 0 , Lmod = L − 1

2ξ
fαfα + Lgh . (7.62)

Note that L[a + A,ψ0 + ψ] = −1
4
Fµν [a + A]F µν [a + A] + Lmatter[a + A,ψ0 + ψ] with Fµν [a + A] =

Fµν [a] +DB
µAν −DB

ν Aµ − i[Aµ, Aν ].
Our goal was to determine Γ[aµ, . . .] as

∫
1PI
DA . . . exp

(
i
∫
Lmod(a + A, . . .)

)
. We see that due

to the gauge fixing and ghost terms, Lnew does not only depend on the sum a + A but on a and A

separately. It is then not obvious any more that this does generate all 1PI diagrams. However, if

we restrict ourselves to the one-loop quantum effective action, things are simpler and the separate

dependence on a and A of the gauge-fixing and ghost terms does not cause any trouble. Since Lmod

is invariant under the background gauge transformations δB, as is also the measure DADψDωDω∗

(excluding anomalies), it is then obvious that Γ1−loop[a, ψ0, . . .] must also be invariant under these

transformations:

δBΓ1−loop[a, ψ0, . . .] = 0 . (7.63)

But the background gauge transformations act on the background fields just as ordinary gauge

transformations (in particular with the same normalisation of g aαµ t̂α as explained at the beginning

of this subsection). Then eq. (7.49) must hold, and hence ZgZA = 1 so that we can use (7.50) to

compute the one-loop β-function.

7.4 One-loop β-functions for Yang-Mills and supersymmetric Yang-Mills
theories

To extract the one-loop β-function we need to compute the coefficient of 1
ε

in ZA in the background

field gauge. (ZA − 1) is the coefficient of −1
4
F 2 in the counterterm. Hence we need the coefficient

of 1
ε

in front of the −1
4
F 2 piece of the counterterm. To extract this term, we may simply consider

a constant background gauge field aµ and all other background fields vanishing. In particular then,

Fα
µν(a) = Cα

βγa
β
µa

γ
ν .

7.4.1 β-function for Yang-Mills theory

As explained above, to compute the one-loop contribution to Γ[a] we have to identify the part in∫
Lmod[a,A, ψ, ω, ω∗] that is quadratic in the quantum fields A,ψ, ω, ω∗. In particular,

Fµν [a + A]F µν [a + A]
∣∣
A2−part

= (DB
µAν − DB

ν Aµ)(Dµ
BA

ν − Dν
BA

µ) − 2Fµν [a] [Aµ, Aν ]. The expan-

sion of Lmod then yields∫
Lmod[a,A, ψ, ω, ω∗]

∣∣
quadratic part

=

∫
d4xd4y

(
− 1

2
Aαµ(x)DAxαµ,yβν [a]Aβν(y)

−ψ̄k(x)Dψxk,yl[a]ψl(y)− ω∗α(x)Dωxα,yβ[a]ωβ(y)
)
, (7.64)
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where

Dωxα,yβ[a] =
(
− δαγ

∂

∂xµ
− Cαδγ aδµ(x)

)(
− δγβ

∂

∂yµ
+ Cγεβ a

µ
ε (y)

)
δ(4)(x− y) , (7.65)

or, using a matrix notation with aadj
µ = aδµt

adj
δ and the generators of the adjoint representation given

in (6.6),

Dωx,y[a] =
(
− ∂

∂xµ
+ i aadj

µ (x)
)(
− ∂

∂yµ
− i aµadj(y)

)
δ(4)(x− y) . (7.66)

Similarly, one has

Dψx,y[a] =
(
− γµ ∂

∂yµ
− iγµaRµ (y) +m

)
δ(4)(x− y) , (7.67)

and

DAxµ,yν [a] =
{
ηµν
(
− ∂

∂xρ
+ i aadj

ρ (x)
)(
− ∂

∂yρ
− i aρadj(y)

)
−
(
− ∂

∂xν
+ i aadj

ν (x)
)(
− ∂

∂yµ
− i aadj

µ (y)
)

−iF adj
µν [a] +

1

ξ

(
− ∂

∂xµ
+ i aadj

µ (x)
)(
− ∂

∂yν
− i aadj

ν (y)
)}

δ(4)(x− y) . (7.68)

Then

iΓ1−loop[a] = −1

2
Tr logDA[a] + Tr logDψ[a] + Tr logDω[a] . (7.69)

These traces are evaluated as usual. We will sketch the computation for Tr logDω[a], the others

being similar.

