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THE SOLVAY CONFERENCES ON PHYSICS 

The Solvay conferences started in 1911. The first conference on radiation 
theory and the quanta was held in Brussels. This was a new type of conference and it 
became the tradition of the Solvay conference; the participants are informed experts in 
a given field and meet to discuss one or a few mutually related problems of 
fundamental importance and seek to define the steps for the solution. 

The Solvay conferences in physics have made substantial contributions to the 
development of modem physics in the 20"' century. 

1. (191 1) "Radiation theory and the quanta" 
2. (1913) "The Structure of the matter" 
3. (1921) "Atoms and electrons" 
4. (1924) "Electric Conductivity of Metals" 
5. (1927) "Electrons and photons" 
6. (1930) "Magnetism" 
7. (1933) "Structure and properties of the atomic nuclei" 
8. (1948) "Elementary particles" 
9. (195 1) "Solid state" 
10. (1954) "Electrons in metals" 
11. (1958) "The structure and evolution of the Universe" 
12. (1961) "The quantum theory offields" 
13. (1964) "The structure and evolution of galaxies" 
14. (1967) "Fundamental problems in elementary particle physics" 
15. (1970) "Symmetry properties of nuclei" 
16. (1973) "Astrophysics and gravitation" 
17. (1978) "Order and fluctuations in equilibrium and non-equilibrium statistical 

mechanics" 
18. (1982) "High energy physics. What are the possibilities for extending our 

understanding of elementary particles and their interactions to much greater 
energies?" 

19. (1987) "Surface science" 
20. (1991) "Quantum Optics" 
2 1. ( 1998) "Dynamical systems and irreversibility" 
22. (2001) "The Physics of Communication" 

For more information, visit the website of the Solvay Institutes 
http:Nsolvayins.ulb.ac.be 
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PREFACE 

This volume includes papers presented at the XXII Solvay Conference on Physics, which took 
place from the 24 to 29 November 2001 in the European Culture Centre of Delphi. The 
Castle of Lamia hosted the events of the last day. 

The Physics of Communication was the selected theme of the conference. The 5 sessions 
reflected present challenging issues, namely Decoherence and Irreversibility, Non-locality and 
Superluminosity, Photonics, Quantum Information and Communication, Quantum 
Computation. The lively discussions, which followed the reports, have been recorded and are 
included after the presentations 

The realisation of the XXII Solvay Conference was possible thanks to the complete spiritual 
and financial support of the Ministry of Culture of the Hellenic Republic and the personal 
interest of the Minister, Professor Evangellos Venizelos. 

The excellent organisation is due to the professional and personal care of the personnel and 
the Director of the European Cultural Centre, Prof. V. Karasmanis, in collaboration with the 
administrative support and active interest of Dr. A. Soulogianni, Director of Educational 
Affairs of the Ministry of Culture. 

The key catalyst for the organisation and success of the Conference was Mr. K. Gouvalas, 
Director of the Minister’s office. 

The idea to organise the XXII Solvay Conference in Central Greece came spontaneously 
during a friendly meeting of one of us (Ioannis Antoniou) with Mr. T. Bellos, prefect of 
Fthiotis, Mr. G. Kotronias, Mayor of Lamia, Prof. K. Anastasiou, President of the 
Technological Education Institute of Lamia and Mr. Y. Zisis, representative of “Solon” 
Cultural Foundation. Afterwards, they honoured their commitment with active interest, 
continuous support and personal involvement. 

Thanks to the initiative and support of the Ministry of Culture, the internationally recognised 
pianist, Vinia Tsopela, Professor of the University of Macedonia, performed Hadjidakis and 
Chopin at the opening, thus creating a marvellous atmosphere. 

V. Dimitropoulos, Professor of Mathematics, and his group of amateur dancers performed 
traditional Hellenic dances in an original way during the banquet. 

Dr. E. Yarevsky and Dr. S.  Metens kindly helped in the scientific aspects of the organisation 

The heavy organisational details were arranged thanks to the coordinated effort of several 
people. In particular we mention Mrs. Anne De Naeyer, from the Solvay Institutes, Mrs. A. 
Gotsi from the European Cultural Center, Mr. M. Kostakis and E. Tsekoura from the Ministry 
of Culture, Mrs. M. Karayanni from the Prefecture of Fthiotis, Prof R. Kotronia, Director of 
the office of the Mayor of Lamia, Mrs. I. Moutsopoulou-Zisi, Mr. A. Belesis, Mr. I. 
Paraskevolakos, Mr. N. Theodorakis, Mr. P. Katsoulakos, Mr. D. Sarinakis and Mr. G.  
Mavrouleas from Solon Cultural Foundation. 

The conference could be observed in real time, via the Internet, thanks to the kind sponsoring 
of the Hellenic Telecommunications Organisations (OTE and COSMOTE). Mr. A. Dimakis, 
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xx 

Mr. G. Dimakis and Mr. Y. Zisis coordinated the teleconference effort. During the 
conference, about 2000 visits have been registered. 

The T.V. broadcasting and interviews were arranged by Mr. Y. Zisis (STAR Lamia Channel) 
and by Mr. P. Savidis (National Channel ET 3). The presentations in ET3 have been repeated 
more than 10 times during the following year at the request of the public. h4r. Y. Zisis, in 
addition to overall support, arranged also the press releases and the publicity. About 10 
articles were devoted to the conference. The whole publicity effort was coordinated by h4r. 
A. Dimakis. 

For the security of the conference, the Prefectural Police of Fokis and Fthiotis took special 
care. The Prefectural Hospitals of Fokis and Fthiotis were also especially available on a 24 
hours basis. The General Secretary of Central Greece, Mr. V. Exarchos kindly arranged for 
that. We were very happy to know about these measures and most happy not to use them. 

Finally, we gratellly acknowledge the enthusiastic support of Mr. J. Solvay and Prof 1. 
Prigogine. 

I. Antoniou V. A. Sadovnichy H. Walther 
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PROLOGUE 
by Minister E. Venizelos 

It is with special pleasure to see that this edition completes the effort to 
prepare and realise the XXII Solvay Conference on Physics, which has been hosted by 
the Ministry of Culture in the European Cultural Centre of Delphi with great success. 

We had the opportunity to attend leading scientists presenting and discussing 
the new impressive possibilities in Physics, which are expected to re-shape 
communication in the years to come. I was especially pleased to welcome Ilya 
Prigogine, Nobel Laureate, key founder of chaos theory and Mr. Jacques Solvay, 
President of the Solvay Institutes. It is well known that the Solvay conferences 
shaped the path of physics in the 20" century, as so many mythical personalities like 
Albert Einstein, Max Planck, Marie Curie, Niels Bohr, Werner Heisenberg, actively 
participated in these conferences. It is a common secret that the Solvay conferences 
have also served as a platform for the Nobel Prizes. 

Progress in physics and chemistry in the 20" century has been intertwined 
during the last ninety years with the activities of the Solvay Institutes. The XXII 
Solvay Conference on Physics marks the passage and continuation of the Solvay 
Conferences into the 215' century. This edition will be one more stepping stone in the 
history of science. In this sense, the Ministry of Culture of the Hellenic Republic is 
specially satisfied to contribute to this important scientific progress, by organising and 
supporting the XXII Solvay Conference on Physics. 
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CONSEIL DE PHYSIQUE SOLVAY 
BRUXELLES 1911 

X x. -. 
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OPENING ADDRESS BY J. SOLVAY 

Ladies and Gentleman, 

It is a great pleasure and honour to open the 22“d Solvay Conference on Physics. It is a 

special day for me. From October 30 till November 3, 191 1, the first Solvay conference 

took place in Brussels nearly 90 years ago. The theme of the fust conference was 

Radiation and Quanta. This is now the first Solvay conference in the XXI century. I am 

also very pleased that this conference takes place in Greece. Our presence here is a 

tribute to the role of Greek science and philosophy in the Western worldview. 

Since 90 years, there has been an enormous change in science, as well as in the interaction 

between science and society. For a long time, science appeared as a highly specialized 

field, an elitistic occupation. For Einstein, scientists were people who wanted to escape 

the vicissitudes of every day life. Today science is permeating all our life, especially fields 

such as communication and molecular biology. 

My great grand father, Ernest Solvay was confident that sciences will lead to an 

improvement of the human condition. He was a man of multiple interests, equally 

attracted by Physics, Chemistry, Physiology and Sociology. The possible role of science 

in the present society is a conflictual subject. Is this really an occasion for the 

improvement of human condition or is science bringing us closer to apocalypse? We can 

only guess what the future may be. It is still likely that science, communication especially, 

will permit us to reach a more multicultural and less conflicting society. 

The Solvay conferences have been, in the past, exceptionally successful. Heisenberg has 

written: “The Solvay Meetings have stood as an example of how much well-planned and 

well-organised conferences can contribute to the progress of science”. I am sure that this 

conference will be as successful as the preceding ones. It was often said that the people 

who came together at the Solvay conferences went then to Stockholm to receive the 

Nobel Prize. This is somewhat exaggerated, but there is some truth to it. 

Here is the photograph of the first Solvay meeting, where we see Mrs Curie, Poincare, 

Einstein, and many other famous people, who received indeed the Nobel Prize. 

Thank you. 
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OPENWG REMARKS BY I. PRIGOGEVE 

Dear colleagues, authorities, friends, 

I first want to thank the Greek authorities for their magnificent hospitality we receive 

here. I specially want to thank my colleague and &end, Professor Ioannis Antoniou, who 

has organised the conference. I want also to thank the local committee, which has made 

the arrangements and all participants, who will, I am convinced, make this conference a 

success. 

As Mr. Solvay mentioned, the first meeting was exactly ninety years ago in Brussels. The 

subject of this first conference was “electrons and photons”. In a sense, the present 

conference continues the problems studied in the first conference as it deals largely again 

with interactions, with the matter, as light. In the 20“ century, we have attended the birth 

of a new Physics. The progress realized is amazing. There was a feedback between 

progress in science and the Solvay conferences. Thanks to  this progress, we had very 

interesting Solvay conferences and conversely the Solvay conferences contributed to the 

development of new results in science. The progress has been such that many physicists 

say “We are now at the end of the golden age, we are at the end of creative Physics. How 

could we imagine something else of comparable importance after the achievement of the 

20fi century?” The last frontiers would be the high-energy physics, cosmology or the 

brain. I have heard this suggested by a few very famous physicists. I personally don’t 

believe it. I think there is a kind of autocatalytic character in the evolution of science. 

More we discover and more we are likely to  discover. So much has been discovered in 

the 20* century. This is for me an indication that we shall all make, in the future again, 

new fundamental discoveries. Take the problem of communication. How many aspects 

have we missed? The first aspect, which I want to emphasize, is the relation between 

communication and irreversibility. It is clear that the situation, after we receive a 

message, is different from the one which was existing before the communication was 

established. We obtain new information and this new information will contribute to the 

decision we take for the future. Let me emphasize that, in my view, the flow of time, the 

arrow of time is not due to the fact that the communication is first prepared and then 

received, like we prepare breakfast and then we eat it. On the contrary, it is because there 

is an arrow of time in the universe that we first prepare our breakfast, to eat it later. In 
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xxv 

this sense, of course, communication is closely related to the measurement problem and to 

the problem of the time symmetry breaking. There is still the dilemma how this universe, 

which is obviously an evolutionary universe, can be ruled by time reversible laws like 

classical dynamics or quantum theory. This problem is now more than 20 years old and 

still is discussed because of the dilemma between the static dynamical View, which was 

predominated as in Boltzmann's time, and the evolutionary view at the basis of 

thermodynamics. In most books you still find that the arrow of time is due to our 

approximations. I could never believe in this because if the arrow of time is a very 

fimdamental property of our universe, which cannot be due to any approximation or to 

ignorance, then we should introduce it as a basic law of nature. Communication involves 

transmission of information. The discussions about information remain at the operational 

level. As far as I can see, only by understanding the dynamical foundation of entropy can 

we hope to give a sense to information. It is interesting that in many fields we encounter 

instabilities, manifesting in classical theory as chaos or in quantum theory as decoherence. 

Also there is a general movement from a static equilibrium view of nature to a fluctuating 

unstable evolutionary view. Communication is also a problem of great actuality because 

computer communication has, of course, been of great importance in recent times. 

Conversion to quantum computing has been expected by many scientists. Therefore, the 

problem of communication is far from being in a satisfactory state. Many aspects have to 

be elucidated. In general, my feeling is that we are not at the end of Physics. We are only 

at the beginning of developing new methods, which require new Physics and also new 

Mathematics. There is also something special about the problem of communication which 

is so close to human problems of our time. Professor Metakides will certainly say 

something about this in his address. Communication is at the basis of the evolution of 

civilization. An example in European history is communication between Islamic 

knowledge and European knowledge in the middle age. History has brought us to a 

stratified, stable world. Communication has hopei3ly to play a role in the various 

cultures, which are existing today, and bringing them closer together. Communication 

extends, of course, to larger and larger scales. Larger scales involve stronger and 

stronger non-linearities. Communication is both a basic scientific problem and a basic 

human problem. Let's hope that the human aspect of communication will improve the life 

of society in the 21" century. 
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xxvi 

It is difficult to imagine a more illustrious assembly. The discussions were passionate. 

Quantum theory and relativity were just born and had still to he incorporated in the 

general frame of science. 

I would like to thank my friend, Ilya Prigogine, as well as Professor Antoniou, for having 

proposed, with the agreement of the scientific committee, the subject: “Physics of 

communication”. 

On one side, it corresponds to the technical interests of our time. There is a relation with 

non-linear optics and semi-conductors. On the other hand, over the last years, astonishing 

news has circulated in the scientific press. There is a new phenomenon called super 

luminosity which connects with the possibility of delaying or even stopping light. 

Information can be communicated by quantum teletransport. Quantum correlations lead 

to the creation of the quantum computers. This demonstrates that contrary to what has 

been stated in many places, we are far from being at the end of Science. But seen from 

my perspective, observing from the outside, we are at a new beginning of science in the 

sense of a different approach from that of 191 1 and the personalities on the photograph. 

There is also another aspect close to the heart of my friend, Professor Prigogine. 

Communication requires a distinction between before and after. There is an arrow of time 

involved. How this arrow of time brought us into the fimdamental physics, is still a 

controversial subject. This is a favourite theme of the scientific research performed at the 

Solvay Institutes in Brussels. I shall not go into details, as Prigogine will undoubtedly 

develop this theme in his lecture. 

In conclusion, I want to thank the participants for coming here. My gratitude goes also to 

the local organizing committee for their efforts. I would like also to thank the European 

Cultural Centre of Delphi for the traditional Hellenic hospitality we have received in this 

magnificent place, as well as the Ministry of Culture and the Government of the Hellenic 

Republic for their genuine interest and kind support, which have made this conference 

possible. 

Thank you. 
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CHALLENGES IN AMBIENT INTELLIGENCE 
(A TRIBUTE TO CLAUDE SHANNON AND MICHAEL DERTOUZOS) 

GEORGE METAKIDES 

Director of Essential Information Society Technologies and Infrastructures, 
DG Information Society, European Commission 

Introduction 

I would like to outline in this paper a number of the reflections that are currently ongoing 
as part of the planning of the next phase of European research funding for what we called 
Information Society Technologies, or, if you prefer, Information and Communication 
Technologies (ICTs). 

Support for Information Society Technologies is part of a broader political initiative 
that was launched by the Heads of the EU Member States at the summit of March 2000 in 
Lisbon. This date is significant because it was about two weeks before the collapse of the 
NASDAQ market, synonymous with the collapse of most of the technology stocks and 
much of the euphoria that surrounded all the related exuberant visions. 

So, the first 
question to be asked is 
the following: is the - 
general context still 
valid today or was it 
mostly hype, does it all 
still make sense? 

What happened in a 
very short period is that 
we went from this 
euphoria of the land of 
milk, honey and dot- 
coms to a land of 
turbulence and 
uncertainty. One may ~ 

~ -- _ _ ~  - 
recall some famous 
adages of the period of FIGURE 1 

euphoria (see Figure l), like “There will be no business except e-business” (Wired 
magazine). And then, in the era of turbulence, dot-coms have turned themselves into 
“dot-bombs ” and “e-business” has become ‘‘just business”. More recently, in early 
November 2001, McKinsey published a report even questioning whether many of the 
“information technology investments ” by companies might have been “wasted”! 

So, what happened to the vision, what happened to the expectations? Was it really all 
smoke? I do not think so. I believe that as the pendulum swings again now, the reality is 

xxvii 
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xxviii 

that: we are all becoming “older” (certainly true), “wiser” (debatable), (but certainly) 
“webbier”. If this is rephrased in Shannon’s terms it becomes: there was a lot of noise in 
the channel, a lot of that noise was the hype, but the message is still there and it is as valid 
as ever. 

intersection between the Skills 
planning at the European level 
mentioned above and the topics 
of interest to this conference. 

The general approach of the 
planning can be represented in Technology Policy 
the form of a triptych (see 
Figure 2). 

Technology is one part of 
it, but it goes together with policy, and in the end, to make it all happen, with human 
resources and skills. 

FIGURE 2 

Policy initiatives 

The main policy 
initiative addressing 
the development of 
the Information 
Society is 
“eEurope”, which 
was launched by the 
Lisbon Summit in 
2000 (see Figure 3). 
This has now been I 

extended by the so- 5th Framework Programme 3.6 BEuro 
called “eEurope+” 
initiative to embrace 
all the Candidate 
Countries for 
accession in the EU 
as well. For research 
the approach is today 
realised through the 

FIGURE 3 

In this paper we argue the
case for the validity of the 
message by looking at the
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xxix 

Performance + 
I 

FIGURE 4 

current Information Society Technologies Programme (running under the 5" EU 
Framework Programme for RTD, 1998-2002). It will be continued in the new Information 
Society Technologies Programme that will run for the period 2003-2006, as part of the 6'h 
EU Framework Programme that is currently under preparation. 

eCel 

Seamless 2% Rich Connectivity 

Intelligent Environ men& Anthropocentric Interfaces 

FIGURE 5 
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xxx 

Technology 

As far as ICT technology progress is concerned, I fully share here the view of Ilya 
Prigogine: we are not at the end, but at the very beginning of a digital revolution. Or, to 
quote Michael Dertouzos, “we haven’t seen anything yet”. 

In particular, we are only at the very beginning of the digitalisation of the economy; 
this is indeed a revolution that will continue to bring changes through to the end of this 
decade and even much longer. The pace of technological advance will continue to gallop 
under the so-called “exponential laws” (e.g. Moore’s Law), with computing, 
communication and storage capabilities doubling every 18, 9 & 12 months respectively 
(see Figure 4). 

Whilst technology is advancing exponentially, applications and services follow much 
quicker than ever before, but they are developing in a step-wise fashion, in the shape of a 
series of alternating jumps and plateaux. The jumps are caused by the advent of 
disruptive technologies that change the rules of the game. Their cusps are synonymous 
with huge business opportunities for capturing new markets or extending existing ones 
through the development and deployment of whole new families of innovative products, 
applications and services. History shows that those who wait for the plateaux find only 
monopolised or commoditised marketplaces. 

To illustrate the above, the following example from the IT sector can be used: the 
shrinking of processors permitted us to move from the mainframe era (60’s and ~ O ’ S ) ,  to 
the stand-alone PC era (from the 70’s until 1985). Then came the shrinking of laser 
technology, which enabled the Internet as we know it. This gave rise to a new plateau, 
that of networked computing. 

[n the Office in Transport Systems’ In the Home 

FIGURE 6 
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xxxi 

The plateau that is coming next is brought about by a new vision. It can be attributed 
again to a kind of shrinking, that is the shrinking of sensors and actuators of all kinds and 
to the recent advances in embedded software. Their combination will allow the creation 
of an environment of ambient intelligence (see Figure 5). 

ambient intelligence are as follows. 
The main technology building blocks that are underneath this new environment of 

Seamless communication networks, spanning from the personal area to the regional 
and global area. Seamless communications, be that through fixed wired or wireless 
telephony, wireless LANs, mobile telephony or through satellites. 

A new generation of what Michael Dertouzos would call anthropocentric 
interfaces: interfaces that will enable us to communicate with computing and 
networking systems through our senses in a most intuitive and natural manner as 
opposed to artefacts that we have today. Interfaces that will increase the usability of 
such systems and enhancelsubstitute for our senses. 

Intelligent environments enabled by computing embedded in anylevery physical 
object in our surroundings and with everything linked together through seamless 
communication networks. 

And a new family of intelligent systems based on a new generation of knowledge 
technologies, binding everything together and removing the complexity of human 
interaction with information technology. 

FIGURE 7 
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xxxii 

Given the above, how will this new vision of Ambient Intelligence materialise in 
practice? Some representative examples are shown in Figure 6. The illustrations of this 
figure are not an attempt to provide a futuristic vision, since each one of these items exist 
already today as prototypes in laboratories. The only thing that prevents many of these 
prototypes to go to the market is the business case, the business model, not the technology 
as such. 

Video walls, virtual-real meetings: a truly new generation of video conferencing 
technology. You are at a meeting table with people around in front of you. You are 
able to communicate with them effectively as if they are sitting next to you in the 
same room, in fact you are led to believe they are present in the same room, but they 
are actually located at several remote locations. 

Foldable workstations: by folding up the screen, they become your new computing 
and networking environment. 

Navigation schemes in all kinds of transport systems and new driver assistance 
systems for assisting car driving under difficult traffic or weather conditions or at 
night. 

Immersive television. For watching exhibitions and shows from your TV, as if you 
were physically present there and for choosing any viewing angle you wish. 

The medical mirror aimed in particular for handicapped or aged people that need 
health monitoring at home. Practically all the basic health measurements and 
monitoring can take place at home, without the patients staying in the hospital more 
than what is necessary. 

And then, the Call-My-agent sort of example, where you just order what you want to 
be done rather than keying it into the keyboard. 

All the above examples support the message that scientific and technological advance 
and applications go now hand in hand, but also that we are still at the very primitive stage 
in these technologies. 

But what is underneath these technologies to support their exponential advance? In 
the case of computing, there is a fairly clear roadmap - see Figure 7. This roadmap is 
based on what is known as Moore’s law: the memory size or the number of transistors on 
chip is doubling every 18 months. In fact, the first part of the roadmap is based on the 
miniaturisation advances of CMOS technology. It is the world of the so-called 
“shrinkers”. But then, there comes a point around year 2010-2011 where a switch is 

‘expected to take place and to move from the shrinkers to the “thinkers”. Namely, this is 
at the stage where what before was considered as noise (in Shannon‘s terms) becomes 
now a useful signal: the quantum effects. 

There is a lot of basic research that the Community is funding in the area of 
understanding quantum effects and using them to build the next generation of computing 
and networking. This is supported by the Future and Emerging Technologies part of the 
IST Programme and is expected to be strengthened even more in the IST Programme 
under the 6‘h Framework Programme. 
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xxxiii 

But there exists a roadblock. It is not related to technology advances in hardware but 
to progress in software. As mentioned before, in microelectronics, according to the law of 
Moore, computing power is doubling every 18 months. This corresponds to a compound 
annual growth rate of 58 % (see graph of figure 8). In order to keep pace with this 
growth, geometric structures are getting so small that small-scale effects must be 
considered. Despite the use of advanced CAD tools, the growth in design productivity as 
measured by the International Technology Roadmap for Semiconductors is only 21 % 
CAGR, massively below the growth in system complexity. Another cause of design gaps 
is coming from shrinking product lifetimes. Time-to-market is becoming so important 
that now it alone can sometimes determine the economic success. The systems are more 
complex but have to be designed in shorter time. This again is shown in the productivity 
map of Figure 8. Bridging this productivity gap is one of the major challenges of this 

Ail expanding productivity gap 

FIGURE 8 

decade for realising the vision, especially when one also considers the advances expected 
by the next generation of computing, quantum computing: it will factor a 1000 digit 
number in a fraction of a second and is going to undo the whole basis of cryptography as 
we know it today. 

All the above related to the computing side, but what is going to happen on the 
networking side? Seamless communications and broadband access everywhere: by 
meshing all sorts of different communication networks, whether these are fixed telephony 
networks, fixed wireless networks, 3”d generation mobile networks, wireless LANs or 
whatsoever. Indeed, within this decade, the integration of fixed and mobile, all-IP, 
communication infrastructures and their interconnection and interoperability will permit 
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xxxiv 

the seamless roaming of data and services and their access from anywhere at anytime. 
These will be provided not only through PC-based but notably also through digital TV as 
well as through mobile communication platforms. This in its turn will contribute to 
opening up demand for a whole new generation of broadband applications and services. 

The above do not represent just a quantitative advance but also a qualitative one, 
because then the network will become the computer, in the sense of grids. The easiest 
example one can use today is the sharing of computing power by some 3.5 million PC’s to 
try and decipher space signals - that is the SETZ @ home initiative. Similar efforts are 
also under way for environmental modelling and other “peer-to-peer’’ platforms. 

And then there are all the activities which, in terms of complexity, one would call the 
tera-world, like protein folding that is foreseen to be at the origin of the next revolution in 
medicine. A protein folds in nature in about 20 milliseconds. To simulate it today using 
the most powerful computer may take 40 months. The interconnection and inter-working 
of the most advanced computing systems may permit to satisfy soon the requirements of 
the tera-world, like these computations in proteomics. This is expected to come, again, 
within this decade. 

So, one aspect is that the network will become the computer, the other aspect is that 
the network will become the system, within a distributed control architecture. In this 
case, one is referring to complex non-linear systems, where control does not mean what it 
used to be, where it is impossible to control everything completely all the time, where 

Nano-scale * Tera-scale 

FIGURE 9 
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xxxv  

proceeding by model decomposition and model reduction techniques is no longer 
sufficient. There, totally new techniques mainly coming from the theory of complex 
systems must be devised to serve. 

Once again, the roadblock is found in the underlying knowledge technologies, which 
are needed both for the nano-scale, in the case of nanotechnology, and for the tera-scale, 
in the case of networking. What is needed in fact is disruptive software technologies, in 
the sense that they represent the discontinuity with respect to what it is possible to do 
today (see Figure 9). Such disruptive software technologies will have to deal mainly with 
the following. 

Knowledge management: dealing with huge databases, efficient data representation 
and data handling, including intelligent data mining and data retrieval. 

Complex non-linear hybrid dynamic systems, capable of co-operating and interacting 
with each other. 

And finally, with 
so-called cognition 
technologies, 
perception and 
vision technologies 
and the new 
generation of 
artificial 
intelligence. A 
few years ago 
art i fi c i a 1 
intelligence was 
sort of swept away 
as itself a hype. 
Now it is coming 
back with a 
vengeance and, 

combined with 
new enabled FIGURE 10 

cognition 
techniques, it will provide a third ingredient in what is needed to realise the vision of 
ambient intelligence, as a platform for all the applications to come. 

Skills 

To make the above happen, it is clear that there is needed a generation of people having 
skills which is not at the moment available and producible by existing educational 
systems. 
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xxxvi 

The simplest perhaps adjustment is going from the basics, be that scientific or as an 
engineer or as a citizen in the information society, to a set of evolved basics - these are 
the so-called 3Ss (see Figure 10): 

simulation in the sense of modelling physical and industrial processes and 
phenomena, 

what is 
available, 

and sharing 
information 
and 
communicating 
it in the basic 
human sense. 

Furthermore, 
there is no single 
technology today 
where its 
underlying 
knowledge 
foundations - fiom FIGURE 11 

the lower technician 
level to the most advanced computer science or microelectronics application - have not 
an expiration date of more than 4 years. As an example one can mention all those people 
who thought that, having learnt Oracle and C++ would provide a job for a life as a well- 
paid programmer. This was true five years ago but certainly it is not any more today. 

We are now entering the world of continuous learning and training and one has to 
question what will happen. Can universities, as we know them today, remain the sole and 
exclusive portrayer of professional training? I do not believe so. Certainly, universities 
should and will remain the keepers of truth and beauty, and at the core of scientific 
research. But as far as professional and vocational training are concerned, there seem to 
be many other actors - the private sector and commercial services - that come, using the 
technologies themselves, to play a role. 

So to caricature, the argument, we can say, is that the skills needed for the 21" 
century can be categorised in four areas (see Figure 11): 

1. skills required for dealing with the nano-world, 

2. skills for addressing the problems of the tera-world, 

3. cognition skills providing the glue, 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



xxxvii 

4. and finally, all the above must be underpinned by complex system theory and the 
techniques emanating from it, because in every single category such a context is 
valid. 

Conclusions 

At several points in this 
paper I made reference to 
Claude Shannon and 
Michael Dertouzos 
(Figure 12). This was 
done deliberately, 
because I wished to use 
this occasion to honour 
them. It is also because 
each one had a direct 
impact on my personal 

Michael Dertouzos 
1936 - 2001 

Claude Shannon 
1916 - 2001 

-~ 
work and thinking: 

FIGURE 12 Claude Shannon as 
my initiator in my 
student days to that most elegant foundation of digital communication theory. 

Michael Dertouzos as a spiritual brother and a visionary, who saw and anticipated the 
bridge between basic research and applications, and, perhaps more importantly, the 
bridge - a sort of luminous arc - between technology and humanism. He made 
extensive reference to this in his final book “The unfinished revolution”: The 
enlightenment, some 300 years ago - perhaps unnecessarily, perhaps accidentally - 
separated technology and humanism. It is perhaps time to see if these two can be 
brought back together. 

It was meant to be that both Claude Shannon and Michael Dertouzos left us in 2001. 
It is now up to us to carry their vision forward. 
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STOCHASTICITY AND TIME SYMMETRY BREAKING IN 
HAMILTONIAN DYNAMICS 

I. PRJGOGINE 
S. KIM, G. ORDONEZ AND T. PETROSKY 

Center for Studies in Statistical Mechanics and Complex Systems, The University of 
Texas at Austin, Austin, T X  78712 USA 

and 
International Solvay Institutes for Physics and Chemistry, CP231, 1050 Brussels, 

Belgium 

In recent years, we have introduced a new type of transformation operator A, 
leading to irreversible kinetic equations from dynamics, both classical and quan- 
tum. In our approach we have no loss of information, since the A transformation 
is invertible. In this paper we consider classical mechanics. Our transformation 
is obtained by an extension of the canonical (unitary) transformation operator U 
that eliminates interactions. While U can be constructed for integrable systems in 
the sense of PoincarB, for nonintegrable systems there appear divergences in the 
perturbation expansion, due resonances. The removal of divergences leads to the 
A transformation. This transformation is “star-unitary’’ . Star-unitarity for non- 
integrable systems is an extension of unitarity for integrable systems. In addition, 
A is non-distributive with respect to products of dynamical variables. This gives 
fluctuations usually associated with noise in phenomenological equations such as 
the Langevin equation. 

1 Introduction 

Communications play today a basic role. Communications require irreversibility 
and stochasticity. A part of our communication with the outside world involves 
the interaction between molecules and light. The emission and absorption of light 
quanta (photons) can be formulated as a superposition of irreversible processes 
(see the article “Microscopic entropy flow and entropy production in resonance 
scattering” in this issue). 

Communication requires stochasticity as well. We distinguish good and bad 
communications. I t  is very often related to information, noise, entropy, and mea- 
sured by bits. These two aspects, irreversibility and stochasticity, are not explicit 
in the fundamental equations of dynamics. Our aim has been to  formulate a new 
form of dynamics that makes explicit irreversibility and stochasticity. The first 
question is to which form of dynamics this formulation may apply. Very briefly, the 
distinction is between integrable and non-integrable systems. 

2 Integrable and non-Integrable systems 

Suppose we have a system of particles with Hamiltonian 

H = Ho + XV, H = H ( p ,  4) (1) 
where Ho is the unperturbed Hamiltonian describing non-interacting particles, and 
V is the interaction. We assume the coupling constant X is dimensionless. We 
consider mainly classical systems, but our statements apply as well to  quantum 

1 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



2 

systems. The Hamiltonian is a function of the momenta p and positions q of the 
particles. Often one introduces a new set of variables J = J ( p , q ) ,  Q = a ( p , q )  
(action-angle variables) such that 

Ho = H o ( J ) ,  V = V ( J , Q )  (2) 
This means that when there is no interaction between the particles (A = 0) the 
energy H only depends on the action variables J .  

Integrable systems are systems for which we can go to a new representation 
J + J ,  a + & such that 

H = H o ( J )  (3) 
The Hamiltonian can be written as a new function RO depending only on the 
new actions. Typically, &, will have the same form as Ho, but with renormalized 
parameters (such as frequencies). 

The change of representation is expressed as a “canonical transformation” U ,  

= u-‘J, fi = U-‘Q (4) 

The operator U is “unitary”, U-’ = U f ,  where we define Hermitian conjugation 
through the inner product 

((flp)) = 1 flf*(mm. ( 5 )  

which is the ensemble average off.“ Here r is the set of all phase space variables, f l  
is the phase-space volume element and * means complex conjugate. The Hermitian 
conjugate is defined by 

((f lUp)) = ((PIU+f))* (6) 

The operator U is distributive with respect to products. For any two variables 
A and B we have 

UAB = ( U A ) ( U B )  (7) 

(8) 

This property together with Eq. (3) lead to 

U H ( J , Q )  = U H o ( J )  = Ho(UJ)  = H o ( J )  

The transformed Hamiltonian U H  is the unperturbed Hamiltonian Ho depending 
only on the original action variables. In other words, U eliminates interactions. 

For non-integrable systems there exist, by definition, no transformation U .  This 
happens, for example, when there appear divergences (divisions by zero) when we 
try to construct U as an expansion in the coupling constant X (called “perturba- 
tion expansion”). Vanishing denominators appear when frequencies of the systems 
become equal. We have “PoincarC resonances” leading to divergences 4,  

-+ 00 for w1 -+ wk 
w1 - wk 

We define now a transformation A with the following properties: 

(9) 

~ ~ 

aOne can introduce a Hilbert-space structure in classical mechanics through the Segal-Bargmann 
representation 12. 
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3 

(1) The A transformation is obtained by analytic extension of the unitary op- 
erator U .  
(2) When there are no resonances, A reduces to U .  
(3) A is analytic with respect to  the coupling constant X at X = 0. 
(4) A preserves the measure of the phase space. 
( 5 )  A maps real variables to real variables. 
(6) A leads to closed Markovian kinetic equations. 

Our method corresponds to the elimination of Poincark resonances on the level 
of distributions satisfying the Liouville equation 

d 
at 

2-p = i { H ,  } = L H p  

This extension of U is obtained by regularization of the denominators, 

(11) 
1 

=+ 
1 

W1 - W k  w1 - W k  * i E  

where E is an infinitesimal. As discussed below, the sign of ie is determined by a 
time ordering depending on the correlations that appear as the particles interact. 
The regularization breaks time symmetry. 

The A transformation permits us to find new units obeying kinetic equations. 
Indeed, applying the A transformation to  the equations of motion, we discover 
irreversibility and stochasticity. Irreversibility appears because of the analytic con- 
tinuation of U (from real to  complex frequencies) and stochasticity because of the 
non-distributive property 

AAB # (AA)(AB)  (12) 
Hence we have fluctuations. Irreversibility and stochasticity are closely related to  
Poincarb resonances 596,7. Non-distributivity also yields new uncertainty relations 
in quantum mechanics. For example, for the Hamiltonian we have, in general 

A H 2  # ( A H ) 2  (13) 
This leads to an uncertainty relation between energy and lifetime of unstable states. 

We introduce the new distribution function jj = Ap into Eq. (10). Then we 
obtain 

. a -  - 
2-p = 
at 

where 

0 = A L ~ A - ~  

This is a kinetic equation describing irreversible stochastic phenomena. This equa- 
tion in general contains diffusive terms, which map trajectories to  ensembles. We 
have an intrinsically statistical formulation in terms of probabilities. 

The next section will be devoted to  a brief description of the main steps in- 
volved in the construction of the A transformation (more details can be found in 
Refs. for classical 
mechanics). 

and references therein for quantum mechanics, and in Ref. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



4 

3 Construction of the A transformation 

Our formulation is based on the “dynamics of correlations” induced by the Liou- 
ville equation l l .  The Liouville operator LH = LO + XLv is separated into a part 
describing free motion LO = i {Ho ,  } and an interaction XLv = i{XV, }. We then 
define correlation subspaces by decomposing the density operator p into indepen- 
dent components 

where P(”) are projectors to the orthogonal eigenspaces of Lo 

(17) Lop(,)= p ( 4 L o  = , (4p(4 

w(,) being the real eigenvalues of LO. The projectors are orthogonal and complete: 

CP‘,’ = 1 (18) p(Ap(,) = p(IL)s 
P, 7 

v 

The complement projectors Q(”) are defined by 

(19) p(”) + Q ( U )  = 1 

They are orthogonal to P(,), i.e., Q(”)P(”) = P(.)Q(,) = 0, and satisfy [Q(,)I2= 
Q‘”’. 

As seen in Eq. (17) the unperturbed Liouvillian LO commutes with the pro- 
jectors. Therefore the unperturbed Liouville equation is decomposed into a set of 
independent equations, 

The interaction XLdnd uces transitions from one subspace to another subspace. 
To each subspace P(,) we associate a “degree of correlation” d,: we first define the 
vacuum of correlation as the set of all distributions belonging to the P(O) subspace. 
This subspace by definition has a degree of correlation do = 0. Usually this subspace 
has the eigenvalue do) = 0, i.e., it  contains the invariants of unperturbed motion. 
The degree of correlation d, of a subspace P(,) is then defined as the minimum 
number of times we need to apply the interaction LV on the vacuum of correlations 
P(O) in order t o  make a transition to  P ( y ) .  Dynamics is seen as a dynamics of 
correlations. 

Our method involves the extension of U to A, from integrable to nonintegrable 
systems. This is applicable to systems, which, depending on certain parameters, 
can be either integrable or non-integrable in the sense of PoincarB. For example, 
a system contained in a finite box with periodic boundary conditions will have a 
discrete spectrum of frequencies. We can then avoid any resonances. The system is 
integrable, and we can construct U by perturbation expansions. However, when we 
take the limit of an infinite volume, the spectrum of frequencies becomes continuous 
and resonances are unavoidable. The system becomes non-integrable in PoincarB’s 
sense, as the perturbation expansion of U gives divergent terms. We can remove the 
divergences by regularization of the denominators, obtaining the A transformation. 
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5 

Let us consider first integrable systems, where we may introduce the canonical 
transformation U that eliminates the interactions. In the Liouvillian formulation 
the relation (8) gives 

U L f f u - l =  Lo (21) 

Namely, the transformed Liouvillian is the unperturbed Liouvillian LO = i(R0, }. 
Similar to LO we have 

Lop(”)= pWL0 = a(”)p(”) (22) 

where id”) are renormalized eigenvalues. In the U representation there are no 
transitions from one degree of correlation to another. 

We write U in terms of “kinetic operators” (we use bars for the integrable case) 

where D(’) E [C(”)]t. The operators C(”) and D(”) are called, respectively, “cre- 
ation” and “destruction” operators as they can create or destroy correlations, 
leading to  transitions from one subspace P(”) to  a different subspace P(M). The 
% ( v )  operator, on the other hand, is diagonal, as it leads to transitions within each 
subspace, i.e., it maps P(”) to  P(”). Using Eq. (19) we obtain 

( p w  + C(”’)X‘”’ (25) u-’p(4 = 

(26) p(4u = [-p]t(p‘”’ + DC”)) 
Now, from the commutation relation in Eq. (22)  we derive a closed equation for the 
C(”) operators (see ”,’): 

x [XL”P(”) + XLvC(”) - C(”)XLVC(”)] 

We call Eq. (27) the nonlinear Lippmann-Schwinger equation. The j$”) operators 
are obtained from the relation 

(28) p(”)Uu-lp(”) = p ( 4  

which leads to ’ 

where A(”) E (P(”) + D(”)C(”))-l (the inverse is defined in each subspace: 
A(”)[k(y)]-l = P(”)).  The general solution of Eq. (28) is 

,(4= [A(”)]‘/Z exp(B(”)) (30) 
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6 

where B(”)  = -[B(”)]t is an arbitrary antihermitian operator. For the integrable 
case we have one more condition on U :  the distributivity property Eq. (7). This 
condition fixes the operator x(”) (see Appendix A). Note that for integrable sys- 
tems the denominator in Eq. (27) is always non-vanishing: there are no Poincark 
resonances. 

Now we go to nonintegrable systems. Due to Poincark divergence we cannot 
eliminate the interactions among particles through a canonical transformation. 
However we may still introduce a representation for which the dynamics is closed 
within each correlation subspace. We introduce the transformation A such that the 
transformed Liouvillian in Eq. (15) commutes with the projectors P(”) 

This allows us to obtain closed Markovian equations 

In contrast to the integrable case, the P(”) projectors are no more eigenprojectors of 
the transformed Liouvillian Q. Hence we can have transitions within each subspace. 
As we shall show, the A transformati9n makes a direct connection between dynamics 
and kinetic theory. The operator 0 is indeed a generalized “collision operator”. 
Collision operators are familiar in kinetic theory. They are dissipative operators 
with complex eigenvalues, the imaginary parts of which give, for example, damping 
or diffusion rates. The Liouville operator is related to 6 through a similitude 
relation. This is possible 
because we are extending the domain of LH to  distributions outside the Hilbert 
space 13,1499. 

To construct A, the basic idea is to  extend the canonical transformation U 
through analytic continuation. Similar to  Eq. (25) we write A in terms of kinetic 
operators 

This means that LH itself has complex eigenvalues. 

In order to avoid Poincark divergences, A can no more be unitary. Instead, it is 
‘‘star unitary” 

A-1 = A* (34) 

where the * applied to  operators means “star-hermitian” conjugation, defined be- 
low. 

From the commutation relation Eq. (31) we arrive again at the equation (27) 
for the creation operator. But the denominator in Eq. (27) may now vanish due to  
Poincar6 resonances. We regularize it by adding h i e .  We obtain the equation 
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where the sign if Ze is chosen according to the “iE-rule:’’ 14,’ 

E,, = + E  if d, 2 d, 
e,, = - e  if d, < d, 

where E > 0. This rule means, essentially, that transitions from lower to higher 
correlations are oriented towards the future and transitions from higher to  lower 
correlations are oriented towards the past. We could also choose the other branch 
with E < 0, where the roles of past and future are exchanged. The main point is 
that regularization of the denominators breaks time symmetry. 

For the D(”) operators we have 

The ie-rule leads to well defined perturbation expansions for C(”),  D(”) and 
A(”) = [P(,) + D(’)C(”)]-l. Recall that we have the relation Dtu) = [C(”)]t for 
the integrable case. For the non-integrable case, due to ZE rule, these operators are 
no more related by hermitian conjugation. They are related by star hermitian con- 
jugation, which is obtained by hermitian conjugation plus the change e,, + e,,. 
Then we have 

(38) 

x(”)= [A(”)]’/2 exp(B(”)) (39) 

Dl”) = [C(”)]*, A(”) = [A(”)]* 

Similar to the integrable case the x operators are given by 

where B(”) = -[B(”)]* is an arbitrary anti-star-hermitian operator. In contrast to  
the integrable case we have no distributivity condition to derive B(”). However, as 
seen in the following section (see also the Appendices) the conditions on A stated 
in Sec. 2 lead to  a well defined x(”) operator. 

4 The Classical Friedrichs Model 

To illustrate the construction of A, we shall consider a classical system that con- 
sists of a charged harmonic oscillator coupled with a classical scalar field in one- 
dimensional space ’. We shall refer to the oscillator as “particle”. The Hamiltonian 
of the system is given in terms of the normal coordinates a1 and aksat isfying the 
Poisson bracket relation Z{ar, a:} = b, , ,  where 

We have 
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with a given constant frequency w 1  > 0 for the harmonic oscillator, w k  = lkl for 
the field, and a dimensionless coupling constant A. We have taken system in a one- 
dimensional box of size L ,  and imposed the usual periodic boundary conditions. 
Then the spectrum of the field is discrete, i.e., k = 27rj/L where j is an integer. 
The volume dependence of the interaction v k  is given by 

vk = E ' U k  (42) 

where 'Uk = O(1). We assume v k  = 21-k and ztk = real. 

this limit we have 
To deal with the continuous spectrum of the field we take the limit L + M. In 

The Liouville operator LH = LO + XLv is given by 

The normal coordinates a;, al are related to the position 2 1  and the momentum 
p lo f  the particle as 

In terms of action-angle variables 5 1 ,  a1w e have 
a 1  = f i e - i a l  

The normal coordinates are eigenfunctions of the unperturbed Liouvillian. For 
example we have 

Lea: = w.a:, LOar = -w,a, 
Loa&, = (w. - w,)a;a, 

where T ,  s = 1 or k .  For the complete Liouvillian we have, e.g., 

L H a ;  = wla; + x C v k a ;  

k 

(49) 

As long as the spectrum of frequencies w k  is discrete and w 1  # Ldk for all W k ,  

there are no Poincare resonances and the system is integrable. We can construct 
the transformation U leading to new coordinates that diagonalize the Hamiltonian. 
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4.1 New particle modes 

For instance we have the new normal coordinates of the particle (or “particle 
modes”) 2 ,  

Al = U - l a l ,  A; = U - l a ;  (51) 

given by the classical Bogoliubov transformation 

A 1  = N;”[al + X x ? k a k ] ,  (52) 
k 

where 3,is the real pole of Green’s function 

that reduces to wlwhen X = 0. 
Note that in the perturbation expansion we have 

= ~ + 0 ( ~ 3 )  (56) w1 - wk 
As there is no Poincark resonance, w1 # wk,  the terms in the perturbation expansion 
are finite. 

Since Lo is the unperturbed Liouvillian with renormalized frequencies we have 
(see Eq. (49)) 

- 

Lea; = wla; ,  Loal = (57) 

L H A ~  = -wlAl, L H A ;  = w1A; (58) 

U-’a;al = (U-’a;)(U-’al) (59) 

which implies that the new modes are eigenfunctions of the Liouvillian, 

The transformation U is distributive with respect to  products 

4.2 Gamow modes 

Now we go to  the continuous limit. There appear resonances and the system be- 
comes non-integrable. The denominator in Eq. (56) may now vanish, giving diver- 
gences in the perturbation expansion of the renormalized modes. However, we can 
remove the divergences by regularization of the denominators. This means adding 
the infinitesimal *ZE. We have now 

In the continuous limit the solutions of the equations of motion break time sym- 
metry, as we have damping of the particle either towards the future or towards the 
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10 

past.’ As we shall show below, this is connected to the choice of the sign of E .  The 
regularization in Eq. (60) is a special case of the regularization (36) (see Appendix 

Continuing the regularization (60) to  all orders in the perturbation expansion we 
obtain again exact eigenmodes of the Liouvillian. The eigenvalues are now complex. 
Choosing +ZE for the regularization we obtain l5 

B). 

and its complex conjugate, satisfying 

LHAl = -zlAl, LHA; = z;A; (63) 
Here q i s  the complex pole of Green’s function, 

where 27 > 0 is the damping rate of the particle and 
I 

is evaluated on the second Riemann energy sheet of z:  we first integrate with t on 
the upper half plane and then substitute z = z1 on the lower half plane. 

The mode A; decays for t > 0 as 

exp(iLHt)A; = exp(iz;t)A; = expl(iw1 - y)t]k; (66) 
(and similarly A1). We call these “Gamow modes” ’. They correspond to the 
Gamow vectors in quantum mechanics 15,16,17918,19,20. The choice of -26 gives the 
mode 

A; = N ; / ’ [ U ;  + X 1 cka;] (67) 
k 

and its complex conjugate, satisfying 

LHA; = z~A; ,  L H A ~  = -z;Al (68) 
These modes decay for t < 0. 

canonical variables. Their Poisson brackets vanish 
The modes we have introduced have quite different properties from the usual 

z{Al,A;} = Z{Al,A;} = 0 (69) 

i{AI,Ai} = 1 (70) 

However the modes Aland ATare duals; they form a generalized canonical pair 

This algebra corresponds to  an extension of the usual Lie algebra including dis- 
sipation ’. An analogue of this algebra has been previously studied in quantum 
mechanics 15.16,17,18,19,20 

the Friedrichs model the coupling constant should not be too strong in order to  obtain a 
nonvanishing damping rate (see 9).  

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



11 

4.3 A transformation 

For single modes there is a simple relation between the Gamow modes and the A 
transformation (see Eq. (51)) 

Note that At # A-' is not unitary. The difference between A1 and Al is the 
change E + - 6 .  This is precisely the difference between Ata1 and A-'al = A*al 
(see Appendix B). 

For products of modes the relation between the Gamow modes and A is slightly 
more involved. This is an important point. We have shown elsewhere that 
there are difficulties inherent to the Gamow representation. The difficulties are 
connected to the fact that, as discussed below, products of Gamow modes lead to 
new Poincark divergences. Hence the A-transformed products of particle modes 
cannot be expressed as products of Gamow modes alone [recall that A is analytic 
in A]. We have 

Ata;ul # (Atu;)(Atal) (72) 
and a similarly for A-'. 
(Ata;)(Atul). We get (see Eqs. (61), (62)) 

To understand why this is so, consider the product 

k k 

k k 
I 

where the prime in the summation means k # k'. In Eq. (73), ICkI2 is not analytic 
in the coupling constant A at A = 0. The non-analyticity appears in the term lCkI2 

due to the resonance. Indeed, to lowest order we have (see Eq. (60)) 

This diverges when E + 0. We have PoincarB's divergence. Hence (Atu;)(Atal) is 
not analytic in A. This means that there are divergences in the perturbation series, 
i.e., we have Poincark's nonintegrability. This nonanalyticity in A is related to  the 
vanishing of the Poisson brackets in Eq. (69) l53l9. 