Since we will only consider constant fields aµ it it most convenient to Fourier transform. One has in
general Dx,y ≡ 〈x| D |y〉 and hence

〈p| D |q〉 =

∫
d4xd4y 〈p|x〉 〈x| D |y〉 〈y| q〉 =

1

(2π)4

∫
d4xd4y e−ipx 〈x| D |y〉 eiqy . (7.70)

With a Dx,y of the form Dx,y = f(− ∂
∂xµ ) g(− ∂

∂yµ
) δ(4)(x− y) this yields

〈p| D |q〉 =
1

(2π)4

∫
d4xd4y e−ipx

[
f(− ∂

∂xµ
) g(− ∂

∂yµ
) δ(4)(x− y)

]
eiqy =

1

(2π)4

∫
d4x ei(q−p)xf(−ip) g(iq)

= f(−ip) g(ip) δ(4)(p− q) ≡M(p) δ(4)(p− q) . (7.71)

Hence 〈p| D2 |q〉 =
∫

d4k 〈p| D |k〉 〈k| D2 |q〉 = M2(p) δ(4)(p − q), and similarly for any power n and any
function of D, and thus

Tr logD =

∫
d4p 〈p| tr logD |p〉 =

∫
d4p δ(4)(p− p) tr logM(p) . (7.72)

Of course, δ(4)(p−p) arises because we work with constant fields and it has to be interpreted as
∫

d4x
(2π)4 e

ix(p−p) =
1

(2π)4

∫
d4x. Our M(p) are all of the form M(p) = M0(p) + M1(p) + M2(p) with iM0(p) being the inverse

propagator for the given field and M1 and M2 are linear and bilinear in the background fields aµ. One has

tr logM = tr logM0 + tr log
(
1+M−1

0 (M1 +M2)
)

= tr logM0 + tr
∞∑
n=1

(−)n−1

n

(
M−1

0 (M1 +M2)
)n
. (7.73)

We need to pick out the quartic term in aµ:

tr logM
∣∣
a4 = −1

2
tr
(
M−1

0 M2

)2
+ tr

(
M−1

0 M1

)2
M−1

0 M2 −
1

4
tr
(
M−1

0 M1

)4
. (7.74)
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Since −iM−1
0 is just the propagator this expansion generates the relevant one-loop Feynman diagrams

with 4 external (background) gauge fields aµ attached. There are vertices with one and vertices with two
gauge fields, corresponding to M1 and M2. Obviously, one could have evaluated these diagrams directly
using the appropriate Feynman rules. The present alternative computation has the advantage of giving all
combinatorial factors in a straightforward way.

Obviously, the Dω[a] corresponds to the ghost loop and the above expression gives

Tr logDω[a] =

∫
d4x

∫
d4p

(2π)4
tr logMω(p) ,

Mω(p) =
(
− ipµ + i aadj

µ

)(
ipµ − i aµadj

)
= pµp

µ − 2pµaadj
µ + aadj

µ aµadj . (7.75)

We read off Mω
0 (p) = pµp

µ, Mω
1 (p) = −2pµaadj

µ and Mω
2 (p) = aadj

µ aµadj and (7.74) then gives∫
d4p

(2π)4
tr logMω

∣∣
a4 =

∫
d4p

(2π)4

(
− 1

2

tr aλa
λ aσa

σ

(p2 − iε)2
+ 4

tr pµa
µ pνa

ν aλa
λ

(p2 − iε)3
− 4

tr (pµa
µ)4

(p2 − iε)4

)
, (7.76)

where all the aµ are in the adjoint representation although we did not write it explicitly. Since all aµ are
constant, corresponding to vanishing external momenta, the loop integrals are particularly simple. Using
dimensional regularization (d = 4− ε) and introducing an IR regulator µ, we have36

I ≡
∫

ddp

(2π)4

1

(p2 + µ2 − iε)2
=

i

16π2
(πµ2)−ε/2

(
2

ε
− γ +O(ε)

)
Iµν ≡

∫
ddp

(2π)4

pµpν
(p2 + µ2 − iε)3

=
1

4
ηµν I

Iµνρσ ≡
∫

ddp

(2π)4

pµpνpρpσ
(p2 + µ2 − iε)4

=
1

24

(
ηµνηρσ + ηµρηνσ + ηµσηνρ

)
I . (7.77)

Thus∫
d4p

(2π)4
tr logMω

∣∣
a4 = I

(
− 1

2
tr aλa

λ aσa
σ + ηµν tr aµ aν aλa

λ − 1

6

(
ηµνηρσ + ηµρηνσ + ηµσηνρ

)
tr aµaνaρaσ

)
=

1

6
I
(

tr aλa
λ aσa

σ − tr aλaσ a
λaσ
)

= −1

6
I
(

tr aλaσ a
λaσ − tr aσaλa

λ aσ
)
. (7.78)

Recall that for constant aµ in the adjoint representation one has tr adjFµνF
µν = tr adj(−i)[aµ, aν ](−i)[aµ, aν ] =

−2 tr adj

(
aµaνa

µaν − aµaνaνaµ
)
, so that finally

Tr logDω[a] =

∫
d4x

1

12
I tr adjFµνF

µν . (7.79)

The evaluation of Tr logDA[a] is very similar, except that the tensorial structure is a bit more complicated.