Going to the continuous limit the nonanalytic term in Eq. (73) may be written 
as 
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12 

When considering average values in phase space, this term is of 0(1) (in volume 
factors) if the average action ( J k ) =  ( a i a k )  is O(1) for every mode. This occurs 
in the thermodynamic limit, which corresponds to the infinite volume limit with a 
total energy proportional to the volume (we have a non vanishing energy density). 
Note that “thermodynamic limit” does not necessarily imply that we consider a 
system in thermal equilibrium; it just means that we have a finite energy density 
in the infinite volume limit. 

In non-thermodynamic situations, we have ( J k )  - O(l/L). The energy density 
goes to zero in the infinite volume limit. Here the appearance of the Poincark 
divergence in Eq. (73) has no effect in the particle. This is consistent we the results 
we shall discuss below: the non-distributivity of A is related to the appearance of 
fluctuations in Brownian motion. And Brownian motion of the particle appears 
only when the particle is surrounded by a field described by the thermodynamic 
limit. As commented below, for quantum mechanics the situation is different. We 
can have fluctuations even in non-thermodynamic situations.‘ 

Since we require that A is analytic in the coupling constant, we conclude that 
At,;,, cannot be expressed as the product Eq. (73). Using the formulation in 
terms of kinetic operators presented in the previous section, we obtain the result 
(see Appendix B) 

where 

exp ( - ia /2 )  
r =  N1 = IN11 exp ( - ia)  2 cos(a/2) ’ 

Adding ck b k a i a k  to the product AiAl  we remove the non-analytic term contain- 
ing lCk12 and we replace it with the function & .  Since & is an analytic function 
of A, becomes itself analytic in A. The requirement of analyticity leads to 
non-distributivity.d 

Similar to Eq. (76) we have (see Appendix B) 

When there is no Poincark resonance, zlb ecomes real, and we have a = 0 and 
b k  = 0 in Eq. (78). Then A reduces to U. 

We first obtained results corresponding to  (76) and (79) in a quantum mechan- 
ical model of a two-level atom (see Refs. ’v1’). We defined a dressed excited state 
through the A transformation. While in classical mechanics the term b k  leads to 
fluctuations in the particle only when the field is in a state corresponding to the 
thermodynamic limit, in quantum mechanics this term leads to  fluctuations even 

‘In classical mechanics we can also obtain fluctuations in the field modes even in the non thermo- 
dynamic case. We shall discuss this elsewhere 21. 
dNeglecting O(l/L) corrections, the second term in Eq. (76) can be expressed in terms of renor- 
malised field modes as ck b k a l a k  = ck b k A ; A k  + 0(1/L). 
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13 

in non-thermodynamic situations, due to  vacuum effects. We obtain, for example, 
an energy fluctuation of the dressed excited state which is of the order of the decay 
rate. This gives the uncertainty relation between energy and lifetime mentioned in 
Sec. 2. 

Coming back t o  classical mechanics, as we shall discuss next, the A transforma- 
tion permits us to extract the damping and the Brownian motion of the particle 
due to the interaction with the field. 

5 Brownian motion  

We shall show that for the F'riedrichs model in the thermodynamic limit, the time 
evolution in A representation of observables depending only on x1 and p l  coincides 
with the solution obtained through Langevin's equations for a damped harmonic 
oscillator. The results will be presented in detail in 22. Here we shall show some of 
the main results. 

Let us consider the equations of motion for Atxland Atz:. Using Eq. (47) we 
have" 

The time evolution of A 1  is given by 

Al(t) = A1(O)e-it't. 

This leads to  

where 

m E m W l l W 1  

Next, we consider the equation for Afx?. We have 

Taking the time derivative we obtain 

"Here we use the At transformation, so that the transformed variables decay for t > 0 with 
evolution operator exp(iLHt); see Eq. (66). In Refs. 'l1O we considered transformed states that 
decay fort > 0 with evolution operator exp(--iLHt); see Eq. (68). For this reason in those papers 
we used the A-' transformation. 
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14 

Assuming that the field is at thermal equilibrium with temperature T we get the 
ensemble average 

where the last relation is valid for weak coupling, where b k  may be approximated 
by ( T / L ) b ( W k  - 21) ’ (see Appendix B). 

In summary, we have the following equation for the ensemble averages of Atx1 
and Atx:: 

where 

is the diffusion 
position xland 

coefficient. Let’s now write Langevin equations. For the particle 
momentum p l ,  we have ” f  

d 
;pi = -yp1 - fi iLZf~1+ B. (91)  

These equations describe the damped harmonic oscillator with random momentum 
and force terms A(t) and B(t). We assume that A(t) and B( t )  have the Gaussian 
white noise properties 3,24. The Gaussian property means that for noise averages 
of products we have 

(A(t1)A(t2)...A(t2,+1)) = 0, (92)  

( ~ ( t l ) ~ ( t z ) . . . ~ ( t Z , ) )  = c ( A ( t i ~ ) A ( t i z ) ) . . . . ( A ( t ~ *  ~ - ~ ) A ( t ~ z ~ ) )  (93)  
all pairs 

The white noise property means that 

(A(t)A(t’)) = A,b(t - t’) 

(B(t)B(t’)) = B,b(t - d ) .  

(94) 

(95)  

where A, is a constant to be determined. We assume the same for B( t ) ,  i.e. 

f These Langevin equations with symmetrical random momentum and force terms are appropriate 
for comparison with our oscillator model since our Hamiltonian is symmetrical under rescaled 
position and momentum exchange. If the Hamiltonian is not symmetric for the position and 
momentum, e.g. if q l q k  and q;qi terms are included in the interaction, then Langevin equations 
with asymmetric random terms (a in the Ornstein-Uhlenbeck theory 23) are more appropriate 
for the comparison. 
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The noise terms A and B are further assumed to be uncorrelated. The constants 
A, and B, may be obtained assuming that for t + 00 the Brownian particle reaches 
equilibrium with its medium, at temperature T .  This leads to  the following noise- 
average equations for xland xf :  

d 2 2  2 y k ~ T  
d t  m mw,2 
- (Xf )  = -2y(z,) + r ( z l P 1 )  + - 

(96) 

(97) 

These equations coincide with the results obtained from the A transformation, Eqs. 
(87) and (88) together with Eq. (89). 

Extending the construction of A for higher powers of the normal modes, 
AtaTrna; one can show 22 that the A-transformed equations for x; agree with 
the solutions of the Langevin equations for zy for arbitrary integer n. This means 
that the A transformation can describe all the effects of the Gaussian white noise 
in Brownian motion. 

In agreement with the results presented here, it can also be shown that the 
kinetic equation Eq. (14) leads to  an exact form of the Fokker-Planck equation 
associated with the Brownian oscillator 22. 

The A-transformed variables obey Markovian equations. In contrast, the origi- 
nal variables contain non-Markovian effects such as the Zen0 effect and long tails '. 
These effects are connected to the appearance of a dressing field (or cloud) around 
the bare particle '. The transformed variables describe dressed objects. For this 
reason they do not include Zen0 or long tail effects. They include only the Brownian 
motion and damping components of the motion of the particle. 

6 Concluding Remarks 

It is a quite remarkable conclusion that the extension of dynamics to nonintegrable 
systems allows to deduce stochastic formulations from dynamics. The main point is 
that the transformation operator A is not distributive. Therefore we obtain fluctu- 
ations for all variables which are in the domain of A. For irreversible nonintegrable 
systems we obtain a stochastic description of space-time, without the introduction 
of some new phenomenological constant. 

This opens a wide field of research. Some applications to  quantum and classical 
physics (unstable particles, radiation damping, interacting fields) are at present 
being prepared for publication. 
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Appendix 

A The U operator 

In this appendix we give an example of the construction of the canonical transfor- 
mation operator U using the kinetic formulation described in Sec. 3. 

We consider the Friedrichs model presented in Sec. 4. In this model, we define 
the P(,) subspaces as consisting of monomials (or superposition of monomials) of 
field and particle modes. As discussed below Eq. (20) , we can associate a “degree of 
correlation” d, with each subspace. To define this, let us first note that if there are 
no interactions, diagonal monomials of the form a:a, are invariants of motion. If the 
modes are initially uncorrelated, they will remain uncorrelated. The interaction LV 
brings diagonal monomials to off diagonal ones, such as a:a,t. The modes become 
correlated. Hence the degree of correlation can be associated with the degree of 
off-diagonality of the modes ‘l. The field modes play a special role. In order to 
have damping it is essential to have a continuous spectrum in the field. The degree 
of correlation is thus defined as the degree of off-diagonality of the field modes only. 
This gives a measure of the “number of times” that the particle has interacted with 
the field. In this specification the off-diagonality of the particle modes is irrelevant. 

We define the degree of off-diagonality (i.e., d,) as the maximum number of 
unmatched field modes in a given monomial or polynomial ’. Matched field modes 
are pairs a;ak that depend only on the absolute value of the modes. For example, all 
the monomials al, a;al, a&, a;uka;,akl have zero degree of correlation, because 
there are no unmatched field modes. The monomial a;akon the other hand, have 
degree of correlation 1, because the mode a k  is unmatched. 

We shall consider the transformed product U-’a;al. The monomial a;al is an 
eigenfunction of Lo with eigenvalue do) = 0, so it belongs to the P(O) subspace 
with do = 0. Using Eq. (25) we have 

The operator U-’ is a function of the Liouville operator. As seen in Eq. (45) 
this operator preserves the number of a* and a modes in a given monomial: it will 
map a monomial with m modes a* and n modes a to a superposition of monomials 
with the same numbers m, n of modes a*, a, respectively. The same is true for the 
operators C and 2. So we have 

where %Elll and Cl:!ill are coefficients, and the prime in the summation over s’ 
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means s # s' (recall that %(') is a diagonal operator, while C ( O )  is off-diagonal). 
We have as well 

s 

Note that each change from a mode a k  to  a mode a1 or viceversa involves an 
interaction of order L-1/2 in volume. Hence each index change involves an LP1l2 
factor. For example we have 

Each summation over field modes gives an L factor. Taking all the volume factors 
into account we get 

I 

s 5,s' 

The C!:!,,, coefficients give O(l/L) contributions. To determine the coefficients 
Ci:?;ll we use Eq. (27) g .  This leads to  (see Eq. (53)) 

(103) ( 0 )  - c ( 0 )  - (0) 
C 1 k ; l l  - k 1 ; l l  = Ekr C k k t : , ,  = EkCk' 

For the operator XK:,, we have (see Eq. (30)) 

x ( O )  11;ll - - [A(o)~:(~ll[exp(~(o))l l l : l l  + O(I/L) 

(104) - - [A(0)]:(211 + O(l /L)  

where in the second line we used the antihermiticity of B(O), which leads to $:ill = 
0. The second line in Eq. (104) may be explicitly evaluated using Eq. (103). The 
result is 

(105) x(o)  - - 
11;ll - N1 

With the results obtained so far we have 

U-'a;al = iVl(a; + X F k a ; ) ( a l  + c X C k r a k t )  + x(arL:11 - N1X2E$)a;(td06) 
k k' k 

Now, from the distributive property of U we conclude that the second term in the 
r.h.s. has to vanish, i.e., 

-(O) - - 2 (107) X k k ; l l  - N I E k  
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Indeed, if this is so we obtain the expected result U-la;a l  = ( V 1 a ; ) ( U - ' u 1 )  
(see Eqs. (51), (53)). With this result we have completed the calculation of all 
the coefficients of the expansion of U-'a;al  using the formulation in terms of 
kinetic operators. The advantage of the method followed here is that it  permits a 
straightforward extension to the nonintegrable case. 

B 

In this appendix 1) we comment on the relations 

Extension of U to A 

A1 = A - l a l ,  A; = A-la;  (108) 
A1 = Ata1, A; = Ata; (109) 

and 2) we calculate the transformed products A-la;aland AtaTa1. 

tively, we have (see Eq. (33)) 
1) Denoting the subspace consisting of a1 and a; as as P(ol) and P(';O), respec- 

A-la l  = (p(0;l) + C(o: l ) )X(o; l )a l  
A- la;  = (p(1;O) + C(l:O))x(l,o) a; (110) 

Since the subspaces P(';') and P(li0) are one-dimensional, the diagonal operators x 
are simply constants, which may be found by the normalization condition (70). To 
find the C operators, we solve Eq. (35). In order to fix the analytic continuation, we 
note that the modes a1 and a; have zero degree of correlation. As any transition 
in Eq. (35) leads to a higher degree of correlation, we always have = +E in 
Eq. (36). Replacing the explicit forms of the operators C and x we obtain the 
relations (108). To obtain At,, we note that 

At,, = [ R * U ~ ] ~ + - ~ =  [A-'al] ,+- ,  

= [AlIe*--c= A1 (111) 

(see the definition of star conjugation below Eq. (37); we have 
This, and a similar argument for At.;, gives Eq. (109). 

= --cop = -E). 

2) Similar to Eq. (102) we have 
I 

R-'a;al = a : a , x 6 ~ ~ 1 1  + a ~ a s ~ C ~ ~ ? ; l l x ~ ~ l l  + 0 ( 1 / L )  (112) 
s 8,s' 

In Appendix A we obtained all the coefficients of the transformed product 
U-'a;al. We summarize the results, and we write already the extensions to the 
nonintegrable case (i.e. from U to A) 

c i : ! 1 1  = c k  ci:!11 = c i  (113) 

(114) 

(115) 

(116) 

(117) 

(0) - c E ! 1 1  = Ek * c k , ; 1 1  - ck 
Ckk!;ll - (0) = CkCk' * C k k r : , ,  (0) = CkC;, 

-(0) - j,q (0) - 
X 1 1 : l l  - 1 * X 1 1 : l l  - IN11 

= SIC; * x$;ll  = INlI(Tc: + C.C.) 
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Eqs. (113)-(116) are obtained along the same lines as the integrable case (for 
details see '). In particular, for the do) operator we use the equation Eq. (35) 
with analytically continued propagators. For the extension of jjkkill we make the 
following argument: from Eqs. (113)-(115) we see that the analytic continuation 
of the function c k  (from real to complex frequency) is either ck or c:. Since we 
require that A maps real functions to real functions, we see that the extension of EE 
in Eq. (117) should be a combination of both cEand c;'. In order that A reduces 
to U when there is no resonance, we impose the condition T + T* = 1 for the T 

coefficient g .  As we show now, this relation, plus the condition that A preserves 
the measure of phase space (equivalent to  preservation of the trace in quantum 
mechanics) permit us to find T .  Measure preservation means that 

(0) 

for any normalized ensemble p. 
Consider the ensemble 

p = C1a;al exp(-J/Jo) 

where Clis the normalization factor given by 

with 

J = C aza, 
s=l,k 

and JO a constant that makes the argument of the exponential dimensionless. The 
factor exp(-J/Jo) ensures the existence of a finite norm of p, (see the "Segal- 
Bargmann representation" in ','). The total action J is an invariant of motion, 
because we have LoJ = 0 and L v J  = 0. Since A-l  can be expressed as a pertur- 
bation expansion, A-' = 1 + O(XLv) ,  we get 

A-lJ = J ,  A-l exp(-J/Jo) = exp(-J/Jo) (122) 
The operator L& a differential operator. Applying the chain rule of differentiation 
and Eq. (122) we conclude that 

A-'a;al exp(-J/Jo) = (A- la la l )  exp(-J/Jo) (123) 
Inserting the ensemble Eq. (119) in Eq. (118) and using Eqs. (112)-(117) we get 

C1 /dI'lNll[a;al + ~ ( T C ;  + c.c.)u;uk] exp(-J/Jo) = 1 (124) 
k 

gIn Ref. we used the A transformation to  define dressed unstable states in quantum mechanics. 
The derivation followed here is similar t o  the derivation followed in Ref. g .  The only difference is 
that in the relation r + r* = 1 was derived from the requirement that  the dressed unstable state 
has an  energy fluctuation of the order of the lifetime. This fluctuation is a purely quantum effect. 
Here we are dealing with classical mechanics, so we postulate r + T*  = 1 as a basic condition. An 
alternative derivation, presented in Appendix A of Ref. lo,  gives the same result. 
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where the off-diagonal terms such as a;ak appearing in Eqs. (113)-(117) vanish due 
to the integration over angles in phase space. We can write Eq. (124) as 

clINII[c;l + c ( T c ;  + c.c.)C,’] = 1 

INlI[l + c ( T c ;  + C.C.)] = 1 

(125) 
k 

Since C1 = c k  for any k (see Eq. (120)), Eq. (124) leads to 

(126) 
k 

This equation plus the condition T + T* = 1 yield the result Eq. (77). 
Eqs. (113)-(117) lead to 

A-1 * alal 

Since A-‘ = A*, and (see Eq. (36) with d, = 0 for v = 0) 

we can find Atu;ul by taking the complex 
(127): 

Ata;al 

conjugates of the propagators in Eq. 

Eqs. (129) and (127) lead to the expressions (76) and (79), respectively. 
For weak coupling we have 
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DISCUSSION 
Chairman: H. Walther 

W. Schleich: It seems that there are two kinds of probabilities: a subjective 
and an objective one. For example, when you trace the density matrix and average 
and your approach gives a unified treatment of different probabilities. The prob- 
ability in quantum mechanics which is objective, and the probability in statistical 
mechanics which is subjective, reflecting our ignorance. Is your approach different? 

I. Prigogine: It is a different approach. In the sense we do introduce, indeed 
as you stated, two types of probabilities: one due to  ignorance and one due to laws 
of nature. The ignorance probability is true for integrable systems, because their 
solution is a deterministic solution, and therefore whenever we use probability it 
is because of our ignorance. But for the non-integrable systems, the solution is 
in terms of probability both in quantum and classical dynamics. We have shown 
that for a large class of non-integrable systems, we obtain a probability description, 
which is irreducible to a deterministic description. The future is not given. This 
has nothing to  do with our ignorance. 

G. Hegerfeldt: I come from a field where I was educated a long time ago. Some 
of these notions are there since that for example adjoint spaces, Lippman-Schwinger 
equations, and you break the symmetry between minus infinity and plus infinity, 
or you take the time depending Schrodinger equation and you break the symmetry 
by imposing a singularity at t = 0 where the decay starts. There is always a source 
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terms coming in, which breaks inevitably decay of the system and when you do that 
you always get non-exponential decay at least at the long end of the time. The point 
is, when you come and say I have define states which decay only exponentially this 
implies, experimentally at least, you should never see non-exponential decay for a 
long time. Is this the idea of a dressed exponential decay? 

I. Prigogine: You are right. You observe deviations from the strictly expo- 
nential decay. What is new is that the decay can be separated in two different 
contributions. A universal contribution, which is strictly exponential and its char- 
acteristics of the unstable state or the unstable particle. Fortunately, this is so. If 
not, you would have, for example, old mesons and young mesons. In addition, the 
effects, which come from the mode of preparation, will perturb the exponential. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



PRESERVATION OF A T-INVARIANT REDUCTIONIST 
SCAFFOLD IN “EFFECTIVE” INTRINSICALLY IRREVERSIBLE 

QUANTUM MECHANICS 

YUVAL NE’EMAN 
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 

The recently developed Irreversible Quantum Mechanics formalism describes physical 
reality both at the statistical and the particle levels and voices have been heard suggesting 
that it be used in fundamental physics. Two examples are skctched in which similar 
steps were taken and proved to be terrible errors: Aristotle’s rejection of the vacuum 
because “nature does not tolerate it”, replacing it by a law of force linear in velocity and 
Chew’s rejection of Quantum Field Theory because “it is not unitary off-mass-shell”. In 
Particle Physics, I suggest using the new representation as an ‘‘eflective” picture without 
abandoning the canonical background. 

1 Apology and Introduction 

The subject of the brief address I gave at the 22nd Solvay Congress was somewhat 
outside the conference’s planned scope, as defined by the title of Quantum Com- 
munication, which is why I am including this apology for the apparent breach of 
intellectual discipline. I still think, however, that it was in place and might become 
very relevant in the sequel. This meeting was partly concerned with issues relating 
to  the foundations of QM; so is the recently developed 1,2 Quantum Mechanical 
Irreversibility (QMI) formalism, devised by the Solvay Institutes and the Prigogine 
Center for Statistical Mechanics at UT Austin and basically following A. Bohm’s 
introduction 3-6 of the appropriate mathematical tools - namely Rigged Hilbert 
Spaces, as induced by Gelfand triples. Bohm & collaborators have also applied the 
method 7-10 at the Particle level, beyond the Dissipative systems studied by the 
Prigogine School. 

No doubt that the construction represents a useful and elegant addition to the 
methods by which Physical theory describes the Physical world. In the excitement 
that followed this advance, I have, however, come across suggestions which appeared 
to  me over-enthusiastic and possibly even dangerous. The idea would be to  use this 
picture directly and solely, make it the unique description, thereby doing away 
altogether with the C, P ,  and T-invariant (or CP and T -  invariant, or even just 
CPT-invariant) formalism of particle physics. Somehow, I sensed a reawakening of 
a recurring positivistic and anti-reductionist tendency which, in the past, was very 
detrimental to the field’s evolution. I shall refer to  this tendency as the on-mass- 
shell syndrome, this being one modern set up which triggered it. In the spirit of the 
early Solvay meetings and their impact on the formatting of Quantum Mechanics, I 
believe these conferences do provide a unique opportunity for almost-philosophical 
discussions. 

Returning to my issues, it is to  forestall such positivistic suggestions that I shall 
relate two stories illustrating similar situations in the past and the lessons learned. 
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2 One Thousand Years of Greek Science 

We start with the achievements of the First Age of Science, namely that of Greek 
Science from its birth around 600 BC to  its agony and collapse between 400-550 
AD - and study l1 more specifically the Dark Ages (for science) that followed and 
why it took a thousand years to get back on track. 

Science in the full modern sense was born in Greece around 600 BC. It is thought 
that when the program of legislation arrived in Greece (Solon’s laws) from the 
Middle East (Hammurabi, Moses, etc) it somehow occurred to  the Greek scholars 
that a similar logical system ( “laws of nature”) might describe and perhaps explain 
the behavior of the physical world. There was no guarantee that such a program 
would succeed, yet pragmatic considerations gradually brought about the idea that 
it could be done in patches, with several such patches coming together at some 
point and merging. The first polished piece was geometry, culminating in Euclid’s 
systematics: a minimal number of axioms from which everything else can be derived 
- including quantitative “predictions” - by logical processes and, as later realized, 
by mathematical proof, considered as an extension of logic. This became the model 
for any science. 

Both in that First Age and in the Second (which started with Galileo, Kepler 
etc. and is still on, though there are some indications that it might be heading 
for an unknown end 12) the limits of what this world-view could encompass were 
not known. The Vitalists thought that the phenomena of Life are beyond science; 
there are others who even nowadays assume that Consciousness is off-science. In 
Cosmology, until the Nineteen-eighties, many assumed that the singularity at the 
Big Bang would screen anything prior to it; this was the issue that gave Hawking 
the title for his bestseller “A Brief History of Time”. Since 1986, however, we have 
A. Linde’s “Eternal Inflation” and its sequel; in these models, quantum tunneling 
is assumed to  do away with the singularity altogether and we have an infinite past 
for a “multiverse” with ever new Big Bangs. As of 2002 AD, there does not appear 
to be any region or sector of the physical world which would have to be left out by 
science. 

The Pythagoreans contributed greatly between 600-400 BC and are responsible 
for the mathematical formulation of the end-product. Achievements in Mathematics 
itself were considerable, both in Geometry and in Number Theory - such as the 
proof that there is no largest prime and that of the existence of irrationals, both 
due to  Pythagoras; the works of Archimedes, Appolonius of Perga, Diophantes of 
Alexandria, etc.. In Planetary science, Erathostenes (250 BC) measured the radius 
of the Earth with a 0.5 % precision and Hipparchos (150 BC) measured the distance 
to the Moon with a 1 % precision and also discovered the precession of the Equinoxes. 
Moreover, Heraclides of Pontos understood around 320 BC that the apparent daily 
rotation of the firmament really implies that the Earth spins on its axis once a day; 
Aristarchus of Samos explained the Solar System (250 BC), seventeen centuries 
before Copernicus. 

In Physics, Archimedes made a good start in Mechanics (solid and fluid). Heron 
of Alexandria invented the steam-engine (100 AD). Prior to both, Aristotle had 
worked out some general physics in the presence of friction, the point we shall 
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return to. 
All of this started decaying after Christianity became the State religion of the 

Roman Empire around 330 AD. The Greek Academies were gradually either closed 
or taken over by the Church. The last two turns of the key were the closure of 
the Academy of Alexandria after the lynching and death of its head, the woman 
mathematician Hypatia in 415 AD l3 - and Justinian’s edict closing the Athens 
Academy in 529 AD. The latter event was followed by two developments which 
determined the profile of the next thousand years: 

4 a) the incorporation of Aristotle’s works in the body of the Church’s Scholas- 
tic dogma - the Aristotelianism which ruled throughout the Middle Ages. 

-( b) the intervention of the Sassanid emperor of Persia Khosru I, Anusharvan 
(beloved of the heavens), offering to take in the faculty of the closed Academy 
with their books and documentation and providing them with the means for 
a new start in Northern Mesopotamia. This gesture preserved the fruits of 
the First Age and saved science from having to  “go back t o  square 1” in the 
XVIth Century AD. 

3 The One-Thousand Years Gap 

It is important to understand why scholasticism blocked any real advance in the 
sciences. After all, thanks to Emperor Khusru Anushirvan of Persia, the documen- 
tation of Greek science was saved. Why then weren’t there any Galileos or Newtons 
between 550 AD and 1550 AD? The picture as generally drawn gives the impression 
that all that was missing was Copernicus’ revival of Aristarchus of Samos’ solar- 
centered model of the “solar-system”; but this was only one roadblock, important 
for the work of Kepler and his three “laws” - regularities. More important than 
that was the issue of the vacuum. 

Plat0 was a reductionist and also liked geometry, so that he did discuss empty 
space and a vacuum. His student Aristotle, however, was a “practical” person and 
did not believe in reductionism. He therefore proclaimed that “nature does not 
tolerate a vacuum” a phrase often used in politics (mostly applied to a vacuum 
in leadership). Aristotle himself therefore developed physics in the presence of 
friction and obtained a law similar to more modern formulae dealing with friction- 
like phenomena, such as Ohm’s Law etc. in which velocity is proportional to the force 
applied. This is indeed the correct result here too, provided one takes “velocity” here 
to  mean the final velocity. Using Newtonian formalism, we note that friction and 
air-resistance forces K(t) at any single instant t are proportional to the velocity 
v(t) at that instant, and act in the opposite direction. Taking for instance the 
modern case of a parachutist dropping from a plane, we have K ( t )  = -kv(t) ,  k a 
constant. Let the weight of the paratrooper and his equipment be denoted by W ,  
the force acting at any moment will then be W + K = W - Icv(t). Let g be the 
earth’s average gravitational acceleration at these altitudes. At a certain instant T 
the friction or air resistance K ( T )  will cancel the weight and the total force will 
be zero, W - kv(T) = 0, or, denoting V := v(T)  we get W = kV, which is indeed 
Aristotle’s law of motion. The total force being zero, we know by Galileo’s law 
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of Inertia (or Newton’s first law) that from this instant on, the parachutist will 
continue to descend at this constant [final] velocity V .  

Aristotle was thus right in his result, which we have just rederived from Newto- 
nian mechanics; but the opposite situation would not have worked and one cannot 
reproduce other situations from Aristotle’s formalism, i.e. from W = k V .  For a 
Galileo and a Newton to emerge, we need to define inertia and mass - and this re- 
quires starting f r o m  a vacuum. Similarly, these physicists would not have concluded 
that all bodies on earth fall at a velocity v( t )  = g t  without being able to experiment 
in the vacuum. As long as it was forbidden to think of a vacuum, there could be 
no progress! For a lecture I gave last year at a conference on friction (tribology), I 
thus chose the title “How friction slowed down the march of science”. 

Returning to the question of why did the “dark” age last so long, note that 
all three religious (Christian, Muslim and Jewish) and cultural establishments (in- 
cluding the universities, after the XIIth Century) were totally Aristotelian, the only 
exceptions being the anti-science movements, i.e. in the opposite direction. Very 
few dared criticize anything related to Aristotle, and they generally were heavily 
punished and failed. 

Hasdai Crescas (1350-1412) rabbi of Saragossa in Aragon was a man of courage 
and fought for his ideas. He came to rethink of the vacuum and Platonic ideas, 
ending up writing a book “Or Adonai” (Light of the Lord) which is one of the 
strongest expressions of well-reasoned anti-Aristotelianism. After excusing himself 
for having to include in his attack Maimonides, considered as the great master 
[and who was also a staunch Aristotelian], Crescas analyzes and refutes Aristotle’s 
arguments against the vacuum and ends up reinstating it as a valid theater for the 
physical world. He discusses empty space and argues for its being infinite. Crescas’ 
book was selected by Giovanni Pic0 della Mirandola (1463-1494), the great proto 
encyclopaedist ( “de omni  re scibili”) who had it translated in Latin. The next 
person in this story is Giordano Bruno (1548-1600) who was burned on the stake 
for his having quoted and championed Crescas’ infinite space, as the theater in 
which the show played is the evolution of the physical world. The arguments for 
the vacuum were taken up by Regiomontanus, Kepler, Galileo and others - and 
opened the door to modern physics. 

4 The (Rigged Hi lber t  Space) Time-Arrowed Formalism 

Where is the analogy with the story of the vacuum? Bohm’s construction of Rigged 
Hilbert Spaces with their complex eigenvalues naturally accommodates unstable 
states as described by the Breit-Wigner resonances’ (complex) masses E = ER - 
2712. In the analytical S-matrix, ER is the value of the peak in p ,  and y is the 
width, or the inverse of the lifetime, r = l / y .  This certainly f i ts  with the physical 
world, in which resonances actually decay and the thermodynamical or statistical 
arrow of time is dominant. 

But throwing away the reductionist scaffolding is  another matter. At the particle 
physics level, it would have been fitting in the days of the S-Matrix and Dispersion 
Relations. It certainly provides a useful representation of phenomenological real- 
ity. What  is  missing i s  the off-mass-shell extended formalism, i.e. any Relativistic 
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Quantum Field Theory apparatus. Its existence requires at least explicit CPT in- 
variance - which will fail due to  the T-violating contribution of the thermodynamics. 
Moreover, CP-violating decays such as the K i  -+ 27r lose their exceptional status 
and merge into the background of K-decays. Once before, in Particle Physics, dur- 
ing the 1955-1 971 “on-mass-shell physics” interlude, working in a direct-realization 
formalism caused RQFT to fall into desuetude and atrophy, under the impact of 
the appealing positivism and negation of off-mass-shell physics as broadcast from 
Berkeley. Feynman had been working on the renormalization of the Yang-Mills 
gauge quantum field theory as a pilot-project for an attack on Gravity. He had en- 
countered a difficulty, namely the loss of unitarity off-mass-shell, due to the misfit 
between the finite representations of SL(4, R) which define tensorial fields (neces- 
sary in the classical transition to  General Relativity, when these linear representa- 
tions have to carry non-linear realizations of the diffeomorfisms) and the Unitary 
representations of the Poincare group determining the physical Hilbert space states’ 
components. 

Example: the Yang-Mills vector-meson field CPE(4) has 4 components for each 
value of the internal index a,  whereas we know that massless fields have only two 
physical components. The rumour about this difficulty got to  Berkeley, and G. 
Chew proscribed Quantum Field Theory as a methodology for Particle Physics. I 
recall arriving at Caltech in the Fall of 1963 and writing out a Lagrangian on the 
blackboard in a seminar, being asked by a distinguished colleague “What is that?” 

Happily, the onus on Quantum Field Theory did not deter Feynman from his 
study of the loss of off-mass-shell unitarity in Yang-Mills theory and he went on 
to  invent ghost fields as restorers of unitarity. Bryce De Witt belonged to  the 
Gravity community and was unaware of - or unaffected by - the rejection of QFT in 
Particle Physics; he developed Feynman’s concept, which was discussed at  the Infeld 
Anniversary Conference in Relativity. Happily, communications had not reached the 
present ease and efficiency of the Internet and in some disconnected regions such as 
the USSR (Slavnov, Faddeev and Popov) or the Netherlands (Veltman and ’t Hooft) 
RQFT wasn’t yet discarded and the renormalization program was pursued to its 
happy ending in 1971. Within 6 months nobody was using the S-Matrix formalism 
any more. 

Returning to canonical Relativistic Quantum Field Theory, we remind the 
reader that the resonances’ width is produced by the interaction responsible for the 
decay and is related to  the transition between several quantum pictures, namely 
from the Heisenberg to  the Schrodinger or Dirac pictures. Moreover, in the “mod- 
ern” approach based on effective field theory this philosophy is applied to all fermionic 
real mass terms (beyond the present discussion relating to  the imaginary parts); 
these are assumed to be due to  further interactions at higher energy beyond the 
cut-off of the effective treatment and involving additional field variables which have 
been integrated away. It  should be possible to  extend this approach so as to in- 
clude the emergence of the Rigged Hilbert Space width (where relevant) within the 
context of Relativistic Effective Quantum Field Theory and thereby relate the re- 
ductionist and effective formalisms explicitly, preserving the basic formalism as the 
common background. 

One last remark: my warning is directed only towards Particle physics; the issue 
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does not arise in statistical mechanics, which is an “effective” theory by definition, 
generating (effective) “collective” variables. 
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DISCUSSION 
Chairman: H. Walther 

A. Bohm: I want to  respond to  two remarks of Professor Neeman. The first 
concerns the question of whether our Breit-Wigner resonance states with exponen- 
tial time evolution fits better into the Aristotelean or the Pythagorean world view. 
Our state is an idealization, it describes the resonance per se, isolated from the 
background. Such a background is always present in a real experiment, like the 
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friction in the real world. We “reduce” the bump in the lineshape into an ideal- 
ized Breit-Wigner resonance state and the background. For the idealized resonance 
state, we prove the exponential time evolution; the background does not allow such 
a simple law. It is like the particle with friction, if one does not “isolate” the particle 
from the friction, it does not evolve simply. Thus our resonance states represented 
by Gamow vectors are Pythagorean idealizations. 

The second point concerns the quantum mechanical arrow of time of which 
time asymmetry of the quantum decay is just one manifestation. This arrow of 
time is not due to the effect of the environment, which one usually considers in 
quantum statistical mechanics, and which may bring to mind the effect of external 
friction and Aristotle. It is something that is intrinsic to the quantum system 
and it is described by boundary conditions, like the radiation arrow of time or the 
cosmological arrow of time. That is also why Professor Prigogine calls it intrinsic 
irreversibility. Boundary conditions are as fundamental as the dynamical equations. 
However, Hilbert space mathematics does not allow time-asymmetric boundary 
conditions for the Schrodinger or von Neumann equation and therefore one thinks 
of time asymmetry in quantum mechanics as an effect from the outside. 

L. Reichl: I think that time irreversal shows up particularly in the modern 
quantum mechanics. It is still there, and this is a way to  describe key problems. 
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ENTANGLEMENT, COMPLEMENTARITY AND DECOHERENCE 

J.M. RAIMOND 
Laboratoire Kastler Brossel, DGpartement de Physique d e  l’Ecole Nonnale Supe‘rieure, 24 

rue Lhomond, F-75231 Paris Cedex 05, fiance 

We review the ENS experiments performed with circular Rydberg atoms interact- 
ing, one at a time, with a high-quality superconducting cavity. The atom-cavity 
interaction makes it possible to engineer and manipulate complex entangled states. 
It also allows for an in-depth experimental exploration of basic quantum mechanics 
concepts, such as complementarity. 

1 Introduction 

The manipulation of complex entangled states has become a very active field since it 
has been recognized that the unique features of the quantum world make it possible 
to realize new information transmission and processing schemes. In this paper, I 
review briefly the experiments performed in our laboratory with a Cavity Quantum 
Electrodynamics (CQED) set-up. It makes use of circular Rydberg atoms and 
of superconducting millimeter-wave cavities to achieve a strong coupling regime, 
where the coherent atom-cavity interaction overwhelms the decoherence processes. 
These experiments demonstrate various aspects of entanglement, as well as the deep 
relationship between entanglement and complementarity. We give here only a very 
brief overview of this subject. A much more detailed account, as well as references 
to other cavity QED experiments, can be found in a recent review paper l. 

2 Experimental set-up 

Our experimental set-up is sketched in Fig. 1. The atoms are prepared in a cir- 
cular Rydberg state in box B, in a Rubidium atomic beam, velocity-selected by 
laser optical pumping. The atoms can be prepared either in level e (circular state 
with principal quantum number 51) or in state g (principal quantum number 50). 
Both levels have a long lifetime (about 30 ms). The e 4 g transition, at 51.1 GHz, 
is extremely strongly coupled to the millimeter-wave field. The circular atoms are 
protected from the blackbody background radiation by a 1 K cryogenic environ- 
ment. The preparation process is time-resolved and the atomic samples have a 
well-defined velocity and initial position. The position of the sample at any time 
during its further travel in the apparatus is thus well-known, allowing us to apply 
selective transformations to different samples in the same experimental sequence. 

The atoms interact with the superconducting cavity C, made of two spheri- 
cal superconducting mirrors facing each other. It sustains two nearly degenerate 
gaussian modes Ma and Mb with orthogonal linear polarizations. The frequency 
difference between these modes, due to a slight mirrors asphericity, is 6 / 2 ~  = 128 
kHz. Both modes store microwave photons for up to 1 millisecond. The cavity is 
tuned at or close to resonance with the e --f g atomic transition. After the inter- 
action with C, the final atomic state is measured in the selective field-ionization 
detector D. The number of atoms in a sample follows a Poisson statistical distri- 
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Cavity C I 

Figure 1. Scheme of the Rydberg atoms cavity QED set-up 

bution, with an average value set around 0.1. When an atom is detected, there is 
thus a negligible probability for having an unwanted second atom in the sample. 

Some experiments are performed by directly detecting the atomic final energy 
state in D. In others, atomic state superpositions are used. These superpositions 
are prepared, before the atom enters C ,  by applying to it an auxiliary microwave 
classical field pulse (produced in zone R1, see Fig. 1). Another pulse, produced 
in R2, is used to  mix again the atomic energy states after the atom has interacted 
with C. The successive application of these two pulses constitutes a Ramsey in- 
terferometer. Interference fringes are obtained in the probability for finding the 
atom in a given final state either when the frequency of the R1 - R2 fields is swept 
across a transition between two Rydberg levels, or when the energy gap between 
these levels is tuned, using a Stark effect induced by a variable electric field applied 
across the cavity mirrors. We study how the fringe phase and amplitude is affected 
by the presence of photons in the cavity and we gain in this way useful information 
on the atom-photon interaction process. 

3 Two-particle entanglement 

Atom-field entanglement is achieved by exploiting the Rabi oscillation at frequency 
R which occurs when the atom interacts resonantly with one of the cavity modes 
containing 0 or 1 photon. Let us consider the simple situation of an atom entering 
the empty cavity in state e. The initial state, (e ,  0), is resonantly coupled to 19, l), 
describing an atom in the lower state g with one photon in the cavity. The Rabi 
oscillation between these states brings, after an interaction time t ,  the atom-field 
system in the linear superposition cos(Rt/2)le, 0) + sin(Rt/2)lg, 1). In our set- 
up, R/27r = 50 kHz, so that the Rabi period is much shorter than the cavity 
field relaxation time ’. The interaction time t is adjusted by Stark switching the 
e + g atomic transition out of resonance while the atom flies across the cavity, thus 
freezing the system evolution when the desired value of the “pulse area” Rt  has been 
achieved. When Rt = n/2, maximum atom-field entanglement is obtained ’. When 
the pulse area is 7r,  the atom and the field fully exchange their energies 4. 

This process can be used to swap excitation between the atom and the field 
and to transform atom-field entanglement into an atom-atom one. The experiment 
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involves two atoms crossing the cavity one after the other, the first initially in level 
el the second in g. The first atom undergoes a 7r/2 Rabi pulse and gets entangled 
with the cavity mode. The second is submitted to a 7r pulse, copying the cavity 
state and getting entangled in the process with the first atom. Note that the cavity 
is left in its initial vacuum state, disentangled from the atomic pair. It acts, in 
this process, as a “catalyst” for the atom-atom entanglement. This entanglement 
has been checked by performing various measurements on the final states of the 
two-atoms and analyzing their correlations ’. This massive pair of particles, of the 
Einstein-Podolsky-Rosen (EPR) type, could be used for Bell’s inequality tests. 

The above atom-atom entangling procedure relies on the transient real emission 
of a photon in the cavity. It is also possible to entangle two atoms directly, via 
a collision process assisted by non-resonant cavity modes ’. The first atom ( A l )  
is again initially in e and the second ( A z )  in g. The atoms have now different 
velocities, so that the second catches up the first at cavity center, before exiting 
first from C. The two cavity modes are now detuned from the e + g transition 
frequency by amounts A and A+b, greater than 0. Due to energy non-conservation, 
no real photon emission can occur in this case. Atom A1 can, however, virtually 
emit a photon immediately reabsorbed by Az. This leads, as in the resonant case, 
to atom-atom entanglement. The system ends up in a superposition of the le,g) 
and 1g,e) states. 

The quantum amplitudes associated to these states are periodic functions of 
the collision duration (which depends on the atoms velocities). The oscillation fre- 
quency associated to this second order collision process is (R2/4)[l/A + l / (A  + b)]. 
By repeating the experiment, we reconstruct the probabilities Peg and Pg, for find- 
ing finally the atom pair in states le, g) and 19, e ) .  We plot these probabilities versus 
the dimensionless parameter 17 = w[l/A + l / (A  + b)] (see Fig. 2). The oscillations 
of Peg and Pge as a function of 17 are well accounted for by theoretical models 
(solid and dashed lines in Fig. 2). We have realized the situation of maximum 
entanglement by adjusting 77 to the value corresponding to Peg = Pge = 0.5. We 
have also checked the coherent nature of the two-atom state prepared in this way 
by performing measurements of observables whose eigenstates are superpositions of 
energy states. 

Since this new entanglement method implies only a virtual photon exchange 
with the detuned cavity mode, it is, in first order, insensitive to the cavity damping 
time or to a stray thermal field in the cavity mode. It thus opens interesting 
perspectives for demonstrating elementary steps of quantum logic with moderate 
Q cavities. 

4 

We now come back to the resonant atom-cavity case. After a full cycle of Rabi 
oscillation (27r pulse), the atom-field system comes back to its initial state, with a 
T phase shift of its wave function. If the system is initially in the 1g,l) state, it ends 
up in the state -1g,l) = exp(iT)lg, 1). This is reminiscent of the sign change of a 
spin state undergoing a 27r rotation. When the cavity is initially empty, the sign of 
the state is unaltered, the 1g,O) state remaining unchanged. If we view the atom 

Quantum gates and non destructive measurement of photons 
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Figure 2. Joint detection probabilities Peg and Pge versus the parameter 7.  Points are experimen- 
tal. Solid lines for small 17 values correspond to a simple analytical model based on second order 
perturbation theory. The dashed lines (large q )  present the results of a numerical integration of 
the system evolution (adapted from 5 ,  

and the field as qubits, the 27r Rabi pulse couples them according to the dynamics 
of a quantum phase gate. We have shown that this gate works in a coherent and 
reversible way 6 .  We have also applied this gate to perform a non-destructive 
measurement of a single photon ’. The phase change of the atomic wave function 
when it undergoes a 27r Rabi pulse in C can be translated into an inversion of the 
phase of the fringe pattern of the Ramsey interferometer sandwiching the cavity 
(see Fig. 1). By setting the interferometer at a fringe extremum, we correlate 
the photon number (0 or 1) to the final state of the atom. The atom is then a 
L‘meter” measuring, without destroying it, a single photon in C. The same photon 
can be measured repeatedly by successive atoms, without being absorbed. This 
is quite different from ordinary absorbing photon counting procedures. Note that 
this procedure leads also to a direct determination of the Wigner distribution at  
the origin of phase space for the vacuum or a one-photon field state ’. 

5 Multiparticle entanglement 

By combining quantum Rabi pulses of various durations and auxiliary Ramsey 
pulses on successive atoms, one can generate and analyse entangled states involving 
more than two particles. By applying a n/2 Rabi pulse on a first atom, one entangles 
it to a 011 photon field. A second atom then undergoes a 27r Rabi pulse combined 
to Ramsey pulses, in order to measure this field in a non destructive way. Before 
this atom is detected, a three-part entanglement involving the two atoms and the 
photon field is generated. The field state is finally copied on a third atom, initially 
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in the lower state of the transition resonant with the cavity mode (a 7r Rabi pulse is 
used for this copying procedure). The characteristics of this three-particle entangled 
state are analyzed by performing various measurements on the three atoms ’. These 
measurements involve the application of auxiliary Ramsey pulses after the atoms 
have interacted with the cavity. The procedure could be generalized to situations 
of increasing complexity, with larger numbers of atoms. 

6 Complementarity and entanglement at the quantum-classical 
boundary 

We have also used our set-up to perform a complementarity test lo, very closely 
related in its principle to the double slit experiment described by Bohr in his 1927 
discussions with Einstein. Bohr had analyzed a situation where particles are cross- 
ing a Young interferometer in which one slit is carried by a light assembly, free 
to move independently of the other. In an ordinary Young design with fixed slits, 
interference fringes reveal the wave nature of the particle. In this design, the m e  
mentum imparted to  the moving slit by the deflected particle provides a “which 
path” information, suppressing the fringes and revealing the corpuscular aspect. 
In this experiment, the quantum moving slit and the particle are in fact the two 
components of a correlated EPR system. The trajectory of the particle gets en- 
tangled to the motion of the slit. Observing (really or virtually) this motion lifts 
the ambiguity of the particle path and suppresses the interferences. Intermediate 
situations can be considered, by varying for example the mass of the movable slit. 
There is a continuous transition from the quantum slit case (very small mass) to the 
classical one (infinite mass). In between, we expect fringes with a limited contrast, 
reflecting the partial degree of entanglement between the slit and the particle. 

A Young double slit experiment with an ultra-light quantum slit would be very 
difficult to realize. This gedanken experiment can however be translated into an 
easier to perform cavity QED experiment, presenting the same conceptual fea- 
tures lo. We use, instead of a Young device, our double oscillatory field Ramsey 
interferometer, in a slightly modified version. The field pulses, resonant on the 
e + g transition, act as atomic beam splitters transforming these states into super- 
positions. The first resonant field, instead of being produced by R1, is now a small 
coherent field injected through a wave guide inside the long lived cavity mode C. 
Depending upon the average photon number n in this field, it can be considered ei- 
ther as a microscopic or macroscopic “beam splitter”. The second pulse is produced 
downstream in R2. This latter pulse, produced by photons fed into a low Q field 
mode and recycled at  a very fast rate, can always be considered as macroscopic and 
classical. The first and second pulses are thus equivalent to the movable and fixed 
slits of Bohr gedanken experiment. If n is large, Ramsey fringes with maximum 
contrast are expected. When n gets smaller, the one photon change produced by 
the atomic transition from e to g leads to atom-field entanglement, in the same way 
as the recoil of the slit in the Young apparatus leads to slit-particle entanglement. 
Fringe contrast is then expected to be reduced. The experimental signals are shown 
in Fig. 3a. We observe that the fringe contrast becomes smaller and smaller as n 
decreases. At the limit where the field in C is the vacuum, the fringes vanish, re- 
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Figure 3. a) Ramsey fringes obtained for different mean photon numbers n in the first coherent 
field pulse. The phase ip is swept by Stark tuning the atomic energy levels. b) Fringe contrast 
as a function of n. The points are experimental. The line represents the theoretical predictions 
corrected for the imperfections of the interferometer (adapted from lo ) 

0.1 - 

vealing maximum atom-field entanglement in C. Fig. 3b shows the fringe contrast 
versus n. The points are experimental and the curve is a theoretical fit. 

We have performed other entanglement experiments, based on the use of dis- 
persive non-resonant atom-field interaction. Schrodinger cat like states of the field 
have been produced in this way and their decoherence studied l l .  All these ex- 
periments illustrate fundamental concepts of quantum theory and demonstrate the 
feasibility of elementary logical steps in quantum information processing. We are 
considering various improvements of our set-up and procedures, in order to be able 
to increase the number of atoms and photons involved in these experiments. 
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DISCUSSION 
Chairman: A .  Zeilinger 

L. Stodolsky: I would like to make a couple of comments from the other field. 
I am not really an enemy of quantum optics, it is absolutely beautiful stuff, which 
we are hearing about. But there are other technologies which have been used, for 
example I will discuss in my talk so called Schrodinger cat, involving lo1’ electrons 
using Josephson effect. Also under “which path” information, since I guess there 
is nobody here from the 2-dimensional electron gas community, there was a very 
beautiful experiment done by the Weizman Group, giving “which path” informa- 
tion when you observe the path by the so-called QPC (quantum point contact). 
By adjusting how strongly you look at  the path you see the interference fringes 
disappearing. It is a very nice experiment. 

J. Raimond: There are very beautiful experiments on Schrodinger cats in 
SQUIDS. However, there is not yet, I think, an extremely clear demonstration 
of the fact that these experiments really prepare a quantum superposition. More 
experiments are necessary to close this debate. Concerning the second part of your 
question, I would like to comment, of course, that we are very far from having made 
the first complementarity experiment. The one of the Weizman Institute is very 
remarkable. The main originality, I think, of our experiment is to have a continuous 
variation of the interferometer’s slit from quantum to classical domains. 

L. Stodolsky: A second point that I would like to comment is the question of 
whether decoherence can be viewed as a kind of standard relaxation phenomenon. 
In our original methodology for treating decoherence which we then called quantum 
damping around 1980, we have a certain formula for the decoherence rates, which in 
one limit does look like normal relaxation, in another limit, according to a certain 
parameter, it can describe these two-path experiments and it looks like a sort of 
collapse of the wave function. But it is actually one formula that describes both 
limits. I think in a sense in certain cases decoherence is just normal relaxation. 

J. Raimond: I agree with you on the point that decoherence can be fully 
treated by standard relaxation theory. For instance, the results of our “Schrodinger 
cat” experiments are very well described by a simple calculation based on the 
standard tools of relaxation theory in quantum mechanics. They can also be cast, 
in an even simpler calculation, in terms of information leaking into the environment 
-in terms of complementarity if you prefer. 
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What is new in decoherence is the result of the application of standard relaxation 
theory to a macroscopic (or at least mesoscopic) system. If you apply relaxation 
theory to  an ideal spin 112 system, you have one single relaxation time T I ,  which 
governs everything (because T2 is just proportional to TI) .  Even if the spin is in a 
quantum superposition of states, it is always the same relaxation time that comes 
in. But if you have a macroscopic system, a big angular momentum for instance, 
then the relaxation time is not the same for all quantum states. Some “macro- 
scopic” superpositions decay much faster than some other states. So, decoherence 
is standard relaxation theory in a situation where you have complex dynamics, 
which is reflected by this dependence of the relaxation time upon the state that 
you plug in initially. 

L. Stodolsky: It is something that I will have to  explain perhaps in my talk. 
It’s actually one formula but which in certain limit looks like normal relaxation, 
and the other looks like collapse of the wave function. 

G. Hegerfeldt: I would like to make a short remark about complementarity. 
You state it as a basic principle of quantum mechanics, and I do not quite agree 
with that. In your beautiful experiment, you show that it’s useful principle, it is 
a very quick understanding of the experiment. But if you look at Bohr, then you 
will find continuous changes in what he means by complementarity. When I learn 
quantum mechanics from Dirac, he never uses Complementarity. At least, in the 
Dirac sense you can do quantum mechanics without complementarity. But I agree 
that it is a useful concept to unify experimental designs. 

A. Zeilinger: I have some interest in the discussion going on here. It’s an 
old tradition in quantum mechanics that you have people who are just satisfied 
using the apparatus with working precision. That is perfectly legitimate. There 
are other people who think that there might be interesting notions, interesting phi- 
losophy notions behind, like for example complementarity or entanglement. These 
are different points of view and both are legitimate, and I don’t understand why 
there is sometimes a battle between the two sides, because there are possibilities 
for new ideas. We all know that both sides are important. Dirac was absolutely 
not interested in philosophy, he just did great physics. Other people like Einstein, 
Schrodinger were very much interested in these questions. Both sides are important, 
you never know what leads to new ideas. 

J. Raimond: Complementarity, at least in our experimental situation, is just 
the waveparticle duality It is clear that I cannot pretend I have understood fully 
what Bohr had in mind when he discussed complementarity and its far-reaching 
consequences. I use it in the most basic situation. Complementarity here basically 
states that the nature of your object depends on the question you ask. And I don’t 
want to use or to  push complementarity beyond this context. 

W. Schleich: This one experiment with the fringes patterns changing, it is a 
beautiful realization of the old proposal by Scully if I remember. 

J. Raimond: I am very much afraid I couldn’t quote everybody on complemen- 
tarity. An experiment closely related to ours was proposed in his paper. The basic 
proposal was to  have a two-slit interference experiment and to put two cavities be- 
hind the slits. The atom deposits a photon when it crosses either cavity. A ‘khich 
path” information is provided by the photon, finally stored in one cavity or in the 
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other. This is yet another experiment on complementarity, albeit there is not, in 
this case, a transition from quantum to classical behaviors as in our situation. 

W. Schleich: I want just to say that in this paper, they said that complemen- 
tarity is something deeper than just the uncertainty principle. My question now is 
if anyone knows anything going deeper than just wave-particle duality. 

J. Raimond: In our case there is a simple interpretation of the fringe contrast 
loss in terms of photon number/phase uncertainty relations, at  least in qualitative 
terms. The very interesting problem is: Is Heisenberg uncertainty necessary or not? 
My position is that any experiment on complementarity can be understood in more 
general terms by using the notion of entanglement. It gives a very general framework 
to discuss complementarity, either when it is based on Heisenberg relations or not. 
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PHASE DYNAMICS OF SOLID-STATE QUBITS: MAGNETS AND 
SUPERCONDUCTORS 
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(from Jan. 2002) Canadian Institute for Advanced Research, and Physics Dept., 
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1 z1 

It is widely believed that quantum information devices like quantum computers will be 
built from solid-state qubits. Making functioning networks of these will pose formidable 
challenges coming from decoherence, which is usually very strong in the solid state. Here 
I review theoretical progress in understanding the decoherence mechanisms in supercon- 
ductors and magnetic systems, wherein we believe decoherence can be made extremely 
small, and for which experiments reporting largescale coherence already exist. Our 
microscopic understanding of superconducting and magnetic qubits is reviewed - the 
way in which one arrives at a low-energy effective Hamiltonian is explained in detail for 
a magnetic system. The way in which decoherence enters the dynamics of solid-state 
qubits is then discussed, along with the connection to experiment. Finally, I discuss ways 
in which decohereuce can be further suppressed, using for example applied transverse 
fields. 

1 Introduction: Quantum Communication, and large-scale Quantum 
Phenomena 

The following is a progress report on what has been done so far on the theory of 
solid-state qubits. I concentrate almost exclusively on nanomagnets and supercon- 
ductors. Actually many other designs have been described for solid-state qubits. 
These include paramagnetic spins in semiconductors ’, nuclear spins in Fractional 
Hall states ’, and electronic spins in quantum dots 3; and some experimental work 
has been done in these directions. So far, however, the most thorough work has 
been on superconductors and magnets - indeed a search for large-scale quantum 
phenomena has been going on in these systems for nearly 20 years now, since the 
original theoretical discussions for superconducting SQUIDS ‘, and magnetic do- 
main walls ’. There has been very important recent experimental progress in this 
field in superconducting systems 6,7,8,9, which make it clear that we are well on the 
road to having superconducting qubits. It is puzzling that less success has so far 
been obtained in experiments on insulating magnetic systems - I will argue that 
this is mainly because experiments have not been looking in the right place, and 
that very high-Q coherent qubit dynamics should also be visible, in certain magnetic 
molecules, in strong transverse fields (see section 5A). Ultimately these experiments, 
and the theory which has led to them, will finally decide the old debate on whether 
quantum mechanics can truly be extrapolated to the macroscopic scale. 

Most of the material reviewed here will be theoretical (for recent discussions 
of experiments on superconductors and nanomagnets, see refs. 8x9>7and ‘O,”). The 
main emphasis will be (i) on the underlying physics of magnetic and superconduct- 
ing qubits, and the effective Hamiltonians describing them, and (ii) on decoherence, 
both the physical mechanisms responsible for it, and its dynamic effects at the 
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one-qubit level. Some ways of getting rid of decoherence are discussed at the end. 
The intended audience is the same a s  that at this 22nd Solvay conference, ie., a 
broad audience of physicists and some chemists, with no specialised knowledge of 
condensed matter theory assumed. Readers are also referred to  recent theoretical 
reviews in the literature, including discussions of superconducting qubits 12, and 
discussions of decoherence and the dynamics of 2-level systems coupled to  their sur- 
roundings 13,14,15,16. Note that I will not really discuss quantum computation itself 
(for which see refs. 17318), nor try to  review all theoretical work on decoherence; this 
is an article about hardware. 

2 

The purpose of this section is to explain how at low energies (well below 1K) the 
very complex physics of magnets and superconductors simplifies in such a way that 
one can build qubits from them, with only small sources of decoherence under 
appropriate conditions. The results described here exist already, for the most part, 
in specialised papers. However since the readership is assumed rather broad, I will 
try to give a more accessible picture. 

As an illustration, I go into a little detail for the magnetic case. The procedure 
for superconductors is similar, so only the results will be described. The net result 
is an effective Hamiltonian for a single qubit (magnetic or superconducting) coupled 
to  its environment. Multi-qubit systems are dealt with in the next section. The key 
results are embodied in equations (9) and (19), but these effective Hamiltonians are 
not meaningful until one knows where they come from. 

The basic line of argument is conventional. It is a truism that any Hamiltonian 
in physics is an “effective” one, resulting from truncation of higher-energy “virtual” 
physics into effective couplings between low-energy modes. It is easy to  forget 
this in fields like Quantum Optics or NMR, where the separation of energy scales 
between the energies of interest and higher energy/mass scales is large (as in, eg., 
the derivation from QED - another effective theory - of atomic Hamiltonians weakly 
coupled to  photons, including relativistic corrections 19920,21). Things are not usually 
so simple in a condensed matter system - the separation of energy scales is not so 
clear cut, and interactions are not weak. Nevertheless the basic approach is the 
same - one begins with an effective Hamiltonian X(A, )  with ultraviolet cutoff A,. 
This is assumed well understood and tested over some energy range less than A,. 
One then truncates out those high-energy modes in X(A,) which are irrelevant to 
the low-energy scale of interest, to give a new Hamiltonian X(C2,) with UV cutoff 
0,. There is of course nothing particularly quantum-mechanical about this - the 
same idea is involved in, eg., the derivation of classical hydrodynamics. 

Magnets and superconductors: microscopic physics 

2.1 Magnetic systems 

The sort of magnetic systems we are interested in include nanofabricated magnetic 
particles, and large-spin magnetic molecules - or, even smaller, paramagnetic or 
nuclear spins. These may be embedded in some matrix (eg., a semiconductor) or on 
a substrate, or self-organised into some array. The physics is usually complicated 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



41 

- the spins inside a molecule or nanoparticle couple to  each other via exchange 
or superexchange interactions, and to  their surroundings in complex ways. One 
has high energy (- O(eV)) crystal field/spin orbit couplings, which at low energy 
give a magnetic anisotropy term acting on each spin. Then these spins couple 
to  the surrounding EM field, and to  nuclear spins via rather complex hyperfine 
interactions, involving many terms. Their real space motion also couples them to  
phonons, and if there are any mobile electrons around a rather complicated exchange 
coupling to these is involved. Finally, in any array of spins or nanomagnets, there 
will be long-range magnetic dipolar interactions between spatially separated spins. 
All of this makes for a messy hierarchy of interactions (Fig. 1). We want to  know 
how this truncates to  an effective low-energy Hamiltonian. 

Truncation to a qubit 

(i) Stage 1; eV energy scales: In an insulating magnetic system the spin-orbit, elec- 
tromagnetic, and crystal field terms are closely linked with the dynamical electronic 
modes (electronic excitation energy gaps, electron-electron interaction strengths) at 
eV scales or higher - this is the main reason why magnetic phenomena are so com- 
plex and difficult to treat (see Fig. 1). However at  lower energies much of this 
truncates to simpler forms - the resulting magnetic anisotropy terms are typically - 1 - 10K per electronic spin, and the hyperfine terms - 1 - lOOmK per electron- 
nucleon coupling (NB: recall that l e v  = 11,604K; alternatively, 1K = 20.83GHz). 
Thus one has a very large separation of energy scales from the original electronic 
energies - more than 4 orders of magnitude. The same is less obviously true of the 
phonon terms, or the exchange/superexchange terms (arising from competing ki- 
netic and potential terms in the high-energy atomic Hamiltonian). These each have 
characteristic energies - 100 - 1000K. However in an insulating magnet this is 
still - 100 times less than the electronic energies, except in unusual cases. One can 
therefore determine perturbatively the exchange and superexchange spin-spin in- 
teractions, magnetoacoustic couplings, and phonon and magnon spectra with some 
confidence - usually with help from experiment, and using symmetry arguments to  
determine their form. 

All this procedure is standard (and exactly the same as that followed in, eg., 
high-energy theory or quantum optics). It gives a typically very messy effective 
theory for energy scales N 100 - 1000 K ,  described in tens of thousands of papers 
and books (see, eg., ref. 22). The exact quantitative values for all the different low- 
energy couplings (and there are many of these!) is not always easy to determine, 
mainly because the Hamiltonian at eV scales is uncertain (even if one knows the 
original atomic terms, the magnetic ions are very strongly perturbed versions of 
these). However their basic form can be determined, and the values of the couplings 
then extracted from experiment. Of course some terms (eg., phonon energies, and 
magnetoacoustic and dipolar hyperfine couplings) can be calculated from the higher 
energy theory, because accurate expansions in a small parameter can be made. 
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1 E+5 

1 E+4 

1 E+3 

1 E+2 

Figure 1: Hierarchy of Magnetic Interactions. The various energy scales existing in insulating 
magnetic systems - energies are measured in Kelvin, ranging from lo5 K (i.e, roughly 8.6 eV), 
down to K (ie,, 2 H z  in frequency units). We show energy ranges typical of transition metal 
based magnets. 
On the top left we have the energy scales important for bulk magnets. At eV scales are the 
electronic energies t (band kinetic energy), and U (on-site Coulomb repulsion), and the crystal field 
energies ACF, followed at hundreds of Kelvin by superexchange energies 3, spin-orbit coupling 
A,,, and phonon Debye energies OD. Easy axis anisotropy energies Kz come in at 1 - 10 K 
(occasionally down to nearly 0.1 K ) .  
On the right are shown energies relevant to magnetic nanomolecules and nanoparticles. In the 
rough range 1 - 100 K we have the tunneling barrier EB and the spin gap EG. Around 0.1 K the 
intermolecular dipole interaction VD sets in (for crystalline arrays of molecules/nanoparticles); the 
spread E, of the nuclear multiplet around each electronic spin level is at somewhat lower energies. 
In zero applied field the tunneling amplitude IA,lis usually far below this (later we see how it can 
be dramatically increased using applied transverse fields). Finally one has the hyperfine couplings 
A,,, and the internuclear interactions Vkkr. 
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Figure 2: Nanomagnetic Spin Dynamics o n  the Bloch Sphere. Equipotential lines of 
an easy axis magnetic anisotropy potential are plotted on the Bloch sphere, with shaded areas 
representing higher energies. In zero applied field the minimum energies are found along the easy 
axis - the 2 lowest eigenstates are made from tunneling superpositions of the states I a) and I JJ), 
which have wavefunctions concentrated around the 2 poles on the spin sphere (with the 2 possible 
tunneling paths, denoted by H ,  = 0, crossing one or other saddle point in the potential). If a 
strong transverse field is applied along the hard axis (in the direction perpendicular to the saddle 
point paths) the 2 states I a) and I JJ) are pulled towards the field direction (and towards each 
other), and the tunneling paths are shortened. Interference takes place between these 2 paths (see 
section 5 for details of the behaviour with field. ) 

(ii) Stage 2; Intermediate energies: Things simplify when the UV cutoff is low- 
ered to 1 - 10K,  well below superexchange energies. We then come to the picture 
which underlies the field of “nanomagnetism” (Fig. 1, right-hand side). The ex- 
change/superexchange couplings lock the electronic spins in a nanomagnet together 
into a “giant spin” S, with 1.51 = S = constant (electronic spin excitations, involv- 
ing the superexchange couplings, can be ignored). This spin is of course coupled to 
crystal fields, which Means that its dynamics is described by a Hamiltonian 3i,(S) 
which can be thought of as a simple potential on the Bloch spin sphere (Fig. 2). 
This potential obeys the relevant double point group symmetries in the problem, 
and its energy scale in - K S ,  where K is the energy scale of single spin magnetic 
anisotropy (typically 1 - 10K).  Typically there will be an easy axis (which we 
will take to  be the 2-axis), with a barrier of height - KIIS  between the potential 
wells at the poles (here KII is the strength of the easy-axis anisotropy per electronic 
spin). Well-known examples include the magnetic nanomolecules Mn-12 and Fe-8, 
which are just two of thousands of magnetic molecules studied by chemists and 
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Figure 3: Electronic spin excitations in a Nanomagnet .  Eigenfunctions of an approximate 
spin-spin Hamiltonian for a typical magnetic molecule (the spin-10 Mn-12 acetate molecule), 
shown as a function of the projection S,on the easy axis. The lowest inverted parabola contains 
the 21 states of the S = 10 “giant spin” manifold, described by the Hamiltonian %(S). Higher 
states come from ’spin flip” excitations out of this manifold (courtesy of I.S.Tupitsyn, after ref. ll). 

physicists 23. The rather typical Fe-8 molecule has a central core of 8 F e f 3  ions, 
which lock together via superexchange interactions to  form a spin-10 “giant spin”. 
The anisotropy potential is roughly lo: 

1 
S ‘H,(S) = - [-K,S: + K,S:] + 0 ( S 2 / S 3 )  

where Q = x, y, z. In Fe-8 one has K ,  - 2.3 K and K ,  - 0.94 K. Thus we have an 
easy Z-axis, and also an easy 26-plane (cf. Fig. 2). The longitudinal easy-axis term 
K,con trols the gross energy level structure, and the 2 lowest states are in potential 
wells of depth - SK,. If we ignore the transverse terms like K,S;/S, then all states 
are eigenstates Ism) of ‘H, = -K,S:/S + .. with projection m along 2.; the spin 
gap EG between the 2 lowest states I f 10) and the next 2 states I f 9) is EG - K ,  
(actually it is almost exactly ( 2 s  - l)K,/S = 1.9K, - 4.4 K) .  These numbers are 
fairly typical of transition metal based high-spin molecules. 

Higher magnetic excitations, not described by this simple model, lie above a 
threshold energy very roughly given by - 1,71/S, corresponding to spin flip or 
“magnon” excitations which are somewhat delocalised around the nanomagnet (in 
the case of Fe-8 this energy is roughly 15K). The rough structure of these higher 
electronic spin states in energy space can be seen in Fig. 3 (actually computed by 
I.S. Tupitsyn l1 for the Mn-12 molecule, for which this energy is - 40 K).  

Although at intermediate energies these other electronic spin excitations have 
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gone away, we still have the gapless low energy phonons to contend with, as well as 
even lower energy nuclear spins - neither are included in (1). One can write down 
the forms for the spin-phonon and hyperfine interactions, but they are rather messy 
at this energy scale. 

(iia) Quantum Regime: The final step is to energy scales way below 1K. Then 
typically only two electronic energy levels are left, the two lowest levels of ?.I,(S) 
(with a splitting arising from the tunneling between the two lowest energy potential 
wells; cf. Fig. 2). Even though an accurate calculation of this splitting is difficult, 
it is obvious that the effective Hamiltonian now for the nanomagnet is just ?.I,(+) = 
h, .?, where h, is some vector, and + a Pauli spin. Typically we write this as 

?.I,(+) = A,+% + (2) 

using an appropriate rotation in Pauli space - A, is the tunneling amplitude, and 
E, is called the longitudinal bias energy, since a field H," along the Z-axis gives a 
bias energy E, = g p B s H i .  This is our magnetic qubit, which for shorthand we will 
call a "magbit". As we shall see the parameters A,, E, are easily manipulated with 
applied fields. 

I immediately emphasize that the 2 qubit eigenstates I+), I - )  are not related 
in a simple way to the original electronic spin states. In fact the Hilbert space 
of even a small magnetic molecule is so enormous, and the electronic and other 
interactions are so complex (and strong) that one is dealing with a typical many- 
body problem here - with no hope of computing the total spin wave-function in 
terms of the individual electronic spin states (The results in Fig. 3 involve many 
approximations). This may seem utterly obvious, but it is useful to  underline the 
point by clearing up a few misconceptions held in some quarters. In particular: 

(a) Suppose a simple situation in which there is no applied field in the problem. 
We then write the eigenstates of ?.I,,(+) = A,+z as the superpositions I +) = 
(I fi) + I U ) ] ) / f i  and I +)( I  $) - I @))/fi. What do these states look like? 
Consider first the eigenstates. One thing they do not look like is a giant spin 
pointing perpendicular to  the easy axis! It is useful to  consider the answer in 
terms of a distribution of spin density over the Bloch sphere. In zero applied field, 
the original giant spin S has 2 lowest eigenstates that are produced by tunneling 
between "coherent states" concentrated around the 2 poles of the sphere (the 2 
potential wells in Fig. 2). The exponentially small overlap between these polar 
states (which, incidentally, very closely approximate I 9) and I u), but are not 
identical with them) means that the state 1 +) is concentrated in 2 humps of equal 
weight around the 2 poles - with exponentially small weight around the equatorial 
regions. 

(b) We should understand that this is even true if we have, say, a strong applied 
field HZ in the 2- direction. This field must overcome the strong anisotropy field 
- it has only a small effect until IHZI - H:, where gpBH: - K,, the anisotropy 
energy scale. The main result of the field will be to  slowly move the 2 polar states 
around the sphere in the direction of HZ (see Fig. 2), to coherent states /@)and 
I7r - O), centred at polar angles B(H,") and [x - e(H:)]. If the field is too strong, 
approaching the competing anisotropy field H:, these 2 states start to have a strong 
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quantum overlap. Otherwise they still very closely approximate 1 f i)~, and I JJ)H,I 

(these latter defined as before by symmetric and antisymmetric combinations of 
the 2 lowest eigenstates - which are still tunneling combinations, with little weight 
around the equator). Of course the overlap increases with increasing H,”, which 
means that the tunneling amplitude A, also increases. Actually the physics is often 
more interesting - tunneling can proceed by more than one path on the sphere, and 
interference between these paths then causes oscillations in A,; this is discussed 
more below (section 5A). 

Note as a corollary to these remarks that the effect of a transverse field H: on 
these qubits is not to cause rapid flipping between I fi) and I u), at a rate K IH: I (as 
would be the case if we were dealing with spin-1/2 qubits). Actually low transverse 
fields have very little effect on the dynamics (see section 5A for more details). 

(c) From these remarks it will also be obvious that whereas one may imagine, 
say, a system of N weakly-coupled 2-level atomic spins in a “Schrodinger’s Cat” 
state like 

1 
I *)N = -[[I Ttt ... ) + I 111 ...)I (3) Jz 

written in terms of the single atom states I t) ,  I I), this state is utterly unlike the 
states we are talking about here. In the first place, the spins in the magnetic systems 
are extremely strongly correlated - the product states favoured by atomic physicists 
are about as far away as one can imagine from the correct low-energy states of a 
magnet. A second important difference appears if we imagine a generalisation of 
I J)N to a superposition 

where the 2 states I /”/”/” ...) and I \\\ ...) are products over spins pointing 
along “diagonal” directions at angles B and [T - 01. Clearly these 2 states cannot 
be treated as qubit states since they are not orthogonal. However the apparently 
analogous states I fi (H,”)) and I JJ (H,”)), described above for the case of a transverse 
field, are genuine qubit states, and are orthogonal by construction. Again we see 
the dangers of trying to use intuition gained from weakly-interacting systems, when 
discussing strongly-coupled spins. 

So much for the 2 low-energy qubit states. However this is of course not the end 
of the story - we must include the remaining low energy excitations and couplings, 
associated with phonons and nuclear spins. 

Phonons and Nuclear spins 

There are of course phonons around at arbitrarily low energies. The nuclear bath 
is obviously very important as well - there are a lot of nuclear spins, and unlike 
the phonons all nuclear modes are still active (so they totally dominate the low- 
T entropy of the system). Moreover, the coupling of each nuclear spin to the 
magbit is usually much larger than the zero-field splitting A,! Thus the full effective 
Hamiltonian at this energy scale must include the phonons and nuclear spins. To 
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give the discussion some concrete character I quote the general form: 

In this Hamiltonian the superscript 0, indicates the UV cutoff on the Hamiltonian - 
which is not properly defined until the UV cutoff (more generally, the Hilbert space) 
is specified. Here we assume that 0, is well above the energy separation of the 2 
magbit states, but well below the “spin gap” energy EG to  the next highest states of 
the system (and EG N KII ,  the anisotropy energy per spin). The first two terms on 
the right hand side are just the original magbit splitting and bias (except that A, has 
been renormalised to A). Then we have the standard phonon oscillator Hamiltonian 
‘ H p h ( z q )  (where the {z,}are the oscillators) and the Hamiltonian ‘H”(Ik) of 
the nuclear spins. This latter includes both the very weak (- lo-* - lO-’K) 
pairwise internuclear interactions Ckk, V ~ ~ I ~ I f , ,  and any other fields acting on 
the nuclear spins. Finally the last 2 terms describe the interactions between our 
2-level qubit and the phonon and nuclear spins environments - both the “spin- 
phonon” couplings { c g }  and the “hyperfine” couplings {A&} sum the interactions, 
between phonons/nuclear spins and the electronic spins, over all electronic spins in 
the magnetic qubit. 

Let us pause to consider where this renormalisation procedure has led us. First 
and foremost, it gives the correct form of the low-energy Hamiltonian, and flushes 
out irrelevant terms. The formal truncation calculation (for details of which see the 
literature 24,25,26) will also try to derive the size of the couplings cd, c t  , At’, and 
V,$, the phonon spectrum w,, and the qubit parameters A and E, for a given mag- 
netic system. It is in the nature of the procedure that it begins from the couplings 
in a higher-energy Hamiltonian - which are assumed known. If this can’t be done 
(as is often the case - recall the simple example in QED of the basic fine structure 
coupling a, which we have no idea how to  calculate, or even in terms of what), 
then these low-energy parameters must be measured if we are to have a predictive 
theory. The theory also defines how these parameters are to be measured, by show- 
ing how they enter into experiments. I emphasize again that this whole procedure 
is very traditional. What will perhaps be unfamiliar, to  those not accustomed to 
strongly-correlated systems, is how it works when the important couplings are not 
weak. 

For the magnetic systems of interest here, correlations are strong, and the trun- 
cation is not trivial. Thus A depends exponentially on poorly known high-energy 
parameters (it is a tunneling amplitude) and so is almost impossible to calculate 
accurately. The couplings A t p  between qubit and nuclear spins can usually be cal- 
culated straightforwardly from the hyperfine couplings between individual electronic 
spins and nuclear spins. However the hyperfine couplings themselves involve not 
only direct magnetic dipolar coupling between the nuclear moments (these deter- 
mined experimentally!) and electronic spins, but also indirect high-energy “transfer 
hyperfine“ couplings via other electronic clouds - not easy to  calculate in such a 
complex system. The tiny internuclear couplings are trivial to  calculate, knowing 
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Figure 4: Effective field acting on nuclear spin in a magnetic qubit. The total effective 
field T k  acting on the k-th nuclear spin in a nanomagnetic qubit changes according to whether the 
low-energy state of the qubit is I fi) or I &) (for details see text). 

the nuclear sites, if they only involve the magnetic dipolar coupling. However, again, 
there can be indirect high-energy couplings which compete with these, via polarisa- 
tion of the electronic clouds. A proper calculation of spin-phonon couplings is also 
very messy, and beset by uncertainty about electron polarisation renormalisation 
effects. 

However (and again this is typical), the situation is not so desperate as these 
remarks make it seem. Not only is the phonon spectrum fairly easy to calculate 
- also both it and the essential information about the spin-phonon couplings can 
be lumped into parameters measurable in neutron scattering and magnetoacoustic 
experiments ll. Moreover, A, can be determined from experiment lo, thereby al- 
lowing us to reverse the renormalisat ion procedure and infer important high-energy 
parameters! The longitudinal bias E, = gpBSH: is immediately given once the 
effective longitudinal g-factor of the nanomagnet is determined from susceptibility 
measurements. And NMR and ESR measurements can in principle give most of the 
essential information about the hyperfine and internuclear couplings. 

Finally, some of the couplings just turn out to be negligible - we can throw 
them away, as we now see. 

Simplification of the Hamiltonian: Deep in the quantum regime, when 
kT << R,, calculations using standard methods26 show that inelastic spin-phonon 
processes occur over very long time scales, and elastic ones cause trivial renormal- 
isations of parameters. Thus we can simply drop all phonon terms in this regime. 
A further simplification emerges if we rewrite the remaining magbit/nuclear bath 
terms in the form 2 7 9 2 5  

48
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+ c w k m k  ‘ i k  + ‘HNN(Ik) (6) 
k 

In this equation we have (i) replaced the tunneling term A,+= by { n‘i+eZ ck “.” + H.c.}, 
and (ii) defined the energies 

in terms of the fields YL, $ acting on the k-th nuclear bath spin I k  when the 
magbit is in its I n), I 4) states respectively (cf. Fig. 4; note that i k  and m k  are 
unit vectors). Then w k  defines the strength of the “static” fields acting on the k-th 
bath spin I k ,  including external fields, etc.; and ui the strength of the “hyperfine” 
field, coupling I k  directly to the qubit dynamics. 

To get (6) from ( 5 )  involves 2 moves. First, the straightforward separation of 
diagonal and non-diagonal (in ‘i) magbit-nuclear spin couplings, coming from A;’. 
Second, one recognises that the non-diagonal terms can be written as a coupling 
of the qubit flip operator to an operator acting on the nuclear spins - the general 
form of this comes if we write the effect of the qubit flip on the k-th nuclear spin 
in transfer matrix form. Let the relation between initial and final nuclear states 
(before and after a magbit transition) be Ix LZn)?k Ix 2); then we can always write 

where T is a dummy time variable, integrated through a single magbit transition, 
and H,“,, = A;’ + g N p N I k  . Ht (ie., the total Hamiltonian of the nuclear spin, 
including the Zeeman coupling to external fields - the internuclear couplings are 
dropped for simplicity, and because they are unimportant for this term). The inte- 
gral over H,k,, is only defined once we know the trajectory of the magbit during the 
tunneling transition - which can be calculated knowing the anisotropy potential 2 5 .  

The scalar part bk of the exponent in T k ,  and the extra Berry phase f#&, are then 
incorporated into a renormalised h in (6), and only the term involving describes 
real transitions in the nuclear bath. 

Why do we do things this way? Basically because it allows a further simplifica- 
tion. First, we notice that the parameter o k ,  which tells us the importance of the 
non-diagonal terms, is usually very small. In most magnetic systems the hyperfine 
coupling A;’ is much smaller than the energy scale defined by the “bounce time” 
T, required for the nanomagnetic tunneling transition - this energy scale w, - 1 / ~ ,  
is usually N O(Kc , ) ,  the anisotropy energy (cf. Fig. l), so that the nuclear spins are 
responding to a very fast change in the field acting on them. In this “sudden” limit 
it is obvious that lokl - IAi’l/wo << 1 (for a more precise discussion see refs. 26*27).  

This does not immediately mean that we can replace the exponential term in (6) by 
unity, since the total physical effect of all the spins in the nuclear bath can still be 
large. It is parametrised by XCk I o k l 2 ,  the average number of nuclear spin transi- 
tions accompanying each magbit flip, and unless it is also small, we get decoherence 
effects (“topological decoherence” 27) from these transitions. However in almost all 
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Figure 5: Polarisation Groups in t h e  Spin Bath. Density of states W ( f )  of the n k ( 2 1 k + 1 )  of 
nuclear states in a magnetic qubit, which form an envelope of half-width Eo (with EZ = c,(~i)~) 
around each qubit state. We assume k = 1,2 ,  ..N (ie., N nuclear spins in each qubit), and zero 
applied field. The multiplet can be subdivided into “polarisation groups” 26,14, where the M-th 
polarisation group has a net spin M = c, 1; along the easy z-axis. These groups are separated by 
the mean value wo =< w! >. Transitions between polarisation groups, which change the total spin 
projection, can only be mediated by TI processes coming from interaction with the environment, 
or stimulated by the qubit dynamics itself. 

realistic cases, the number N of nuclear spins coupling to  a nanomagnet is small, 
and X << 1 as well; then we can simply drop all reference to nuclear flips. 

The second simplification comes from a closer look at  the internuclear interac- 
tion V&?, which gives the nuclear bath its “intrinsic dynamics” ”. Again, one may 
use an argument based on time scales. In general the nuclear spin dynamics will 
involve a fast fluctuating component coming from the precession in the combina- 
tion of external and hyperfine fields, already accounted for in our Hamiltonian, and 
then a much slower “nuclear spin diffusion” component coming from the internu- 
clear interaction. If the timescale of the latter differs widely from that of the qubit 
dynamics, then we can treat it as a classical noise source, whose only effect will be 
to add a fluctuating bias acting on the qubit. Since the qubit is extremely sensitive 
to any longitudinal bias, which can push it off resonance, the most important term 
will be of form 67-Iint N &(t).i”(t), where the correlator C,,(t,t’) = (&(t)<,(t’)) 
can have a fairly complex form (detailed calculations for the Fe-8 molecule have 
recently been done 29). The best way t o  understand the noise spectrum is via the 
picture shown in Fig.5., showing the spread of nuclear multiplets surrounding each 
qubit state. There is a huge number n k ( 2 1 k +  1) of nuclear states in each multiplet, 
which form an envelope of states in energy bias space, with half-width E,, where 
E: = C,(W!)~. The multiplet can be subdivided into “polarisation groups” 14,26, 
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where the M-th polarisation group has a net spin M = Ck I; along the easy z-axis 
(this classification is appropriate to low applied fields - in high fields, we will rede- 
fine the polarisation groups along the external field axis). These polarisation groups 
also contain a huge number of states, except for the extreme wings of the multiplet 
(where M - 4~ C Ikr ie., near total nuclear polarisation), and have a corresponding 
width in energy bias space. Both the polarisation groups and the entire multiplet 
made from putting all the groups together will have a Gaussian lineshape. 

From the point of view of the qubit, the bias appears to  drift around inside 
this Gaussian umbrella. How it does this depends on various factors. In zero field 
the only way the nuclear system can change polarisation group is via a TI process, 
presumably mediated by impurities. Since such processes are rare at low T (ie., TI 
is very long), at very low fields the bias on a single nanomagnet will diffuse around 
inside a single polarisation group only, mediated by T2 processes which change the 
spin distribution around the nuclear system, without changing M .  However as soon 
as a field is applied, it can mediate transitions between different polarisation groups 
- thus the diffusion will rapidly spread over the whole multiplet. It is not possible to 
determine the energy bias diffusion characteristics directly, but indirect information 
is given by nuclear T2 measurements. In previous papers where this kind of theory 
was applied to  real nanomagnets 26,30,31, the effective energy bias width over which 
this diffusion occurred in experimental timescales was called [, (sometimes called 
the “hole width” in experiments where it can be measured 32,33). The theoretical 
assumption, that energy bias diffusion inside the nuclear multiplet is fairly fast, 
seems to have been justified by experiments so far (note that Tz is typically a few 
msec  in such systems34, even at high T ,  and presumably considerably longer in the 
quantum regime). 

Thus the net result of this discussion is that we can simplify all effects of the 
internuclear interactions, and the nuclear spin diffusion they cause, by assuming 
that they cause the nuclear bias field acting on the “central spin” to  fluctuate fairly 
rapidly in a restricted random walk over a range (,. In many cases to N E,, except 
at  very low field. Actually the same is obviously the case in very high applied fields, 
since such fields will not only force all nuclear spins to  lie along the same axis, but 
also restrict nuclear spin diffusion - this point is further discussed in section 5A. 

After these various simplifications one finally ends up with a low-energy effective 
Hamiltonian that can be used in practical discussions of magnetic qubit dynamics: 

This Hamiltonian will be sufficient in most cases, provided we are at low enough 
T so that phonons are irrelevant. In some cases one can also imagine that there 
should be transverse fluctuation terms - FZj2E3‘(t), but these will usually be small - 
they correspond to  fluctuations in A, driven by the environment. We will return to  
this question later. 

Let us anchor this long formal discussion in reality, by returning to  the example 
discussed above, the Fe-8 molecule (cf. eqtn. (1)). First consider the zero-field 
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0 20 40 
~ 80 

57Fe 

T 
100 

Figure 6: Hyperfine Couplings in the Fe-8 molecule. Histogram of the distribution of values 
of lwLl in the Fe-8 molecule in zero applied field, measured in M H z  units. Only the values for 
the protons and 57TFe nuclear spins (both spin 1/2) are shown. The values are binned in 0.1 M H z  
intervals. The protonic couplings were calculated assuming dipolar hyperfine interactions (there 
are probably also weak transfer hyperfine couplings), and the contact hyperfine coupling to 57Fe 
was calculated using a standard Hartree-Fock analysis (for details see ref. 35). 

qubit splitting A,. This is found experimentally lo to  be - lOP7K in Fe-8, which 
is ii fairly typical number (cf. Fig. 1; later we will see how application of transverse 
fields can make it far larger). This is a very small energy, corresponding to a 
frequency - 2 k H z ;  it is so small because the qubit tunneling flip between states 
I fi) and 14) is tunneling through a big barrier, and the transverse anisotropy terms 
driving it are appearing at very high order in perturbation theory (in the parameter 
KzlKz) .  

In comparison with this, the characteristic nuclear spin energies are actually 
very large. Fig. 6 shows the distribution of some of the hyperfine couplings ui in 
the molecule - most of them are between 1 - lOMHz (ie., 0.05 - 0.5 mK),  and the 
total spread E, of the nuclear states is found e~pe re imen ta l ly~~  and t h e ~ r e t i c a l l y ~ ~  
to be E, N 7 mK (although this can be varied a lot by isotopic substitution). The 
internuclear spin couplings are weaker - they range from - 0(1 p K )  for the closest 
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pairs of nuclear spins to - 0(1 nK)  for nuclei at  opposite ends of the molecule 29 

However this is enough to keep the nuclear spins fluctuating at low T. 
Compared to the thermal energy kT in any experiment, all of these energies 

are very small - note that when the system is at temperature kT  << EG, so only 
the 2 qubit molecular states are active, it is precisely because the nuclear energies 
are so small that they cause most of the decoherence. All higher energy excitations 
are frozen out - only the nuclear degrees of freedom are still active (readers should 
however refrain from inferring that the decoherence rate has any relation to kT!) .  
To freeze out the nuclear spin dynamics requires either going to extremely low 
temperatures (T < 1 n K ) ,  or applying strong fields - this latter tactic is discussed 
in more detail in section 5 .  

We note in passing that in all experiments done so far on molecules like Fe- 
8, the molecules are not isolated but in crystalline arrays. This means that there 
are other interactions in the problem. Typical nearest neighbour intermolecular 
dipolar interactions are of order 0.05 - 0.1K in strength, ie., usually larger than the 
hyperfine interactions. One can incorporate these into a theoretical analysis in a 
fairly straightforward way30,31, taking advantage of the slow variation in time of the 
dipolar fields compared to the rapid fluctuations of the hyperfine fields. There will 
also be other interactions between the molecules (eg., superexchange between them, 
via the outer ligands - these are usually argued to be negligible, for reasons that 
are not obvious to me) and between nuclear spins on different molecules (although 
these are very small, they are important in mediating nuclear spin diffusion ”). 

Finally, a word about conduction electrons. The treatment described above 
assumed a magnetic insulator - but if there are mobile electrons coupling to the 
nanomagnetic spin then these effectively act as an oscillator bath. One can also 
develop a detailed theory of this coupling26. I will largely ignore it here because 
mobile electrons are very bad for qubit coherence - they are gapless excitations with 
strong spectral weight at low energy. The “Kondo” physics of this is well under- 
stood36, so when necessary we will take results from the literature - but most of 
the time we will assume that coupling to such excitations has been suppressed, by 
making the system either superconducting (see below) or insulating. It is perhaps 
interesting to remark, however, that in a sufficiently small nanomagnetic conductor, 
the mean spacing 6~ between the quantized electronic levels can be quite large (it 
is - DIN,, where D is the conduction electron bandwidth, and N ,  the number of 
conduction electrons inside the nanomagnet). If the conduction electrons inside a 
nanomagnetic conductor are well decoupled from those outside, by an insulating 
coating, or the nanomagnetic conductor is on an insulating or semiconducting sub- 
strate, the broadening of these levels can be very small. In this case the decoherence 
from coupling of the qubit magnetisation to conduction electrons will be exponen- 
tially small (- e-(at/kT) or - e-(se/Ao), whichever is larger). For more details on 
this see ref. 26. 

Note finally that any residual weak coupling of the qubit to gapless electrons 
in external circuitry must be absorbed into an “Ohmic” coupling to an oscillator 
bath, and that this is also a decoherence source. This point is relevant for any kind 
of qubit 37,12. 
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2.2 Superconducting systems 

There are two basic kinds of qubit design that have been discussed for superconduct- 
ing qubits - with lots of variants in between. The first involves the flux coordinate 
of a SQUID ring, for which the “bare” effective Hamiltonian (considering only the 
inductive terms and the Josephson junction potential) is the well-known form 38 

where C is the junction capacitance, 4 = 27r@/@o with @po the flux quantum, 
pd = -iha/a@, and 4z = 27r@,/@.0, where @, is an externally applied flux. Then 
UO = cP:/47r2L and g = 27rLI,/@o, for a ring inductance L and junction critical 
current I,. For a SQUID qubit one uses more complex arrangements of junctions 
than this (see, eg., refs. 39,40), but the basic idea is that flux tunnels between 2 
potential wells, just as in the magnetic qubit design. The discussion of this kind of 
coherent tunneling goes back of course to Leggett et al. 41. 

The other design involves transitions between 2 different charge states of a 
nanoscopic superconductor, as in the “Cooper pair box” design employed by Naka- 
mura et al. 6,7 .  A large superconductor already has superpositions of many different 
charge states (an important feature of the BCS wave-function). But once the capac- 
itative energy gap E, to  add a Cooper pair to a nanoscopic superconductor (here, 
the Cooper box) becomes N the Josephson energy EJ, both charge and flux tunnel- 
ing must be considered ’’ together. Adding the capacitative energy for n electrons 
on the Cooper box to the Josephson energy through a SQUID ring coupled to  this 
box gives the very simple Hamiltonian 

1 
7-1 - -[E,(n-Q/e)2+E~cosq5] “ - 2  

where the Josephson term is equivalent to 

and (12) and (10) are related by E J  = 2gU0. The charge Q is a continuous variable 
- it is the charge induced on the box by fields coming from external gates, etc. 
Diagonalisation of ( 1 1 )  gives immediately a 2-level qubit system, provided we stay 
in the subspace corresponding to a given value of n, with a gap A, = EJ. 

These Hamiltonians already assume a truncation to energy scales N O(1K) or 
so. Of course when this truncation is done properly, using the same renormali- 
sation techniques as before, things are more complicated than these simple forms 
suggest. Again, any starting high-energy Hamiltonian (at eV scales) is extremely 
complex, describing a set of electrons in a metal, interacting with each other and 
with photons (and thence to external circuitry), with the crystal lattice, and with 
nuclear spins and paramagnetic or charge defects, in both the superconductor and 
the surroundings (substrate, electrodes and gates, etc.). Again, however, truncation 
to  lower energies simplifies things (see Fig. 7). At energies - 1 - 1 0 K  in simple 
metallic systems, the electron-phonon interaction induces superconductivity. At 
temperatures well below the superconducting gap energy the gapped electronic 
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1 E-I 

1 E-4 

1 E-5 

1 E-6 

Figure 7: Energy Scales in a SQUID. Some of the energy scales in a superconducting SQUID 
(compare Fig. 1 for insulating magnets). At high energies the system is in the normal state, with 
electronic energy scales E F ,  U (Fermi energy and Coulomb interaction), and a phonon Debye energy 
0 0 .  We assume a transition to an s-wave superconducting state at a temperature T, - A ~ c s ,  
the zero-T superconducting gap energy. 
In the SQUID qubit the UV cutoff is n:, the Josephson plasma energy, and current designs have a 
low energy barrier between the 2 SQUID wells, so that A, may not be much smaller. The effective 
coupling to electron quasiparticles in the SQUID is gapped by the energy A ~ c s ;  electrons in other 
parts of the circuit are gapless but very weakly coupled to the qubit. The characteristic energies 
of localised “spin bath” excitations include the nuclear-paramagnetic spin-spin couplings V z  , the 
internuclear spin-spin interactions V::,, and the Zeeman coupling w i  between the SQUID flux and 
these spins (which is typically < 10s K for paramagnetic impurities and < K for nuclear 
spins). However the net effect of the coupling to all these spins is parametrised by E, (defined as 
before) which is much larger. 
In the case of Cooper boxes 2 other scales become relevant - the charging energy E, and the 
electrostatic coupling to charge defects (see text). 
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modes (“Bogoliubov quasiparticles”) have an exponentially small effect on the dy- 
namics of the superconducting order parameter - this is exactly the simplification 
mentioned in the introduction. Phonons are also largely irrelevant at these lower 
energies. What is left out of equations (lo)-( 12) are those “environmental” modes 
which are still active (and thence potential sources of decoherence). These include 
gapless electronic excitations in the surrounding circuitry and photons (both delo- 
calked), and localised spin and charge modes. 

All of the physics of the delocalised modes is described by the Caldeira-Leggett 
theory 4,37, in which these modes map at  low energies to independent oscillators. 
Thus when one eventually truncates to mK temperatures, including the oscillators, 
both the Cooper box and the SQUID systems have an effective Hamiltonian of the 
well-known “spin-boson” form, in which the spin represents the qubit as before: 

As discussed extensively by Leggett et al. 4,41, the effect of the couplings cq to the 
oscillator coordinates zq can be entirely parametrised by a spectral function J ( R )  
of form 

7T 
J ( R )  = 5 c - g q o  - wq) 

9 q q  

One can do this because the {cq}  are all small, and all their effects are described 
perturbatively using this spectral function. The way to relate the spectral function 
to experimental properties of the system has also been widely discussed in the 
literature 37, as has the truncation of the microscopic SQUID Hamiltonian to this 
spin-boson form 42943; the reader may also refer to reviews 12. 

However one still has to worry about the localised modes. For a SQUID, tun- 
neling between different flux states, the most dangerous modes are spin modes - 
nuclear spins and paramagnetic impurities in SQUID and substrate, with their Zee- 
man coupling to the SQUID flux44,45’46,47. For a Cooper box qubit, the most 
dangerous coupling is to charge fluctuations, particularly in the surrounding sub- 
strate and circuitry 39. Not so much work has been done on these couplings at the 
microscopic level - a pity, because the results are useful in understanding how to 
control decoherence. In the case of SQUIDS one can give a fairly detailed treatment 
of the Zeeman coupling of the SQUID flux to nuclear and paramagnetic spins45-14s47. 
The spins couple to a total field B(r) having 3 sources: 

Here B, is the external field, B$(r) is the field generated by the electronic current, 
and bk(l) is the field generated by the k-th bath spin at position r. Since all current 
flow is in the supercurrent we have 
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where j$(r) is the supercurrent density, integrated over the junction and the bulk 
of the superconductor. When the SQUID qubit tunnels from one flux state to 
another, the field B$(r) changes, but the field b(r) = Ck bk(r) does not (at least 
not on the timescale of the SQUID transition). Thus yet again we see the separation 
between that part of the qubit/spin bath coupling that is static (and which can be 
incorporated into a term of form xk  wtmr, .&,  where S k  is the k-th bath spin), and 
one which flips along with the SQUID flux transition, and which goes into the term 
.i, X I ,  w]lik . &. The real work in the theory is to  separate off the slowly fluctuating 
part of the field b(r) from the quasistatic part, and to evaluate the various fields and 
couplings in terms of microscopic parameters such as crystal field parameters for 
paramagnetic impurities, etc., in a real SQUID geometry. However since nothing 
very deep is involved we refer the interested reader back to the literature. It is 
perhaps interesting from a methodological point of view to  note that because these 
Zeeman couplings are individually very weak, the spin bath modes map to oscillators 
(although the mapping is not as trivial as might be expected). 