In the final result, the 1
12 is replaced by a −5

3 . The matter determinant Tr logDψ[a] depends on the mass

of the fermions. However, the structure of the divergence is mass independent, i.e. the term ∼ 1
ε does not

depend on the mass, and if our only purpose is to compute the β-function we can just as well neglect the

fermion mass.

36Note that when computing Iµν one replaces pµpν by 1
dηµνp

2. The remaining scalar integral yields d
4I so that

Iµν = 1
4ηµνI and not 1

dηµνI as one might have naively expected. Similarly for Iµνρσ.
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In the limit where the fermion masses can be neglected, the three traces are:

Tr logDA|a4−piece = I

∫
d4x

(
−5

3
tr adjFµνF

µν

)
Tr logDω|a4−piece = I

∫
d4x

(
1

12
tr adjFµνF

µν

)
Tr logDψ|a4−piece = I

∫
d4x

(
−1

3
trRFµνF

µν

)
, (7.80)

where (µ is an IR regulator) I =
∫

ddp
(2π)4

1
(p2+µ2−iε)2 = i

8π2

(
1
ε

+ finite
)
. If we let

tr adj tαtβ = g2C1 δαβ , trR tαtβ = g2C2 δαβ , (7.81)

we get

Γdiv
1−loop[a] = − g2

2π2

1

ε

(
5

6
C1 +

1

12
C1 −

1

3
C2

)∫
d4x

(
−1

4
Fα
µνF

αµν

)
, (7.82)

and, hence

ZA|div
1−loop = +

g2

2π2

1

ε

(
11

12
C1 −

1

3
C2

)∫
d4x

(
−1

4
Fα
µνF

αµν

)
. (7.83)

Finally we can read off the one-loop β-function as

β1−loop = − g3

4π2

(
11

12
C1 −

1

3
C2

)
, (7.84)

which is negative as long as C2 < 11
4
C1, i.e. as long as there are not “too many” matter fields.

Of course, this is a famous result. For example, if the gauge group is SU(N) and the matter

representation R is the defining “vector” representation N , one has C1 = N and C2 = 1
2
. For nf

flavours of quarks in the N -representation one has C2 =
nf
2

. Thus

β
SU(N)−QCD with nf flavours of quarks

1−loop = − g3

4π2

(
11

12
N − nf

6

)
, (7.85)

Standard QCD with gauge group SU(3) could accommodate as many as nf = 16 flavours of quarks

and still remain asymptotically free. Recall from our earlier discussion that the relevant β-function

at a given scale µ is the one that corresponds to the number of flavours of quarks having masses

(well) below µ. Any quarks having masses (well) above µ do not contribute at this scale. Let us

write βnf (g) = −βnf0
g3

16π2 and also use α(µ) = g2(µ)
4π

. As shown before, the running of g(µ) is such

that

Λnf = µ exp

(
− 8π2

β
nf
0 g2(µ)

)
= µ exp

(
− 2π

β
nf
0 α(µ)

)
(7.86)

does not depend on µ. It is the RG-invariant mass scale characterizing the strength of the interaction.

More precisely, it is independent of µ as long as µ does not come close to any of the quark masses

and the effective number of flavours does not change. Since the running of the coupling below mnf+1
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is well approximated by βnf and above mnf+1 by βnf+1, matching the coupling at µ = mnf+1 leads

to the RG scale matching condition

(
Λnf

mnf+1

)βnf0

=

(
Λnf+1

mnf+1

)βnf+1

0

. (7.87)

It is useful to isolate the contributions of the various fields to the one-loop β-function. There are

3 basic contributions: the gauge and ghost fields, spin-1
2

matter fields and scalar matter fields. We

already have computed the first two types of contribution, while the contribution of a complex scalar

matter field can be obtained from the one of the ghost fields. Indeed, the ghosts are (anticommuting)

scalars in the adjoint representation and with the obvious changes we get (Cadj ≡ C1 and CR ≡ C2)

βgauge and ghost
1−loop = − g3

4π2

11

12
Cadj

βDirac fermion in R
1−loop = − g3

4π2

(
−1

3
CR

)
βcomplex scalar in R

1−loop = − g3

4π2

(
− 1

12
CR

)
. (7.88)

Note that we considered standard Dirac fermions. If one considers instead chiral (Weyl) fermions or

Majorana fermions, one has to divide the corresponding matter contribution by a factor of 2.