The effect of localised modes in the case of Cooper boxes is interesting because 
it is an example of a spin bath made not from spins but from charge defects, which 
couple electrostatically to the charge of the Cooper box. This would not be a 
problem if their dynamics was frozen - however, just as in the case of nuclear spins, 
this is not true even at very low temperatures. The tunneling dynamics of such 
charge defects has been very extensively studied and reviewed 4s. The mapping to  
a spin bath is not completely straightforward, since the 2-level tunneling charges 
also couple to  the surrounding conduction electrons. To give a proper description of 
this, from the point of view of the charge defect, one usually begins by introducing 
an operator BkP which annihilates the k-th defect at site k, (where ,LL = 1,2 label 
the 2 available sites for this defect). If we ignore the electronic bath then we have 
the simple Hamiltonian (with UV cutoff N 10 - 100 K ) :  

which is just a 2-level Hamiltonian with bias energy ck between the 2 sites, and 
tunneling amplitude Ek. The position of the defect then couples to the charge of 
the Cooper pair box, which produces a different electric potential at the 2 defect 
sites. It is then obvious that we will end up with a low-energy effective Hamiltonian 
coupling the 2 qubit states to  each defect state, having exactly the same form as 
(9); details of this have been worked out elsewhere 47. The bare Hamiltonian (17) 
is equivalent to the term w k m k  . &, where &k describes the defect. The parameter 
widescrib es the electric dipole coupling of 6 k  to  the qubit, and &(t)  is a residual 
noise term. Given that we can have a situation where both the flux and charge 
tunneling are active, it actually makes sense to  have a vector noise coupling of form 
ga?&(t), where a(z,  y, z) ,  and the {ga} are constants. 

The only real complication to  this simple mapping to  a spin bath is that the 
defect also couples quite strongly to the surrounding conduction electrons. Thus 
one often replaces (17) by 4s 
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where the electronic degrees of freedom are labelled by momentum index g and 
another internal index (usually angular momentum scattering channel). In this 
form the strict 2-level character of the defect dynamics is lost, to be replaced by a 
multi-channel Kondo dynamics - one can no longer map to a spin bath (actually an 
oscillator bath mapping can be made). More generally one can interpolate between 
(18) and (17). 

We may summarize this discussion for superconducting qubits in the form of 
an effective Hamiltonian 

where RSB describes the qubit coupled to oscillators, and the other terms are 
as before, with noise terms now coupling to all 3 components of i. The oscillators 
represent electrons both inside and outside the SQUID, and the spin bath represents 
paramagnetic and nuclear spins, as well as charge defects coupling to the charge 
dynamics of the superconducting qubit. 

3 Solid-state Qubit Hamiltonians 

We have seen how at low energies, complex mesoscopic or nanoscopic superconduct- 
ing and magnetic systems can be set up to behave like single qubits, albeit with 
some residual interactions with their environment. We now stand back a little and 
summarize the results from a more general standpoint. Most discussions of quantum 
circuitry either drop the decoherence-causing couplings to the environment, or treat 
them as a source of errors, quantified either as a noise field or as a simple error rate 
per qubit operation. While this may be useful for the development of algorithms, 
etc., and is in line with the well-developed ideas of classical error correction, such 
an approach is not quantum-mechanical, and a correct approach should include the 
environment on the same footing as the qubits. I will not belabour this point since 
it has been made repeatedly before in more general contexts 4,49. 

I therefore summarize here what one finds for a real multi-qubit Hamiltonian, in 
a sold-state context. The first step is to write down a general Hamiltonian describing 
a set of interacting solid-state qubits. We have already seen how this is possible for 
a single superconducting or magnetic qubit - the step to a general solid-state qubit 
is not much farther. Second, we see how renormalisation goes through for this more 
complex system. 

3.1 single solid-state qubits 

We now see, by comparing the results of renormalisation for the magnetic and 
superconducting qubit systems, that the mathematical form one gets for the two is 
basically the same. The most important terms can all be included in the effective 
Hamiltonian 
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+ c u i m k  ’ gk + HOSC + gaFa&x(t) (20) 
k 

where the { s k }  represent the “spin bath” degrees of freedom, H,,, represents the 
oscillator bath and its coupling to the qubit, and f(t) is a noise field acting on the 
qubit, with components = (&,&,,Ez). As noted in section 2B, we do not need 
to deal directly with 7-to,,, but can always deal with the Caldeira-Leggett spectral 
function J ( w )  derived from it. Likewise (sections 2A and 2B), the only thing we 
need to know about the spin bath dynamics is how to characterise the noise f(t) 
it gives rise to. However we do need to know explicitly the couplings {wiik} and 
{ukmk}, since these x e  often not small - they then compete directly with the 
qubit parameters A and E .  

Note that for a system described by (20) to be usable as a qubit, we must be able 
to control at least one of the basic qubit parameters A and E as a function of time 
- moreover, this must be done without introducing further decoherence. Luckily 
for superconducting and magnetic qubits this does not pose any deep problems, 
since one can easily envisage schemes for doing this using external magnetic fields 
or, eg., gate voltages. Consider first the case of a magbit. The longitudinal bias E 
is controlled directly and trivially by an external longitudinal field, and as we shall 
discuss in much more detail in section 5A, the tunneling term can be varied over 
many orders of magnitude by transverse external fields. Provided the field variation 
is done adiabatically (ie., a t  frequencies much less than the characteristic operating 
frequency of the qubit) no decoherence should arise here. The most important 
engineering problem will be to apply these fields locally, to a single magbit. 

In the case of superconducting qubits various schemes have already been pro- 
posed and operated, in which both parameters can be varied - the reader is referred 
to the literature 69819. 

So far so good for magnetic and superconducting qubits. The expectation is 
that analogous derivations of low-energy Hamiltonians for other kinds of solid-state 
qubit will give the same form (in cases where such has been attempted, this is 
the case - compare, eg., the derivation for nuclear spin qubits in a Quantum Hall 
system5’). One should not be surprised at this example of “universality” of effective 
Hamiltonians 51 at low T .  There are 2 reasons for it. The first is mathematical - 
there is only a limited set of couplings one may write down for the interaction 
between a qubit and environments of spins or oscillators. The second reason is 
physical - at low energies the environmental modes always seem to map to spins or 
oscillators. These 2 points have been discussed extensively in the literature 13,14,4152, 

so I will not reiterate them here. 
There are, incidentally, 2 small provisos that should be added here to  this 

assertion of generality for the low-T qubit Hamiltonian (20). The first is that the 
standard assumption of linearity in the oscillator coordinates, in the coupling of the 
oscillators to the qubit, can break down if the linear couplings are weak (or even zero 
for symmetry reasons). In this case one goes to higher-order couplings. However 
these can usually be mapped by a canonical transformation to 2’-dependent linear 
couplings - for more details and references on this see refs. 53154155. 

The second proviso concerns the difference between oscillator and spin baths. 
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Although these can have markedly different effects on the dynamics of the qubit, 
if the qubit/spin bath couplings are sufficiently weak, the problem can be mapped 
to a spin-boson problem. This point has been studied in a general way 14,56,57, and 
also in detail for S Q U I D S ~ ~ .  The mapping is not always simple, but I do not go 
into details here. 

To summarize - for the problem of a single qubit coupled to its surroundings, 
we end up at low Twit h the Hamiltonian (20), with couplings determined by a 
combination of experiment and theory (and with A and E controllable parameters). 
This result is very handy, since it means that if we wish to  understand the effect 
of a quantum environment on the dynamics of a qubit, we have a generic model 
we can use to do this. However our analysis is so far incomplete in one important 
respect - we need a corresponding model for a set of A4 interacting qubits. 

3.2 multi-qubit systems 

As already noted, in this article I will not go into much detail concerning multi-qubit 
systems - in any case, the variety and number of coupling terms that enter would 
make such a discussion too long. It is perhaps easiest to  start with the desired final 
result. Consider the effective Hamiltonian 

M 

I immediately emphasize that this Hamiltonian, which describes a set of A4 qubits 
interacting only with external longitudinal fields ~ i ,  and with each other via diagonal 
interactions Uij , is chosen specifically with solid-state qubits in mind. In other 
systems like NMR or optical cavity schemes, other couplings are also important. The 
important point for Quantum Information processing (QUIP) is that at least some of 
the couplings {Ai, E ~ ,  U t j }  should be controllable by external means - and that this 
be done without introducing any further decoherence in the system. As a matter 
of fact, one can get away with having the control of only one set of parameters, 
eg., the {eZ}; a computation can be done with very little means 18. However this 
tends to make QUIP very slow - the more parameters we can control, the better. In 
the case of magnetic and superconducting qubits, we saw that it is straightforward, 
at least in principle, to control di and ~i using external fields (applied locally to  
each qubit). The couplings Uij ,  which will usually be electromagnetic, are not so 
obviously controllable - here we will assume them constant and fixed by the real 
space geometry of the system (note however that in qubit designs where the coupling 
comes from the overlap of, eg., electron clouds associated with the qubit, it is very 
easy to  control Uij using external gate fields '). 

It is of course obvious that the QUIP Hamiltonian in (21) is idealised. The 
first question to  answer is what sort of form is produced by renormalisation to low 
energies for a real network of superconductors and/or magbits. Note that for a 
quantum computer to  work, all information transmitted between the qubits must 
maintain coherence. This means that it is not permissible to  arbitrarily replace ef- 
fective inter-qubit interactions by simple instantaneous couplings - the full retarded 
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couplings must be kept, until it can be shown that they effectively reduce to con- 
stants, This is a standard problem in field theory (at least as far as the oscillator 
bath part of the environment is concerned), but one must be careful to  keep all 
decoherence effects. 

Let us then consider what sort of effective Hamiltonian describes the system at 
the low-energy level. Without going through the lengthy derivation for this (which 
of course parallels the derivation for a single qubit), we look at the answer at an 
energy stage where the qubits have all truncated to  2 levels, with an ultra-violet 
cut-off R, - 0.1 - 1K. The result, for both SQUID and magnetic qubits, is to 
replace (21) by = 7-12’p + ‘Hen, ,  where now 

M 

.HyP(n,) = c A,+; + ei+; + c O . y + p ;  (22) 
i i <j 

and 
N N 

x e n u ( R o )  = c ‘ff l i k  ’ a‘k + c w$ 6 i k  ’ a‘k + 7 v:$3Eef, 
.. } k:lk”=,  i { k = l  k = l  

This looks dreadful! However all these terms are entirely to be expected, and one 
has no right to drop any of them without good reason. This is another way of saying 
how difficult it will be to  control decoherence for M interacting qubits. Note that 
all dynamics at frequencies above R, is incorporated into the coupling terms here. 

Consider first at the multi-qubit interaction g::O). This is defined as a static 
limit of a retarded propagator: 

This propagator includes the appropriate part of, eg., the electromagnetic propaga- 
tor D,,(q, q’, w ) ,  calculated in this inhomogeneous geometry (but with all processes 
at energies < R, omitted from internal lines). The “appropriate part” means the 
relevant channel - for example, in the case of coupling between Cooper pair boxes, 
it would just be the Coulomb part of D,”. However we also include in g!:o) all 
effective couplings, generated down to  energy w, via the electronic, photonic, etc., 
baths, which can be excited by the underlying bare EM coupling. Now it was under- 
stood long ago37 how to include such terms as effective impedances in an effective 
Lagrangian for the system - allowing one to  make the link to the macroscopic “elec- 
trical engineering” properties of the network, in the form of mutual inductances, 
capacitances, etc. (or the mutual susceptibility analogues for a magbit circuit). 
The imaginary part of these impedances can in principle be related to  the decoher- 
ence arising in the coupling of the qubits (although this has never been explicitly 
done, to my knowledge). This then takes care of both the “bare” term (22) in the 
Hamiltonian, and the remaining oscillator terms in (23). 
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What of the spin bath terms? In the form (23) these are easy to understand 
- each qubit is coupled to the spin bath, in the same way as for a single qubit. 
There are no interactions mediated by the spin bath yet contained in o::’”, simply 
because the UV cutoff is still well above the characteristic frequencies of the spins 
in the spin bath. If the qubit operating energy scales o/;o) and Ai are always much 
higher than the spin bath frequencies, then we can simply stop at this point - our 
effective Hamiltonian is that given by equations (22) and (23). We can also think 
of converting some of the spin bath terms into noise terms, in the same way as done 
before. 

If on the other hand the operating frequency of our qubit network is not high 
compared to the spin bath frequencies, we have to  do a lot more work - to take 
account of effective retarded interactions via the spin bath. We do not do this here, 
simply because it would make little sense to operate a network of solid state qubits 
at such low energies (the spin bath decoherence would be too high). 

4 Qubit Dynamics 

We now come to the subject of decoherence - about which much has been written. 
Here we are interested in finding decoherence rates for real systems - obviously a 
delicate topic, given the often large discrepancy between theory and experiment! 
This means we need the decoherence dynamics for the models discussed in the last 
section. 

One could write a whole book on the dynamics of the spin-boson model or 
the central spin model (indeed, books and very large reviews have been writ- 
ten 13,14,41,58,16). Here instead I give a short summary of the results - enough 
to get a feeling for the mechanisms involved in single qubit decoherence. The way 
in which this applies to real magnetic and superconducting qubits is then discussed, 
along with the experimental progress so far. 

In general, for a full-blooded quantum computation, one wishes to understand 
the dynamics of a multi-qubit system, with time-dependent inter-qubit couplings 
and control parameters - plus the coupling of each qubit to its surroundings. There 
is no space here to discuss this very complex topic (which has not yet been worked 
out in detail, and which is not yet relevant to solid-state qubit experiments). 

4.1 

This subject has been reviewed extensively in the past. The “spin-boson” problem, 
of a qubit coupled to a bath of oscillators, was reviewed in well-known articles by 
Leggett et al. 41 and in the book of Weiss13. The “central spin” problem, of a qubit 
coupled to a bath of spins, is reviewed in Prokof’ev and Stamp 14. For a comparison 
between the two, see ref. 45. Not so much has been done on the dynamics of a qubit 
coupled simultaneously to spin and oscillator baths (usually there is an obvious 
separation of time scales so that one bath is more important than the other); there 
is however a study in the context of nanomagnetic systems 26. 

One is interested in the time-dependence of the diagonal and off-diagonal ele- 
ments of the qubit reduced density matrix. The time decay of oscillations of the 

Main features of Single qubit dynamics 
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diagonal elements gives us the analogue of a TI measurement. The most interesting 
quantity is the decay time of the off-diagonal elements, ie., the analogue of T2, which 
tells us the decoherence timescale 74 (one often makes the identification T2 = 74, 
although this is only justified if the relaxation is rigourously exponential). What I 
will do here is describe in a semi-intuitive way the main results for the decoherence 
rate. 

Spin-boson model 

Intuitively the spin-boson model is easy to understand. The ground state of the 
system has the qubit weakly entangled with each oscillator. At T = 0 the qubit 
can relax to this ground state by giving up some energy t o  the bath - to do so 
requires that the bath have some spectral weight J ( w )  at the characteristic energy 
w = A of the qubit (with A already renormalised by the adiabatic coupling to  
high-energy bath modes). Decoherence can only arise if phase information can be 
exchanged between qubit and bath. At T = 0 this can again only happen via energy 
exchange - there is no room in the theory for decoherence from “zero point motion 
of the oscillators”. Thus decoherence and dissipation are intimately linked - this is 
actually inevitable in the limit where each bath mode couples weakly to  the qubit. 
At finite T thermal transitions in the bath obviously cause both dissipation and 
decoherence . 

In this model (recall eqtn. (13)) the worst source of decoherence is electrons, 
which cause “Ohmic” dissipation 1 3 3 4 ,  having a Caldeira-Leggett spectral function 
J ( w )  = r a w ,  where the dimensionless coefficient Q can either be measured, or 
evaluated from circuit parameters if it  is coming from circuitry 37,12 (in the case of 
magnetic qubits one could imagine measuring it in magnetic damping experiments, 
although the relevant theory has not been worked out). When a is small (weak 
decoherence) one has decay rates for the off-diagonal matrix elements given by 13: 

where the rate function y(E) is 

y ( E )  = raEcoth(E/kBT) (26) 

and E = (t2 + A2)1/2 with a renormalised tunneling matrix element A. The “deco- 
herence Q-factor” (telling us roughly the number of coherent interference oscillations 
before decoherence sets in) is then just given by Q+ = rA/F12. 

As already discussed in the case of SQUIDS and Cooper pair boxes, the Ohmic 
dissipation in these systems can be made very weak (recall that in the Delft experi- 
ments, a - implying that if the Ohmic contribution was the only dissipation 
source, Q4 - also). There is no Ohmic dissipation at all in insulators, like 
magnetic molecules we have been discussing. 

There are other “superOhmic” sources of decoherence (ie., with J ( w )  0: w k ,  
with k > l ) ,  coming from phonons and photons (where in this k = 3 in most cases). 
Generally in solid-state qubits J ( w )  from this sources is very small at the G H z  
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operating frequencies we are interested in, but they may become important if other 
sources of decoherence can be suppressed. 

To summarize - we see that if all we had to worry about were oscillator bath 
environmental modes, decoherence would be small, at least in well-designed SQUIDS 
or magnetic insulators. 

Central Spin model 

The easiest way to understand the dynamics of a qubit coupled to  a spin bath is 
to  go back to  the effective Hamiltonian (see eqtn. (20)). There are then 2 main 
sources of phase decoherence. 

(2)  Noise decoherence: The first is the noise term ?&((t), whose effect is stan- 
dard and fairly trivial - it causes a diffusive drift of the phase from its coherent linear 
evolution in time, and is easily handled mathematically (see books on random noise, 
or ref. 14. App. A). Two limiting cases are important. In the first, unimportant 
for qubits but important €or many experiments on magnetic molecules, the tun- 
neling matrix element A is so small that the noise bias &(t)  crosses the tunneling 
window (of energy width A) in a time << l /A,  giving the system almost no time 
to  tunnel. This “fast diffusion limit” 26,14 obtains when A: << F2TT’, where f’ is 
the typical width of a polarisation group.The resulting 1-qubit dynamics is then 
slow and completely incoherent relaxation. The relaxation rate, for a qubit with no 
applied longitudinal bias (ie., with E = 0; for results for E # 0, see ref. 14), is given 
by rN1 - As discussed in section 28, &is the range of energy bias over 
which the spin bath bias is effectively fluctuating, during the time scale of interest. 

Much more important for the present discussion is the “slow diffusion” limit, 
when A, is big, both much larger than <,, and with the frequency A, much higher 
than the fluctuation frequencies in the spin bath. In this case decoherence from the 
noise will be small, given by the slow phase wandering of the qubit caused by the 
slowly varying noise potential &(t) .  We then have a contribution 

to the inverse of the decoherence Q-factor, where we expect roughly that I?N - 
N e f f T T 1 ,  where T2 is the transverse nuclear relaxation time of the relevant nuclear 
spins (ie., those which are causing this noise), and Ne.r the number of these relevant 
spins. In Fe-8 at low fields T2 - 1 - 5 msec at T- 2 K for the most relevant 
protons 34, and presumably much longer at low T .  Thus we expect that I?N << 
lOkHz (this is of course a rough estimate). 

(zi) Precessional decoherence: In many papers it is assumed that all the deco- 
herence can be described in terms of some noise term F Z ( t ) .  In fact most of the 
decoherence usually comes from a quite different source, viz., the quasi-random 
precession of the bath spins in between transitions of the qubit, caused because the 
field on each bath spin flips between 2 orientations each time a qubit transition 
occurs. 

To better understand this, consider what happens to the k-th bath spin when 
the qubit field flips between the 2 orientations 7; and 7:( recall Fig. 5). Imagine a 
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Figure 8: Precessional dynamics in the spin bath. One intuitive way to look at precessional 
decoherence comes from looking at the precessional motion of the k-th bath spin in a field T k  which 
is flipping at random intervals between 2 orientations T i  and (with the mean interval N A;'). 
Each time the field changes, the spin begins precessing around the new field - accumulating phase 
it goes. In a path integral formulation of quantum mechanics, we would sum over all possible 
paths of this kind -the result is an uncertain accumulated phase. Averaging over this gives phase 
decoherence. 

path in a path integral for the motion of this pin, which for the sake of argument 
starts with the spin oriented along T l .  A typical path for the qubit will involve 
random flips between I 9) and I 4) (with average time interval - l/A, between 
flips). The effect on the bath spin dynamics is shown in Fig. 8. If we now integrate 
over paths, and sum over the bath spins, the result is lengthy to calculate 14,59 
but not so hard to  understand intuitively. The decoherence rate for this process is 
described by a parameter 6, which is related to the phase Q-factor of the qubit by 
Q g  = (provided of course that there are no other sources of decoherence). One 
finds the following results: 

(a) If either u! or w i  are >> A, ie., the qubit operating frequency is very low 
(as in, eg., Fe-8 in low applied transverse fields), then 

One can get the second result from the first by a duality, switching the roles of w! 
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and w t  in the derivation of the first (cf. ref. 14 ,  App. 2B). 
(b) If A >> w!,  w;, ie., high operating frequency (produced in Fe-8 by applying 

a strong transverse field, and in SQUIDS by using a low tunneling barrier), the 
problem is solvable either directly or, since we are now in the weak coupling regime, 
by mapping it to a spin-boson model 14,56. If in addition d >> E,, where E, = 
[ C k ( w ! ) z ] l / z  is the linewidth of the multiplet of spin states surrounding each qubit 
line (recall Fig. 5 ) ,  then 

TQ;’ + K = (Eo/A)’/2 (29) 

In the opposite case A << E, the qubit dynamics is incoherent (ref. 14, eqtn. (4.21)). 
The intuitive understanding of these results is as follows. The rapid changes of 

field acting on the k-th spin cause it to exhibit quasi-random precessional motion 
about a constantly changing axis. The decoherence rate is governed by K because 
this parameter gives a measure of the amplitude of random angular displacement 
on the spin sphere per period of the qubit - this is small if T l  and 7; are either 
nearly parallel or nearly antiparallel (the 2 cases for which results were just given). 
In fact K is measuring the accumulated random Berry phase of the spin, which when 
integrated out, gives decoherence. 

I emphasize that this decoherence can not be parametrised in terms of the in- 
trinsic environmental noise - it is a contribution to the environmental fluctuations 
caused by the coupling of the environment to the fluctuating qubit. Thus any calcu- 
lation of decoherence starting from the intrinsic environmental fluctuation spectrum 
(eg., a response function calculation) will necessarily miss this contribution. 

(iii) Non-diagonal contributions: Suppose that we were able to freeze out all 
intrinsic dynamics of the bath (thereby suppressing noise decoherence from the 
bath), and suppress precessional decoherence. Is there anything else left? The 
answer is yes - there is another kind of “off-diagonal” decoherence, arising purely 
from transitions in the environment induced during qubit transitions. To see how 
this works, consider again Fig. 5 .  As we saw, in general the motion of the qubit 
field acting on the k-th bath spin, between its two “static” orientations ?Land $, 
causes the bath spin to react - in doing so it will accumulate phase. Even if the 
2 static orientations are the same, the bath will still be perturbed provided ? k ( t )  

makes some sort of excursion during the time period of interest. The extra phase 
accumulated must of course be averaged over (“integrated out’’). The mathematical 
formulation of this (see refs. 14,27) gives what we called “topological decoherence” , 
since it involves averaging over the random topological phase of the bath spins. 
This decoherence can be parametrised by a number A, such that the coherence Q- 
factor in the presence of only this decoherence source is Qb = T / X .  In terms of the 
parameters of the original problem one has 

in the usual case where w!/R, << 1. 
Incidentally, one might guess by comparing (28) and (30) that there is a re- 

lation between topological decoherence and the precessional decoherence described 
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Figure 9: Typical path for a tunneling Qubit. A typical tunneling path for a qubit (shown 
here for a magnetic qubit, tunneling between states 1.91) and 1.92)). These paths include coupling 
to the environment, shown its interaction vertices. Diagonal couplings (D) are defined as couplings 
to .i, (ie., taking place while the qubit is in one of the “stationary states’’ I f i )  or I u)), and 
non-diagonal couplings (ND), occurring during transitions between the two, are to -?*. The wavy 
lines represent either oscillator or spin bath modes. 

by (28). Physically the connection is simple - precessional decoherence comes from 
bath transitions induced in between the qubit transitions, whereas topological deco- 
herence comes from bath transitions induced during the qubit transitions (cf. Fig. 9). 
The mathematical connection is also straightforward l4v5’. In both cases the deco- 
herence rate is coming from a product (over bath spins) of an “overlap squared” of 
form I(c~Lla?n)1~, for the k-th bath spin, where o? is an initial state for this spin, 
and o,f a final state. The relation between the 2 states is given by oLTLioinl where 
Tii = e-ia‘k’o‘k in the case of topological decoherence (compare equation (8) and 
the discussion immediately following it). In the case of precessional decoherence 
one has T f  = e-iPk6; in the simplest case; the parameter p k  describes the angular 
mismatch between the vectors TL and ?:, so that pkw; fw]l when L I ~  f w i  << 1, and 
the inverse of this when w,‘/wj >> 1. 

These are the main points that arise in the calculation of single qubit decoher- 
ence dynamics. The detailed calculation of this dynamics 13714,41 is complex because 
in general one has to deal with all the different decoherence mechanisms acting si- 
multaneously - however in most cases one or other of them dominates. To get a 
better feeling for how things work it is useful to return to  the examples of SQUIDS 
and magnetic qubits. 

Note that the next obvious step would be to look at the dynamics of M coupled 
qubits, emphasizing the problem of “disentanglement dynamics”, ie., the loss of 
coherence .in that part of the M-qubit reduced density matrix which describes the 
qubit entanglement. The interest of this is that the whole enterprise of quantum 
information processing depends on preservation of N-qubit phase interference long 
enough for, eg., a computation to be done. However very little in the way of realistic 
calculations have been done on this problem, apart from a few calculations for 2- 
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Figure 10: Coupling to spin and oscillator bath modes. The coupling strength g ( w , T )  
(discussed in detail in the text) between a qubit and various environmental modes - i t  is plotted 
here assuming w = k T ,  for a superconducting SQUID. The SQUID flux couples to phonons, (and 
photons), and electrons - a superconducting transition at 2K was assumed in this calculation 
(the residual Ohmic electronic term comes from a shunt resistance). The “nuclear spin” terms 
also include paramagnetic imputrities in the SQUID and substrate - for the purposes of this 
calculation we assumed E, = 3 x K. The difference between the strong and weak spin bath 
results is in the value of K that was chosen. 

qubit systems. This is undoubtedly one of the key theoretical problems facing the 
whole field - however I reluctantly leave it for another time. 

4.2 Application to  magnetic and superconducting Qubits 
One important aspect of decoherence in solid-state qubits can be understood very 
quickly if we try to  quantify the contributions to the decoherence rate coming from 
different energy scales. To do this we define a function g(u, T )  which takes the form 

g(u, T )  -+ J ( w )  coth(hu/2kT) (31) 

for an oscillator bath, and 
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for a spin bath in he usual case where precessional decoherence dominates. The re- 
sults are illustrated in Fig. 10, for the case kT = w ,  showing that decoherence from 
extended modes is worst at high energies, whereas the decoherence from localised 
modes is bad at low energies. As a general rule decoherence from extraneous noise 
sources (eg., l/f noise) will also be worse at low frequencies. What this means 
is that there is typically going to  be a “window” in energy space where decoher- 
ence is weak, at intermediate energies. We now look in more detail at this for 
superconductors and magnets - this is where we make contact with experiment. 

Magnet ic  Systems 

The best way to illustrate the results of the magnetic theory is to  pick a model 
example. We consider the Fe-8 molecule again, which is apparently well understood 
(cf. end of section 2A). As we shall discuss in more detail in the next section, one 
can vary A, over many orders of magnitude, going from completely incoherent 
behaviour for small A, to  highly coherent behaviour for sufficiently large A,. In 
what follows I will simply discuss the precessional decoherence contribution from 
nuclear spins - a complete analysis of all decoherence contributions is beyond the 
scope of this article. 

Taking over directly the results discussed in section 4A.2 for the central spin 
model, we see that to understand nuclear spin decoherence we must evaluate the 
noise decoherence from the fluctuating longitudinal nuclear bias, and the preces- 
sional decoherence from precession of the nuclear spins in between flips of the Fe-8 
molecule. The former was already discussed (see paragraph following eqtn. (27). We 
estimated a noise decoherence rate r N  << 10 k H z ,  provided the tunneling matrix el- 
ement A, was large. However in low fields in Fe-8, the opposite is true; A, - 2 k H z  
or less, and the dynamics is predicted to be completely incoherent 2 G , 3 0 3 3 1 .  Thus it 
makes little sense to  look at  the low-field precessional decoherence, except that in 
the detailed theory for an ensemble of tunneling molecules, the value of <, depends 
on it. Since we are only here concerned with single tunneling molecules, we do not 
go into this. 

In experiments in low fields on Fe-8, it is found that the molecular dynamics 
in the quantum regime is relaxational, and is clearly incoherent - relaxation rates 
are 0: lA,12/<o. Detailed reviews of the low-field experiments on Fe-8, and other 
molecules in the quantum regime, have been given The results agree rather 
well with the theory of incoherent tunneling mediated by nuclear spin.?-6,30v31. 

From these remarks it is clear that if one is to  see coherent qubit behaviour in 
such molecules, one requires either a much bigger zero-field tunneling splitting A,, 
or else A, has to be increased using applied transverse fields. There are a couple of 
experiments which claim evidence for coherence in magnetic molecules - we look at 
these in section 5A, once we have had a chance to  see how decoherence rates vary 
with applied field. 
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Superconducting systems 

The experimental picture in superconducting qubits is evolving very quickly at the 
moment - anything I say here will certainly be out of date in the next year. Thus I 
simply give a quick look at the sort of numbers that appear, and what are believed 
to be the main decoherence mechanisms. 

The first experiments to see qubit dynamics, with values of Q+ eventually reach- 
ing several hundred, were those of Nakamura et al., in Cooper pair box systems 6,7. 
In these experiments the charging energy E, - 1.3 K and EJ - 0.6 K, but both 
could be changed. The decoherence time for coupling to electrons could be fixed 
using a junction resistor to be - 6 - 8 nsecs, and the photon-mediated decoherence 
time was considered to be msecs. However it was found in "charge-echo'' experi- 
ments (the analogue of spin-echo experiments for spin-1/2 nuclei) that the actual 
decoherence time was a few hundred psecs, roughly 30 times shorter. It was then 
shown that this could probably be correlated to l/f noise in the system, which 
probably arose from coupling to charge defects 39, although in the absence of any 
direct knowledge of these defects or their concentration, it is hard to be quantitative. 

Shortly after these experiments, indirect evidence was found in flux-tunneling 
SQUIDS for coherent dynamics '. In this case the tunneling matrix element A, - 
50 mK.  Initial expectations were that very high Q coherence should be seen, 
because the coupling to electronic excitations was very weak - the dimensionless 
Ohmic coupling to electrons was ~ s i m l O - ~ ,  implying Q+ - lo7 for kT < A,,. A 
very different result was found - although these experiments never measured Tz 
directly, the linewidth in microwave absorption experiments indicated that Q+ was 
more like 10-20, ie., a decoherence rate r+ - 100 M H z .  

This huge discrepancy may have several causes. Noise decoherence can arise 
from flux motion in, eg., the superconducting magnet, or from critical current fluctu- 
ations in the junction. One must also have decoherence from nuclear and paramag- 
netic spins in the SQUID and substrate. The parameters {a,'} and {a!} are defined 
for the SQUID in the same way as for magnetic systems, except that crystal fields 
acting on paramagnetic impurities must also be included - if these are strong, the 
impurity behaves as a 2-level system *' at low T. The strengths of these couplings 
have been analysed elsewhere, for various geometries 14,45,46,47. Unfortunately it is 
difficult to estimate them for a given sample - however we do know 2 things. First, 
a: >> w l ,  even in zero applied field - the  quasi-static fields between spins (- several 
Gauss) are much larger than the field generated by the SQUID supercurrent 14,45. 

Second, the spins will be almost frozen - the paramagnetic spins by the much larger 
crystal fields, and the nuclear spins by the random fields from paramagnetic im- 
purities - and so noise decoherence from the spin bath can be neglected. Then in 
low fields, where at , a!<< A, the decoherence rate can be calculated in terms of 
measurable parameters - one has K = (Eo/A,,)'/2, provided E,,< A,, (otherwise 
there is no coherence at all); compare eqtn. (29). Application of this result to the 
Delft SQUID experiment 60, using the known sample geometry and concentration 
of nuclear spins and paramagnetic impurities in the system, indicates that one may 
account for - 50 M H z  of this decoherence rate, mostly coming from paramagnetic 
impurities. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



71 

Very recently, a very interesting preprint has appearedg which combines various 
features of the Cooper pair box and SQUID designs, to give a very high Q-factor 
of roughly 25,000. The essential novelty here appears to be that one can remove 
the strictly linear couplings between the environment and both the charge and flux 
coordinates of the Q-bit, by sitting at a “symmetry point” in the combined space. 
This then leaves much less significant quadratic couplings, which do not appear 
in the theory discussed here. It seems likely that such designs will open up new 
experimental lines of investigation - note that such a high Q-factor may be enough 
€or error correction to  make multi-qubit computation feasible. 

5 Suppressing Decoherence 

Since the major problem facing any solid-state based quantum information processor 
is decoherence, what ways can one think of to  suppress this? Various ideas have 
been discussed - they all rely in some way on the removal of environmental modes 
€rom the frequency range of operation of the qubits, and/or suppression of their 
coupling to the qubit. We consider first magnetic and superconducting systems, 
and then make some general observations on error correction and “decoherence free 
subspaces”, 

5.1 

There are several really obvious ways of suppressing decoherence in magnetic sys- 
tems. The first thing to do is eliminate external noise sources - this is usually done 
with superconducting screening, but there is the risk here that random vortex mo- 
tion in the superconductor will cause field fluctuations at the magbit sites. Since 
this kind of noise is eztrinsic, I will not discuss it further here - the theorist can 
not say too much useful about its elimination. 

Next on the list is decoherence from phonons and electrons. As indicated pre- 
viously, even if a nanomagnet is conducting, the electronic energy levels will be 
strongly gapped if the nanomagnet is small enough, and decoherence from the spin- 
electron coupling exponentially suppressed (at least inside the nanomagnet). The 
coupling to any conduction electrons outside the nanomagnets is suppressed by hav- 
ing very high effective impedances for these electrons. Of course, if our magbit is 
an insulator, we can ignore electronic decoherence. The phonons can be a problem 
- their contribution to  decoherence rises as the 3rd power 26 of the qubit operating 
frequency A,, and should be included when A, is large. In this pedagogical article 
we will ignore their contribution (but see ref. 35). 

Moving now to  localised environmental modes, the most important source of 
intrinsic decoherence is nuclear spins. If isotopic purification is feasible, we may 
remove as many of the dangerous nuclear spins as possible. In some magnetic 
systems Nature has already done a lot of the work for us - only 2.21% of natural 
F e  nuclei are 56Fe (with spin 1/2), and 1.14% of Ni is 61Ni (again spin 1/2); all 
other stable isotopes are spinless. In nanostructured clusters or particles, made 
solely from magnetic elements, nuclear spins will then be fairly easy to  remove. In 
many molecules the main problem will be H nuclei, none of which are spinless - 

Decoherence Suppression in Magnetic Systems 
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however there is no particular reason why one cannot find a high-spin insulating 
molecule without H ions. 

Experimentalists may object here that isotopic purification is an expensive and 
imperfect technique - one can never completely expunge all nuclear spins from 
a sample. Since even a few nuclear spins can be very dangerous for multi-qubit 
coherence, let us consider the effect of applying a strong transverse field on spin 
bath decoherence 35. It is important to  consider a realistic example here, and so 
I give details for the well-studied Fe-8 molecule. Recall this system was already 
described at the end of section 2A (see also Fig. 6). We imagine applying a field 
H: perpendicular to the easy axis and along the hard axis - as already noted, and 
shown in Fig. 2, the effect of this is to drag the 2 qubit states 1 f i)~: and 1 J,!-)H2 
towards each other on the Bloch sphere. The 2 lowest energy eigenstates of the 
system are produced by tunneling between these states. 

A corollary to this has been the focus of some attention since it was first dis- 
cussed by Bogachek and Krive‘l. As these authors noted, interference between the 2 
tunneling paths shown in Fig. 2, means that there will be a kind of Aharonov-Bohm 
effect in spin space. This arises because, as is well known, the transition amplitude 
between 2 points on the spin sphere can be written in path integral language as 
equivalent to the dynamics of a particle of charge q = hS moving on its surface, 
along paths with unit vector coordinate n(t). These are viewed as spin paths via the 
correspondence n(t) = S( t ) /S .  The charge couples to  a “potential” H,(S) (the spin 
Hamiltonian) on the sphere, and also to a fake magnetic field from a unit monopole, 
situated at  the centre of the sphere. The total tunneling amplitude is then the sum 
of that coming from the 2 tunneling paths, ie., 

where 2p = Sw is just the Berry phase enclosed by the tunneling paths, produced 
by the sum ( - z ip  + e-i‘+‘). The term A,(H:) is the tunneling amplitude along each 
path ignoring phase effects, and f p  the phase along each path. The quantity w 
is the solid angle enclosed by the tunneling paths on the sphere - the Aharonov- 
Bohm oscillations are occurring simply because this area is decreasing as we raise 
the transverse field (compare Fig. 2). If H: is rotated away from 2,  then the 
contributions from paths 1 and 2 are no longer equal, indeed Jp11 # Jp2Jr and 
[A;) # A?’. Then one path is favoured over the other, and the oscillations are 
gradually lost as one rotates away from 2. 

All of this physics is shown in Fig 11. We notice not only the oscillations in 
the tunneling splitting in low fields, but also the enormous rise in IA,(H:)I as 
we increase the field above about 2 T.  I emphasize that at such high fields this 
completely changes the picture we saw in Fig. 1 - instead of being very small, the 
qubit operating energy A,can now be much larger than the characteristic nuclear 
energy scales (this will certainly be the case in the Fe-8 system, as we see below), 
thereby radically altering the decoherence dynamics. 

The other important thing that happens in a field is that we alter the dynamics 
of the nuclear spins. If all external fields are strictly zero, then w i  = 0 for all 
nuclear spins - this would imply no precessional decoherence at all! However even 
very small applied fields will change this, since they will compete with the very weak 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



73 

0 1 4 5 

Figure 11: Field variation of Tunneling splitting in Fe-8. This plot is calculated by di- 
agonalising the model Hamiltonian N O S  = [-DSf + E s z ]  + K:(Sf: + St) - gpsH$ S, with 
the values of D ,  E ,  and K: taken from ref. lo. The applied transverse field is at an angle 4 
to the in-plane hard axis. The modulus lao[ of the tunneling splitting is given in Kelvin energy 
units, and field in Tesla (one should compare the results with the energy scales given in Fig. 1) .  
Aharonov-Bohm oscillations for small 4 are caused by phase interference between the 2 tunneling 
paths (see text). 

hyperfine couplings of some of the far-flung nuclei in the molecule. As we continue 
to  raise the field, more and more of the nuclei will start to  give strong precessional 
decoherence contributions. 

In much stronger fields, we slowly freeze the dynamics of the nuclear spins. The 
diagram in Fig. 4 shows what must happen - the strong field makes wk very large, 
and since w! is only weakly affected, this forces the steadily increasing 7; and 7: 
to  lie almost in the same direction, along the field. Actually LJ! slowly decreases 
as H," increases - it is a measure of the change in the hyperfine field on the k-th 
nucleus when the molecular spin flips between the 2 low energy states I 9 (H,")) and 
I $ (H,")) ,  but because the orientations of these states are approaching each other, 
the difference in these 2 hyperfine fields is correspondingly decreasing. The rapidly 
decreasing angular separation of TL and 7: means that the essentially random phase 
precessional motion of the bath nuclear spins, caused by the tunneling dynamics 
of the molecule: is decreasing very rapidly in importance with increasing field, so 
that the decoherence from this is also rapidly decreasing (recall the discussion in 
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section 4). 
We may then summarize the situation as follows. In a small field the preces- 

sional decoherence will quite rapidly switch on. Quite how fast this is can be seen 
in Fig 12(a), where we see that even in a field of - 100 G, precessional decoherence 
will completely kill any coherent dynamics of an Fe-8 qubit. This merely substan- 
tiates the remark made in the last section, that in experiments conducted so far 
in low fields, the dynamics should be incoherent (in all low-field experiments on 
crystalline samples, intermolecular dipole fields were typically N 200 G at least; 
this quite apart from noise decoherence, which we saw was already sufficient at  low 
fields to cause incoherent relaxation in these systems). 

At much larger fields we now see that 2 effects will occur - a very rapid increase 
in the operating frequency A of the qubit, and a rapidly decreasing decoherence rate 
T+ '. Both of these effects operate in our favour, since the qubit coherence Q-factor 
is Q+ - r+A. The net result is a massive increase in Q+ in transverse fields greater 
than 2 - 3 T ,  shown in Fig.lB(b); in fact we see that for fields greater than 3 T ,  we 
have Q+ - lo6, enough apparently for quantum computation to proceed. 

At high fields we must also include noise decoherence, coming both from exter- 
nal noise sources and from internal spin diffusion in the nuclear spin subsystem. At 
this point I again assume that extrinsic noise has been suppressed by experimental 
tricks, and consider the effect of the nuclear spin diffusion. This problem is of some 
theoretical interest ", particularly in a high applied field, where the nuclear spin 
diffusion will involve flip-flop processes amongst spins almost frozen by the field. 
In this case it makes sense to redefine the polarisation groups, introduced near the 
end of section 2A, by defining the polarisation along the external field rather than 
along the nanomagnetic easy axis. In sufficiently high field the nuclear system will 
then be confined to a single polarisation group of this kind. 

The crucial question is then how fast is the diffusion inside one of these pcr 
larisation groups. This is a hard question to answer theoretically, and can only 
be definitively settled by experiments (eg., by measurements of the nuclear T2 in 
Fe-8 in fields above 3 T) .  However our preliminary c a l c ~ l a t i o n s ~ ~  indicate that the 
characteristic timescale for nuclear diffusion at these fields may be as high as 1 sec. 
If this is true then it would give a contribution - 10-l' t o  Q;', and this can be 
completely ignored. Even if the fluctuation timescale were in the msec range, this 
would still give a contribution to QT1 in the range lo-' - lop6, which does not 
compete with the precessional decoherence just discussed. 

Thus the theory indicates pretty clearly that a very good place to look for long- 
lived coherence in magnetic molecules is in high transverse fields. On the other 
hand there seems to be no point in looking for coherent dynamics at lower fields 
(at least not unless the field can be dropped to a small fraction of a Gauss - which 
rules out experiments on crystalline arrays of molecules, where the intermolecular 
dipolar fields are hundreds of Gauss). 

We can also understand now why coherence should not have been seen in any 
experiments done so far on Fe-8; none of these have gone to high enough fields. 
Actually one experiment on a non-oriented powder of Fe-8 molecules6' has claimed 
evidence for coherence, but this has not found general acceptance - no other exper- 
iments have confirmed it, and the averaging over orientations was done incorrectly 

- 
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1 lE+2 E+l 2(a) 

1 E+O - 1  
57Fe +’ H +796r +14N +’k + 170 

o + o o + ‘H +796r +14N +13C + 1 7 0  

’ H +796r +14N 
H +’%r +14N +’* 

’H 
1E-3 . 

1 E-4 

1E-5 , 1 i  
0.00 0.01 0.02 0.03 0.04 

HI(T) 

K 1 E-2 

1 E-4 

1 E-5 -:i 1 E-6 

1E-7 - 1 , 1 , , , 1 , , 1  , , , I , , I I ,  1 1 , , , 1 , , 1  , , I , , I , , ,  , , , I , , , I ,  

0 1 4 5 

Figure 12: Field dependence of K ( H $ )  in Fe-8. In Fig. 12(a) the precessional decoherence 
parameter &(Hf) is shown for small H:, where H,’ is applied transverse to  the easy z-axis, and 
the azimuthal angle q5 is defined as in Fig. 11 relative to the hard axis. Results are computed from 
eqtn. (28). The different combinations of nuclear isotopes are as indicated. 
In Fig. 12(b) we see the results in large transverse fields, calculated from (29), where the field is 
freezing the nuclear spin dynamics, and A, is now large. The calculation is done for the optimal 
isotopic distribution, giving the lowest decoherence rate, with natural occurring isotopes, except 
that all the Fe is 56Fe, and all protons are substituted by deuterium. Results now strongly depend 
on q5 (via the angular dependence of Ao(q5)). Notice that in these high fields the 2 spin orientations 
ST and Sl are pulled towards each other (compare Fig. 2). However even when Hf4.7 T, these 
2 orientations are separated by an angle N 2 6 O .  
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(see ref. 49 in ref. 15). A more likely explanation of these results is that an ordinary 
EPR spectrum was being observed. One should also note the claim by Awschalom 
et al. 63 to have observed coherence in ferritin molecules. However this has been 
widely disputed, on theoretical and experimental grounds, in at least a dozen pa- 
pers, and has not to my knowledge been confirmed by any other group. 

5.2 

As discussed in section 4B.2, decoherence in superconducting qubits has many 
sources. Until very recently it looked as though it was going to be quite tough 
to control this. The most obvious strategy in SQUIDS, to suppress decoherence 
from paramagnetic and nuclear spins, is purification of the system. It can also be 
shown that reduction of the volume of both SQUID and substrate will cut down 
on this sort of decoherence 47. Finally, if one is prepared to use N b  SQUIDS, 
the application of strong external field (which would be applied transverse to the 
ring plane, so as not to change the flux threading the ring)-could be _used. Then 
the paramagnetic impurity Zeeman energy w i  can exceed A (eg. if A = lGHz, 
as in the Delft experiments, this happens when 1H.l > 500 G). If w i  >> A, 
we then have the very interesting situation where K(H,) is given by (28). In 
this case we see immediately that the paramagnetic impurity contribution to K 

is K~ - Np(h+/H0)2/2  N ( E , / w , ( H , ) ) ~ / ~ ,  where h+ is the field generated by the 
SQUID supercurrent on a typical impurity, w, the Zeeman energy of the impurity 
in H,, and Np the number of impurities. Thus consider a situation where ring and 
substrate yield a total Np - lo1’, with E, - 100 M H z  in frequency units, and 
A = 1GHz. In low fields one has K~ - 5 x However, once lHol >> 500 G, we 
find nP - 10-5/B2, with B, = p H ,  defined in Tesla units - i.e., if the external field 
exceeds 3 T we have K~ < 

As already noted in the last section, a more interesting strategy for decoherence 
suppression in superconducting qubits has been devised in a recent preprint by 
Vion et al. ’. It will be interesting how to see how this can be elaborated for 
superconducting multi-qubit networks. 

Decoherence Suppression in Superconducting Systems 

5.3 

A few years ago it was widely suspected that decoherence in solid-state systems 
would be prohibitively high, so high that quantum computation would be impossi- 
ble. We now see that there is reason for some optimism - both theory and experi- 
ment indicate that decoherence can be understood and suppressed, at least at the 
single-qubit level. 

Actually there are other reasons for optimism. So far I have only discussed 
“passive” forms of decoherence control - but work in quantum information theory 
has also come up with active schemes for either preventing or suppressing dece 
herence in quantum networks. The 2 schemes most relevant to solid-state qubits 
are (i) error correction protocols 64, and (ii) the isolation of “decoherence-free sub- 
spaces” 65!66. Both of these are still largely untested experimentally (although there 
has been some work67), but hold great promise for the future. 

General Remarks; Active decoherence suppression 
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Error correction has been discussed in some detail in the literature 17y1’; it 
is an active decoherence suppression mechanism in that the errors resulting from 
decoherence are rejected - the decoherence still takes place. As far as I know no 
attention has been given to  its application to solid state systems. This will not be 
a trivial problem - although the formal description of error sources and correction 
is fairly straightforward, in reality it is obvious that any error correction must be 
implemented by some “circuit”, whose time-dependent coupling to  the information- 
processing system of interest will be itself a source of decoherence, and which must 
be understood. Moreover errors in a multi-qubit system cannot be understood by 
isolating errors in each qubit - decoherence in the M-qubit density matrix can only 
be fixed by correction schemes acting simultaneously on all M qubits. 

For this reason the use of decoherence-free subspaces, before error correction 
routines are implemented, may well be quite important. The idea, somewhat fa- 
miliar from NMR, is that the environment often couples very weakly to certain 
“quasi-conserved” combinations of operators referring to the qubits. Thus, if the 
system can be prepared so that it is in a subspace of the total Hilbert space where 
the environment acts trivially (or almost so), ie., as the unit operator, there will be 
little decoherence. The simplest way to  implement this “decoherence prevention” 
idea arises if the relevant environmental decoherence mechanisms act in the same 
way on all qubits65@. Then it is clear that the coupling of the environment to  
symmetric sums of operators acting on the qubits will be zero. The scheme is then 
implemented by preparing the multi-qubit system at t = 0 in a decoherence free sub- 
space, so that it stays there during the computation. It is further argued that any 
residual coupling terms (which would cause this scheme t o  break down) can have 
their effects suppressed by pulse sequences68, which in effect reverse the effects 
of the environment (an idea also familiar from NMR). Thus, eg., one can imag- 
ine schemes in which precessional decoherence from the spin bath (section 4A.2) is 
eliminated simply by reversing the applied field, so that the bath spins reverse their 
dynamics. 

Of course things are not quite so simple. In the first place many environmental 
decoherence mechanisms will not act in the same way on each qubit (for example, 
different qubits will usually couple differently to  the same spin bath, or even to  
different baths, and external noise sources may not couple symmetrically to  all 
qubits). In this cause even elaborate (so-called “bang-bang” 68) pulse sequences 
will not do the trick. However the idea is that one removes a lot of decoherence in 
this way, and then use “concatenation schemes” in which such schemes prepare 
the way for active error correction. I t  is clear that a lot of work must be done 
to work out a realistic theory for such schemes (ie., a theory that applies to real 
solid-state qubits), but it seems very promising. 

6 Fhture Prospects 

Let me here stand back and address one of the more controversial issues that came 
up during this Delphi meeting. 

From the technical point of view, there does not seem to  be any fundamen- 
tal obstacle in making a coherent solid-state qubit - it has already been done for 
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superconducting qubits, in several experiments 6 1 7 , 8 , 9 ,  in one of which a very low 
decoherence rate was found. I am confident that when experiments probing the high 
frequency dynamics of magnetic molecules like Fe-8, or similar nanomagnets, are 
done at high transverse fields, the same success will be achieved. If one then believes 
the claim that, eg., error correction will then allow multiple qubit entanglement and 
computation, then we should be in business in perhaps a decade. Interestingly, at 
this conference the opinion was expressed by many from quantum optics that, al- 
though experiments on entanglement and quantum control in this field were “some 
20 years ahead” of the work in solid-state physics, the scalability of solid-state de- 
signs meant that in the long run the future of quantum communication lay in this 
direction. It will be intriguing to see if this turns out to be the case. 

However a much deeper question is quickly forced to the surface in discussions 
of quantum communication with solid-state systems, concerning the existence of 
genuine macroscopic quantum states. I t  is curious that this question should have 
been broached here in Delphi, since we are told that 2500 years ago, travellers from 
all over the Hellenic world came here in search of wisdom (apparently the nature of 
the advice varied from season to season, since some say that Apollo relinquished his 
oracle in the winter months to Dionysius). It is often asserted that modern science 
and philosophy are but footnotes to this legacy - that all modern ideas are just 
sophisticated elaborations on those of the ancient Greek philosophers. 

However, as every physicist knows, just 76 years ago the discovery of quantum 
mechanics forced a completely new world-view upon us, involving non-locality of 
states and information, and entanglement (this being part of the legacy of Einstein 
and Schrodinger 70,71). This revolution in our understanding, from sub-nuclear 
to cosmic scales, is frightening in its proportions, and surely unanticipated in all 
previous human thought. Could a latter-day Plat0 could also come to live with it? 
Perhaps - but my guess is that this would only be if entanglement and non-locality 
were assumed to exist solely at the atomic or molecular level (albeit over large 
distances), ie., far from the world of humanly sensible phenomena. 

However this is not at all what the theory and experiments on solid-state qubits 
are telling us! Instead of ineffable massless photons, or tiny molecules, one is dealing 
with superpositions of macroscopic states of large solid objects. The problem of 
course is that such quantum superpositions at  the human scale are felt by many 
(including some at this conference) to be fundamentally incompatible with our idea 
of physical reality, as understood at least since Hellenic times. 

This issue is fundamental to the future of large-scale quantum computation 
and quantum communication. I should therefore like to emphasize one thing. This 
is that so far nothing has been found, either theoretically or in experiments on 
superconductors or magnets, to indicate that we cannot use quantum mechanics to 
discuss the entanglement of macrosocopic systems, including solid-state qubits, in 
quantum state superpositions, along the lines described in section 2A.1 (following 
eqtn. (2)). Given the deep questions raised by the extrapolation of quantum theory 
to large scales, it is obviously very interesting to search for deviations from the 
predictions of quantum mechanics 41. However it is certainly incorrect to assert 72 
that quantum theory does not permit such extrapolation - in fact the theory which 
has been used to predict large-scale quantum phenomena in superconductors and 
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magnets, including decoherence mechanisms, is entirely quantum-mechanical. 
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DISCUSSION 
Chairman: A .  Zeilinger 

L. Stodolsky: You didn’t mention the experiment of Nakamura. 
P. Stamp: I would have done if I had the time, I have a lot of slides and in fact 

I can spend a lot of time on it. Nakamura was the first to make a superconducting 
qubit that showed coherent oscillations in the off-diagonal density matrix elements 
and some of the work has not yet been published. He is the first to measure directly 
the noise decoherence rate in these systems and he has actually shown that it is 
1/ f noise, and seems to be coming from localized modes inside the Cooper pair box 
or in the surrounding circuitry, which are just charge defects. These are defects 
which can tunnel between two adjacent sites. Therefore the dipole moment associ- 
ated with image couples to the charge in the Cooper pair boxes. These are really 
extraordinary experiments and the only point is, of course, that they are not doing 
it with macroscopic number of Cooper pairs. In the paper that I mention about the 
direct measurement of decoherence there is an analog with spin echo experiments, 
they see “charge echoes”. Basically he is looking directly at the analog of the nu- 
clear Tz time. This is the design. We have here a superconducting box, and there 
are gates which allow Cooper pairs to tunnel on and off. The gates themselves are 
superconducting. The system is sufficiently small that its capacitance is very small, 
so the Coulomb charge gap is similar to the superconducting energy gap to excited 
pair states. Here is the level structure. Then by applying an external field you can 
essentially produce a qubit. What he did is, by applying pulse sequences analogous 
to what one does in a spin echo experiment, he observed directly decoherence. Here 
he shows that it is associated completely with l/f noise, presumably associated 
with the charge defects. 

I. Cirac: You mention the gap argument, could you quickly repeat the idea? 
P. Stamp: Sure. Let me first start with an older argument, I am not sure 

from where it originated, but it has been around for a long time. This old argument 
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says you cannot have macroscopic superposition because no matter how precisely 
you define the Hilbert space of a macroscopic state, an enormous number of mi- 
croscopic states are associated with it, say lo5’, which is what apparently David 
Bohm estimated in 1950 (although this is way too small, there are more nuclear spin 
states in a single magnetic nanomolecule!). Therefore, we are told, it is impossible 
to have such a superposition, because no way could one control the evolution of the 
system between all these microstates. Note that the old school argument suffers 
from a fatal weakness - it never tells you any details, it is a kind of a “bla-bla” 
argument. If you now have a look at  superconductors or magnets, you find that 
the collective coordinates that you are interested in, say flux in a superconductor 
or total electronic spin in a magnet, are mostly coupled to degrees of freedom hav- 
ing an energy gap. For superconductors that obvious, that is the superconducting 
gap, and in magnetic systems you have the spin gap. Now you ask the following 
simple quantum mechanics question. Suppose I make a slow change in the effective 
potential acting on all those gap excitations, coming from the interaction with the 
slowly-changing collective mode. You can think of this collective mode as a kind 
of large soliton if you want. Think of the problem of a quantum soliton interacting 
with a gas of excitations which has a gap. You now see that the perturbation on 
those gap excitations is exponentially small in a parameter which is the ratio of 
gap energy over rate of change of the effective potential, in suitable units. That’s 
one reason why the perturbation of the gapped excitations is so small, even though 
there is a huge number of them - that is what I mean by the “gap argument”, which 
completely invalidates the earlier “old school” argument. Of course there are also 
some low-energy excitations below the gap- these are localised excitations which are 
described by the spin bath model, are not perturbed quasi-adiabatically, and which 
are potentially very dangerous. But to evaluate their effects you need a detailed 
theory, not vague remarks about the dimension of their Hilbert space. As I have 
discussed, it ought to be possible to suppress the decoherence from them as well, 
eg., by applying strong transverse fields. 

L. Stodolsky: I want to make a remark and a question. About why deco- 
herence is often not as bad as you think. As you’ll see in the formulas represented 
in my talk, not all outside disturbances lead to decoherence. This is a common 
misconception, that every time you hit something it gets decoherent. If you have a 
two-states system, the external influence has to, in some way, disturb the two states 
differently. For instance, we find in our original work on optically active molecules 
at  low temperature that only one in 10 000 collisions actually destroy the coherence. 
Our formula gives that qualitatively to show this. Therefore, don’t think that every 
time something hits your system it will be decoherent. 

P. Stamp: Well, I don’t know who does think that! It is true that in the 
early days of discussions about quantum measurements, people talked naively in 
this way about decoherence. But I think it’s fairly obvious from what I said that 
some kinds of interaction are much more dangerous than others - I mean, the point 
you made about them having to distinguish between the 2 states is of course well 
known. I guess I covered this in my last answer - there is no substitute for a proper 
calculation. It should also be a calculation applicable to real systems - I guess we 
all agree there are too many misleading toy models in the literature. 
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DECOHERENCE, PURIFICATION AND ENTANGLEMENT 

E.C.G. SUDARSHAN 
Department of Physics and Center for Particle Physics University of Texas, Austin, 

Texas 78712-1081 * 

A pure quantum state is a projection on into linear space of quantum mechanics. 
But this may become, through a quantum stochastic map, a convex sum of pro- 
jections (and hence an impure state) by decoherence. This is not a superposition. 
To get superposition we need to restore phase relations and that involves a fidu- 
cal projector. As this projector varies the various possible coherent combinations 
of the components of the mixture may be obtained. By a further application of 
this method the quantum entanglement between two subsystems can be restored. 
These methods can be used to maintain long term phase relations by the state 
being repeatedly processed by purification with possible applications to storage 
and processing information in quantum computing. In particular from separable 
or partially separable states we can obtain a purely entangled state. 

1 Pure and Impure States: Density Matrices and Mappings 

There are two ways of specifying a (pure) state of a quantum system. The first 
version associates with every quantum state a vector of unit norm in a complex 
inner-product space ’. This is an overcomplete representation since the (absolute) 
phase of the state vector is irrelevant; we are in fact dealing with ‘rays’. But if 
we have to superpose two pure states to form a pure state, the relative phase of 
the two state vectors is relevant (but their absolute phases are not). This method 
of representing states by vectors has another shortcoming in that it cannot repre- 
sent mixed states. These can only be represented by assigning probabilities to  a 
collection of states and averaging over all relative phases. 

To surmount these shortcomings another method is to  associate a pure state 
with projections in the complex inner product space ’. There is no redundant phase. 
The impure states are formed by convex combinations of such projections. These 
states correspond to a normalized nonnegative linear operator called the density 
matrix rather than to rays. Any mechanism of corrupting the relative phases in a 
superposition is a process of ‘decoherence’. The decoherence phenomenon of pure 
states into mixtures can be easily treated in terms of density matrices by looking at 
it as an instance of a broader class of linear maps acting on a pure density matrix. 
Such linear maps of density matrices has been studied under the title of (convex) 
stochastic maps and will be discussed in section 4. 

Given a coherent superposition we can decohere it partly or totally to  get an 
impure state density matrix. We may raise the reverse problem: given a mixed 
state, can we restore the relative phase? In particular, can we make a pure state 
but with the same probabilities? 

*sudarshan@physics.utexas. edu 
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2 Purification 

It is remarkable that this can be done by a simple protocol called ‘purification’ 
originally pointed out by Schrodinger ’. We first illustrate it in the mixture of two 
orthogonal states: 

P’ = PlPl + P2P2 

Now we use the construction 

It is easily verified that this is a pure state. II is a projection which is not orthogonal 
to p1 or p2. As II varies so does p, and the relative phase depends on the choice of 
II. We can show that any desired phase can be so obtained. 

For a mixture of more than two projections we need only to  generalize the 
formula above: 

We shall extend the purification of a separable density matrix of a bipartite system 
to .restore full quantum entanglement. 

3 

Now that we have seen that there exists a simple way of restoring the coherence in 
a mixed state we can take a closer look at the process of decoherence itself. First let 
us consider how from a Hamiltonian system we could derive (irreversible) stochastic 
maps. For clarity we start with a two-level system with states I 1) and I 2) and a 
time-independent Hamiltonian 

Stochastic Maps from Hamiltonian Systems 

If we choose the term proportional to v as the interaction part of the Hamiltonian, 
then in the interaction picture the Hamiltonian becomes time dependent 

Under this ‘perturbation’, the states I 1) and I 2) are no longer stationary but 
undergo Rabi oscillations. There is no decoherence. But if we take times small 
compared with v-’ and compute only the probabilities for the states I 1) and I 
2), we find a decoherent evolution. When we generalize this to  a system with 
many frequencies which are small integral multiples of a single frequency, we get a 
collection of partial revivals reminiscent of Talbot’s bands in optics. The problem 
of the time dependence of an arbitrary state of a free particle was studied by W. 
Schleich and collaborators (called a “quantum carpet”) ’. The relative phases 
endure naturally, and they are essential in the buildup of the Talbot resonances. 
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Qualitatively new features obtain when a discrete energy state is coupled to  a 
continuum of energies. This is the model studied by Dirac (which has had rein- 
carnations as Friedrich’s model, the Lee model and the Jaynes-Cummings model) 
to formulate the semiclassical theory of radiative deexcitation of an excited state of 
an atom. The amplitude for transition from the discrete state to the continuum is 

h(a“, a’) = (arqv*(t‘)la‘) = {a‘yvl&) &E”-E ’ ) t ’ ,  ( 5 )  
where 1 0 ” )  is the discrete state and la‘) is a state belonging to the continuum. If 
we wait for a small time t the amplitude for transition is 

The discrete state at t = 0 becomes a superposition ( n o t  a mixture) of the contin- 
uum states. 

This state is a pure state whether t is positive or negative. This transformation 
is unitary and reversible. If, following Dirac, we ask for the probability of a state 
with continuum energy and we have the probability density 

p ( a ’ r )  a’) da‘ = Ih(Q”, a’)(* da‘. 

By integrating over the frequency and making some approximation appropriate 
for not too small a time, he deduces a decay probability proportional to  time t 
(with t > 0) .  So we see that the irreversible process is due to  decoherence that is 
introduced when we look at the probabilities (with the relative phases being lost) 
rather than due to the interaction itself! 

This conclusion is dramatically demonstrated if we start with a continuum su- 
perposition for t = - I t’ I. In other words we take as our intial state corresponding 
to  t = 0, that state which is obtained by evolving the original discrete state back- 
wards in time for It‘] seconds. Such a state would recombine to become the excited 
discrete state precisely when t =I t’ 1. 

This remark about the relative phases and the role of decoherence in some 
(apparently irreversible) processes is seen in the time development of a free particle 
with an initial state minimum uncertainty wave function 

= r + e - x 2 / 2  (x 2 1  ) = - 
2’  

Then under free particle evolution this Gaussian packet spreads. The new mean 
square position is 

Does this mean that a Gaussian packet always expands? Yes, if the wave function 
was real at time t = 0. But if we had a suitable phase eiHr$(x, 0), then the mean 
square position variable will shrink from t = 0 to  t = r and then start expanding. 
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This may be seen even more clearly if we look at  the wave function in the momentum 
space: the minimum uncertainty state is 

Then it will expand as time goes by since the wave function at time is 

So the wave function at an earlier time t = -r would have been 

This wave function contracts as time increases from -r to 0 and then expands. 

4 Decoherent Evolutions: Extremal Maps 

The decoherent evolution of a quantum system leads to a stochastic map which 
is a contraction of the convex set of density matrices which converge to  one (or 
more) fixed density matrices. In contrast, a unitary (reversible) evolution yields a 
map which takes the density matrices on to themselves, in particular a pure density 
matrix. The trace orthogonality of two density matrices p1 and p2 would not be 
preserved by a stochastic map 

tr(P:P;) # tr(PlP2) I 

t r ( ~ 1 ~ 2 )  = 0 - tr(p:p‘,) = 0 ,  

while the unitary evolutions preserve the trace orthogonality 

The stochastic maps themselves constitute a convex set ’. It would be of interest to  
construct the extremal set of such dynamical maps. The maps themselves satisfy 
the following propertites (repeated indices are summed over). 

Prs  + Brrt,sstPrTsf > 0 ,  (8) 
so that 

and may be parametrized in terms of the eigenvectors of B in the form 

Brrl,ssj = p ( a ) c r r t  (a)cisj (a)  > (11) 

where p(a )  may be positive or negative. If all the p(a) are positive, the map is 
said to be “completely positive” ‘. In this case the positive eigenvalue p(a) may 
be absorbed into the eigenmatrix C(a)  so that a completely positive map may be 
described by a number R 5 N matrices in the form 

a=l a=l 
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If we take the system S with density matrix prs to  be coupled to  an external 
'reservoir' system R in the form 

a 

then the evolution is by stochastic maps which are completely positive. The reser- 
voir system is not unique, nor is the coupling between the concerned system and 
the reservoir. 

We may write down the completely positive map as the contraction of a unitary 
map of an extended system as follows; 

with 

Such a map is completely positive. It will be extremal if T is a projection 

The inverse construction also can be carried out to embed any stochastic map 
(which is completely positive) as the unitary evolution of the larger system '. Ex- 
tremal maps corresponds to  projection valued Tab. 

It would be illustrative t o  construct all extremal maps of rank R 5 3 for a 3 x 3 
system: if R = 1, the condition 

CtC = 1 ,  

implies that the map is unitary. (Antiunitary maps are not completely positive.) 
The first nontrivial case is for R = 2. In this case we have 

P - Ct(1) PC(1) + Ct(2) PC(2) 

C(1) Ct(1) + C(2) Ct(2) = 1. 

C(1) = UtD(l)V, 
We can always find unitary matrics U ,  V such that 

where D(1) is a nonnegative diagonal matrix. 

D 2 ( 1 ) = U C ( l ) C t ( l ) U t = U [ l - C ( 2 ) C t ( 2 ) ] U t =  1 

We may choose 

o o cose3 

(16) 

D 2 ( 2 ) .  (17) 
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Then 

C(2) = U+ D(2) w 

p --t vt D( 1) u p Ut D(1) v + Wf D(2) u p Ut D(2) w . 

C(1) = UtD(1)V 

where W is an arbitrary unitary matrix. The generic map of rank 2 is 

(18) 

For rank 3 (R = 3), the construction is as follows: 

C(2) Ct(2) + C(3) Ct(3) = 1 - U t  D2(1) u 
If D(1)  is chosen as 

0 0 ~ 0 ~ 6 3  

then 

We may write 

(si;Ol o g ) (cosqh o o ) 
~ ( 2 )  = ~t o sin02 0 C O S 4 2  0 w 

0 sine3 0 0 ~ 0 ~ 4 3  

(si;Ol 0 o ) (si;41 o 0 ) 
C(3) = Ut 0 sin62 0 V 0 sin42 0 X ,  

0 sine3 0 sin43 

where V, W and X are unitary matrices. Verify that 

sin2 el cos2 qhl 0 0 
sin2 e2 cos2 42 0 

0 sin2 03 cos2 43 
0 0 

C(2) Ct(2) + C(3)  C'(3) = Ut 

sin2 el sin2 +1 
+ut ( 0 sin2 e2 sin2 4 2  0 

0 0 sin2 03 sin2 4 3  

o o sin2& 

sin2el o 
- - 

Hence 

C(1) Ct(1) + C(2) Ct(2) + C(3) Ct(3) = 1. 
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The map is 

sin41 0 sin61 0 

0 0 sin43 0 sin& 

(si;& o ) ( sin41 o o ) 
x U t  0 sin62 V 0 sin42 0 X 

0 sin63 0 0 sin43 
C O S 4 1  0 0 sin61 0 

0 0 ~ 0 ~ 4 3  0 sine3 

(si;61 . O  

cos61 0 

) v+ (cos41 0 cos42 o o 0 ) w x U t  0 ~1x182 

0 sin83 0 0 cos43 

+ Vt ( 0 ~ 0 ~ 6 2  0 ) U p U t  ( c o ~ 6 1  c0:62 ) V (19) 

No generality is lost by choosing an orthogonal transformation among C(l), 
o o cose3 0 0 ~ 0 ~ 6 3  

C(2), C(3) to make 

~ 0 ~ 6 3  = 1 , ~ 0 ~ 4 3  = 1. 

Hence the generic map is defined by the su (3 ) / z3  matrices U, V, W, X and the 

The indecomposable set C(l), C(2), C(3) serve to preserve the trace but degrade 
angles 81,62,41,42. 

some of the phases in p. The essential irreversibility is thus decoherence induced. 

5 

A closely related quantum property is that of 'quantum entanglement' '. If we have 
the density matrix R of a bipartite system AB,  which may or may not be pure, 
then the partial traces 

Entangled Systems, Decoherence and Purification 

trB RAB = PA 7 trA RAB = PB 

do not in general contain all the information in R. If RAB is a pure state, PA and 
p~ need not be pure, but they will have the same eigenvalues. If PA is pure, so is 
p~ and RAB is a direct product. 

RAB = PA @ PB 

So RAB is separable. More generally if 

R A B = C P ~ P A ( R . )  8 P B ( ~ )  i C~n=1 9 P n > o ,  (20) 
n n 

then RAB is said to  be separable. But for a generic pure state RAB, P A  and p~ 
need not be pure. This obtains for example for the 'singlet' state 

1 
Q A B  = - ( X A ' P B  - X B V A ) ,  Jz 
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for which 

R A B  = Q A B Q ~ ~ B  ; P A  = ~ ( X A X A  l t  + cpAcpf i ) ;  

the partial traces are not pure. 
Thus the difference between the projection RAB and P A  @ p~ is the averaging 

over the phases of the interference terms X A X ;  and x ~ x f i .  It  follows that to  restore 
the pure state from the separable impure state PA @ PB is the restoration of the 
interference terms. But they are ambiguous since 

1 
R A B ( e )  = ~ ( X A ~ B  + e i spAXB)(Xkp;  + e-ie ‘ P A x B )  ’ (21) 

is a pure state giving the same marginal density matrices P A  and PB . This indeter- 
minateness of the relative phase angle was seen in the ‘purification’ of any impure 
density matrix. 

It is not necessary that P A  and P B  are multiples of the unit matrix. For example 

R A B  = Q A B Q ~ ~ B  

Q A B  = (COS (YxA(PB + sin a eie x B p A )  

leads to the partial density matrices 

P A  = COS’ (Y X A x f q  + sin’ a p A p f q  

from which all information about 0 has disappeared. We could generalize this to a 
more general @ A B  of the form 

QAB = (CIX~’PI  + ~ 2 ~ 2 ~ 2  + ~ 3 x 3 ~ 3  + . . .) 
XjXk t = 6 j k  = (ps‘pk ; lC1I2 + .  . . lCnl’ = 1 .  

The partial trace density matrices are 

P A  = ~c11’xIx~ f ~c2~’XZx~ + .  . . 

P B  = ~ c I \ ’ ~ l ~ ~  + lc2)2Y?2(Pi + .  . * . 

The purification of either 

R>B = P A  EJ P B  

or 

RZB = ~ c l \ 2 x l x ! ~ l ~ !  f lc212xZx~(PZ(Pi f ’ .  . 
can yield the same set of purified entangled density matrices 

t RAB = Q A B Q A B  

with QAB as given above, but the relative phases of cl, c2 ... completely arbitrary. 

RAB = P A  @ P B  

The distinction between a ‘simply separable’ density matrix 
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and a 'generic separable' matrix 

is this. The simply separable case has 

with 

+t(r)+(s) = 6,s = 4t(T)4(S)  

But 

SAB = Cq(s)+(s)+t(s).4(s)4t(s) C q(s)  = 1 
S S 

has the vectors {+(s)} and {+(s)} not being orthonormal. This decomposition is 
always possible since 

P A ( T )  @ PB (n) = p ( n ,  T)'$(.t T ) d "  (n, T).4(n, T)4t (? T )  

n,r 

with 

(n, ~ ) + ( n ,  T ' )  = 

+t(n, r)+(n', .') , 4t(n, .)4(.', .'I. 

= 4t (n, ~)4(n, T ' )  

but no such restriction obtains for 

Purification in all cases involves the use of a projector rI which has nonzero overlap 
with any state involved in the decomposition of RAB. 

thus leads from a separable system, or any impure system to  a 
pure state which automatically possessed quantum entanglement. 

Purification 

6 

We already saw that the coupling of a discrete state to a continuum does not lead to 
decay until the relative phases are averaged out. This insight answers an old puzzle: 
an accelerated charge radiates, but when does the radiation become independent of 
the accelerated charge? When does the photon really get emitted from the atom '? 
The answer is that when decoherence sets in, the processes have taken place. 

But where does this decoherence come from? A finite closed system cannot 
have irreversible processes. If the system is not finite but is in the thermodynamic 
limit, no finite subsystem is closed. It is in this limit that we could obtain intrinsic 
decoherence . 

Concluding Remarks: Decoherence and Irreversibility. 

I thank Anil Shaji for his assistance in the preparation of this paper. 
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DISCUSSION 
Chairman: A .  Zeilinger 

G. Pronko: Do you mean that irreversibility comes from interaction with some 
environment like radiation? 

E. C. G. Sudarshan: You can call it interaction, intervention, hanging around. 
The point I’m trying to make is that, if you had an interaction of an atom with 
radiation field by itself, that leads only to a coherent state, coherent superposition. 
It is only when you disregard the phases then you get probabilities, and then you 
find the average of the problem. 

G. Pronko: Thus it is anthropomorphic, subjective principle. 
E. C. G. Sudarshan: Not subjective principle as Prigogine always tells. So 

irreversibility takes place but let us not say that the Hamiltonian produces the 
irreversibility. 

What I said was that when we talk about the emission of light from an excited 
atom and write only that particular Hamiltonian, there is no irreversibility from 
that system. So therefore something has happened. Now if I have an external 
field which is driving the system having all complicated interactions, you still will 
get a coherent superposition and complicated coherent superposition. It becomes 
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a probabilistic distribution only when you have destroyed the phases, so you must 
destroy the phases by something. One mechanism is to  couple this system with 
something outside. It doesn’t matter what it is, anything outside, and then you 
eventually trace it out. It’s partial tracing. 

Therefore if you say that it interacts, for example you say that there are ambient 
photons which are going and disturbing something, and we are not paying enough 
attention to  what happened with the photons. In that case you destroy the phases, 
but it is from the interaction only that you can destroy the phase, but there are 
many interactions with things which are not dynamical, but externally given, which 
would produce complicated time evolution but none of them would take your system 
in a pure state. 

G. Pronko: In other words, only the environment with uncontrollable interac- 
tions will produce irreversibility. 

E. C. G. Sudarshan: If you like to say, you put it that way. 
G. Pronko: For closed systems, there will be no irreversibility. 
E. C. G. Sudarshan: My statement is very clear and precise. For a finite 

dimensional system, because I talk about matrices, for a finite dimensional system 
coupled to  other things, one finds that there is no irreversibility for the one simple 
case of radiation. Also, there is no irreversibility until you have said you will not 
taken into account the phases. And the reason for that thing is many: fact is that 
you are hanging around and looking at somebody else, photons are coming and 
hiding it and so on. But something happens and the mechanism of producing any 
kind of decoherence is - all believe it - in our competence and it does not require 
very complicated system. It needs only a finite number of states for the systems. 

M. Courbage: You need this phase destruction continuously in time or only 
in the initial time? 

E. C. G. Sudarshan: You need it continuously. It has to be thereof. 
M. Courbage: You mean it is propagating by something. 
I. Prigogine: I am not agree with you. When you have the photon which is 

emitted, you can go to many energies. That is a lineshape. There is typically the 
loss of information in the process. 

E. C. G. Sudarshan: Only if you refuse to  measure the relative phase between 
them. 

I. Prigogine: No, I can measure the line shape, I can measure the propagation 
of the photons. Your point of view is that it is because we do not measure, because 
we are ignorant, that you obtain irreversibility. My point of view is that the irre- 
versibility is a law of nature. And that can be seen in different situations because 
obviously in classical mechanics you see that there is no irreversibility in the two 
body problem but in the three body problem there is irreversibility. We don’t know 
when the third body will be ejected away and at which time. You find that the 
basic difference are due to the Hamiltonian. And therefore I don’t think that there 
will be difference between the case of quantum mechanics and I don’t think it is 
because we make not enough measurements or something like that. I think, that 
comes out from the very foundation of quantum mechanics that you can have the 
situation when you have irreversibility. I agree with you that the irreversibility in 
quantum mechanics requires infinite systems because if you have finite box then 
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the spectrum of the Hamiltonian is not a continuous spectrum. We need a contin- 
uous spectrum and the continuous spectrum appears in the limit of large system. 
You have the same situation, expecting the same, when we have phase transitions. 
Phase transitions don’t exist. Take a finite system - there are no phase transitions. 
If you go to the infinite system, you have phase transitions. And it is not because 
we want to have phase transitions. It is the fact that of course phase transitions 
are related to distributions, and with distribution you have somewhere a limit to 
have the distributions, and without this limit we cannot speak about the difference 
between soil and liquid. 

E. C. G. Sudarshan: Professor Prigogine has pointed out something I should 
have specifically said. Namely that if you want to make a small system, with only 
finite number of degrees of freedom, not finite degree of states but finite number 
of the degrees of freedom, like for example a single atom emitting radiation. That 
is very different from a case in which you have an extensive system in which the 
thermodynamic limit is taken in which you have certain number of particles per 
volume but there is no limit to the size, it becomes larger and larger. So when you 
have this particular situation, the comments that I made do not apply, but as long 
as the system is what I write down Hamiltonian, the system at any state is obtained 
by unitary transformation. After finding unitary transformation you may say: look, 
I do measurements only on energy density distribution, not on the relative phases 
between the various things. That’s perfectly fine. And if you do that then, of 
course, you will find that that particular thing is increasing. By the way, somebody 
mentioned Feynman-Wernan paper. That is an example of some situation in which 
a stochastic map is produced by taking a system which is perfectly legitimate and 
doing all the proper things. But then you will trace out the other variables, and 
then you get something of this kind. 

I. Prigogine: The difference between finite system and infinite system is not 
so great, because, in fact, you can show that when we take a system, which is 
finite but with finite concentration, for some time it will behave like an infinite 
system. And that is, I think, the main problem because for most systems we have 
eigenvalue problem and it will take times long with respect to the duration of the 
particle going from one side to the other side. You have to take first the time large 
and then the volume starts to be large. When you want to have irreversibility you 
have to take first the volume to the infinity and then the time. And, in a sense, 
in the irreversibility problem you have never isolated system. And this is on of 
the mistakes of the Poincare’s recurrence theorem because he says you will come 
back but after a long time you can never come back because the system will be 
submitted to other influence. Therefore there is no perfect reversibility. 

E. C. G. Sudarshan: I’m completely agree with what you said, Professor 
Prigogine. 
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PROPAGATION OF DECOHERENCE IN A FIELD AND 
COMPLEX SPECTRAL REPRESENTATION 

T.  PETROSKY'1"AND C. 0. TING* 
*Center for Studies in Statistical Mechanics and Complex Systems 

The  University of Texas at Aust in ,  Aust in ,  TX 78712 U S A  

**International Solvay Institutes for Physics and Chemistry 
CP231, 1050 Brussels, Belgium 

The problem of decoherence in a system of a particle coupled with a field is studied 
by applying the Complex Spectral Representation of the Liouvillian that gives a 
rigorous approach to the irreversible processes without relying upon any anthropo- 
morphic principle such as coarse-graining. We focus the time evolution of the field, 
which is commonly neglected in phenomenological approaches to the decoherence 
problem. In contrast to the usual hypothesis, our result shows that there is a non- 
negligible time evolution of the field. The decoherence in the field is an important 
consequence of the irreversible processes that leads dynamically to a mixed state 
from a pure state through a secular effect due to the resonance effect between the 
particle and the field. 

1 Introduction 

In this paper we shall study the problem of quantum decoherence as an application 
of the complex spectral representation of the Liouville-von Neumann equation. We 
consider a particle (such as a dipole molecule) coupled with a field through a bilin- 
ear interaction. This type of system has been repeatedly analyzed in the context 
of decoherence [l-51. However, all arguments have a common phenomenologica1 el- 
ement, namely they have assumed that the field surrounding the particle is already 
in thermal equilibrium. Moreover, all assumed that the field as a thermal bath is 
so large that one can neglect the time evolution of the field. 

However, this hypothesis is wrong. There is a non-negligible dressing cloud 
of field appears around the particle. In figure 1, we plot a numerical result of the 
number density (n(z,  t ) )  of the quanta of the field in our system as a function of the 
coordinate x at a given time for the case the initial field is in a thermal equilibrium. 
More detailed discussion will be presented later in section 5. As one can see from 
this figure, indeed there appears a non-negligible dressing cloud around the particle 
as well as a non-negligible propagation of the field that do not die out in time. 

Through these phenomenological hypotheses one can show that the reduced 
density matrix associated to  the particle may approach to  a mixed state even if it 
starts from a reduced pure state. However, this result is trivial since the surrounding 
field that is already in a mixed state may simply contaminate the pure state of the 
particle. 

On the other side, a recent remarkable development on the complex spectral 
representation of the Liouville-von Neumann equations reveals the fact that irre- 
versibility is a rigorous dynamical process of systems in the thermodynamic limit 6 , 7 .  

Irreversibility is the direct consequence of microscopic dynamical processes associ- 
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t . .  . . . . . . . . . . . . . 1 .  x (c/GIl) 
-30 -20  - 10 10 20 30 

Figure 1. A numerical result of the number density (n(z)) in the z space at t = 30 for the initial 
(nl(0)) = 0 and (nk(0)) = l/(exp(ouk) - l) ,  with 0 = l / q .  

ated with resonance singularities, and does not come from the anthropomorphic 
principles, such as the incompleteness of our knowledge, coarse-graining approx- 
imations, or the so-called “environmental approach” that separates artificially a 
system into a subsystem and its surrounded environment that is already in ther- 
mal equilibrium. The appearance of decoherence is thus the result of irreversibility 
associated with the intrinsic instability inherited from the dynamics of the system 
itself. 

The irreversible processes with which one deals in nonequilibrium statistical 
physics have two essential elements; the “extensivity” of the systems and the “non- 
integrability”. In both equilibrium and nonequilibrium statistical mechanics, one 
deals with infinitely large systems which are characterized by extensive quanti- 
ties that are proportional to  the size of the system, such as the total number of 
particles or the total energy of the system. For this case, one can define the ther- 
modynamic limit through the introduction of non-vanishing “intensive quantities”, 
such as number density per volume. As we shall see later, an important consequence 
of the existence of the thermodynamic limit is that density matrices in quantum 
mechanics (or distribution functions in classical mechanics) do not belong to a 
Hilbert space. For this case, the Liouville-von Neumann operators (the Liouvillians 
in short) may have complex eigenvalues that break time-symmetry without adding 
any dissipative terms to  the Hamiltonian or the Liouvillian. 

However, the extensivity itself alone is not sufficient to  have irreversibility as it 
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is well-known that the ideal gas is impossible to approach to  equilibrium. This leads 
to  the second ingredient of the irreversible processes, which is the non-integrability 
of the system. The interactions lead to  the “small denominator” singularity (or res- 
onance singularity) which prevents us from diagonalizing the Hamiltonian through 
a canonical (or unitary) transformation that is analytic with respect to  a coupling 
constant (non-integrability in the sense of Poincark) *. As a consequence, invari- 
ants of motion other than the total Hamiltonian are destroyed. Combining with 
the thermodynamic limit, the resonance singularities thus lead to  contributions 
that break time-symmetry. In this situation, we have shown that one can obtain 
the irreversible dynamics through the complex spectral representation of the Liou- 
villian 6,7. 

In section 2, we introduce our bilinear system. In order to deal with the thermo- 
dynamic situation, we adopt the box normalization with periodic boundary condi- 
tion. Then we discuss the meaning of the thermodynamic limit. Indeed, this limit 
will naturally introduce some objects which do not belong to Hilbert space, hence 
one has to  deal with a larger class of functions. We also demonstrate that the in- 
variants of motion generated by the Bogoliubov transformation which diagonalize 
the Hamiltonian, are destroyed by the resonances in the thermodynamic limit. An 
important consequence of the failure of the Bogoliubov transformation is that one 
cannot reduce the time evolution of the state to the level of wave function in the 
thermodynamic limit. 

In section 3, we overview the Liouvillian formulation of quantum mechanics. 
We introduce the projection operators associated to the correlation between the 
particle and the field, and solve the eigenvalue problem of the Liouvillian outside 
the Hilbert space, which gives us the complex spectral representation. We show the 
eigenvalue problem of the Liouvillian is reduced t o  the eigenvalue problem of the 
collision operator that commonly appears in the kinetic theory in non-equilibrium 
statistical physics. We also introduce the concept of subdynamics which enable 
us to  evaluate the non-Markovian effect (i.e. memory effect) in a systematic way. 
As we shall see our method is based on the microscopic dynamics, which virtually 
implies no restriction on the class of initial conditions. 

In section 4, we apply the complex spectral representation to our system. Our 
result shows that already in a weak coupling limit, there exists a signature of 
decoherence in the field that appears through the secular effect coming from the 
resonances. This effect can only be observed if we start from a non-equilibrium 
thermodynamic field. We also evaluate the non-Markovian effect that can be seen 
by going beyond the weak coupling limit (or the so-called X2t limit). 

In section 5, we compare our theoretical results with the numerical simulations. 
The presentation of this paper is brief, we shall present a detailed paper elsewhere ’. 

2 The System 

We consider a one dimensional system which consists of a quantum harmonic oscil- 
lator linearly coupled to a bosonic massless scalar field. As a convention, we shall 
call the harmonic cscillator “particle” and the quanta of the field “photons”. In 
the second quantize1 form and with units 7i = c = 1, the Hamiltonian is defined by 
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a summation of the unperturbed part &and the interaction XV as 

where w1 > 0, w k  = Ikl > 0, and is positive dimensionless coupling constant. 
For simplicity we drop the virtual processes associated to the interaction propor- 
tional to alak or ura:, which is corresponding to the so-called the rotating wave 
approximation lo. Due to  this approximation, the total number of the unperturbed 
quanta is preserved in the time evolution. An extension of our argument including 
the virtual processes is straightforward 11,12.  Due to the periodic boundary condi- 
tion, the spectrum of the field becomes discrete, i.e., k = j / R  with a volume factor 
R E L/2z  and jis integer ranges from --03 to  m. The volume dependence of the 
potential v k  is given by v k  = ?&/fir where ?& is independent of R. 

In the Hamiltonian in (l), the creation and annihilation operators for the particle 
a:, aland the field u l ,  a k  obey the canonical commutation relations 

where bk ,k '  is the Kronecker delta. In the continuous limit 
continuous spectrum with 

+ 00, we have a 

where 6(k) is the Dirac delta function. We assume that the coupling is so weak 
X << 1 that the interaction does not stabilize the particle by causing the negative 
renormalizing frequency. 

Let us now specify the meaning of the thermodynamic limit. To this end, we fo- 
cus our attention on a complete orthonormal basis of the unperturbed Hamiltonian 
Hogiv en by 

where {nF}  = { n k , , n k 2 ,  ... n k } ,  and n, is the occupation number for the state of 
particle ( a  = 1) and field (a  = k ) ,  respectively. This basis spans a Hilbert space 
(Fock space) with the usual Hilbert norm (I(n1, {n~})1' = 1, where ll\k112 = (Q19). 
Let us then consider an expectation value of the total Hamiltonian ( H ) ,  where 
( A )  = Tr(Ap)  with a given density matrix p. For example, if the density matrix is 
diagonal in the number representation, we have in the limit R + 00 

( H )  = 'JJl(n1) R / d k w k  ( n k )  (5) 

where we assume that s d k W k ( n k )  < 00. w e  consider two different situations, 

( n k )  - O(0-l)  
( n k )  O(Ro) 
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In the first case in Eq.(6-a) with the condition ( H )  < 03, we have a situation which 
is considered in a problem of a stimulated or spontaneous emission of photon from 
the excited particle. 

For the second case in Eq.(6-b), the total energy is an extensive quantity (as 
it is proportional to the volume) that characterizes the thermodynamic situations. 
We call that the limit R -+ 03 with the condition Eq.(6-b) as the “thermodynamic 
limit”. We note that in order to satisfy the condition of the thermodynamic limit 
it is not necessary for the density matrix p to be a mixed state. Indeed, we shall 
see later that one can construct a pure state that satisfies the condition of the 
thermodynamic limit by a super position of coherent states of the field. 

An important consequence of the thermodynamic limit is that the time evolution 
of states cannot be described in terms of the states in the Hilbert space. Indeed, 
one can easily verify that the Hilbert norm of a state I@) E HIn1, { n ~ } )  diverges 
as O(R) in the thermodynamic limit R --f 03. Hence we have to solve the time 
evolution of the state in an extended space that lies outside the Hilbert space. 

Another important consequence is that one cannot reduce the time evolution of 
the state to the level of wave functions. To see this let us first consider the case of 
the non-thermodynamic case Eq.(6-a). For this case it is well-known that one can 
diagonalize the Hamiltonian (1) in terms of the renormalized normal modes as (in 
the limit R + co) l 3  

with 

Here B k  is given by a linear transformation 

with 

where q*(wk) = q(wk f zc) with a positive infinitesimal E + O+. We note that 
there is no renormalized particle such as 21 in the new Hamiltonian (7), which is a 
characteristic property of the unstable system in the non-thermodynamic situation 
Eq.(6-a) 1 3 .  Then we have an infinite set of invariants of motion (Bk+hk). 

However, this diagonalization of the Hamiltonian loses its meaning in the ther- 
modynamic limit. Indeed, in the continuous spectrum limit the invariant (2; B k )  

involves a singular product of the distribution Iwk- wk‘ + k P 2 .  In the non- 
thermodynamic case Eq.(6-a), this product is negligible in the limit R + 03 because 
of an extra volume factor R-’ in Eq.(6-a). However, in the thermodynamic limit 
Eq.(6-b) this singular product leads to a divergence as 
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The divergence comes from the contribution at the resonance wk = wkf,  which 
destroys the invariant of motion. 

Moreover, one can show through a direct calculation with the inverse transfor- 
mation of Eq.(9) that the formal diagonalization of the Hamiltonian (7) leads to an 
inconsistent result to  the conservation law of the total number of the unperturbed 
particle and photons in the thermodynamic limit. As a result one cannot follow 
the time evolution of the field through the diagonalization of the Hamiltonian as 
Eq.(7) in the thermodynamic limit. 

Since the Hamiltonian (1) is bilinear in the annihilation and creation operators, 
the nonexistence of a diagonal form of the total Hamiltonian through a linear trans- 
formation in the thermodynamic limit is a nontrivial result. As a consequence of 
the failure of the diagonalization, one cannot reduce the time evolution of a given 
density matrix to an evolution of a product of the renormalized normal modes, or 
a product of wave functions. One has to deal with a non-factorizable evolution of 
the density matrix, even though one starts with a pure state as an initial condition. 

3 

Since one cannot follow the time evolution of the system in terms of the wave 
functions in the thermodynamic limit, one has to  directly deal with the evolution 
of the density matrices that is not in the Hilbert space. The density matrices obey 
the Liouville-von Neumann equation 

Complex spectral representation of the Liouvillian 

where L H ~  = H p  - p H .  Corresponding to  the decomposition of the Hamiltonian 
in (l), we have the Liouvillian decomposed into an unperturbed part Lo and an 
interaction part L v ,  

LH = Lo + XLV (13) 
Let us denote the complete orthogonal set of the eigenstates of the unperturbed 

Hamiltonian by {la)},  i.e., Hola) = w,Ia). In our case la) = Inl, { n ~ } )  in Eq.(4). 
Then the complete orthogonal set of the eigenstates of the unperturbed Liouvillian 
in the “Liouville space” is given by the dyads la; p)) = Ia)(PI as 

L0Ia;P)) = w ( a q c r ; p ) )  (14) 
where W ( ~ V ~ )  = w, - wp. Here, the inner product in the Liouville space is defined 
by ((All?)) = Tr(A+l?) where A+ is the hermitian conjugate of the linear operator 
A in the wave function space. We note that the eigenstates of the unperturbed 
Liouvillian are infinitely degenerate as ,501~)) = w(”)Iv)) where 1.)) = C ,  Iv,)) and 
a is a degeneracy index. For example, all diagonal dyads 1a;cr)) belong to zero 
eigenstate of Lo, i.e., we have 10)) = Ca la; a)). These degeneracies lead t o  a quite 
rich structure of the eigenvalue problem of the total Liouvillian L H ,  as we shall see 
later. 

The eigenstates of Lodefin e a complete orthogonal set of eigen-project-ion op- 
erators of LO as 

P(”) = lv))((vl (15) 
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that satisfies 

XP‘V’ = 1, p(v)p(P) 5 &,,,P(”) (16) 

= Q‘”), Q(”)p(”)= @”)Q(”) = 0 (17) 

Y 

We also introduce its complementary operator &(”I 1 - P(Y) which satisfies 

We recall that each projection operator P(”) defines the v-th “correlation subspace” 
of the density matrix ’. Of special interest is the “vacuum-of-correlation” subspace 
P(O) that extracts uncorrelated components of the density matrix among the parti- 
cle and the field. Other components extract particle-field correlation components, 
field-field correlation components, and so on. 

In the previous paper ’, I. Prigogine and one of us (T.P.) have extended the 
eigenvalue problem of the Liouvillian LH to a class of density matrices that do not 
belong to the Hilbert space, and have shown that the Liouvillian may have complex 
eigenvalues that break time-symmetry. The complex spectral representation of 
the Liouvillian then leads to the “dynamics of  correlation^"^^. In the correlation 
dynamics the non-Markovian evolution is described in terms of a set of infinite 
number of Markovian equations. This set includes the Pauli master equation. The 
detailed derivation of the solution of the eigenvalue problem of the Liouvillian as 
well as the derivation of the correlation dynamics has been given in ’. Here we 
briefly summarize the complex spectral representation. For details the reader should 
consult the original article ’. 

Let us now consider the eigenvalue problem of the Liouvillian’. Let us denote 
IF?))), and ((F2)I as the right and left eigenstates of the total Liouvillian LH 
respectively, ’, 

where we assume that they satisfy bi-orthogonality and bi-completeness relations, 

w e  

The index a together with v is a parameter characterizing the eigenfunctions. As 
mentioned before, since we consider the eigenvalue problem of the Liouvillian LH 
outside Hilbert space, the left-eigenstate is generally different from the hermitian 
conjugate of the right-eigenstate. Moreover the eigenvalues zf’ are complex, and 
the time evolution of the system splits into two semigroups. For the semigroup 
corresponding to t > 0, the eigenstates are associated with the eigenvalues with 
Imzk) 5 0 and equilibrium is reached in our future for t + +ml while for the 
other the eigenvalues are the complex conjugate of z$) and equilibrium is reached 
in our past. Experience shows that all irreversible processes have the same time 
orientation. 

’We formulate the eigenvalue problem of L,y in the thermodynamic limit. In this limit, special 
care is necessary for a general Hamiltonian, as the perturbed Liouvillian L v  usually gives rise to 
divergence due to disconnected processes (see connected and disconnected diagrams in  ref^.^^,^). 
However, in the case of our Hamiltonian we do not encounter this divergence as all processes are 
connected to the tagged mode w1 through the specific form of interaction involving a1 or a:. 
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To be self-consistent, we have to choose the semigroup oriented towards our 
future. We consider the case where the eigenstates are analytic with respect to the 
coupling constant A, i.e., 

and 

Using P(”)+Q(”)= 1 in Eq.(18) one can find the Q(”)comp onent of the eigenstates 
as 

&(”)IF?))) = C(”)(z~))p(”)IF~))) (22) 

where the “creation-of-correlation operator” (creation operator in short) is defined 
as 

This operator is an off-diagonal operator as it describes an “off-diagonal transition” 
between the different subspace Q(”) and Pf”). Care has to  be taken in the analytic 
continuation of z to have the time evolution approaching equilibrium in our future 
t > 0. 

Substituting Eq.(22) into the eigenvalue equation (18), we obtain 

7p) ( z p )  It&))) = Zk’ lug))) (24) 

I.?’)) ”?’]-‘/2p‘”’IFy)) (25) 

where 

Here N?) is a normalization constant, and $J(”)(z)  are the collision operators de- 
fined by 

7p) ( z )  = P(”)LoP(”) -t- P(”)ALVC(”) (L)P(”) (26) 

These operators are extension of the collision operators that appears in the kinetic 
theory in non-equilibrium statistical physics. The collision operator is a “diagonal 
operator” since it describes a “diagonal transition” within the same subspace P(”). 
As indicated in Eq.(24), the eigenvalue problem of the Liouville operator is then 
reduced to  the eigenvalue problem of the collision operators which have the same 
eigenvalues z(“)  as L H .  The eigenvalue equation Eq.(24) is %on-linear” as the 
eigenvalue appears in the collision operator. 