7.4.2 β-functions in supersymmetric gauge theories

In supersymmetric theories the fields are part of supersymmetry multiplets and thus the field content

is subject to important constraints. We will now show that this leads to simpler expressions for the

one-loop β-functions.

N = 1 :

In gauge theories with the minimal amount of supersymmetry, so called unextended supersymmetry,

often referred to as N = 1 supersymmetry, the gauge fields have a corresponding partner, called

the gaugino field, which is a spin-1
2

Majorana fermion λα(x), also in the adjoint representation

and also massless. More precisely, the boson-fermion correspondence holds for physical states, so

that the Majorana fermion field is the partner of the gauge and ghost fields. Together they form

the gauge or vector multiplet. The matter fields are organized in so-called chiral multiplets, each

multiplet consisting of a Majorana fermion ψ(x) and a complex scalar φ(x), both fields in the same

representation R of the gauge group. Since a Dirac field is equivalent to two Majorana fields, the

β-function of a Majorana fermion is half that of a Dirac fermion. Hence, βgaugino
1−loop = g3

4π2
1
6
Cadj, so that

βvector multiplet
1−loop = βgauge and ghost and gaugino

1−loop = − g3

4π2

3

4
Cadj . (7.89)

Similarly, for a chiral multiplet

βchiral multiplet
1−loop =

1

2
βDirac fermion in R

1−loop + βcomplex scalar in R
1−loop = − g3

4π2

(
−1

4
CR

)
. (7.90)
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Obviously then, in an N = 1 supersymmetric gauge theory with nC,i chiral multiplets in the repre-

sentation Ri:

β
N=1 with nC,i in Ri
1−loop = − g3

4π2

(
3

4
Cadj −

1

4

∑
i

nC,iCRi

)
. (7.91)

Note that such a theory with 3 chiral multiplets in the adjoint representation has a vanishing one-loop

β-function. Actually, with appropriate masses and couplings, this theory actually has an extended

supersymmetry.

N = 2 :

In N = 2 extended supersymmetric gauge theory the N = 1 multiplets are grouped into larger

N = 2 multiplets. Thus the N = 2 vector or gauge multiplet consists of the N = 1 vector multiplet

together with a massless N = 1 chiral multiplet in the adjoint representation. Hence

βN=2 vector multiplet
1−loop − g3

4π2

1

2
Cadj . (7.92)

N = 2 matter multiplets are so-called hypermultiplets which consist of two N = 1 chiral multiplets:

βN=2 hypermultiplet
1−loop = − g3

4π2

(
−1

2
CR

)
, (7.93)

so that an N = 2 theory with nH,i hypermultiplets in representations Ri has its one-loop β-function

given by

β
N=2 with nH,i in Ri
1−loop = − g3

4π2

(
1

2
Cadj −

1

2

∑
i

nC,iCRi

)
. (7.94)

Again, we see that the special theory with a single adjoint hypermultiplet has a vanishing one-loop

β-function.

N = 4 :

The maximally extended (global) supersymmetry is N = 4 extended supersymmetric gauge theory.

It has a single N = 4 multiplet consisting of an N = 2 vector and a massless N = 2 adjoint

hypermultiplet. As just noted, this theory has a vanishing one-loop β-function:

βN=4
1−loop = 0 . (7.95)
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PART IV:

ANOMALIES

For detailed notes on anomalies, see my

“Lectures on Anomalies”, e-Print: arXiv:0802.0634 [hep-th].

8 Anomalies : basics I

8.1 Transformation of the fermion measure: abelian anomaly

8.2 Anomalies and non-invariance of the effective action

8.3 Anomalous Slavnov-Taylor-Ward identities

8.4 Anomaly from the triangle Feynman diagram: AVV

9 Anomalies : basics II

9.1 Triangle diagram with chiral fermions only

9.2 Locality and finiteness of the anomaly

9.3 Cancellation of anomalies, example of the standard model

10 Anomalies : formal developments

10.1 Differential forms and characteristic classes in arbitrary even di-
mensions

10.2 Wess-Zumino consistency conditions and descent equation

11 Anomalies in arbitrary dimensions

11.1 Relation between anomalies and index theorems

11.2 Gravitational and mixed gauge-gravitational anomalies

11.3 Anomaly cancellation in ten-dimensional type IIB supergravity
and in type I SO(32) or E8 × E8 heterotic superstring
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