Using Eq.(22), we obtain the right-eigenstates of LH from the corresponding 
right-eigenstates of $ ( ” ) ( z k ) )  as 

I@)) = “p]1’2(P(”) + c(” ’ (zp)) lu: ’ ) )  (27) 
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A construction parallel to  the above, leads to  the left-eigenstates of LH with the 
same eigenvalues z t ) ,  

((jyI= ( ( i j f ) I ( P ( V )  + D(“)(zf’))”p]l/2 (28) 
where the “destruction operator” is defined by 

-112 
and ((V?)) E ((F?)IP(”)Ng) are the left-eigenstates of the collision operator, 

((ijf) IyW(@) = ((@@ (30) 

Since the collision operator depends on the eigenvalue zky), the state ((Gky’I is 
generally not bi-orthogonal to  luk“’)). Assuming, however, bi-completeness of these 
states in each P(”) subspace, we may always construct sets of states {((&‘’I} and 
{ Ivp’))} bi-orthogonal to {I&‘)))} and { ((ijt’l}, respectively, 

(31) ((+)I 21, up ( p )  )) - - 6 u p  , 6 a,O c I.k“’))((@I= P(’) 

and similarly for I$))) and ((ijky’l. 

introduce the “global” creation and destruction operators, 
In order to connect the kinetic theory to  the eigenvalue problem of L H ,  we 

C(”)= CC(”)(zf))luk“)))((~f)I  (32) 
01 

D(”) = I~t)))((Gt)lD(”)(zf)) (33) 
a 

Then, we can write the eigenstates as 

IF?))) = “p]1/2(P(”) + C(”))Iuf’)) 

((@’)I= ( (Gf) I (p(”)  + D(”))[NaU) ( I  l I2  

[N:)]-‘ = ((ijf)l[(P(”) + D(”)C(’))]Iuc))) 

(34) 

(35) 
The normalization constant can be found from the bi-orthonormality condition 

in Eq.(19) of the eigenstates, 

(36) 
The global collision operators associated with the creation operator C(”) are given 
by 

e(”) = C lct(’)(zf))~uk“)))((~c)~ (37) 

dU)luf))) = zk)~uc))) (38) 

01 

Then we have 
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Substituting Eq.(26) into Eq.(29), we have 

,q(v)= p ( ~ ) ~ ~ p ( ” )  + p ( v ) ~ ~ , , c ( v ) p ( ~ )  (39) 
Now we define the dressed projection operators in each subspace in terms of 

eigenst ates Eqs. (34) and (35), 

n(”) E c IF?))) ((Fy 1 (40) 
Q 

This leads to the relation 
e - i L . H l n ( Y )  = n ( v ) e - i L H t  

- - ( p ( 4  + C‘”’) e - i w t  [(P(”) + D(Y)C(”))]-l(P(”) + D(”)) (41) 

(4’4 

From Eq.(18) and Eq.(19) we have: 

, C n ( 4  = 1, n(v)@4 = n(”)6 &IT(”) = IT(”)LH ”XP 
Y 

Hence, IIcY) is a generalization of P(”) for the total Liouvilian L H ,  and each of the 
correlation subspace evolves independently in time under L H .  For this reason II(”) 
is associated with subdynamics. However, Eq.(40) shows that ncY) is not a hermitian 
superoperator. We call the component P(’)p(u) as the “privileged” component of 
p f ” )  II (”)p ,  which obeys the Markovian kinetic equation, 

There is an infinite set of Markovian processes associated with each ncY) subspace. 
Recall that we are interested in the weak coupling case. In that case, we apply 
series expansion in terms of X up to O(X2) which gives us 

where we have analytically continued z?) from the upper-half plane to ensure that 
the time evolution is oriented to  our future t > 0. Similarly, we have the global 
creation and global destruction operators expanded up to  O(X2) 

C(”)  = XCp(w(”) )  + X2C$qw(”)) + O(X3) 

D(”) = XD?)(w(”)) + X2D~)(w(” ) )  + O(X3) 
(45) 

(46) 

with a suitable analytic continuation of w ( ~ ) ,  where XnC~’,XnDk’ are the n-th 
order terms of the expansion of d”), and D(”) in Eqs.(23) and (29), respectively. 

An important consequence of the complex spectral representation of the Li- 
ouvillian is that non-Markov processes can be written as a superposition of the 
Markov process of each subspace. For example, let us consider a subspace P(”1) 

with v1 f (n1,ml) where the field components are diagonal so that it is associated 
to the eigenvalue of the unperturbed Liouvillian as 

 LOP("^)= (nl - ml)wlP(YI) (47) 
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Then we have 

P(0 )  p ( u l )  e - i L  H t 

- - c , - i l l ”z&“”) tp(~l )  I@))) ((pp) JP(0))) 

+ c c p(ul )C(’”) (z~) )p( l”)e- i~“r’ (”~’) f  l e ) ) ) ( ( w l P ( o ) ) )  
a 

(48) 
P f V l  a 

The so-called Markov approximation corresponds to neglecting the second line in 
the right-hand side of (48). The decoherence of the particle occurs as a result of this 
Markov process. For the case where the expansion parameter of the perturbation 
analysis is the coupling constant A, this approximation is valid only for the weakly 
coupling limit called as the “A2t limit”l* . In this Markov approximation the first 
line in (48) obeys Eq.(43), which leads to  the following set of equations 

and 

where 

Tk 2x(vk126(Uk - w1) (51) 

and (71,)~ is the average number of the particle for a = 1 and of the field for a = k ,  
where the frequency shift for the particle has been neglected. Here the reduced 
functions for the particle and the field, respectively, are defined by 

fn,,m, 0) = (n1 lTv[p(”l)P(t)l lml)? (52) 

where TrF means that the partial trace is taken with respect to  all field components, 
while T~*,F(~, means that the partial trace is taken with respect to all component 
except for the kth-mode of the field. A detailed derivation of (49) and (50) has been 
presented in ll. In the article l1 have shown that the Markov equation (49) together 
with (50) in the coordinate representation indeed describes the decoherence process 
as a result of the irreversible diffusion processes that come from the resonance effects 
between the particle and the field. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



106 

In the kinetic theory, to go beyond the X2t limit including memory effects (non- 
Markovian effects) has been a long standing extremely difficult problem. Our com- 
plex spectral representation gives a consistent description of the non-Markovian 
effects by systematically evaluating the second line in (48). For example, applying 
the expression (48) to our system, we have shown that the memory effect dies out 
in the time scale of the order l / w l  << A-’ 1 1 , 1 2 .  Therefore, l / w l  gives a time scale 
of transition of the evolution from the non-Markovian regime to the Markovian 
regime. This transition time scale is called quantum Zen0 time 17. Only after the 
Zen0 time does the first term in (48) dominate. Hence, the Zen0 time serves as a 
lower bound for the decoherence time 11,12. 

4 Time evolution of the system 

As mentioned before, the decoherence process has been always investigated in the 
time evolution of the particle component alone [4-81. In this section we shall focus 
our attention on the evolution of the field during the moment the decoherence 
in the particle is going on. To simplify our argument we shall consider here a 
special case of (48) with vl = 0. We first obtain a Pauli type of master equation 
in the weak coupling limit (X2t approximation). Later on, we shall go beyond 
this approximation by calculating the correction from non-Markovian effect in the 
second term of (48). By projecting Eq.(43) to ((1; 11, and ((k; kI in the case v = 0, 
we have in n(’) subspace, 

where the matrix elements = ((cr;pIO(’)Icr’;p’)), and we abbreviate 11) = 
[ l l , O ~ ) ,  and Ik) = ( O 1 , . . . O k j - l r  l k j , O k j + l ) .  The n(’) component of the reduced 
probability density are defined as 

(711 (t))nc., = Wa:a ln( ’ )p ( t ) )  (56) 
( n k  ( t ) )  n(0) n( a ; a k n ( ’ ) p ( t ) )  (57) 

By using the expansion of O(O) in Eq.(44) up to O(X2), we derive the Markovian 
kinetic equation under X2t approximation. This corresponds to the well-known 
Uhling-Unlenbeck equation for the average number of particles and the field for the 
case of nonlinear interaction, i.e., 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



107 

where y = R-’ Ck yk.  
Let us first focus on the decoherence of the particle by considering the initial 

background field which is in a thermal equilibrium, i.e. the photon probability 
density is given by Plank distribution with a fixed temperature. This situation has 
been well analyzed in the phenomenological approaches of decoherence problem. In 
figure 2, we compare our theoretical result in Eq.(60) with a numerical simulation of 
the total number of particle (nl(t)). We choose the temperature of the background 
field T = 1 in the unit of wl/ke where kg is the Boltzman constant, and the 
dimensionless coupling constant X = 0.1. The dotted line is the numerical result 
while another is the theoretical prediction from the solution of the Markovian kinetic 
equation. Both results show good agreement that the particle forgets its initial 
condition in the time scale t - l / y  obeying an exponential law and approaches to 
the final state which is solely determined by the temperature of the environment. 

In figure 3, we show a magnification of the early stage of order t - l / w l  of the 
evolution in figure 2. The straight line is the theoretical result obtained only by 
taking into account a Markov process in a single TI(’) subspace. The deviation from 
the numerical result in figure 3 shows that we have a non-negligible memory effect 
coming from other subspaces. The deviation of exponential process is associated 
with the well-known “Quantum Zen0 effect”. In our previous paper 11, we showed 
that the memory effect follows a power law decay, then the time evolution undergoes 
a transition from non-Markovian regime to the Markovian regime. As a result, the 
time scale of this transition t - I/wl serves as a lower bound for the decoherence 
time. Only after this time scale, the results obtained from the Markovian kinetic 
equation become valid. 

Let us next consider the time evolution of the field. Our solution in Eq.(61) has 
two important aspects. First it gives non-vanishing time evolution of the field which 
is often neglected in the literature [4-81. Indeed, by taking the summation over k 
that corresponds to evaluate the total number of photons, one cannot neglect the 
right-hand side of Eq.(61) in the thermodynamic limit. Therefore the neglecting of 
this time evolution leads to an inconsistency to the conservation law of the total 
number of the particle and photons. The second aspect of our solution is that 
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_rrrr - - - -~ --- 

20 40 60 80 100 

Figure 2. The time evolution of particle probability density (121 ( t ) )  under the same initial condition 
as Figure 1. The dotted line is numerical result, while the other one is theoretical result. 

it shows the destruction of the wavefunction. As is well-known, the Pauli master 
equation leads the system to  equlibrium so that evolution of the system cannot be 
reduced to the evolution of the wave functions. Under the thermodynamic limit 
Eq.(6-b), the second term of our solution in Eq.(61) has a non-negligible t-linear 
contribution as compared with the first term. This is a secular effect that appears 
through the resonance effect that destroys the factorizability to  the evolution of the 
density matrix into the product of the wave functions. In fact, if we would apply 
the factorizable approach with the linear transformation in Eq.(9), we would obtain 
(nk) with a diverging contribution as - 1 / ~  instead of the secular effect. 

However, care has to  be taken. Indeed, one has to make sure that the secular 
effect associated to  the approach to  equilibrium in the Pauli master equation does 
not disappear by adding non-Markov effects coming from components other than 
the vacuum-of-correlation component. This argument shows that only by going 
beyond the X2 t approximation can one consistently discuss the decoherence process 
in the field evolution. 

To analyze the secular effect in more detail, let us first note that if the initial 
condition of the field is in thermal equilibrium of the unperturbed system (which 
is a common setting of the phenomenological environmental approach 11-51), the 
secular effect vanishes due to the symmetric dependence of ( n k ( 0 ) )  with respect 
to an interchange of k to  -k .  In order to  see this effect, we have to  start with 
a field which is not in thermal equilibrium. As our theory of irreversibility is 
completely based on microscopic dynamics, we have an advantage to  start with 
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0.1 - 

0.06 - 

0.5 1 1.5 2 

Figure 3. The Quantum Zen0 effect in the time evolution of the particle. This is a magnification 
of an early state of the time evolution of the field in Figure 2. The dotted line is the numerical 
result, while the other one is theoretical result with Markovian approximation. 

arbitrary initial condition. Indeed, this is the superiority of our approach over 
common phenomenological approaches of the decoherence problem which can only 
deal with the near equilibrium situation. Here we are especially interested in the 
extreme far from equilibrium situation that our initial field is a pure state given by 

P ( 0 )  = I@(O))(@(O)l (62) 
To achieve the thermodynamic limit of the field in a pure state, we choose a large 
rectangular shaped wavepacket of the field with a size Lzl = La - L1 > 0 in one 
dimensional coordinate space that consists of a superposition of the coherent states 
of the field, i.e., 

with 

and 
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where 01 and { O F }  denote the vacuums of the particle and the field, respectively. We 
assume that cXk = for all modes k ,  where 72 is a number density of the photon 
per unit length. Then the total number of the photon in the initial wavepacket is 
proportional to  the size of the wavepacket as ~ c ( @ ( 0 ) l ~ ~ a k l @ ( O ) )  = nLp1. 

To observe the spatial structure, we hereby introduce the x representation of 
creation operator a: by 

The x representation of our wavepacket is then given by 

where 

I.) = c a+(x)In1, { O F } )  (68) 
n1 

and Os(x) is the step function, i.e., Os(x) = 0 for x < 0 and O,(x) = 1 for 5 2 1. 
For the case Lpl N L ,  we have a wavepacket that satisfies the condition of the 
thermodynamic limit Eq.(6-b). For L1 = -La = L/2, Eq.(64) gives @k = 6k,kot  

i.e., we have a "plane wave". 
By substituting our initial condition (64) into Eqs.(56) and (57), we obtain up 

to O(X2) 

(n1(0))*co, = 27rX2nL21Lv:l@w, l 2  (69-a) 

(69-b) 

The initial condition (nk (0 ) ) , (0 )  is not symmetry under the changing from k to 
-k .  Hence, there appears a non-vanishing t-linear term in the II(') component of 
the time evolution of the field density. 

To be consistent, we have to calculate other contribution in II(lk), II(kl), II(lk), 
and nckL) subspaces. The results are given up to  O(X2), 

These result shows that there is no secular effect in these subspaces contribution. 
As we shall see in next section, these results of non-Markovian contribution have a 
responsibility to Zeno effect which appeared in the early state of time evolution of 
the field, which can only be obtained by going beyond the A p t  approximation. 
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5 Theoretical  predictions V.S. numerical simulations 

To verify our theoretical predictions, we have performed the numerical simulations. 
In the simulation, we consider the system of a finite box with size L. For this case 
our system is exactly diagonalizable through the linear transformation (the trouble 
due to the resonance singularity mentioned at Eq.(ll) occurs only in the thermo- 
dynamic limit). By restricting our observation time to t << L/c ,  the numerical 
simulations give results which are not distinguishable from ones corresponding to 
the continuous spectrum case with L --+ 03. We have used the form factor v k  for 
the interaction as vk = 6 [I + (wk/wil.1)2]-2 15. The cut-off frequency WM is 
introduced to avoid the ultraviolet divergence. We have used a unit system where 
the length is measured by the unit c/wl, while the time is measured by the unit 
l/wl. We have fixed the size of box L = 209, the coupling constant X = 0.1 and 
the cut-off frequency W M  = 10 in all cases. 

In Figure 1, we plot the numerical result of the time evolution of the number 
density (n(3:, t ) )  = Tr(a+(s)a(z)p(t))  of the photon at a given time t = 30 , starting 
at t = 0 with (nl) = 0 and ( n k )  = l/(exp(pwk) - 1) is the Plank distribution with 
the temperature p1 = l /ksTl  = l / q ,  At 
t = 0 we have a constant density (n(z,O)) = 1.3 in 3: space. About t = 20 a 
non-negligible steady cloud of field surrounding the particle with a size of c/w1 has 
been established. Generally the size of this cloud is much larger than the size of 
the molecule, and it causes the long-range van der Waals forces or Casimir-Polder 
forces 16. At the distance x = 30, one can see the fronts of the propagation of the 
field. The shape of the fronts generally depends on the initial condition of (721). 
The fronts do not change their shape for the one-dimensional case, and propagate 
to an infinite large distance. In contrast to the assertion in the common approaches 
of the decoherence problem [l-51, the field has a non-negligible effect as time goes 
on. 

In figure 2, we use the same initial setting as figure 1, that the particle is in the 
ground state at t = 0. We plot the time evolution of the number density of the 
particle. The solid line is the theoretical prediction in Eq.(60) obtained through 
Markovian approximation, while the dotted line is the numerical simulation. It 
shows that the Markovian approximation gives very good prediction in the time 
scale t - O(l/y) with l / y  = 8.3 in all of the simulations. 

In figure 3, we magnify an early stage (t - l / q )  of the time evolution in 
Figure 2. In this regime, the non-Markovian effect dominates so that the Markov 
contribution alone is insufficient for prediction. Moreover, it is well-known that the 
so-called quantum Zen0 effect l7 shall give the zero time derivative of ( n k ( t ) ) ,  and 
our numerical result which takes into account the non-Markovian effect, recovers 
this property. The Markovian effect itself cannot give rise to this non-exponential 
processes. 

From figure 4-7, we consider the case where the initial condition of the field is 
given by the rectangular wavepacket in Eq.(64). In Figure 4, we plot the numerical 
simulation of the time evolution of the particle probability density by using L1 = 
-52, L2 = 0, and ko = q. The numerical results show the saturation of the particle 
and then decay exponentially after the passage of the wave packet. 

The particle is located at x = 0. 
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Figure 4. A numerical simulation of the time evolution of the particle (nl(t))  with a rectangular 
wavepacket of size Lzl = 52. After the wavepacket leaves at t = 52, ( n l ( t ) )  starts to decay 
exponentially. 

In Figure 5, we plot numerical results of the line shape ( n k ( t ) )  for different 
times t = 10, 20, 30, and 40 as a function of k. In these results we have chosen 
a large wavepacket with the size Lzl = 35, and ko = wl. During the moment the 
wavepacket overlaps with the particle, the height of the line shape glows linearly 
in time in the negative direction as predicted by our theory, then the height is 
saturated when the wavepacket is dissociated from the particle. 

In Figure 6, we plot theoretical results as well as a numerical result of ( n k ( t ) )  at 
the mode k = ko as a function of time t for (nl(0)) = 0 and ( n k ( 0 ) )  is the plane wave 
with ko = 5. The theoretical result. due to the Markovian approximation Eq.(61) is 
plotted by the thick line, while the theoretical result including a dominant correction 
due to the non-Markov effects coming from the second line in Eq.(55) is plotted by 
the thin line. In the theoretical calculation the higher order effect of X has been 
taken into account in such a way that the delta function 6(wk - wl) in Eq.(51) is 
replaced by the Lorentzian with the width of X’y. The dotted line is the numerical 
result. After a time scale of a few oscillations of the particle, one can clearly see 
the t-linear secular effect. 

In Figure 7, we magnify an early stage of the time evolution in Figure 6, where 
the numerical result (the dotted line) and the theoretical result (the solid line) 
with non-Markov effects included are shown. These results shows that the time 
derivative of ( n k ( t ) )  vanishes at t = 0. This is the well-known quantum Zen0 effect 
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Figure 5. A numerical simulation of the linear growth of the line shape in time. We start with 
a wavepacket with size Lzl = 35, and ko = w1. The lines from thin to  thick correspond to the 
different time t = 10, t = 20, t = 30, and t = 40, respectively. 

in the evolution of the field 17 .  Our theoretical result consistently recovers this 
well-known non-Markov effect. 

6 Conclusion 

As an application of the complex spectral representation of the Liouvillian that gives 
a rigorous approach to irreversible processes on the basis of microscopic dynamics, 
we have considered a problem of quantum decoherence for a particle coupled with 
a field that is in the thermodynamic limit. To deal with this problem we have 
emphasized that one has to go beyond the X2t approximation, the extension of 
which has been a long standing difficult problem in kinetic theory in non-equilibrium 
statistical mechanics. 

In this article we have especially focused our attention on a time evolution 
of the field, which is commonly neglected in literature. As we have shown, this 
neglect misses an important signature of the decoherence in the field that may be 
measured in actual experiments. We have shown the decoherence in the field is a 
result of irreversible process that leads dynamically to a mixed state from a pure 
state through the secular effect due to the resonance effect between the particle and 
the field. 
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20 40 60 80 100 

Figure 6. The time evolution of ( n k ( t ) ) .  We start with a plane wave of the field with ko = 1.5. 
The dotted line is the numerical result, while the thin line is theoretical prediction including the 
non-Markovian contribution. The straight line is the Markovian approximation. 
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DISCUSSION 
Chairman: L. Stodolsky 

E.C.G. Sudarshan: I have two small questions. You choose exactly the same 
equilibrium solution for -E  and +E. So I would like you to tell me if you have 
chosen ii or if it was forced by the equation. 

T. Petrosky: In order to  obtain a well-separated expression for the Markov 
processes from the non-Markov processes (or memory effects), the initial condition 
forces us to  choose a sign of e. An advantage of the complex spectral representation 
of the Liouvillian is that this allows us to isolate contributions associated to  Markov 
processes from the remaining contributions associated to non-Markov processes. 
Indeed, the Markov processes come from pole contributions, while the non-Markov 
processes come from the so-called background integral. For a given initial condition 
with a fixed direction of time (say t > 0), this decomposition is possible by choosing 
a suitable sign of E. However, since both branches of the analytic continuation lead 
to  complete sets of eigenstates of the Liouvillian, the evolution of the system does 
not depend on our choice of the sign of E. In other words, we may use the opposite 
sign of e to analyze the evolution of the system, if we wish. But if we would do 
that, we would obtain a theoretical expression of the evolution where the Markov 
processes and non-Markov processes are all mixed up, hence we lose the advantage 
of the complex spectral representation. 

E.C.G. Sudarshan: What can you say in favor of the Bogoliubov transforma- 
tion? It is well known that even for the free field, if you did canonical transformation 
of the field, almost all time there are non-equivalent representations. That does not 
mean that you cannot write down wave functions in that representation, but you 
cannot write down the wave functions in the original representation. Thus if you 
say that the wave function is not there, you mean that the wave function in the 
original variables is not there. 

T. Petrosky: I think this indicates more than the non-equivalent representa- 
tions. The divergence I have pointed out comes from a product of a bra-sate and 
a ket-state in the transformed states. This corresponds to  a resonance interference 
between these bra and ket states. In the Pauli master equation this interference 
effect leads to  secular terms with integer power o f t  and a delta function on energies 
that describes energy conservation in a collision process. Since there is no square 
root of delta function, the secular effects in the Pauli master equation destroy fac- 
torizability of the density matrix into a product of wave functions. As I have shown, 
contributions from the correlation subspace that give a correction to  the Pauli mas- 
ter equation do not suppress these secular effects. Hence, the observation of the 
secular effects may indicate the destruction of the wave function. 
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TIME A S Y M M E T R I C  Q U A N T U M  THEORY. FOUNDATIONS AND 
APPLICATIONS 

A. BOHM', M. GADELLA', M.J. MITHAIWALA'. 
' Physics Department, The  University of Texas at Austin, Austin, T X  78712, USA. 

Departamento de Fisica Teo'raca, Facultad de Czencias, E-47011 Valladolid, Spain. 

It is shown that a slight modification of one axiom of Quantum Mechanics elimi- 
nates the conflicts between the standard mathematical theory and the phenomeno- 
logical description of resonance scattering and decay. In addition, this modification 
leads to a quantum theory that incorporates time asymmetry in the quantum me- 
chanical time evolution. 

1 Introduction 

In this presentation we want to  give a brief description of the foundations of time 
asymmetric quantum theory (TAQT) and a summary of results which have also 
been applied or discussed in papers presented at this session 30 and other ses- 
sions 31,37 of this Conference. 

The fundamental assumptions (or axioms) of TAQT are a slight modification of 
the standard axioms of Quantum Mechanics ", basically of only one axiom. The 
resulting consequences are i.) a consistent theory of scattering and decay without 
the usual conflicts between phenomenological description (Weisskopf-Wigner ap- 
proximation 38) and mathematical methods 23922729,36 and ii.) the incorporation 
of time asymmetry in the quantum mechanical time evolution l8 of which the ir- 
reversibility of the (undisturbed or unobserved) decay of a resonance is a special 
case. 

2 

Most of discussions on the foundations of quantum theory start with two notions 25: 

A1.- States: described by a density operator p,  W ,  or by a state vector 4 for 
pure states, W = 14)(+1. 

A2.- Observables: described by self adjoint operators A (= A t ) ,  A, or by vectors 

All, p, W ,  A and A are defined as operators on some complex infinite dimensional 
vector spaces endowed with a scalar product and 'p, $ are elements of these vector 
spaces. 

The quantity to  be compared with experimental data is Pw(A(t)) ,  the probabil- 
ity to  measure the observable A in state W at a time t .  This probability is measured 
as a ratio of large numbers of detector counts, the relative frequencies N ( t ) / N .  It 
is calculated in quantum theory as the Born probability. In the Heisenberg picture, 
it is calculated as: 

The fundamental assumptions of Q u a n t u m  Mechanics 

$ if A =  I$)($I. 
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and in the Schrodinger picture it is calculated as: 

P w M t ) )  = WAoW(t)l = I($-14+(t))12 7 (’4 
where “Tr” stands for trace. The last equalities hold for the special cases W = 
l4+)(4+l and A = 1+-)(11-1. 

The comparison between theory and experiment is given by 

The almost equal sign rz is to emphasize that the theoretical quantity in the 
left hand side of (3) is a continuous function of time, whereas the right hand side 
changes in discrete steps with time. 

An axiom common to all formulations of Quantum Mechanics is that the dy- 
namics is given by the dynamical differential equations, either in the Heisenberg 
picture by 

(4) 
d 

i / i -?+-  ( t )  = -H 11- ( t )  at 
or in the Schrodinger picture by 

d 
at 

iti-f$+(t) = H @ f ( t ) .  (5) 

This means that one either uses the solutions of the Heisenberg equation (4) for 
the observables in (1) or one uses the solutions of the Schrodinger equation (5) for 
states in (2) to calculate the probabilities Pw(A( t ) )  of (3)“. 

In addition to these basic assumptions (A1,AZ) and (4,5), one uses rules for 
calculating the trace and the scalar product in (1,Z). These rules are derived from 
a basis vector decomposition, 

i 

where li) is a discrete set of eigenvectors of a prominent observable A: 

or a continuous Dirac basis vector decomposition 

aFor the more general observables A in the more general state W the Heisenberg equation of 
motion is 

- - _ _  at - k [ H ,  A ( t ) ]  , 

and the Schrodinger equation is 
aW(t) i 

at ti 
-- - - [ H ,  W(t)l , (7) 

and (4) and (5) is the special case A = [+-)(+-I and W = 16+)(6+1, respectively. 
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where ( A )  is a continuous set of eigenvectors, 

A IX) = X [ A ) .  

Often one chooses for A in (9) and (11) the energy operator (Hamiltonian) of the 
system (or a complete system of commuting observables, A = {H, B1, B2, . . . , Bn}, 
e.g., A = { H ,  J2, 53}, where J is the total angular momentum and 5 3  one of its 
components, so that X = (E , j , j3 )  and dE) ,  so that (9) and (11) are 
the energy eigenvalue equations 

dX = xj,i3 
H li) = Ei li) and H I E )  = E IE) , (1la) 

respectively. The eigenvalue equations (9) and (11) are solved under some boundary 
conditions which specifies the space of allowed solutions. These boundary conditions 
are related to the boundary conditions of the dynamical equations (1,2). 

Then, trace and scalar product in (1,2) are then calculated using (8) and (10) 
as s (12) 

00 

Tr(AW) = C ( i ( A W ( i )  or Tr(AW) = dX (XlAWlX) 
i 

and 
2 2 

1(+14)12 = C(+li)(il4) or 1(+14)12 = p ( ~ l A ) ( X l 4 ) ~  1 (13) I:, I 
where obviously equations in the left hand side of (12) and (13) stand for the 
discrete case, whereas equations in the right hand side of (12) and (13) stand for 
the continuous case. In practical calculations, convergence of infinite sums and the 
meaning of integration (Lebesgue or Riemann) are usually not considered and the 
infinite sums and the integrals over infinite range are truncated to  a finite range 
and restricted to continuous functions. 

The basis vector decomposition formulas (8,9) and (10,l l)  can be proven under 
various mathematical assumptions, which are connected with the choice of the 
boundary conditions for (4,5) and (9 , l l ) .  However, since the calculational rules 
(8,9) and (10,l l)  are of great practical importance, the boundary conditions, i.e., 
the choice of the space of solutions of (4,5) and (9, 11) must allow a proof of (8,9). 

The boundary conditions, i.e., the conditions that select the set of allowed solu- 
tions of the dynamical differential equations (4,5) and of the eigenvalue (differential) 
equations (l l) ,  can be chosen in different ways. 

In standard (yon Neumann’s) Quantum Mechanics, this is done by the Hilbert 
space axiom that says the following: 

Axiom.- The  set of states {4+} is equal to  the set of obseruables {+-} and both 
are equal t o  the whole Hilbert space 7-1. 

{4+} = {+-} = 7-1 (14) 
From this axiom (14), it follows by the Stone-von Neumann theorem 36,29,1, that 

all solutions of the Heisenberg equations for the observable vector (4) are given by 

+-(t) = e i t H g - ( 0 ) ,  -03 < t < 03 (15) 
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and in terms of the operator l+-(t))(+-(t)l by 

l$-(t))(+-(t)\ = ei"l+-(0))($-(O)le-itH, -cm < t < 0 0 .  (16) 

For the solution 4 + ( t )  of the Schrodinger equation, it follows again by the Stone 
von-Neumann theorem 1 , 2 9 9 3 6 :  

4+( t )  = ePi tH 4+(0), -cm < t < 00 (17) 

and for the operatorb lC#J+(t))(4+(t)[: 

lC#J+(t))(C#J+(t)l = e-'"H(4+(0))(4+(0)(eit*, -cm < t < co. (20) 
This is the unitary time evolution of standard Quantum Mechanics given by the 

unitary group. It is a mathematical consequence of the axiom (14) which predicts 
time symmetric dynamical evolution. 

From (15) or (17) follows 22 that the probability to detect the observable 
[q!-(t))(+-(t)l in a state @+, 

is mathematically predicted to  exist for all values of time, -co < t < co and it 
is either different from zero for (almost) all values of t ,  or it is identically zero for 
all t. If it is identically zero at  all t ,  for all observables /+-)($-I and all states 
@, then there are no transition probabilities and no decays. If it is different from 
zero for all -cm < t < co, then there cannot be a state that has been prepared 
by a finite time t o  > -co and which decays after this time to. This is in conflict 
with causality supported by physical observations, according to which a state 4+ 
has to  be prepared first by the time t= t o  before an observable [+-)(+-I can be 
measured. Thus the probabilities (21) can, for physical reasons (and causality), be 
different from zero only for times t > to .  This must be so, independently of whether 
an apparatus is present to  detect the observable or not 32. 

Therefore, the solutions of the dynamical equations (4) and (5) must be such 
that (21) is not predicted, or at least not predicted to be different from zero, for 
t 5 t o  where t o  is an arbitrary finite time (to 2 -cm), which can then be called 
t = 0. It means that, in place of the unitary group solutions (15) and (17), one 
needs solutions for which the time t extends only over 0 5 t < co. 

Although the solutions of the dynamical equations (4) (and (5)) are given by 
(15) and (17) for -cm < t < co as a consequence of the Axiom (14), one could 

*For the general case of an observable A and a state W described by Hilbert space operators the 
solutions of the dynamical equations (6) and (7) are given by 

A ( t )  = e"*A(O) . -atH , - 0 0 < t < m  (18) 

~ ( t )  = e-"HW(0) eitH , 
and 

-00 < t < 00. (19) 
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proclaim that (15) and (16) should be used for the time t 1 0 as done e.g. in lS, 

but that is in conflict with Axiom (14). The right way is to modify the Axioms 
of Quantum Mechanics such that only solutions of (4), (5) with 0 5 t < rn result 
as the consequence of the new Axiom. Since the Axiom (14) has several troubling 
mathematical consequences 22,23 for a theory of resonance scattering and decay 
and since the heuristic description of these processes 21, in any case, makes use of 
notions that lie outside the frame set by the Hilbert space, like Dirac kets that fulfill 
Lippmann-Schwinger equations 3,16, we shall formulate below a new hypothesis that 
modifies the Hilbert space Axiom (14). 

3 The fundamental hypothesis of time asymmetric Quantum 
Mechanics 

In order to obtain time asymmetric solutions of the dynamical equations (4) and 
(5)- also of (6) and (7)- we change the boundary conditions. This means that we 
modify the Hilbert space Axiom (14) and leave all the other fundamental assump- 
tions of Quantum Mechanics intact. 

In Hilbert space quantum theory, one speaks of observables and one speaks of 
states, but Axiom (14) does not distinguish between observables and states in the 
mathematical theory. The set of prepared states {4+}  and the set of detected ob- 
servables {$-} are mathematically represented by the vectors in the same Hilbert 
space (or the same dense subspace ip c 'H of the Hilbert space). We shall re- 
place the Hilbert space Axiom (14) by a new hypothesis which also distinguishes 
mathematically between states and observables. This new hypothesis states: 

The set of prepared states or in-states, defined by the preparation apparatus 
(e.g. accelerator), is described mathematically by 

{$+} = a- c 'H c ip : .  (22) 

The set of observables, defined by the registration apparatus (e.g. detec- 
tor), is described mathematically by 

{7+!-}  = ip+ c 'H c ip: . (23) 

The two triplets of spaces (22) and (23) form two different Rigged Hilbert 
Spaces 17, and the observables, state operators and transformations are 
represented in @& by continuous operators with respect to the topology 
on the space The spaces of test vectors ip+ are realized by spaces 
of Hardy functions which can be analytically continued to the upper (for 
ip+)  or lower (for i t - )  complex energy plane 5,s. 

The space of Hardy class functionsd on the upper (lower) half plane is denoted by 

cThey cannot be continuous operators with respect to the Hilbert space topology because their 
commutation relations (e.g. [Q, P] = i1) cannot be represented by continuous operators on Hilbert 
space. But there exists no counterexample of observables represented by continuous operators in 
suitable constructed nuclear topological spaces *. Therefore, Dirac's hypothesis of an algebra of 
observables defined in whole space can be fulfilled with an algebra of continuous operators defined 
on the whole space +. 
dA complex analytic function f(z) ,  z = E + ia, a > 0, defined on the upper half complex plane 
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7-l: (7- lT) .  A Hardy function, f ( E ) ,  in 7-1: or in 7-l? is called smooth if, as a function 
on the real axis, it is infinitely differentiable and fast decreasing'. Therefore, smooth 
Hardy functions are the intersections of the Hardy spaces 31: with the Schwartz 
space S:  S n 7-l:. 

The spaces C@k are realized as follows: r$+ E CP- if and only if its wave function 
in the energy representation, $+(E) = (E+I$+) (i.e., the expansion coefficients 
(Xlr$') in (lo)), is the restriction to  the positive semiaxis Bf of a function in 
s n ~ 2 :  

r $ + ( ~ )  = @+I@+) E s n IH? IB+ . 

$I-(E) = (E-J$I-) E S n'H:\,+. 

(24) 

(25) 

Analogously, $I- E *+ if and only if 

This means that the spaces ** are realized by the spaces S n 7-l: I IR+ respectivelyf . 
The new hypothesis (22,23) may look much more complicated than the Axiom 

(14), but it is really not much different. 
The first part of (22), i.e., { r $ + }  = *- C IH says that the space of apparatus 

prepared states is not the whole Hilbert space, but only a dense subspace thereof. 
The second part, 7-l C *?, says that there is in addition to  the Hilbert space IH, 
the space of continuous antilinear functionals *? over the space &. A similar 
statement holds for the spaces of observables (23). 

To use a Rigged Hilbert Space in order to  define Dirac kets IX) (generalized 
eigenvectors of a self adjoint operator that belong to the absolutely continuous 
spectrum) is really nothing new. It is needed to justify mathematically the Dirac 
basis of vector decompositions (10) and is implicit in the Dirac bra and ket formal- 
ism of Quantum Mechanics. 

However, the Dirac kets are usually defined (or presumed) t o  be functionals 
IX) E ax, where 

*c7-lc*x (26) 

is a Hardy function if 

sup Sw I f (E  + ia)I2 dE < K < 00 

Boundary values of a Hardy function on the real positive semiaxis determine all the values of 
the function on the whole hplf plane. Therefore, we can identify the function with the function 
given by its boundary values f(E).  In addition, this function of the boundary values is square 
integrable, so that H: C L2(R).  Similar definitions and properties hold for Hardy functions on 
the lower half plane 12. 
eThis means that f ( E )  has the following property 

o > o  -w 

lim [..-I = a ,  n , m = 0 , 1 , 2 , . .  
E c f m  

Infinitely differentiable functions with this property form a vector space called the Schwartz space, 
here represented as S. 
fEach function f+(E) in S n W?&l determines one and only one function F&(E)  in S n H:. 
Both are identical on the positive semiaxis, i.e., F*(E) = f f ( E )  for all E E Ifg+ [O,OO). Thus, 
each function f*(E) E S n H: can be uniquely extended to  the function F*(E) E S n3-1:. 

R+ 

I*+ 
This permits somehow identify the spaces S n '1: 
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7 23 

is a rigged Hilbert space of Schwartz type, i.e., 9 is either unitarily equivalent to 
the Schwartz space S or to a closed subspace of S g  dense in the Hilbert space of 
wave functions. 

In general the space CP is realized by the space of smooth functions, which means 
that the energy wave functions $(E)  := (El$) ,  in the Dirac basis vector expansion 
(lo), are smooth rapidly decreasing functions: 

Often one uses the Axiom (14) in the form 

{$+} = {q!-} = 9 C H ,  

which means that one restricts oneself to smooth energy wave functions $ + ( E )  := 
(+El@+) and q!-(E) = (El$-) for states as well as for observables rather than 
using Lebesgue square integrable functions for both states and observables {@+} 5 

The new hypothesis (22,23) states that the set of wave functions, q!-(E), of an 
observable lt,!~-)(q!-l, is different from the set of wave functions, $+(E),  for a state 
I I $ + ) ( $ + \ ~ .  Namely, for the observables, the set of wave functions is made of these 
smooth functions that can be analytically continued to the upper half plane. For 
states, the set of wave functions is made of these smooth functions that can be 
analytically continued to the lower half plane. 

However, the new hypothesis (22, 23) is physically indistinguishable from Axiom 
(14) or (28). 

The statement that the state $+ E *- means that the energy distribution of the 
accelerator beam is described by a smooth rapidly decreasing function, 1@+(E) 1 2 ,  
where d+(E)  can be analytically continued to the lower half complex energy plane. 

The statement that the state 11- E CP+ means that the energy resolution of 
the detector is described by a smooth rapidly decreasing function, lq!-(E)l*, where 
q!-(E) can be analytically continued to the upper half complex energy plane. 

In contrast, (14) and (28) means that $+(E) and q!-(E) are Lebesgue square 
integrable functions which in general cannot be analytically continued into the 
complex energy plane (see Appendix). 

Thus, hypothesis (22,23) only differs from the Hilbert space Axiom (14) in that: 
For states the wave function c$+(E), describing the accelerator (preparation 

For observables the wave function q!-(E), describing the detector (registration 

{+-} = 3-1. 

apparatus), can also be analytically continued to the lower half plane. 

apparatus), can also be analytically continued to the upper half plane. 

9This means that there exists a unitary operator U from ‘H onto L2(R) (or L2(R”)), 

U :‘H c----t L2(R), 

such that either the image of Q by U ,  V ( Q ) ,  is either the Schwartz space S or a closed subspace 
of S dense in L2(R). 
h A  more general state W+ is given by W+ = C, w n  l & ) ( # ~ n f I ,  where $2 6 Q-. 
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In Hilbert space Quantum Mechanics, every square integrable (L2(R+)) function 
f ( E )  can represent both a state and an observable. Not all functions f(E) can be 
analytically continued to a half plane. 

It is hard to  imagine that a detector (or registration apparatus) can discriminate 
between the set of functions $- (E)  E S n 7i;lR+, which can be analytically con- 
tinued to  complex energies and the set of functions, $(E)  € SIR+, which cannot be 
analytically continued to complex energiesi. The same holds for the wave functions 
4+(E) that describe the accelerator. 

In other words, the difference between Axiom (14) and the hypothesis (22,23) 
cannot be observed directly, but they are mathematically profound and they will 
lead to  consequences which are physically significant. Some of these consequences 
will be discussed in the following section. 

4 

We suggest to consider a quantum theory which is based on the same fundamental 
assumptions and uses the same calculation rules as standard quantum mechanics, 
except that the general boundary condition (14) (the Hilbert space axiom of quan- 
tum mechanics or its modification (28) to include Dirac kets) is replaced by the 
new pair of general boundary conditions, (22) for states and (23) for observables. 

All other axioms of quantum mechanics remain the same or are extended in a 
natural way to the new kets IF’) E @:. For example, in addition to the H-space 
function a1 

Consequences of the Hardy Space hypothesis 

Icl-(t) - ($-( t ) ,  4) 7 4 E ‘H (29) 

(where the brackets (., .) denote the scalar product on 7-1 and which is a function 
of all $- E H),  we also considers the @+-space functional 

?!-(t) - (Icl-@W) = F-($ - ( t ) )  (30) 

(where the brackets (., .) stands for the action of the functional IF-) on the observ- 
able $-(t) and which is a function of all $- E @+). In analogy to  (l), one also 
interprets (30) as a probability amplitude. For instance for F -  = IF), where the 
IE-) E @: are solutions of the eigenvalue equation HIE-)  = EIE-),  E E R+, it is 
standard to interpret the 1($-1E-)12 as the probability density for the energy E. 

4.1 Time asymmetry 

For the Hardy spaces one also has a general theorem, the Paley-Wiener theorem l2 

that determines, like the Stone-von Neumann theorem of the Hilbert space the 
general solution of the dynamical equations. As a mathematical consequence of 

iThe continuation of $-(E) E S n X:) to the negative semiaxis is unique, whereas the con- 

tinuation of a smooth rapidly decreasing function on W+ to the negative semiaxis as a Schwartz 
function can be done in infinite manners. 

B+ 
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(22,23), one obtains for the solutions of the equations (4,5) semigroup solutions. 
These semigroup solutions are of two kinds: 

1.- Solutions of the Heisenberg equation (4): For observables +- E a+ one 
obtains 

+-(t) = U(t)+- = eztH+- , O l t < 0 O  (31) 

d+(t )  = e - i t H Q + ,  O l t < 0 O  (32) 

2.- Solutions of the Schrodinger equation (5): For states d+ E a-, one obtainsj 

Thus, in place of the unitary group solution (15,17) of the dynamical equation 
(4,5) one obtains from the new hypothesis (22,23) the semigroup solution (31,32) of 
the same dynamical differential equationk. Therefore, one predicts for the probabil- 
ity of the observable I+-(t))(+-(t)l in the state d+, using the Heisenberg picture: 

~ ( t )  = l(+-(t), $ + ) I 2  = I(eiH+t+-,d+)12, for t 2 o only. (33) 
Similarly, using the Schrodinger picture one predicts for the probability of the 

observable l+-)(+-l in the state $+(t)': 

~ ( t )  = I(+- ,++(t))I2 = I(+-,eFiHt + + ) I 2  = I((e-iH-t)x+-lq++)12 

= I(eiHxt+-ld+)12 = I(eiH+t+- ,d+)12,  fort  2  only (34) 
where the above equalities follow because each E a+ is also a functional 
I/- E a?. Thus, the probabilities are the same, independently whether they are 
calculated in the Heisenberg or in the Schrodinger picture and they are calculable 
(or defined) for t 2 0 only. 

The time asymmetry t 2 0 of (33) is the same time asymmetry 0 5 t < 00 that 
we mentioned and whose heuristic meaning we discussed in section 2. Here this time 
asymmetry has been derived as a mathematical consequence of the new hypothesis 
(22,23). Thus, the empirical statement that the probability for an observable +-(t) 
in a state q5+ makes sense only for times t > t o  = 0 is a consequence of the new 
hypothesis (22,23). 

?Precisely, the semigroup generator H = ( H + )  in (31) is the restriction of the self adjoint operator 
H to the (dense in 7-1) subspace *+ and the generator H = ( H - )  in (32) is the restriction of H 
to *-. 
'But with the initial data values of the Cauchy problem restricted to the new boundary condition 

'In order to make (35) precise, we have to be more accurate in our notation and use the notation 
of footnote (11). The semigroup ( e - - i t H - ) x  acts on and has the generator H?. Analogously, 
the semigroup ( e - - i t H + ) x  acts on *+ and has the generator H:. In order to understand (34), 
we have to remark that H: is not only an extension of H-: 

H- C H = H t  c H ? ,  

ICl-(0) = %!- E *+. 

but it is also an extension of H+: 

H+ c H =  H T  c H? 
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Whereas a group like (15,16) does not have a distinguished time since -00 < 
t < 00, the semigroups (31) and (32) introduce the time t o  = 0. It  is measured as 
the time t o  at which the state has been prepared and at which the registration of 
an observable in this state can start. To clarify the meaning of this new notion, to, 
and to discuss whether it is a physically accessible quantity, we consider an example 
of quantum mechanical decay. 

The observable in the decay of an excited quantum state is the projection op- 
erator on the space of out-states of the decay products A- = l$-)($-l (which we 
idealize here as a one dimensional projection operator on the vector q!- E @+). A 
detector, described by A-,  cannot register the decay products before the decaying 
state has been prepared. 

Take as an example the decay 

K g - T f T - .  (35) 

We shall ignore here the KE and its CP violating n+n- decay, this is discussed in 
terms of (52) below and does not affect our arguments here which deal just with 
the Kg. The decay products T+ T-  can be registered only after the decaying state 
Kg has been prepared (this is independent of whether it has been prepared by the 
experimenter in a planned experiment or at  random by cosmic rays) in e.g., the 
reaction pion n- with proton p producing a KO and transforming the baryon state 
p into the baryon state A: 

n - p H ~ ~ o  (36) 

(37) 

This means that the observable 

I$-(t))(+-(t)l= eitH In+ T-) (T+ n-lePitH 

makes sense only for t > t o ,  where t o  is the time at which Kg has been prepared. 
Since the neutral Kaon is created by the strong interaction, the time t t )  at which 
the i-th KO is produced at the proton target is very well defined within 
seconds (the characteristic time of strong interaction). This i-th KO moves down 
the beam line for a time interval t(i)- tg) and decays at t(i) after it has moved 
a distance dli) = &(t(i)  - tg)) .  Here p is the momentum of KO, m~ its rest 
mass, t( i)  is the time in the rest frame of the KO decay and d( i )  is the distance in 
the laboratory frame from the proton target to the decay vertex of the i-th KO. 
The distance d( i )  of the decay vertex from the target position is measured by the 
detector and thus the lifetime for the i-th Kg decay event t(i) - tt) can be calculated 
from d ( i )  and p. It is of the order of 10-l’ seconds. This time t i ) ,  in the past of 
each individual Kg +-+ ~ + n -  event at t ( i ) ,  is the mathematical time t = 0 for 
the state vector $+(t) describing the ensemble of individual Kg that are created at 
different times tg).  

One counts the number of decay events (35) per time interval At (the counting 
rate) as a function of d ( i ) ,  i.e., of a function of the travel time t = t ( i )  - t:) = d( i )  
and obtains the exponential law = ePRt  from which one calculates the average 
travel time which is the average lifetime of the ensemble of Kg that started traveling 
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at the proton target, 7 = average (t(i) - t!)) = 2. This is the lifetime of the 
quantum mechanical Kg-state, whose state vector we denoted by I$+. The Kg state 
thus represents an ensemble of individual K$ that are created in an experiment at 
quite arbitrary times t!) and produce a decay vertex at the times t(i).  All these 
times t t ) ,  in the past of each individual K t  H T+ T -  event, are the initial time 
t o  = 0 for the KO state, i.e., the time at which 4+ has been created and after 
which one can count the decay products. This time t o  of the KO state, Le., the 
time t = 0 in the life of each individual Kg, is identified with the mathematical 
semigroup time t = 0. The vector ++ does not represent a bunch (wave packet) 
of Kg’s moving down the beam line, but an ensemble of KO which are created at 
quite arbitrary times t t )  but have a well defined lifetime 7 = average (t( i)  -tt’). In 
case of the Kg, the time t o  at which the preparation of the state 4z0 is completed 
and at  which the registration can begin is experimentally very well defined (within 

S.M T ~ ; ) .  since KO in (36 )  is produced by the strong interaction with 
a time scale of seconds and has a lifetime of the order of 

The existence of the time asymmetry in the decay process like (35 )  and others is 
independent of whether an experimentalist has set up an apparatus and whether the 
decay products, T+ T- for (35 )  and others, have been registered or not. Quantum 
decay is a process for which it is impossible (or extremely improbable) to experi- 
mentally realize the time reversed quantum solution 26. It has nothing to do with 
violation of time reversal invariance 7, which is the non-conservation of the time 
reversal transformation T (or of CP) by the total Hamiltonian H in the dynamical 
equations (4), ( 5 ) ,  [ H , T ]  = 0. It has also nothing to  do with the apparatus affecting 
the quantum system and somehow collapsing or decohering its state ’O; that may 
be an effect which comes on top of this time asymmetry and may also contribute 
to  irreversibility. 

The time asymmetry that follows from the new hypothesis (22, 23) is a con- 
sequence of boundary conditions, not of the time reversal non-invariance in the 
dynamical equations (4, 5 ) .  The analogue in classical physics of our quantum me- 
chanical time asymmetry is the radiation arrow of time (its quantum analogue is 
the radiative decay of an excited quantum state). This time asymmetry due t o  time 
asymmetric boundary conditions of a time symmetric differential equation, is also 
manifested in the big bang solution of the Einstein equations. And the realization 
in Nature of time asymmetric boundary conditions may well be attributable to  the 
big bang Whatever its origin, time asymmetry is a law of this world and not a 
result of an experimentalist’s manipulations 32. 

seconds. 

4.2 Gamow vectors 

Since the exponential law is very accurately fulfilled for the experimental counting 
rate in decay process as like (35 ) ,  the probability rate, P#+(t) ,  calculated from 
(33 )  should also be exponential. That means that r$+ should be an exponentially 
decaying state. Such a state cannot exist in the Hilbert Spacem 13,15,23. But we 

mBecause if such a normalizable state exists, then it must have a Lorentzian energy representation, 
which is in contradiction of the semibounded character of the Hamiltonian 13,15,23. 
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shall show now that the new hypothesis also provides a vector to represent an 
exponentially decaying state. 

In addition to the apparatus prepared states I$+ E @- with smooth wave func- 
tion 4+(E) = (+EI4+), describing the energy distribution 14+(E)(’ of the  accel- 
erator beam and in addition to the detected observables $- E @+ with smooth 
wave function $-(E)  = (-El$-),  describing the energy resolution of the detector, 
the RHS’s (22,23) introduce new generalized vectors (functionals on the spaces a*, 
FT 6 @:). Generally speaking in a RHS, C@ C 7-l C ax, the smaller the space 
@, the bigger the space ax. The spaces C@& are restricted enough so that their 
(anti)duals, a:, contain not only the Dirac kets, but also more general kets. 

For instance, they contain the scattering states (eigenvectors with eigenvalues 
in the continuous spectrum) lE , j , .  . .F) 6 a:, with 

H I E , j , .  . .T) = E ( E , j , .  . .IF), 0 5 E < co, (38) 
which are the plane wave solutions of the Lippmann-Schwinger equations (where 
the sign + stands for incoming and the sign - for outgoing plane wave function). 
It is actually the pair of Lippmann-Schwinger equations of the heuristic description 
of scattering that suggests the need for the pair of the RHS’s in the new hypothesis 
(22,23). 

In addition to  the eigenkets with real eigenvalues, the spaces %: contain also 
eigenvectors with complex eigenvalues of the self-adjoint Hamiltonian H .  For in- 
stance the vector $‘ fulfillingn: 

where ER - f is the position of the resonance pole of the analytically continued 
S-matrix (or of the reduced resolvent of H )  in the complex energy plane ’. The 
vector gG = m I E  - Zr/2,j , .  . .-) E is called the Gamow vector of the 
resonance at E - Zl?/2. Here, 

The state vectors q5+ E @- are also elements of 7-l and therefore of a:, ac- 
cording to (22,23). Therefore, it is natural to extend the interpretation of (33) 
also to all vectors F -  E @: and define the probability to measure an observable 
\+-(t))($-(t)\ (or A - ( t ) )  in the generalized state F -  E @: as 

is an arbitrary “normalization” factor. 

%-(t)  = l(+(t)lF-)t’ = l($-IF-(tNl’. (40) 

“If the operator A has the property that AiP C iP, then A t  admits a unique extension to Q X  
called the conjugate operator A X .  It is defined by the duality formula: 

(AlplF) = (plAX F ) ,  V p  E iP, F E iPt . 
For a self adjoint H = H t  Dirac used the notation HIE) = 1E) in (38), whereas precisely one 
should write (38) as 

H i  IE,j ,... IF) = E I E , j  ,... IF), IE,j  ,... T, E i P $ ,  (38a) 
and (39) as 

H ; * G =  (E+ *G, (39a) 

where HZ are the conjugate of the operators H+ and the H Z  are defined in ‘P; (see footnote 
(10)). If one specifies to which space the vectors belong upon which the operators H* and HZ 
act, then one can omit the subscripts and write just H as done in (38, 39) and by Dirac. 
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Because of the semigroup property of the time evolution (31) the probability (40) 
is defined for t 2 t o  = 0 only. The time evolution of F -  is defined by 

(eiHt $-IF-) = ($-lU"(t)lF-) = ( $ - l F - ( t ) ) ,  (41) 

for all $- E C P + ,  where U X ( t )  = e P i H X t  is the uniquely defined extension of 
ut(t) = e--iHt to a: and H X  is the semigroup generator. But U x ( t )  is defined for 
t 2 0 only. If we omit the arbitrary $J- in (41), this equation can also be written, 
as a functional equation in a:: 

~ - ( t )  u x ( t )  F-  = e--iHXt F -  I (41a) 
valid for t 2 0 only because only for t 2 0 is U(t) = eiHt a continuous operator in 
@+ fulfilling U ( t ) 9 +  c @+. 

Choosing for F -  the vector $G, we obtain: 

qG(t) = (e-- i tH)x$G = ePiERt e - g t $ G ,  t 2 0 .  (42) 

l ($- l$G)12, 

And for the probability to  detect the decay products $- E a+ in the state QG(t), 
one obtains 

(43) G 2 - - P t  
P+G(t) = l($-(t)l$ ) I  - e for t 2 0 only. 

This is the exponential law. Thus, the Gamow vector associated to the resonance 
pole at ER- i r /2  represents an exponentially decaying state with lifetime 7 = l/r *. 
The Gamow vector, specified by resonance energy ER and width I? (and possibly 
some additional quantum numbers like angular momentum) is the idealized state 
vector that describes the resonance = decaying state independently of its mode 
of production and preparation. These other aspects are contained in the complex 
basis vector expansion of a prepared state that we shall turn to next. 

4.3 Complex basis vector expansion 

Another important consequence of the hypothesis (22,23) is the complex basis vec- 
tor expansion (also called complex spectrum resolution), which has been applied in 
the work presented at the same session 30. Since the spaces in (22,23) are Rigged 
Hilbert Spaces [RHS] 5 ,  the generalized eigenvectors lE, j , .  . .*) form complete basis 
systems'. That means that the Nuclear Spectral Theorem holds for the in-states 
q5+ E a- and for the out-states (observables) $- E a+ in the formp: 

(44) 

Owe are assuming the absence of bound states, i.e., we restrict ourselves to the space of scattering 
states. 
PThe tippmann-Schwinger equations related generalized eigenvalues of the "free" Hamiltonian HO 
to the generalized eigenvectors of the total Hamiltonian H = Ho + V with respective eigenvectors 
in the same continuous spectrum. A study of these Lippmann-Schwinger equations in the context 
of RHS is given in and 16. 
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These expansions are identical with the standard Dirac basis vector expansion used 
in scattering theory, where the IE*) (= IE, b*)) are the Dirac kets that fulfill the 
Lippmann-Schwinger equations ( b  are the degeneracy labels). These basis vector 
expansions are fulfilled in any RHS. 

Here, the IE, b*) are antilinear functionals on the space 9, of (22,23) which are 
Hardy spaces. For Hardy RHS, i.e., under the hypothesis (22,23), one can prove in 
addition the following basis vector expansion '. For every vector $+ E @-, 

N 

4' = c IEn)(En14+) + c l+?)(+?l$+) + dE IE+) b(E) .  (46) 

In here, the +?, i = 1 , 2 , .  . . , N ,  represent N Gamow vectors with respective 
eigenvalues E R ~  -iI'i/2 and we have assumed that there are N first order resonance 
poles at  the pole positions Z R ~  = ER; -2ri/2 of the analytically continued S-matrix 
(second Riemann sheet) or of the reduced resolvent. In (46) we have also assumed 
the existence of some stable bound states [En) in order to  show that the resonance 
states $JF appear in the complex basis expansion (46) in the same manner as the 
bound states. If there are no bound states, the first sum in (46) is omitted. The 
expansion (46) shows that the resonances appear in the basis vector expansion on 
the same footing with the bound states. However, (46) is not a complete analogue of 
the discrete basis vector decomposition (8) because, in addition to the superposition 
of resonance states +f (and the sum over bound states [En), which we shall omit 
since they are of no further relevance here) there appears an integral over the 
continuous basis vectors IE+) with a weight function b(E). 

The complex basis vector expansion (46) - without the bound-state term - 
is obtained from the S-matrix element which with (44, 45) is written (suppressing 
the degeneracy index b)q 

0 bound states i=l 

(@out, S$'") = (a  - +out, +$in) = (+-, $+) 

dE ($J-lE-) S ( E )  (+El$+). (47) 
= Im 

If the S-matrix S ( E )  has N first order poles at ZR,  = E R ~  - i r / 2  then, as a 
consequence of the new hypothesis in the form of (24,25) and the residue theorem, 
one can write the integral in (47) as a sum of residues corresponding to  the N poles 
plus a background integral. As a result the S-matrix S ( E )  can be represented as 

where the R(i) is the residue at the pole Z R ~ ,  which is a sum of Breit-Wigner 
amplitudes plus a background amplitude b(E). 

qHere, we define the Moller wave operators R * as the following limits in the strong operator 
sense: 
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There is a one-to-one correspondence between a Breit-Wigner amplitude in (48) 
and a Gamow vector in (46) and the background amplitude corresponds to the 
continuous superposition over the IE+) with weight function b(E) in (46). 

From the complex basis vector expansion (46) follows by applying the time 
evolution operator U X ( ~ )  = e- - i tHX to ++: 

This expression is valid for t 2 0 only, because only for t 2 0 is the semigroup 
e--i tHX defined. 

The result (49) then shows that the time evolution of an apparatus prepared 
state C#J+ is given by a superpositions of exponentials plus a nonexponential back- 
ground term. In case that there is only one resonance in the scattering system (and 
no bound state) the basis vector expansion (46) is 

F W  

9+ = C$JG + /, dE IE') b(E) 

(where C is an arbitrary constant) and its time evolution is 

P+) b(E) ' (51) 4+(t) = e - i t H  + - Ce- iERt  e - f t  +G + 1- dE ePitE 9 -  

The first term of (50) representing the state of the resonance per se has its charac- 
teristic exponential time behavior. However, there is always the background term 
whose time evolution is not exponential and whose magnitude b(E) depends upon 
the way the state $+ was prepared. 

Therefore, a prepared in-state 4' cannot have a purely exponential time evolu- 
tion. Only the Gamow vector which corresponds to the Breit-Wigner amplitude in 
the S-matrix (or in the scattering amplitude a(E)  := & ( S ( E )  - 1)) (48), and r e p  
resents the resonance per se, has a purely exponential decay. The resonance state 
is characterized by the resonance energy ER and by the width r, or its inverse, the 
lifetime T = l/r. These values do not vary from experiment to experiment, but 
the background b(E) may. In resonance scattering experiments, in which the time 
scale for the preparation of the decaying state and the time scale for the decay are 
the same (e.g. resonance formation of hadrons) one always needs the slowly varying 
background term b(E) for the fit of the cross section data. In this case, one expects 
deviations from the exponential decay given by the ePitE b(E) dependence in the 
second term of (51). This background term can thus account for the deviations 
from the exponential law reported in this conference 33. It is the particular form of 
the complex basis vector expansion (50,46), that allows for deviations from the ex- 
ponential law, though the ideal resonance state vector $JG has an exponential time 
evolution. The smaller one can make b(E) in the experiment, the less important 
will be the deviations from the exponential law. And in those experiments in which 
the time scale for the preparation of the decaying state and the time scale for the 
observation of the decay products differ by orders of magnitudes like in the process 
(36,35) discussed above, the validity of the exponential law has been established to 
a high acc~racy '~ .  
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There is actually also some deviation from the exponential law observed in the 
neutral Kaon system of (35), but this has been known for a long time. I t  is well 
understood and can therefore be taken care of in the experimental analysis. It has 
its origin in the fact that the KO in (36) is not a K:, but there are two Kost ates 
(with different quantum numbers good for the strong interaction but not for the 
weak interaction), so that, for the neutral K-system, N = 2 in (46). 

The complex basis system expansion (46) is an exact consequence of the hy- 
pothesis (22,23). But in the Lee-Oehme-Young theory for the KO system, one 
assumes that the prepared KO state in (36) is represented by its Weisskopf-Wigner 
approximation 26: 

The $f in (52) are assumed to fulfill (39). The same result (52), one also obtains 
from (46) if one omits the continuum background of (46). This expansion (52) is 
thus a consequence of the hypothesis (22,23) but with the continuum (background 
term) omitted. The deviation from the exponential law, that one observes for the 
neutral Kaon system, is then explained by the interference between $2 and $grid 
not by interference with the background term, which is small for the KO-system. 

The truncated complex basis vector expansion, i.e., (46) without the background 
integral, has also been used extensively in fitting experimental data by a superpo- 
sition of resonance states in nuclear physics 14. 

The application of the complex basis vector expansion (46) in atomic physics 
has been discussed in 247  where the interference of two or more Gamow vectors ?!jc 
and the continuum integral is used to  explain the experimental data observed for 
the Na I dissociation process lo. Consequences of (46) have also been discussed in 
another talk of this session 30. 

5 Conclusions and general remarks 

We have made minor modifications in the foundations of quantum mechanics, essen- 
tially we have replaced one axiom of quantum mechanics, the Hilbert space axiom 
(14), by the Hardy space hypothesis (22,23) and retained all other fundamental as- 
sumptions of quantum mechanics including the calculation rules, based on Dirac's 
continuous basis vector expansion. This modification of the axioms is so minimal 
that it cannot be observed directly, since this would require to  discriminate be- 
tween an apparatus resolution described by an energy wave function that can and 
an energy wave function that cannot be analytically continued into the complex 
energy plane. The important feature of our modification is that it distinguishes 
also mathematically between observables and states, describing them by the two 
different dense Hardy subspaces of the same Hilbert space. Experimentally one 
always makes this distinction attributing states and observables to  different parts 
of the experiment; the preparation apparatus (accelerator) prepares the state and 
the registration apparatus (detector) registers the observable. 

In the heuristic scattering theory, where one does not limit oneself to  the Hilbert 
space 21, this discrimination between states and observables has already been done. 
In scattering theory, one describes the in and out plane waves by Dirac kets fulfill- 
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ing different Lippmann-Schwinger equations. The new hypothesis (22,23) provides 
the mathematical justification for this, which also allows for a generalization from 
the infinitesimal f i O ,  that appear in the Lippmann-Schwinger equations, to finite 
values (e.g. ir/2). Using the new hypothesis (22,23), one obtains a unified the- 
ory of resonance scattering and decay phenomena which is free of the problems 
that have their origin in the use of a mixture of the Hilbert space mathematical 
axiom and of calculational rules that are inconsistent with this axiom. One also 
obtains new results, like the complex basis vector expansion (46) whose truncation 
is the Weisskopf-Wigner approximation. It therewith justifies the finite dimensional 
effective theories of complex energy resonance states that have had successful ap- 
plications in nuclear physics and the Lee-Oehme-Yang theory for the neutral Kaon 
system. On the more fundamental level, the new hypothesis leads to  semigroup dy- 
namics and provides a theoretical foundation for the concept of the time at which 
the preparation of a state has been done and the measurement of an observable can 
begin. 

In the mathematical description of reality, we always have to make idealizations 
and one of the general lectures of this conference 28 discussed the question whether 
time-arrowed quantum mechanics (TAQM) is sufficiently idealistic and reductive 
enough to  qualify as Pythagorean or whether it is Aristotelian, i.e., an empirical 
”effective” formalism like the theory of friction that slowed down the advance of 
physics. Time Asymmetric Quantum Theory does not describe the irreversibility 
due to the influence of the environment or of the measurement apparatus 2o upon an 
open quantum system ll. The time evolution of open quantum systems is also given 
by a semigroup but its dynamical equations contains in addition the Hamiltonian 
term of (7) another term that describes the influence of the external reservoir or 
external environment. This may be the analogue of the friction term in Newton’s 
equation in classical mechanics. TAQT attributes the “irreversibility”, or better 
the time-asymmetry, to  the time asymmetric boundary conditions (22,23) for the 
time-symmetric dynamical equations (6,7) or (4,5). Its classical analogue is the phe- 
nomenological law according to which nature favors the retarded over the advanced 
solution of the time symmetric Maxwell equations (radiation arrow of time), or 
the big bang over the big crunch solution of the Einstein equation. The standard 
Quantum Mechanics in Hilbert space does not allow time-asymmetric boundary 
conditions, however for stationary quantum systems - idealizations in which the 
excited states of atoms and molecules are considered stable - it does the job. How- 
ever, resonance scattering and decay are time asymmetric phenomena and therefore 
using the Hilbert space boundary conditions leads to inconsistencies 22,23, whereas 
a more phenomenological approach has great empirical success 38,21. Therefore, 
why not find the Pythagorean elements of this phenomenological approach, i.e., the 
mathematical idealizations that. describe these phenomena? 

These elements are the Gamow states, the vectors with exact exponential semi- 
group time evolution and idealized Breit-Wigner energy distribution. The Gamow 
vectors ,JIG are one of the end points of the reductive approach because they de- 
scribe the resonance = decaying particle per se isolated from all background (which 
is represented by the integral of (50)). They may be difficult to isolate experimen- 
tally, (like the frictionless objects of classical mechanics) but they lead to  a simple 
and consistent theory. 
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Appendix: A note on Lebesgue integrals 

Lebesgue square integrable functions on the real axis (or L2(R) functions) may 
be very weird to represent a physical state. The reader may have in mind square 
integrable functions of the type 

1 on the irrationals of the interval [0,1] 

f(z) = 0 on the rationals of the interval [0,1] 

l o  otherwise. 

We do not mean that kind: since L2(R) is a space of class of functions, and f(z) 
is almost elsewhere identical to the function which is equal to  one on the interval 
[0,1] and zero elsewhere, we can choose the latter instead of f(z) as a possible wave 
function. When we speak about weirdness, we are referring to  functions of the type: 

8 

f(z) := C 71 A n ( z )  7 

n=l 

where 
1 1 1 if z E [n - s, n + -1 

otherwise. 
= 

Note that f(z) is neither bounded nor vanish at the infinity. In any neighbor- 
hood of infinity, f(x) is different from zero almost elsewhere (a.e) and unbounded. 
Nevertheless, f(z) is square integrable: 

One may argue that f(z) is not continuous (in fact it is continuous a.e.). However, 
there are smooth functions that are square integrable but are neither bounded, nor 
having a limit at the infinite. 

These functions can be constructed by using the following idea: Let { ," > 0 if 2 E [a, b] 

otherwise. 
g(x) = 
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Then, we can construct an indefinitely differentiable function at all points, h(x), 
such that ’: 

a,)  h(s)  has the value A on the interval [c, d] with a < c < d < b. 
b.) h ( s )  has the value 0 outside [a,  b]. 
c.) h(s) takes values between 0 and A smoothly on [a,  c] and [d,  b]. 
Let us make this construction on each of the intervals 

then, we have a function ~ ( s )  such that: 

the real line. 

negative and non identically zero, we conclude that 

1.- The function ~ ( s )  admits continuous derivatives of all orders at all points of 

2.- Since 0 5 ~ ( s )  5 f(s), V x  E R, ~ ( x )  is square integrable and ~ ( s )  being non 

m 

0 < 1, 1d~>l2 0 3 ,  

3.- The function q(x) is unbounded. 
4.- The limit: 

lim ~ ( x )  
Z Y M  

does not exist! 
Therefore smoothness is not often a good enough property for functions in the 

space representing a*. Thus, we need to impose in these functions some kind of 
behavior at the infinite. Often, rapid decreasing. 
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DISCUSSION 
Chairman: L. Stodolsky 

L. Stodolsky: So if I understand, you say it’s a better way of understanding 
what we already know, but it doesn’t make way to  any new experimental predic- 
tions. Can you propose an experiment which will come out different in a normal 
quantum mechanics? 

A. Bohm: If you apply this to  a relativistic theory, it gives you a criterion to  
choose the definition of the mass and the width of a relativistic resonance, which 
otherwise cannot be done. The particle data book gives two values for two differ- 
ent definitions of mass and width for a relativistic resonance. Our theory gives a 
third one, and for the Z-boson resonance, these values differ by about ten times 
the experimental error. The experimental lineshape cannot decide which are the 
right values. The fundamental axiom that we propose removes the ambiguity in the 
definition of mass and width for relativistic resonances using a theoretical criterion. 
This criterion is that the width must be defined such that it is the inverse lifetime. 
From that criterion, which you can only get from our axiom, you can predict pre- 
cisely the value of the Z-boson mass and width. This is the only prediction I know 
at this time as far as experimental numbers are concerned. 

I. Prigogine: You cannot separate the type of systems which you mentioned at 
the beginning from the system used in statistical mechanics. Because irreversibil- 
ity is an obvious phenomenon which we see in many body systems. So you said 
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something which is certainly not correct, and that is the fact that you need to have 
a decaying particle. But that is not true. You have either zero trace or constant 
energy. Therefore you have a problem, and therefore I’m about to say that I object 
to this. 

A. Bohm: Our time asymmetric quantum theory has one particular conse- 
quence, namely that preparation of the state must precede the observation of the 
decay products. That’s only one of the many consequences. Of course, this arrow 
of time or irreversibility is also there without experimentalists performing any ex- 
periments. I t  has many manifestations and one can argue that ultimately it comes 
from the big bang, as you know so well. Whether it is connected with entropy 
increase I do not know. It is an irreversibility connected to boundary conditions. 

W. Schleich: Can you use these two spaces that you have constructed in 
dynamic systems with higher poles? 

A. Bohm: Higher order poles lead to Jordan blocks and density operators, not 
vector states. I have also tried to  see if one can derive entropy increase from higher 
order poles, and have also not succeeded. But one can do something else, one can 
derive the complex basis vector expansion, and one can show that double poles 
or higher order poles of the S-matrix, are represented by vectors in the complex 
basis vector expansion. But they are not ordinary generalized eigenvectors, they 
are Jordan vectors. For a higher order resonance pole one does not get complex 
energy eigenvalues, but one gets Jordan block for the energy. 

G. Pronko: Your irreversibility, it seems, was obtained from the fact that you 
chose the Hardy spaces. 

A. Bohm: It is derived just from the Hardy space hypothesis. 
G. Pronko: This is sufficient, but it is not necessary. To describe a resonance 

as a state you need the test function which could be continued to some region in 
the lower half-plane, not necessarily to the whole complex plane. 

A. Bohm: For scattering theory using in- and out- plane wave solutions of the 
Lippmann-Schwinger equation, you need analytic continuation of the test functions 
only into a strip along the real axis, not the whole complex plane. But if you want 
t o  describe resonances with a Breit-Wigner energy distribution and an exponential 
time evolution, you need smooth Hardy functions. The best choice in the non- 
relativistic case is a space of Schwartz and Hardy functions. For the relativistic 
case, it is a little different but we always use the Hardy space property. 

G. Pronko: In the non relativistic case, you do not need actually Hardy class, 
and you also do not need the continuation to the whole lower half-plane, plus 
some asymptotic conditions. This is the main reason why you receive a semi-group 
instead of a group. 

A. Bohm: The semi-group, and this is not well-known, is already there for 
the Lippmann-Schwinger plane waves. Everybody thinks the Lippmann-Schwinger 
scattering states have a unitary Poincare group evolution, as stated in Weinberg’s 
book. But one can show that they have only a semi-group evolution if one defines 
them properly as a functional over Hardy Spaces. Whether other asymptotic decay 
properties than those of Hardy functions would lead to a semigroup, I do not know. 
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ON PHONON MEDIATED DECOHERENCE OF ORBITAL 
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In the state-of-the-art strain induced InAs/GaAs quantum dots, the polaron life- 
time due to the anharmonic LO-TA phonons interaction was recently estimated 
numerically to be several picoseconds. This time, treated as the upper limit for 
the decoherence of orbital degrees of freedom in quantum dots, is too short for 
successful application of the error correction procedures necessary to create a scal- 
able optically driven quantum computer in self-assembled dot technology, even 
when using ultrafast, of femtosecond scale, information processing. In the present 
report, we rediscuss the polaron relaxation in a quantum dot using the Davydov 
diagonalization method; we show that the previous estimations were too sever and 
argue that the relevant relaxation channel is slower by one order of magnitude. The 
increase of the estimation results from taking into account the coherent renormal- 
ization of the appropriate anharmonic term. We give also the explanation of the 
strong enhancement of the electron-LO phonon ineraction for electrons confined in 
the dot, which can be expressed via renormalization of the Rohlich constant. 

MACHNIKOWSKI' 

1 Introduction 

Due to  the continuous development of nanotechnology, quantum dots (QDs) are 
believed to  be in the center of the imminent technological revolution e.g. in laser 
technology or in quantum computing 2,3. QDs offer a nanometer-scale confine- 
ment for carries (electrons and holes) in the field of well technically recognized 
semiconductor-solid-state technology. The techniques used for manufacturing of 
QDs include epitaxy, lithography and self-assembling methods4. The so-called 
self-assembled QDs, obtained by Stranski-Krastanow method 4,  are particularly 
promising, as the strain-induced growth in multilayer structures allows for creation 
of dot-molecules5 or dot-chains 6 ,  which are expected to  be helpful for implemen- 
tation of quantum gates. The other advantages of QDs for potential application 
in quantum information processing consist also in possible integration with the ex- 
isting microelectronic technology, scalability and available manipulation techniques 
including magnetic field (in a reasonable range of magnitudes) and sub-picosecond 
optical techniques '. Both the orbital3 and spin degrees of freedom of the carriers 
trapped in a QD are considered for the definition of a qubit. The advantage of 
spin degrees of freedom consists in relatively long decoherence time for the spin of 
a single electron in a QD (of order of ps) and in the very effective method of im- 
plementation of double-qubit operations (e.g. CNOT) by exploiting the exchange 
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interaction (singlet-triplet transition in magnetic field; time of operation can be 
of order of ps as the singlet-triplet energy seperation is of the scale of meV for 
realistic fields). There are, however, certain problems with single-qubit operations 
- they are very slow for single spin qubit (as the Zeeman splitting is small, e.g. 0.03 
meV/T for GaAs). Moreover, operating with a single electron in a QD is rather 
outside the reach of the state-of-the-art technology, whereas coupling of spin to  
the orbital degrees of freedom in multielectron QDs (via Hund-like rules) efficiently 
enhances decoherence. Therefore the orbital degrees of freedom in a QD are cur- 
rently considered as more feasible for practically setting up a quantum gate (an 
excitonic entanglement in QD molecule has already been demonstrated 8). Since 
the electronic (or excitonic) states in a system of QDs are designed to  play the role 
of qubits which must be manipulated with great precision, the exact knowledge 
of the energetic spectrum of a QD is of major importance. Moreover, because of 
the necessary quantum coherence during quantum computing processes, the inter- 
action between the localized electron and the surrounding medium must be well 
understood. 

The electronic properties of QDs were widely analyzed ‘. In particular, it has 
been confirmed that the 2-dimensional harmonic oscillator description for elec- 
tron states is a relatively good approximation e.g. in the case of self-assembled 
InAs/GaAs lens-shaped dots ’. In the case of polar medium of QDs, the electron- 
longitudinal optical (LO) phonon interaction must be taken into account in a re- 
liable description. The theoretical investigation of this issue was performed by 
e.g. the standard perturbation techniques lo, by the variational Lee-Low-Pines 
method ’’, by numerical d iagonal iza t i~n’~ ,~~ or by Green function methods 14. 
The experimental data l2 show, in particular, a large splitting width near the one- 
phonon and two-phonon resonance in a InAs/GaAs QD. This was accounted for by 
the theoretical model via a numerical diagonalization of the Frohlich interaction12. 
The required value of the Frohlich constant was much larger (by a factor of two”) 
than measured in bulk. 

The recent proposal of a fully optically driven quantum gate for a scalable 
quantum computer on the system of QDs employing excitonic states is one of 
the most promising ideas for quantum information processing due to  the possibility 
of application of ultrafast resonant optical methods ’. The feasibility of this idea 
depends, however, crucially on the decoherence ratio, i.e. the ratio of the charac- 
teristic decoherence time to the time needed for elementary operations. The error 
correction schemes need this ratio to be not smaller than lo5. As the optical tech- 
niques allow for even femtosecond scale for one-qubit operations, the nanosecond 
scale of the typical exciton lifetime in quantum dots was originally recognized as a 
promising opportunity. A serious objection appears, however, when the electron- 
phonon interaction in InAs/GaAs quantum dots was identified to  be much stronger 
in comparison to bulk semiconductor l2 and to  lead to  dressing of electrons (holes) 
with LO phonons, i.e. to  the creation of effective quasiparticles, polarons, even at 
energies relatively far from the resonant energy 19,14. 

The polarons decohere very quickly due to the scattering of the optical phonons 
from the coherent cloud via anharmonic interaction with the continuum of acousti- 
cal phonons. For GaAs-bulk the most efficient anharmonic process (of picosecond 
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timescale) is the zone-center LO phonon decay into a zone-edge LO phonon and a 
transversal acoustical (TA) phonon with the opposite momentum”. The theoreti- 
cal analysis based on a phenomenological approachz3 leads to  a similar, picosecond 
lifetime for confined LO phonons: for InAs/GaAs dots with size larger than 15 nm, 
the anharmonic decay lifetime of the confined LO phonons was estimated to be 
7 - 2.5 ps for temperatures from 0 K to 300 K z3. 

The LO-TA phonon decay in GaAs gives rise to an anharmonicity-induced re- 
laxation of a polaron in the self-assembled InAs/GaAs quantum dots. The corre- 
sponding relaxation time, treated as the upper limit for the decoherence time of the 
polaron state was estimated to  be of order of 3 ps for a dot with M 10 nm radius 19. 

In Refs 1z,19, the polarons were analyzed by direct (numerical) diagonalization 
of the Hamiltonian containing terms for confined electrons in a quantum dot, free 
phonons and the Frohlich electron-phonon interaction. The anharmonic third order 
term (LO-TA), was further included perturbatively. The question is whether in- 
cluding the coherent effect of phononic dressing in the anharmonic term changes the 
relaxation time or not. The purpose of the present report is to  verify this possibility 
via application of the analytical method of the Davydov canonical transformation, 
i.e. by the approximate but explicit diagonalization of the Frohlich interaction. 
This method allows for simultaneous accounting for anharmonic phonon interac- 
tion including its coherent renormalization. 

2 Model 

The system under investigation consists of electrons confined in a QD and phonons. 
We take into account longitudinal optical (LO) and longitudinal and transversal 
acoustical (LA and TA) bulk branches of phonons. The electron-phonon interac- 
tions via:the LO and LA channels are included as well as the anharmonic third 
order LO-TA channel of phonon interaction (the most efficient channel for decay 
of LO phonons in GaAs bulk l7 - the medium of the self-assembled InAs/GaAs 
quantum dot). 

The system is described by the Hamiltonian 

+ c W(kl,kz,q)6k,-q,kzbk,bkz (cql +c!-qt) I 

ki,kz,q 

where bk is the bosonic annihilation operator for LO phonon with quasi-momentum 
k and with the dispersionless (for simplicity) frequency a, cqs is the bosonic annihi- 
lation operator for the acoustical phonon with quasi-momentum q and polarization 
s (t - transversal or 1 - longitudinal) with frequency us(q), Cl is the sound ve- 
locity for the longitudinal phonons, M is the mass of ions in the elementary cell, 
u is the deformation constant (for GaAs u 2~ 6 eV), v is the volume of the ele- 
mentary cell, N is the number of cells in the crystal and E = (l/em - l/eo)-’ is 
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the effective dielectric constant. He(r) is the Hamiltonian for electrons confined 
in the QD. The electron-LO phonon interaction is given by the Frohlich term, the 
electron-acoustical phonon interaction term includes only LA phonons; the last 
term describes the third order anharmonic LO-TA phonon interaction. 

We will consider the simplified model for the self-assembled, shallow, disc- 
shaped, weakly elliptical in-plane, InAs/GaAs QD1'. We will assume that the 
dot is strongly confined in the z direction (the results do not depend on the 
actual potential shape in this direction; we assume a strong parabolic confine- 
ment). The in-plane electron dynamics is governed by the anisotropic harmonic 
potential V(z ,y)  with eigen-frequencies w f  = w i ( 1  f A), X << 1, i.e. V(z,y) = 
im*w(x '  + y2) + $ m * w ( z 2  - y2). This lateral potential describes the weakly el- 
liptical in-plane QD. The external magnetic field (which can additionally enhance 
confinement) is assumed to be applied in the z direction and described by the 
potential in the symmetric gauge. Thus, the single-electron Hamiltonian may be 
written as 

+ U ( z )  + W ( r l ) ,  (2) 

where r = (TI coscp, TI sincp, z ) ,  w2 = wi + w2/4,  w, = $, U ( z )  = i m * w z z 2 ,  
w, >> W O .  The last term describes the anisotropy, 

X 
2 

w ( r 1 )  = -mcwir:  cos 2 9 ,  

and can be treated as a perturbation. 
Let us now consider the ground and the lowest excited states for the single 

electron in the dot. For the unperturbed electron Hamiltonian [i.e. neglecting 
W ( r l ) ] ,  we deal with the cylindrical symmetry and thus with the usual n, and 
m quantum numbers (the Fock-Darwin states '). We consider states with nr= 0, 
m = 0,  k l .  The energies and wavefunctions including the perturbation caused by 
the term W have the following form (we use indices 0, f, for perturbed states (0,O) 
and (0,  k l ) ,  respectively): 

where 

$0 and 
potential, 

stand for the wavefunctions for the two-dimensional isotropic harmonic 
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where 1~ = c, and +(z )  is the ground-state harmonic oscillator wavefunction 
in the z direction. 

If we introduce the second quantization representation in the electron Hamilto- 
nian He(r), then the entire Hamiltonian (1) can be rewritten as follows: 

H Ho + H i ,  (4) 

and 

where 

with 

Tnlnz (k) = / ~ i ~ 7 - Q : ~  (r) exp (ik . r ) q n z  (r). (6) 

The formfactors (6) for the states Qo,+ given by (3b,3d) have the form: 

(7 )  
-( V ) Z e - (  + ) Z ,  

3 n n f  = gnnt(kl, pole 

where 1,= Jm is the confinement length in the z direction and the func- 
tions grin, are given by the formulae 
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3 

Due to  the interaction between the electron localized in the QD and the LO phonons 
in the polar medium, the electron is dressed in a polarization cloud, forming a 
polaron - a superposition of electronic and phononic states. The spectrum of the 
polaron may be found using the canonical transformation introduced by Davydov 
and Pestryakov 15.  

This transformation is defined by the unitary operator U = es, where S is an 
anti-hermitean operator 

Diagonalization of electron-LO phonon interaction 

S(a,b)  = c @nl,nz(k)a,fianz(bk - b t k ) ,  (8) 
nl,nz,k 

with the scalar function @nl,n2 (k) chosen suitably for the diagonalization demands. 
The Hamiltonian Ho (Eq.(4)) may be written as 

Ho(a, b) = U t [ U H o U t ] U  = UtHo(a, p)U, 

where H 0 ( a , p )  is HO Hamiltonian with the operators a ,  b replaced by operators 
cr = UaUt, 

The function @ may be chosen in such a way that UtH(a, p)U does not contain 
terms linear in /3. Neglecting residual multi-polaron and multi-phonon interaction 
terms l5 (these terms are of higher order in the F'rohlich constant, cr << 1, thus 
are small), 

e-'Ho(Cr, p)es X c E n d a n  + c + c fuJs(q)C&cqs (9) 

/? = UbUt, respectively (note that U ( a ,  b)  = U ( a ,  p)). 

n k q , s  

with 

and 

where 

Jn'n En = en - C 
,,, En1 - En + hR'  

The equation (1 1) is the self-consistent non-perturbative equation for the energy 
E,of the polaron, derived and applied for bulk semiconductor by Davydov and 
Pestryakov 15. 

Note also that in our case of the electron confined in the QD, similarly as for 
an unconfined electron 15, the polaron states are highly distinct from the original 
electron states, while the phonon states are almost not modified by coherent effects. 
This follows from the formulae: 

1 
2 a,flO) N axlo) - - c @nln(k)@n2n1 (-k)anz lo) - C @nln(-k)bkfa,fi lo) 

nl ,nz ,k  n i , k  
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Figure 1.  Polaron resonances in a weakly elliptical quantum dot in the presence of magnetic field 
for (a) a = 0.07 and (b), a = 0.15 (the other system parameters are fitted to the experimental 
data of Ref.lZ). Bare electron levels en(B) - co(B) (3a,3c) (dotted lines), the shifted polaron 
levels EL1)(B) - Ehl)(B) (12) (dashed lines), branches of polaron levels split in the vicinity of 
resonances E,(B) - Eo(B) (solid lines), and the experimental data12 (dots). 

and 

(10) is the state without particles and the vacuum is defined by the formulae: QO = 
a:lO) and anQ0 = bkQ0 = c,,!Po = 0 for all k, q and n # 0). 

Let us denote for future convenience 

(these entities are approximations to the polaron energy levels, but they are insen- 
sitive to polaron-phonon resonances; see Fig. 1). 

The factors Jnnf in the harmonic approximation are 

where the values of the coefficients .inn, for the our weakly elliptical quantum dot 
are given below. 

- n 1 0  + 

- I a G-slc+c-12 3 5  g+; lc+c_lz .  
For GaAs, with hR N 36 meV and a - 0.1 (for electrons confined in the QD 

with diameter of order of 20 nrnl’), we have 

which highly simplifies the further analysis. 
First, let us consider the non-resonant situation, i.e. when 

ELI) - E$) - hS2 # 0 (- ha). 
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In this case the eigenvalues En differ only slightly from E?) and one can replace the 
former with the latter in the denominator of Eq. (11). Thus, outside the resonance 
region we have 

Now we can proceed to  the examination of the Eq. (11) near the one-phonon 
resonance between the levels n1 and n 2 ,  i.e. in the case of 

E$) - E ( l )  n z  - AR = 0. (14) 
Let us introduce the following notation for the energy level shifts: AEn = 

En - E?), AEnln, = AEnl - AE,, and En,,, = 3(AEn1 + AE,,). Then we find 
from the self-consistent Eq. (11) 

where f n l n ,  = EL:) - EA:) - AR. As I f n Z n l  I N 2AR >> c, I f n l n 2 1  = 0 (near 
the resonance) and I f n l n l I  - I f n z n l I  - AR >, JG, then 

The above equation has the simple solution 

(at the resonance point f n l n 2  = 0). The f pair of the solutions corresponds to the 
usual splitting of the polaron energy near the resonance. In order to find Enl and 
Efi2 it is necessary to find also En,,, via solution of the equation: 

From this equation one finds 

Hence, one can write out the splittings for both states: 

AELl - AELl = 2 J ( f n l n 2 / 2 ) 2  + Jnln2 

and 
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0 10 20 30 40  0 10 20 30 40 
B IT1 B [TI 

Figure 2. Polaron spectrum in a weakly elliptical quantum dot in the presence of magnetic field 
for (a) a=0.07 and (b) 01 = 0.15. In both cases the approximate analytical results (solid lines) are 
compared to the exact numerical ones (dashed lines). 

We see that only the upper state (i.e. n1 as Enl > EnZ)  splits. The splitting of 
the lower one has to  be neglected due to  the small factor a. This behavior is 
depicted in the Fig. 1 for two resonances in our model three-state system. The first 
resonance takes place between the states ‘-I and ‘0’ (at the magnetic field B1 N 

36 T)  and the second one between the states ‘+’ and ‘-’ (at the field B2 = 20 T). 
The diagonalization of the Hamiltonian Ho was also performed numerically for 

the phononic occupation numbers limited to  0, .  . . , 3 .  We have checked that allow- 
ing higher occupation numbers does not affect the obtained spectrum within the 
interesting energy range. The results, after deleting purely phononic modes, are 
shown in the Fig. 2. We find out that the exact numerical diagonalization confirms 
the picture found by the Davydov method. For the lower resonance (between the 
‘0’ and ‘-’ states) the coincidence between the two treatments is excellent, while 
for the other resonances, the exact behavior is reproduced with satisfactory accu- 
racy, slightly decreased by the approximate methods of analytical solution of the 
Davydov equation (11). 

4 Relaxation rates for polaron 

Apart from the system spectrum, the Davydov transformation allows also for a 
convenient description of the relaxation processes, including the coherent polaronic 
effects. Let us study the second term in the Hamiltonian (4), i.e. H1, responsible for 
the electron-LA phonon interaction and for the anharmonic phonon decay. Upon 
the canonical transformation es the two terms of H I  attain the following form: 
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where 

and 

The first term in the transformed Hamiltonian H1 (15) describes the polaron-LA 
phonon interaction (note that it has the same coupling energy as it was for electron- 
LA phonon interaction), the second term describes anharmonic interaction of LO 
phonons (almost unaffected by the canonical transformation) with TA phonons 
(again with the same energy as without the coherent effects), whereas the last 
term describes the relaxation of the polaron. The LO-TA anharmonicity induced 
relaxation channel corresponds to  Eq. (16) while the LO-LA channel to Eq. (17). 
Both these channels lead to  a change of the polaron state accompanied by the 
creation or annihilation of a pair of phonons: the optical and the acoustical one. 
There are four possibilities for this process with probabilities (according to the 
Fermi golden rule) 

wz,Y;s 

27r - 
h, 

nInz(q1') 2 

-lwS(n1n'2, (x. Y)% k)12(Nk + Vz)(vs,q + Vy)6(En1 - En2 - zfia - Y h s , q ) ,  

(18) 

where 5 (y) = f and + corresponds to emission and - to absorption of an optical 
(acoustical) phonon, respectively, and V+ = 1 , 7- = 0 (Nk, vq,. - temperature 
dependent occupation numbers of LO phonons in the k state and of acoustical 
phonons in the state q and polarization s, respectively). 

At sufficiently low temperatures (for GaAs at T < 11 K 1 7 ) ,  the phonon oc- 
cupation numbers are negligible and the only contribution is from the process of 
polaron transition with simultaneous emission of two phonons; the corresponding 
probability is w,f;t,,(q, k) .  The relaxation probability for this process is given by 
the sum 

W n l - + n z  = C w,+;tn,(q? k). 
k q , s  

For the third order phonon-phonon coupling strength with one long-wavelength 
acoustical phonon involved we have l8 

2 
2 - 7  IW(k + q, k ,  s) l  - g. 

Thus, assuming that y is independent of k (as k are near the r point for GaAslg), 
the relaxation probability via the LO-TA channel may be written as 
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0 I0 20 30 40 
B [TI 

Figure 3. Two branches of the E- -En polaron energy difference compared with the energy sector 
where the LO-TA polaron relaxation is possible (shown by dotted lines) (T = 0) for a = 0.07 
(solid lines) and a = 0.15 (dashed lines): (a) for various magnetic fields; (b) at  B = 0, for various 
confinement energies L o .  

where Ct is the sound velocity for the transversal phonons and qt = (En,  - En, - 
?iR)/hCt (limited by the maximal frequency for TA phonons). 

Let us now estimate the polaron relaxation rate for this anharmonicity induced 
LO-TA channel. We restrict ourselves to the polaron relaxation from the '-' state 
to the ground state 0. For the LO-TA process at low temperatures only phonon 
emission is possible. The energy conservation restricts this process to a certain 
energy range, related to the maximum energy of the TA phonon, - 8 meV (indicated 
by the dotted lines in the Fig. 3). Thus, this channel of polaron relaxation is 
ineffective for magnetic fields B < 33 T and B < 25 T for Q: = 0.15 and a = 0.07, 
respectively. This situation is characteristic of a dot with the confinement energy 
hwo exceeding the phonon energy fLR by several meV. For comparison, the same two 
branches of the first excited state at B = 0 for various dot confinements are shown in 
the inset in the Fig. 3. The relaxation channel by the LO-TA phonon emission from 
the physically important, stable polaronic branch is possible only if f w o  < 40 meV. 
Similarly, the process with TA phonon absorption at non-zero temperatures is also 
possible only in a relatively narrow sector of confinement energies. 

For a quantitative estimation of the corresponding relaxation rate the value of 
the anharmonic phonon-phonon coupling constant is needed; it can be fitted using 
the experimental data for GaAs bulk 17. For GaAs, the dominant anharmonic 
process involves TA phonons with q in the vicinity of the L point in the Brillouin 
zone 17. At low temperatures, for GaAs bulk, we find for the LO phonon lifetime 

where the factor p accounts for anisotropy effects and q~ corresponds to the vicinity 
of the L point. From the experimental data for phonon dispersions in GaAs2O one 
can notice that the energy conservation needed for the considered channel of LO 
phonon decay is satisfied along the L-W line on the hexagonal zone wall but it is 
violated towards the C line. It therefore seems reasonable to assume that p M 0.4. 
From the phonon dispersion curves it also results that on the r-L line near L point 
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0 10 20 30 40 
B [TI 

Figure 4. (a) Polaron relaxation time from the '-' level with respect to the LO-LA emission 
(T = 0) for a = 0.07 (solid line), a = 0.11 (dotted line) and a = 0.15 (dashed line). (b) 
Relaxation times with respect to the LO-TA anharmonicity induced channel and to  the LO-LA 
channel for various dots at B = 0. For strong confinements the LO-TA channel is forbidden by 
energy conservation. 

one has the group velocity of longitudinal phonons E M 0.6Ct. Using the lifetime 
TLO = 9.2 ps at T = 6 K reported in Ref. ", one can thus estimate the y factor. 
Using this value, the lifetime for the polaron in a GaAs self-assembled quantum 
dot with respect to the LO-TA relaxation channel can be estimated. The polaron 
relaxation times obtained in this way are even of order of 10 ps (but only in the 
region of very high magnetic fields - cf. Fig. 4). 

The LO-LA channel may be responsible for polaron relaxation in a wider range 
of magnetic fields due to the much higher energies of the LA phonons in GaAs (up 
to 24 meVZ0). The probability of relaxation has the form [retaining only the largest 
terms in l@Alnz(q,k)]: 

where q1 = (Enl - Enz - hO)/hCl (limited by the maximal frequency for LA 
phonons) and 

For the initial state '-' and the final state 0 one has 

where M is the degenerated hypergeometric function 21. 

The polaron relaxation time with respect to  the LO-LA channel for various 
magnetic fields and dot sizes is plotted in the Fig. 4. It is clear that for the 
self-assembled dot discussed here, with LO N 58 meV, the initial state is very 
long-living for any practically attainable magnetic field. This is due to  the well- 
known bottleneck mechanism ", where the emission of short-wavelength phonons is 
strongly suppressed in a confined system. It is essential to  note that, unlike the bare 
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electronic levels, the polaronic energy levels never approach the resonant LO phonon 
energy (anti-crossing effect). The combined LO-LA phonon emission/absorption is 
therefore less probable than that obtained by the perturbation theory  method^'^,^^ 
and the polaron lifetimes are long at realistic magnetic fields (cf. Fig 4). A rather 
unexpected effect is also related to  the fact that increasing the electron-phonon 
coupling (the Frohlich constant) broadens the anti-crossing and thus strengthens 
the bottleneck mechanism [due to the exponential factor in (21)]. 

The efficiency of the bottleneck mechanism crucially depends, however, on the 
dot size (i.e. its confinement energy). The lifetime becomes very short when the 
confinement energy is close to the resonance with LO phonons (cf. Fig. 4b). Only 
when the confinement becomes stronger (roughly fUJ0 > 40 meV, cf. Fig. 3b), the 
LO-TA channel is excluded by the energy conservation and the LO-LA channel 
is strongly suppressed due to the geometrical confinement (bottleneck) effects (see 
Fig. 4b). 

5 

In the definition of F,",,, (k) [in Eq. (6)] it is customary to rearrange the coefficients, 

namely F,01n2(k) = e A R 1 q  nln,(k), where QO = @ and Q is the 
dimensionless Frohlich constant, 

Frohlich constant for electron confined in the quantum dot 

m k  

If we take (as for bulk GaAs) €0 = 12.9, em = 10.9, m* = 0.067me, and 
liR = 36 meV, then a = 0.071, and this value has been verified experimentally 
in bulk GaAsZ4. However, for the electrons confined on the nanometer scale, as 
in a InAs/GaAs self-assembled dot with a radius of order of 10 nm, the recent 
experimental data on far-infrared attenuationlZ indicated that a M 0.15. 

The enhancement of the electron-LO phonon interaction for QDs manifests itself 
also via a significant increase of the Huang-Rhys factorz5 for satellite LO phonon- 

,as 
well as in spherical nanocrystals II-VIZ8. This phenomenon concerns the exciton- 
LO phonon interaction and the geometrical separation of e-h charges in localized 
exciton states turns out to  be insufficient26929 to explain it. Some effects beyond e-h 
charges separation were invoked, for spherical 11-VI dots - the nonadiabaticityZs 
and for pyramid-shaped 111-V, InAslGaAs dots - piezoelectricityz9. 

It is possible to account for the enhancement of the LO phonon-electron inter- 
action for QDs in phenomenological terms using description by inertial and non- 
inertial parts of local crystal polarization. For the electron-LO phonon interaction 
only the inertial part of the local polarization is important. The non-inertial part, 
accompanying the moving electrons, is included into the crystal field which defined 
both the electron and phonon states. Therefore, the inertial polarization of the 
crystal acting on the free-lattice electrons equals: P(r) = Po(.) - Pm(r), where 
PO= g D  and P, = e D  (D is the electrical induction) are the static and 
the high-frequency (of atomic-scale) polarizations, respectively. This formula leads, 
in a standard manner, to  the Frohlich constant given by Eq.(22) 15. 

assisted photoluminescence features in 111-V quantum dots 
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For the localized electron in a QD, the inertial part of the polarization is greater 
in comparison with the free-moving lattice electron since the quasiclassical velocity 
of the confined electron (- 5) is greater than the velocity of the conducting 
band electrons (especially near the r point). The inertial part of polarization 
acting on electron quickly moving within the dot can thus be written in the form: 
P‘(r) = Po(r) -qPo;(r), with some factor 0 5 77 5 1, depending on the localization 
scale (given by d - the diameter of the dot). It is clear that 7 = 1 when d -+ m 
and 7 = 0 when d attains dimensions of atoms, i.e. when d - a (a - diameter of 
a unit cell). Therefore, within the linear approximation with respect to  the small 
parameter (or equivalently, linear with respect to  the quasiclassical velocity of 
the confined electron), 7 = 9. Hence for the confined electron we have 

D P’(r) = - 
47-r;‘ ’ 

where 

This formula leads to the renormalized Frohlich constant in the form 

For QD with d = 25 nm, as was reported in Ref. 12, we have d N 40a (for GaAs 
a N 0.56 nm), which yields the desired value the of the Frohlich constant: a’ M 0.15. 
The formula (25) would also be helpful for the understanding of the enhancement 
of the Huang-Rhys parameter 26,27,28,29, which scales as a (some further corrections 
result from the different Frohlich constant for electrons and holes due to distinct 
effective mass). For dots of diameter of - 5 - 9 nm, as reported in Ref. 26 ,  the 
corresponding a’ N 0.4 - 0.3, and for dots with diameter - 15 - 19 nm (cf. Ref. ”), 
a’ - 0.25 - 0.18. In the former case it gives the factor 6 - 5 and in the latter 4 - 3 
for the Huang-Rhys parameter, which coincides well with experimental dataz6lz9. 

An additional small renormalization of the Frohlich constant can also be con- 
nected with a change of the effective mass due to localization and strain effects 
in InAs/GaAs dot. It was theoretically estimated3’ that for the strain-induced 
InAs/GaAs QD, similar in size to that discussed above, the effective mass N 0.05 me. 
However, this correction does not cause any important change in a as the shift 
from the bulk value, r;’ 0.06me, is rather small. Additionally, a 0: resulting 
in renormalization factor - 0.9. Thus, the renormalization due to the change of 
the effective dielectric constant 2 suggested above is dominant. Note also that for 
d > 100a, the parameter a’ does not differ significantly from its bulk value, while 
for smaller d it increases up to - 0.45 at atomic scale. 

6 Conclusions 

The realistic model of a weakly elliptical InAs/GaAs quantum dot was considered 
including coupling of electrons to phonons in the presence of magnetic field. The 
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resulting magneto-polarons were analyzed in details by application of the approx- 
imate Davydov diagonalization method. The accuracy of this method was further 
verified by exact numerical diagonalization of the relevant Fkohlich Hamiltonian. 
Within the model three-level system, the polaron resonances were found. The re- 
laxation of polarons via the LO-TA anharmonicity induced channel and via the 
LO-LA channel was investigated. The decay rates were discussed for various mag- 
netic fields and dot dimensions. The appearance of windows of relative inefficiency 
of relaxation processes was indicated. This can be helpful in optimizing decoherence 
in semiconductor dot implementations of quantum gates. 

The enhancement of the polaron relaxation time, treated as the growth of the 
upper limit for the decoherence time of polarons, even though significant (at least 
of one order), is however too small for the need of the error correction proce- 
dures for fully optically driven gates in InAs/GaAs quantum dot systems unless 
the windows of effectiveness of the LO-TA (and LO-LA) channels are avoided. 
The relatively lower decoherence can be achieved by proper utilizing of dimension 
dependent bottleneck-like effects and polaronic effects. As the technology of the 
self-assembled dots imposes strong restrictions on dot dimensions, other quantum 
dots would be more convenient for implementation of excitonic quantum infor- 
mation processing. The electric field defined dots in ultra-narrow quantum wells 
might be more promising candidates. They offer much more flexible electronic 
structure than self-assembled dots including also dots with greater d ,  i.e. with not 
so strong phonon-electron coupling. Moreover the metastable excitonic states in 
electric field defined dots would allow for new methods of their manipulation by 
magnetic field 31. The problem consists, however, in technological difficulties: of 
preparation of sufficiently small electrode systems for such structures. 

We analyzed the relaxation rates for transitions of polaron from an excited 
to a ground state, but the phonon mediated effects in QDs can cause also some 
decoherence of the ground polaron state. If one creates an exciton (the electron- 
hole pair) in QD within time scale of fs then only the bare electron, rather than the 
polaron, is tranferred from valence-band-state localized in the QD to the localized 
conduction-band-state, since the dressing with coherent phonon cloud is an inertial 
proccess and takes time of order of ps (the adiabatic limit for inclusion of electron- 
phonon interaction). Thus within this latter, relatively long time the initially bare 
excited electron (and hole) is being dressed with phonons and finally becomes a 
polaron, with corresponding significant rearrangement of the wave function even 
for the ground state - this is a source of an additional decoherence. 

Supported by E.E.C. Project No. IST-1999-11311 (SQID) and KBN Project 
No. PB 2 P03B 055 18. 
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DISCUS SION 
Chairman: L. Stodolsky 

R. Chiao: I want to  ask how these experiments of Awschalom, which show 
very long spin decoherence times, drives with what you are saying. 

L. Jacak: Sorry, because I am not sure that I understand well what you mean. 
I think that Awschalom results are connected with experiments with extremely 
quick coherent optical or spin manipulations and are not addressed directly to  
decoherence in quantum dots which we consider. 

Concerning quantum dots, I would like to mention an experiment with obser- 
vation of exciton entanglement in quantum dots. It is an experiment done by the 
Forchel group from Wurzburg together with Hawrylak from Ottawa and our Ph.D. 
student Korkusinski. They published these results in January in “Science”. They 
reported an optically observed entanglement of excitons in two vertically stacked 
quantum dots for various separation of the dots. 

R. Chiao: It is true that Awschalom’s experiment is not in quantum dots, 
but the question is, when you did the calculation, and if you apply that to bulk 
materials as Awschalom has done, what will be values for the spin decoherence 
time? 

L. Jacak: We did not address here the spin decoherence, and I expect that 
some already known estimations of spin decoherence in quantum dots, up to even 
microseconds scale, would be very probable for a spin of a single electron, at  least. 
But in the case of the real state-of-the-art quantum dots, that are rather multi- 
electrons systems, we deal with the effective spin in the last shell, therefore the 
coupling of spin to  orbital degrees of freedom, via Hund-like rules, would preclude 
these optimistic estimations. 

P. Stamp: Why are phonons most important for decoherence? 
L. Jacak: It is certainly connected as we are dealing with crystalline medium 

and in such a situation phonons are a dominating source of disorder, at least for 
structures like well separated quantum dots, or low level of doping. Moreover, the 
nanometer scale of confinement in dots leads to  the electron energy scale close to  
the resonance with optical phonons, which results in the strong coupling regime for 
interaction with optical phonons. 

P. Stamp: People suggested a lot of other mechanisms of decoherence in quan- 
tum dots, for example coupling to  paramagnetic impurities. 

L. Jacak: Yes, of course, I agree that various admixtures will result in an 
additional decoherence. 

P. Stamp: And also an obvious question: what about an electron-electron 
inter act ion? 

L. Jacak: Electron-electron interaction for a quantum dot with a single elec- 
tron, which we consider, is rather not a problem with respect to  the relaxation or 
decoherence, especially for a dot well separated from the others. Thus the most 
quick relaxation process is connected with optical phonons, at least in a gallium 
arsenide medium, which is a weakly polar material. In other materials, nonpolar 
in particular, the situation would be different. 

P. Stamp: According to  some experiments, there are relaxation processes as- 
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sociated with phonons, and they are rapid. Is that right? 
L. Jacak: Relaxation induced by phonons is indeed very quick in bulk semi- 

conductors. With respect to the experimental observations of phonon induced 
relaxations I would refer to the presentation of Professor Raimond. 

L. Stodolsky: I would like to make a quick comment about the question of 
temperature. In our work on SQUIDs we also find surprisingly long decoherence 
times, around 40 or 50 mK. We use some standard calculations, and if we make a 
straightforward application we find rather surprisingly long times. 

L. Jacak: With respect to the temperature I would like to comment that 
the measurements of phonons decay in gallium arsenidebulk, t o  which we have 
referred, were done at temperature of order of 10 K, and at this temperature the 
occupation numbers of phonons were treated as negligible. Thus, to the similar 
temperature range we can address the zero temperature limit of our calculus, with 
channels corresponding to emission and not to absorption of phonons. If we go into 
higher temperature regions, certainly the decoherence and relaxation rates start t o  
be significantly shorter, due to the absorption. 

S. Lloyd: Since you take the opportunity to say that you calculate very long 
decoherence time in SQUIDs, I should emphasize that in the experiments they are 
very short ones. 

P. Stamp: In SQUIDs you have a gap, and in this system you have no gap at 
all. 

L. Jacak: I would like to say that the scale of relaxation time, estimated by us, 
say of order of 50 or even of 100 picoseconds instead of single picoseconds, seems 
to be however still insufficient for quantum processing needs and this time scale 
also probably precludes a chance for successful implementation of error correction 
procedures in optically driven quantum dot gates. 
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STIMULATED EMISSION WITH NON-EQUILIBRIUM STATE OF 
RADIATION 

L. ACCARDI: K. IMAFUKU; S.V. KOZYREVlt 
Centro Vito Volten-a, Universitd di Roma Tor Vergata, 00133 Rome, Italy 
N.N. Semenov Institute of Chemical Physics, Russian Academy of Science, 

11 7334 Moscow, Russia‘ 

The stimulated emission from an atom interacting with radiation in a non- 
equilibrium state is considered. The stochastic limit, applied to the non-relativistic 
QED Hamiltonian, shows that the state of the atom, driven by a non-equilibrium 
state of the field, approaches a stationary state which can continuously emit pho- 
tons, unlike the case with an equilibrium state. Non equilibrium states of the 
radiation field are characterized by a single function of the energy. The Gibbs 
states are precisely those for which this function is linear. The nonlinearity of 
the generalized (inverse) temperature function can account for effects previously 
attributed to secalled “negative temperatures”. It also allows to deduce a nonlin- 
ear, non-equilibrium, generalization of Einstein’s formula describing the detailed 
balance of the radiation at each frequency in an equilibrium state. We conclude the 
present paper with the introduction of a general notion of “local KMS condition” 
as a characterization of local equilibrium states and with the proof of the fact that 
the non equilibrium states (both for field and atom) considered in the first part of 
the paper satisfy this condition. 

1 Introduction 

The basic idea of control of a quantum system is: to  drive a system to  a preassigned 
state in a given interval of time. For the requirements of quantum information the 
additional requirement of stability is essential: it is not only required that at time 
T the system is in a given quantum state, but also that it remains in this state suf- 
ficiently long time to  allow the manipulations required by quantum computation. 
One possible way to  achieve this goal is to  exploit a general principle of the stochas- 
tic limit ’,*, namely: the interaction of a quantum field with a discrete system (e.g. 
an  N-level atom) drives the system to a stationary state which is uniquely deter- 
mined by the state of the field. The condition of stationarity guarantees stability, 
i.e. if no other interaction is switched on, the state of the system will not change. 
Already now many manipulations on microscopic objects are achieved through their 
interaction with appropriate fields. This the scenario we are proposing, simply in- 
tegrates this approach with the additional requirement of stability. The advantage 
of the stochastic limit approach is that it gives a quite explicit description of the 
parameters which control the final state of the system. Therefore, if we are able t o  
act on these parameters by suitably choosing the initial state of the field and the in- 
teraction, we could drive the system, in a stable way, to  a large class of preassigned 
states. 

This program leads to  an interesting connection between quantum information 
and non equilibrium physics. In fact the “driving of a system to a stable stationary 

*ACCARDI@VOLTERRA.MAT.UNIROMA2.IT 
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state” is one of the basic topics of analysis in non equilibrium physics. Up to  
now this problem has been investigated for a rather narrow class of states of the 
field (mainly vacuum or equilibrium). However we will show that there are also 
other states of the quantum field which probably are experimentally realizable with 
contemporary technology, and which can considerably enrich the class of stable 
atomic states which can be obtained under their driving action. In the following we 
shall illustrate this idea by analyzing the interaction of a 3-level atom with electro- 
magnetic field. In order to give us not only a good prospect for computation but also 
a deep insight into the physics, we briefly review the stochastic limit of quantum 
theory ’,’ and, by applying it to  the study of an atom interacting with a radiation 
field in a non equilibrium state, we show that it can lead to some interesting new 
results in non-equilibrium physics as well as to  a practical implementation of the 
program described above. 

Since Einstein applied Planck’s radiation theory to  describe the equilibrium 
state between an atom and field 6 ,  it is well-known that such an equilibrium state 
can be realized through the detailed balance condition, i.e. the balance in each 
mode between spontaneous emission and the emission stimulated by the field. 

Einstein’s detailed balance condition gives the clearest insight into the origin of 
Planck’s radiation formula because, with this approach, we can understand Planck’s 
law on the density of states of the photons as an equilibrium condition on the field, 
i.e. 

l d w  
f w 3  

p(w)dw = - 
x2c3 exp (g) - 1 

With the development of nanotechnologies, a controlled emission with a controlled 
stimulating field has been realized in many experiments. However, in spite of the 
importance of this technology for the new and most active application of quantum 
physics, that is quantum communication and computation, the fundamental un- 
derstanding of the physics is not as clear as the equilibrium case. In this paper we 
apply the stochastic limit technique to  investigate stimulated emission of matter 
under the influence of a radiation field which is in a non-equilibrium (neither Fock) 
state. 

The general idea, which we illustrate in this paper with a simple but physically 
interesting example, can be described as follows. 

The most commonly used states in quantum field theory are the Fock (vacuum) 
or Gibbs (equilibrium) states. When a field in such a state interacts with a discrete 
system (e.g. an atom) in the stochastic limit one obtains a master equation for 
the system whose stationary state is the ground state of the atom, if the field was 
originally in the Fock state the Gibbs state of the atom at inverse temperature 
p, if the field was originally in its equilibrium state at inverse temperature p. 
The systematic development of the theory of stochastic limit [l] has revealed that 
the above described phenomenon is quite universal namely: for a large class of 
states (including many concrete examples which are neither Fock nor equilibrium) 
the stochastic limit procedure allows deducing master equations whose associated 
Markov semigroup drives the system to a stationary state pm in the sense that, 
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independently of the initial state PO, one has 

lim Ptpo = poo 
t-+oo 

(Pt  is the Markov semigroup). 
This fact allows us to  give a dynamical characterization of ground (or equilib- 

rium) states of the system (atom) in terms of their response to an interaction with 
the environment (field) in the weak coupling regime. 

From the above considerations it is natural to  conjecture that the analysis of 
stationary states of master equations associated to  non equilibrium states of the 
environment should lead to  the introduction of a new class of states, of discrete 
quantum systems, which should play for non-equilibrium phenomena, a role ana- 
logue to that played by Gibbs states for equilibrium phenomena. In the present 
paper we show that this program can lead to interesting and non trivial physical 
conclusions even in the case of a single 3-level system interacting with radiation. 

The fact that interesting physical phenomena can emerge from relatively simple 
systems should justify the attempt to produce experimentally these states of the 
field, just as one has produced vacuum, equilibrium, squeezed, ... states. The prob- 
lem of concretely constructing these non equilibrium states of the EM field will be 
discussed in a forthcoming paper. 

The rest of this paper is arranged as follows: In Sec. 2 ,  we apply the stochastic 
limit to the non-relativistic QED Hamiltonian and derive two types of equations: 
one is the so-called rate equation for the atom and the other is a new equation 
describing the time evolution of the number of photons. This equation cannot be 
deduced by standard techniques using master equations and requires the full power 
of the stochastic limit. In Sec. 3, we investigate the radiation emitted from an 
atom interacting with a non-equilibrium field and discuss its connection with the 
non-equilibrium current. In Sec. 4, we deduce a formula for the stationary state 
of a 3-level atom interacting with non-equilibrium EM field. Since this formula is 
nonlinear (quadratic) generalization of the well known Einstein formula describing 
the equilibrium of matter with thermal radiation (cf. formula (38) below), we call 
it the Double Einstein formula. In the second part of the paper, starting from 
Sec. 5, we try to  abstract from the concrete examples of non-equilibrium states, 
described in the first part of the paper, a general property which should play for 
(at least a large class of) non equilibrium states, a role analogue to  the Kubo- 
Martin-Schwinger (KMS) characterization of equilibrium states. We individuate 
the natural candidate for this property in the “local KMS condition” introduced in 
Sec. 6. The non equilibrium stated introduced in Sec. 2 are shown to  satisfy this 
local KMS condition in Sec. 5. (This is in fact our motivation for the definition 
given in Sec. 6). Finally, in Sec. 7 we prove that also the atomic stationary state 
satisfies the local KMS condition with non-linear temperature function which is 
uniquely expressed by the non-linear temperature function of the field. In other 
words: a radiation field in local equilibrium function drives the atom to  a local 
equilibrium stationary state. If this function is linear we recover the known fact 
that a thermal field at inverse temperature ,L? drives the atom to a stationary state 
which is the Gibbs state (for the free atomic Hamiltonian) at the same temperature. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



160 

2 

In this section, we apply the stochastic limit to the non-relativistic QED Hamilto- 
nian and derive two types of equations: one is the secalled rate equation for the 
atom and the other is a new equation describing the time evolution of the number 
of photons. 

We shall consider an atom interacting with the EM-filed described with the 
standard non-relativistic QED Hamiltonian 

Application of stochastic limit to non-relativistic QED 

where 

u is the polarization index (n =-, I) and 

In the following discussion we assume that H A  has discrete spectrum: H~li ,)  = 
E , ~ E , ) .  The interaction Hamiltonian V ( t )  in interaction picture can be written as 

where 

(7) 
1 

gab(k, c) = (k1'/2 (Ealeik"p ' EuIEb) 

EA(X) = c P,,XP,,-w 1 P,, := IE.)(Erl (8) 
G E F ,  

F = {w = E, - E:; E,, E; E Spec H A } ,  (Bohr frequencies) (9) 
Fw = {E, E Spec H,; E, - w E Spec H A }  (10) 

The stochastic limit describes the quantum dynamics in the regime of weak coupling 
(A -+ 0) and large times (t + t / X 2 ) .  The main result of this theory is expressed 
by the stochastic golden rule 1,2 according to  which the time rescaling t --f t / X 2  
induces a frequency dependent rescaling of the quantum field 

(11) 
-z+(w(k)-w) 

a k , u  + a k , u  

and, in the limit X -+ 0, for each Bohr frequency w, the rescaled field ( 1 1 )  becomes a 
quantum white noise (or master field) b,,,(t, k )  satisfying the commutation relations 

[b,,,(t,  k ) ,  bL,,+(t', k')]  = 6uulbww127r6(t - t')6(w(k) - w)6(k - k') ( 1 2 )  
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Moreover, if the initial state of the field is the mean zero gauge invariant Gaussian 
state (cf. section (2.3) of [l] for this notion) with correlations 

(af,akr) = ~ ( k ) b ( k  - k’)  

then the state of the limit white noise will be of the same type with correlations 

(bW,,,(t, k)bL,,u,(t’ ,  k’))  = 6 u u ~ 6 w w ~ 2 ~ b ( t  - t ’ )b(w(k)  - w)6(k  - k’)Nu(k)  (13) 

(bL,u( t ,  k)bw,,ur(t‘ ,  k ’ ) )  = 6 u , ~ 6 w w ~ 2 ~ 6 ( t  - t ’ )6(w(k)  - ~ ) 6 ( k  - k ’ ) ( N u ( k )  + 1114) 

Moreover, in the stochastic limit, the Schrodinger equation becomes a quantum 
white noise equation which, after having been put in causal normal order (which is 
different from the usual normal order), takes the form ’,’,’ 

dUt = ( - i d H ( t )  - Gdt)Ut ; t > 0 (15) 
with the initial condition UO = 1 and where d H ( t ) ,  called the martingale term, is 
the stochastic differential: 

With this quantum stochastic differential equation, we can always derive equations 
for the atom and field, that is, (i) master equation for reduced density operator for 
the atom 1,2,7, and (ii) equation for the fieId 8,9 .  

One should notice that we do not assume the state of the field to  be equilibrium. 
Therefore N,(k )  in (13) and (14) has not necessarily the form 

but can be a general positive function (even a positive distribution). In the present 
paper we will assume that, for some general nonlinear functions pu(w), called a 
“nonlinear temperature function” 
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Conditions (13) (14), (21) uniquely specify a mean zero gauge invariant Gaussian 
state which in particular, is invariant under the free evolution (4). Such a state 
will be called a local equilibrium state in (here the term “local” is referred to 
the momentum space) of the field. The physical meaning of such a state will be 
considered in the following sections. 

2.1 

In the following we consider a 3-level atom (el< c2< € 3 )  whose matrix elements 
satisfy the conditions (forbidden transitions): 

Rate equation for 3-leuel atom 

( ~ l l e ~ ~ ~ p . ~ 1 1 ~ 2 )  = 0,  ( ~ 2 l e  i kq ~ . E , I E ~ )  = ( ~ ~ l e ~ ~ q p . e + + I g )  = 0,  others # 0. (22) 

Notice that condition (22) requires the preparation of the atom in a situation in 
which the longitudinal (I) and transverse (-) polarization do not enter symmet- 
rically. This means that the state in A-configuration 3,4,5 for the I-field which the 
transition 2 ---t 1 is highly privileged for the --field. We believe that atoms, sat- 
isfying condition (22), can be experimentally prepared. In addition, for simplicity, 
we restrict ourselves to a generic system ’: this means in our case that the 3 Bohr 
frequencies ~ c l p l ,  ~ 3 1 ,  ~ 3 2  ( W j k  = e j  - Ek)  are all different among themselves. 

Within this setup, the physical meaning of the interaction with non-equilibrium 
is made clear by the following considerations. 

First of all we derive the so-called rate equation for the atom 

d 

d 

d 

-P1(t> dt  = - {2(7p’- + 7::pdt) - 2(7L)-Pz(t) + 7:;,p3(t))) 

-P2(t) dt = - { 2(7;;,L + 7 3 P 2 ( t )  - 2h:;,pdt) + 7 g p l ( t ) ) }  

-P3(t) dt  = - { 2(7:;; + 7 3 P 3 ( t )  - 2(7::pl(t)  + 7::pz(t,)} 

(23) 

where Pj(t) = Tr  ( p l , * ( 0 ) U ~ \ € j ) ( ~ j l U ~ )  with eigenvectors l ~ j )  of the system Hamil- 
tonian H A .  It can be proved that the diagonal and off-diagonal terms of the 
reduced density matrix evolve separately, and that the off-diagonal part van- 
ishes exponentially, cf. ’. It  can be proved that, as t -+ +m, the probabil- 
ity distribution (PI ( t ) ,  P2(t), P3(t)) converges to the unique stationary solution 
( P l ( w ) ,  P2(m), P3(m)) of equation (23) independently of the initial distribution. 
The explicit form of (P1(m),P2(m),P3(m)) is given in subsection 3 below and 
shows that it cannot be a Gibbs distribution, at any temperature, associated to  the 
3-level atomic Hamiltonian. In this sense we say that the radiation field drives the 
atom to a stationary non equilibrium state. 

2.2 Number operator for the Field 

The most important addition of the stochastic limit approach to the information 
deduced from the usual master equations, such as (23), is that it allows to de- 
scribe the dynamical behavior not only of the system, but also of the environment. 
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Therefore it is natural to expect that, using this additional information, a more 
satisfactory description of the non-equilibrium currents could be obtained ’. TO 
illustrate this idea we consider the time evolution of the number operator of the 
field: 

nu@) = a&$%,,, (0 =-, I). 

12, ( k )  e i tHon , (k )e - i tHO = 

This operator has constant free evolution (slow degrees of freedom of the field): 

and therefore it does not change in the stochastic limit. In fact it can be proven 
(cf. 5,6) that in the noise space, which is different from the original field space there 
exists an operator, still denoted nu ( k )  which satisfies the following commutation 
relations with the master fields is as follows 

1 - i t  
[b,,,(t, k ) , n , ~ ( k ’ ) ]  = lim -e ~ ( ( W ( L ) - w ) [ a , , ~ , n , ~ ( k ) ]  

A-0 x 
- - lim ~ e - ~ ( w ( L ) - w ) a , , ~ 6 , , ~ 6 ( k  - k’) = b,,,(t, k)b,,f6(k - k‘).  (24) 

A-0 x 
This means that the new number operator, which is different from the usual number 
operators bL,,(t, k )  of the noise fields, extends the quantum noise algebra. The time 
evolution of this new number operator is given by: 

( 2 5 )  

(26) 

d 
zn-(t) = 2 (76;,’sct, - 76;LPdt)) 

znl(t) d (7:L,iP3(t) - 7::,\p1(t) + 7:i,ip3(t) - 732,1P2(t)) (+I = 

where 

Pj( t )  = T ~ ( p t o t ( o ) ~ ~ l ~ j ) ( ~ ~ l U ~ ) ,  nu(t)  = Tr(p,,t(O)U: 1 dkak,,ak,, U t )  (27) 

7ij,u (*I = Re(gI9>,f,,,ul 

and the (g\g):,,,, are given by (19) and (20). 

3 Radiation from the non-equilibrium stationary state 

Now let us investigate the radiation from the stationary but non-equilibrium state 
of the atom. From equation (23), one can easily find that the stationary solution 
(t -+ CQ) is characterized by the following relations: 

=: A 

=: B 
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(29) 
Notice that the compatibility condition AC = B is automatically satisfied by the 
coefficients so that 

On the other hand, the equation (25) shows that, if 7bl,)+,P2(t) - $)+.+Pl(t) > 0,  
i.e. if 

then, n,(t) must increase. Now suppose that equations (25), (26) are referred to 
an initial time in which the atom is essentially stable in its stationary state. Then 
we can replace in them Pj(t) by Pj(co) and therefore also in the stationary state 
of the atom, n-(t) must keep increasing if 

is satisfied. This means that, when the stationary state satisfies condition (31), 
then we observe a continuous emission of *-photon from the atom, stimulated by 
the initial non-equilibrium state of the field. Notice that, using (29), condition (31) 
can be written as 

Now suppose that the initial photon densities (21) do not depend on polarization 
i.e., for some nonlinear function P(w), they are given by: 

Then condition (32) becomes equivalent to 

P(w31) < P(w32) + P(w21) .  (33) 
Notice that, this process respects the energy-conservation law, in fact one can easily 
check that 

and in the stationary state of the atom this becomes 
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where 

If (33) is satisfied, then the left hand side of (35) is negative and this means that 
the energy of the I-field is converted to the energy of the --field through the 
stationary state of the atom. This conversion can be considered as an energy 
current in the non-equilibrium stationary state and this current is consistent with 
the naive thermodynamical interpretation of p(w)  as temperature in (33). (Similar 
but more direct considerations on the non-equilibrium thermodynamic current with 
the stochastic limit are discussed in '.) 

This property is peculiar to the stimulated emission from a non-equilibrium state 
of the field. In fact the usual Gibbs states are characterized by the fact that the 
function p in (21) is linear, i.e. p(w)  = pw, and in this case condition (33) can never 
be satisfied. The non-equilibrium field can therefore drive the atom to  a stationary 
state which can continuously emit photons, and this means that this stationary 
state gives an example of dissipative structure in the sense of Prigogine lo. 

4 The Double Einstein formula 

Now let us discuss another aspect of the radiation from the atom with non- 
equilibrium stationary state. Consider the quotient 

Recalling that Nu(w)  is the density of the field quanta at the frequency w,  and 
comparing formula (37) with the well known formula of radiation theory (Einstein 
formula) 

Wemission - f iu + 1 
Wabsorption nu 

giving the quotient of the probability of emission and absorption of a light quantum 
by an atom", we gain some physical intuition of the meaning of the generalized 
susceptibility. In fact the quotient (38) ... is just that which is necessary to  preserve 
the correct thermal equilibrium of the radiation with the gas ... (11, p.180). 

In the stochastic limit approach this statement can be proven. One can prove 
that, if the initial state of field is equilibrium, then the dynamics of the atom 
describes the relaxation to equilibrium state if the atom satisfying the detailed 
balance condition, i.e.; 

In the case of a non-equilibrium state of the field, one sees some interesting 
phenomena in terms of this formula. In order to make them clear, we consider the 
extreme case in which the assumptions of Sec.2-1 are satisfied and moreover 

N++(w) << NI(w). (40) 
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In this situation, the relation (29), defining the stationary solution, becomes ap- 
proximately 

The crucial difference between the equilibrium and the non equilibrium situation is 
the identity 

is true if and only if the initial state of the field is equilibrium. In fact, since 
~ 3 2  - ~ 3 1  = wzl, we conclude that the validity of the Einstein relation (38) is 
equivalent to the linearity of P ( p ( w )  = Pw + p )  and this characterizes Gibbs 
states. 

The relation (41) for the considered system is natural, since the transition from 
level 2 to level 1 is supposed to be extremely smaller than the other transitions 
with the conditions (22) and (40). In this case to  jump from level 2 to level 1 the 
system has to make two consequent jumps: from level 2 to  level 3 and then from 3 
to  1. Therefore it is natural to represent (41) in the following form: 

We might call this formula the Double Einstein formula. From (21) we see that 

It is obvious that we need at least a 3-level atom to  get such a distorted balance 
state because, since detailed balance means balance at  each transition frequency, 
it follows that, if there is only one such frequency as in a 2-level atom, then every 
stationary state is a detailed balance state. This distorted balance state should 
play the role of the negative temperature state introduced in the phenomenology of 
laser systems 12. Within our setup, the 1-field can be interpreted as the pumping 
field which realizes the so-called inverse population state of atom and the +-+-field 
as a stimulating field which stimulates the emission from 2 to 1. 

(45) is equal to eXP[P(w32) - P(w31)]. 

5 

Definition 1 For a mean zero gauge invariant (MZGI) stationary process 

The non equilibrium Gibbs factor 

a+(t ,  k') , a(t ,  k )  (46) 
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with expectation value ( . ), the time (auto-)correlation (or 2-point) functions are 
the distributions 

( ~ ( 0 ,  k)at ( t ,  k’ ) )  , (at ( t ,  k’)a(o, k ) )  (47) 

their Fourier (resp. causal Fourier) transform define the spectral resp. causal spec- 
tral functions: 

+m +ffi 1, eiwtdt(a(0, k )a t ( t ,  k‘))  , Lffi eiwtdt(at(t,  k’)a(O, k ) )  

[, eiwtdt(a(O, k)at ( t ,  k’ ) )  , 1, eiwtdt(at(t,  k’)a(O, k ) )  

(48) 

(resp. causal spectral) functions: 
0 0 

(49) 

In the case of a free evolution 

a t ( t ,  k )  = e’twc t ‘ k  

and of a &correlated state (on the a:, ak-algebra) with density of particles n ( k )  

( a i a p )  =: n(k)fi(/c - k’) 

(aka;,) =: rn(k)6(k  - k’) 

(51) 

(52) 

and anti-density of particles m ( k )  

the Fock spectral function becomes 
+W 

eit(Wk-W)dt(a:ak~) = 2X6(Wk - W)n(k)b(k  - k’)  (53 )  1, 
The ata-(resp aat-)correlation is also called the Fock (resp. anti-Fock) correlation 
and the anti-Fock spectral function is 

Similarly, using the known identity of distribution theory 

-2  1 
d t  = - = 7rb(w) - iP.P. - 

w - i0 W 

e i t ~  
(55) 

the causal Fock spectral function becomes 

and the causal anti-Fock spectral function 

Notice that, both in the Fock and anti-Fock case, the spectral function is equal to  
twice the real part of the causal spectral function. 
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Definition 2 A &correlated MZGI  state with density of particles n ( k )  and anti- 
density of particles m ( k )  will be called compatible with the evolution (50) i f  both the 
density of particles n ( k )  and the anti-density of particles m ( k )  are functions of the 
energy density wk: 

n ( k )  = no(wk)  ; m ( k )  = mo(wk)  (58)  
for some functions no, mo :R + R+ . 

States (MZGI) %ompatible with an evolution (50)  have an important universal 
property, expressed by the following 
Theorem 1 Let ( . ) be a M Z G I  6-correlated state o n  the aL,ak-algebra with 
correlations (51), (52) and compatible with the evolution (50). For any pair of test 
functions f ,  g ,  define the smeared creations and annihilation operators 

a t ( t ,  f )  := dk f ( k )e i twkaL  ; a ( t , g )  := dkg(k)e-itWkuak (59)  J J 
their Fock and anti-Fock t ime correlations 

M O ,  g)a% f )) ; ( a t @ ,  f )a(O,g))  (60 )  
and their spectral functions 

/ d t e - i t w ( a t ( t ,  f )a (O ,g ) )  =: ( g l f ) ;  ; dte-itw(a(O,g)at(t ,  f ) )  =: (91 f): 

(61)  
J 

Then  for  any real number w such that both spectral functions are different from 
zero the quotient (gI f ) ; / (gl  f): does not depend o n  the test functions f , g  and the 
following identity holds: 

Remark. The quantities (gIg),f are called generalized susceptibilities (or suscep- 
tivities) and contain a great deal of information on the field and its interactions. 
They play an important role in the stochastic limit. 

Proof. Using the forms (53) and (54)  for the spectral functions and (61 ) ,  we find 

(91 f); = 2~ / d k g ( k )  f (k)6(wk - w ) n ( w k )  = 2 ~ n ( w )  d k g ( k ) f ( k ) b ( w k  - w )  (63)  J 
and from this the thesis follows. 

Notice that the right hand side of (62)  is well defined whenever 

m ( w )  # 0 
We will use the notation 
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and the right hand side of (66) will be called the non equilibrium Gibbs factor. It  
is a natural generalization of the usual Gibbs factor to which it reduces when p ( w )  
is an affine function of w: 

p k  = pwk + (67) 
More generally, the following fact is true. 

6 The local KMS condition 

Recall that, if p > 0 is a constant, then the 0-KMS condition for the two point 
function is 

(a(0,  k)a+(t  + ip, k’ ) )  = (a+(& k’)a(O, k ) )  

ei(t+iP)wkt (aka:,) = eztwkf (at k’ a k )  

(68) 

where the identity is meant in the distribution sense. In the caSe of a free evolution 
of the form (50) it becomes 

(69) 

For a q-Gaussian MZGI equilibrium state this uniquely fixes the 2-point correlations 
(cf. ’ section (2.10)) to  be of the form: 

(71) 
1 

(aiakt) =: n(k)6 (k  - k’) = ~ 6 ( k  - k’) 
9 ePwk - 

From (71) and (72) one sees that, in the Bose case (q= 
Gibbs factor 

1) the non equilibrium 

is well defined whenever n(k)  is a function (it might be a distribution). 

limit of a ¶-Gaussian MZGI thermal field 
Using the above remarks and Theorem (3.2.1) of ’ we see that the stochastic 

e i ( w k - w ) t / A 2  

ak =: b t ( k )  = bw(t ,k)  (74) x lim 
A - 0  

is the q-white noise with covariance 

J - 0 0  

and causal covariance 
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Using (70) and (71), we see that the q-white noise correlations satisfy 

which corresponds to the 0-KMS condition for the trivial evolution 

bt (k)  H e--iTw bt(k)  Vt ,  k (78) 

For the physical meaning of the evolution (78), cf. ‘section (4.26). 

Definition 3 A state (.) on the polynomial algebra ak, a i ,  is said to  satisfy the 
local KMS condition with temperature function /3 : Rd -+ R if, for  every m, n E N, 
€1, .  . . ,E,,, 71,. . . ,qm E (0, I}, and with the convenction zo= zt, xl= z for any 
operator x, the following identities hold in the sense of distributions. 

A possible formulation of the local KMS condition is the following 

= ( a 2  ( t )  . . .a:: (t)a:: (0) .  . .a:; (0)) (79) 

Lemma 1 Define the local inverse temperature function by 

+(k) := (log no) - 1 
m ( k )  W k  

and this proves (81). In a similar way one verifies that (82) holds. 
Proposition 1 If the state (.) is mean zero gauge invariant and Boson Gaussian 
then condition (79) as satisfied. 
Proof. By Gaussianity both sides of (79) are reduced to  weighted sums of pair 
correlation functions. Since in both sides of (79) we can distinguish the (h ,  €)-terms 
from the ( k ,  T)-terms and since the pair correlations preserve the order, there will 
be 3 types of pair correlations: 

(i)  those of type (h, k )  

(ii) those of type (h, h)  

(iii) those of type ( k ,  k )  
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In case (i), due to  gauge invariance, the only non zero combinations are of the 

In case (ii) the terms are already in the correct order. 
In case (iii), again by gauge invariance, the only possibilities are 

form (aat )  or (at.) so we can apply (81) and (82). 

(ah ( t  + iPh)a:,(t + i ~ h l ) )  = e- ( t f i P h ) W h  e i ( t f i P h t  lwh’  (aha:,) 

- - e i t ( w h ~ - W h ) + ( P h W h - P h ’ W h ’ ) 6 ( h  - h‘) 

= ( a : ( t ) a h w  (83) 
and similarly for the other term. 

Since in the Boson case the weight of each pair partition is equal to 1, after the 
replacements (81), (82), (83) the pair-partition expansion of the left hand side of 
(79) becomes the pair-partition expansion of the right hand side. 

Remark. The validity of the local KMS condition for more general Gaussian states 
as well as for quantum Markov states is now under investigation. 

7 The local KMS condition for discrete Hamiltonians 

The following considerations show that, for discrete Hamiltonians, the Local KMS 
condition allows to  distinguish between those general density matrices which com- 
mute with a given Hamiltonian and those which are functions of the given Hamil- 
tonian. 

Given a discrete specrum Hamiltonian H,: 

Hs = C€P€ I p,= Id(fI I H s I 4  = €13 (84) 
c 

For any complex valued Borel function f : R --i C the map z H eitf(Hs)ze-itf(H8) 
is defined by the spectral theorem and one has 

where 

B/:= { f ( ~ )  - f(6‘); V E , E ’ }  , E,f(z) := PEzP,i (86) 

Theorem For a density matrix p and the corresponding state ( . ) the following 
are equivalent: (i) There exists a real valued Borel function P : R --$ R such that 
exp -P(H,)Hsis trace class and 

L,L‘ : f ( r ) - f ( c ’ ) = 6  

(ii) There exists a real valued Borel function /3 : R -+ R such that exp -P(H,)H, 
is trace class and p satisfies the following local KMS condition with respect to  the 
Heisenberg dynamics 2 H e i tHSzebi tHs  : 

VXI  Y, t ,  k Y ( t  + i P ( H s ) ) )  = ( Y ( W  (88) 
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where the meaning of y ( t  + ip (H, ) )  is given by (85). 
ProoJ (87) + (88) 

= Tr ( Y ( t ) V )  = ( Y W c )  
(88) =+ (87). (88) means that for all z , y  and for all t 

hence, putting y = 1 
eB(Ha)HsP = peB(Ha)Ha  

(93),(94) imply that, for all y 

yeP(Ha)Hap = eP(H~)Hs PY 

eP(H")Hsp = A 1  
and this implies that, for some scalar X 

Since T r ( p )  = 1, (96) implies that 

(94) 

(95) 

Remark 1 When P ( H )  = p, the state (87) is the Gibbs state with temperature 
p-' and (88) becomes the KMS condition. 
Remark 2 The factor P ( E )  can be interpreted as a (local) inverse temperature for 
each eigenstate with the energy eigenvalue E .  In this sense condition (88) is a local 
KMS condition in the sense of energy. The stationary state of the 3-level atom 
interacting with the non equilibrium state of the field, which has been discussed in 
the first part of this paper, is exactly of this kind, i.e. it satisfies the local KMS 
condition. 
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DISCUSSION 
Chairman: A .  Bohm 

B. Misra: What is stochastic limit? 
L. Accardi: Stochastic limit, roughly speaking, means the following. You 

rescale time according to  the van Hove prescription t + $. I underline that this 
is the only thing which we put by hand. Everything else follows from the funda- 
mental laws of physics. Because of the duality time-energy, this rescaling of time is 
equivalent to an energy rescaling and, as you can see with some easy calculations, 
this leads to the fact that the original field in the interaction representation will go 
into 
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So, the rescaling of time is equivalent to  this rescaling of the field. And the theorem 
is this object converges to the quantum white noise. In other words: the rescaled 
field becomes, in the limit, a white noise. That is why we call it "stochastic limit". 
It should not be confused with the old "Markovian limit" where you only obtain 
the master equation. The limit evolution we find is unitary and only after aver- 
aging over the noise (i.e. the limit field) we recover the master equation. For the 
study of nonequilibrium phenomena, such as currents, this additional information 
is absolutely crucial. 

Of course, this is not a fundamental theory. This is an approximation. One 
might ask: what is the advantage of this approximation? The answer is that, in 
this approximation, you can read a lot of physics which is hidden in the original 
Hamiltonian. 

For example, if you tried to read in the original Hamiltonian such phenomena 
like the structure of the non-equilibrium stationary states, or the quadratic Einstein 
relation, you would find that this is absolutely impossible because the irrelevant 
scales complicate the picture beyond tractability. 

Since we start from the basic laws of physics, the original Hamiltonian describes 
a huge amount of phenomena belonging to  totally different scales of magnitude. 
We are using a kind of magnification lens to  isolate only the scale pertaining to the 
phenomena we are interested in. 

What is new, in my opinion, is that we are not isolating this scale by hand, with 
vague plausibility arguments, but it is the dynamics itself that isolates the correct 
order of magnitude of the phenomena. 

M. Courbage: When you consider the third level do you mean that the Hamil- 
tonian of the system has continuous spectrum? 

L. Accardi: Yes. Discrete spectrum of the system Hamiltonian is typical of 
the first level. A typical example is the Friedrichs model where discrete spectrum 
is embedded in the continuum. The first model, which was solved in the level 
three, was quantum electrodynamics without dipole approximation and the second 
was the quantum Anderson model, i.e. not the usual model involving classical 
random potentials but the real quantum Anderson model. And in both cases, very 
interesting and exciting new phenomena come out. The diagrams are no longer 
the Gaussian diagrams of the field. We get the non crossing diagrams but not the 
semicircle law. The noise is not Gaussian in the usual sense. Physics leads to  a 
new probability which is not free probability. The vacuum distribution of the field 
has the same diagrams of the semicircle law but does not coincide with it. Just as 
the diagrams for Bose and Fermi fields are the same, but the distributions are quite 
different. 

This also means that the phenomenological models built with random matrices 
have a deep explanation in real physics, through the stochastic limit. 

The new statistics (e.g. new photon statistics) are a consequence of the breaking 
of the usual commutation relations under strong nonlinearity. It is what we call 
entanglement. Usually the term entanglement is used just as a synonym of the 
superposition of composite systems but this use may be not so appropriate. What 
we call entanglement is the expression of a deeper phenomenon: originally, the atom 
and the field are kinematically completely independent - the atom variables and 
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the field variables commute. However, after the stochastic limit, the non-linearity 
obliges them to take a non-trivial commutation relation. 

T. Petrosky: You are partly using the Wigner solution. You said that this 
is an approximation. Now, you are going already into the regime of the Markov 
process, so you do not have memory effect. 

L. Accardi: Concerning the first comment I want to emphasize that what is 
usually called the Wigner distribution has nothing to do with the Wigner semi-circle 
law and the associated noncrossing diagrams. My statement is that the noncrossing 
diagrams emerge naturally from the dynamics in the third level of the stochastic 
limit. 

My answer to the second comment is: Yes. 
G .  Pronko: If we consider the same model but with an infinite number of 

levels, this model may be solved by the Bogolubov transformation because this is 
a quadratic interaction. Then the property, which you find, is not true. 

L. Accardi: First of all let me emphasize again that the stochastic limit is ap- 
plicable also to a wide class of non quadratic models. But even in the quadratic case 
there are a lot of interesting phenomena which you can describe with the stochastic 
limit but not with the original Hamiltonian. In this connection I would like to 
recall a sentence, which I found in Gordon’s 1964 lectures on quantum optics at the 
Varenna School. He said, in some sense, quantum optics (in dipole approximation) 
is itself an explicitly solvable model because the equations are linear. The problem 
is however that you cannot do any physics with them. For more than 40 years the 
art of quantum optics has been to  devise clever approximations of these equations 
from which one can say something non-trivial. 

For example studying the non equilibrium states of a 3-level system we found, 
with K. Imafuku and S. Kozyrev, an interesting phenomenon and, after some time, 
we discovered that several papers in the most recent experimental literature on 
quantum optics were discussing precisely this phenomenon, which is called “ampli- 
fication without inversion”. Facts like this suggest that our approach really captures 
some hidden physical properties. 
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EFFECTS OF STATIC IMPERFECTIONS FOR QUANTUM 
COMPUTING 

GIULIANO BENENTI(") and GIULIO CASATI("vb) 
(a) International Center f o r  the Study of Dynamical Systems, Universith degli Studi 

dell 'Insubria and 
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Como, Italy 

(b)Istituto Nazionale d i  Fisica Nucleare, Sezione di Milano, Via  Celoria 16, 20133 
Milano, Italy 

We model the quantum computer hardware as a two-dimensional lattice of qubits with 
static imperfections, i.e. fluctuations in individual qubit energies and residual short-range 
inter-qubit couplings. We show that these imperfections can lead to the emergence of 
quantum chaos and dynamical thermalization also in a quantum computer ideally de- 
coupled from the environment. We discuss their effect on the stability of (i) the quantum 
computer hardware and (ii) an efficient quantum algorithm simulating a physical model 
with rich and complex dynamics described by the quantum sawtooth map. 

1 Introduction 

A quantum computer can perform some computational tasks much more efficiently 
than a classical computer (for a review see, e.g., ','). Shor constructed a quan- 
tum algorithm which performs integer factorization into prime factors exponentially 
faster than any known classical algorithm. It was also shown by Grover4 that the 
search of an item in an unstructured list can be done with a square root speedup 
over any classical algorithm. These results motivated a great body of experimental 
proposals for the construction of a realistic quantum computer (see * and refer- 
ences therein). While the technological challenge to  develop scalable, fault tolerant 
quantum processors is highly demanding, it is nowadays widely recognized that de- 
coherence, due to the coupling with the environment, will be the ultimate obstacle 
to the realization of such devices. In addition, even in the ideal case in which the 
quantum computer is isolated from the external world, a proper operability of the 
computer is not guaranteed. Internal and unavoidable imperfections in the quantum 
computer hardware are another source of errors. For example, the energy spacing 
between the two states of each qubit can fluctuate, e.g., due to magnetic field inho- 
mogeneities in nuclear magnetic resonance quantum processors 2.  Moreover, since 
qubit interactions are required to  operate two-qubit gates and generate entangled 
states, unwanted residual interactions will appear. 

The quantum computer hardware can be modeled as a qubit lattice5 and one has 
to consider a quantum many-body (-qubit) interacting system. These systems have 
been widely investigated in the field of quantum chaos and it is now well known 
that residual interactions can lead to quantum chaos characterized by ergodicity of 
the eigenstates and level spacing statistics described by Random Matrix Theory '. 
This means that the properties of the wave functions and energy spectra become 
so complicated that statistical considerations can be applied to them. 
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To summarize, it is important to study the stability of quantum information 
processing in the presence of realistic models of quantum computer hardware im- 
perfections. In the following we discuss two main problems ‘9’: 

A) The onset of chaos in the quantum computer hardware, which may lead to  
occupation number statistics given by the Fermi-Dirac distribution. This means 
that a strong enough interaction plays the role of a heat bath, thus leading to  
dynamical thermalization for an isolated system. In such a regime, a quantum 
computer eigenstate is composed by an exponentially large (with the number of 
qubits) number of noninteracting multi-qubit states representing the quantum reg- 
ister states. As a result, exponentially many states of the computational basis are 
mixed after a chaotic time scale‘. This sets an upper time limit to  the stability of 
a generic superposition of states coded in the quantum computer wave function. In 
addition, it is clear that a necessary requirement for quantum computer operability 
and fault tolerant computation schemes is the possibility to operate many quantum 
gates inside the chaotic time scale. 

B) The effect of hardware imperfections on the stability of an efficient quantum 
algorithm which computes the time evolution of a well known dynamical system - 
the quantum sawtooth map - exponentially faster than any known classical com- 
putation. Since one of the main applications of computers is the simulation of 
physical systems, it is desirable to find efficient quantum algorithms which describe 
physical models with rich and complex dynamics. The sawtooth map is a paradigm 
of classical and quantum chaos and exhibits a variety of different behaviors, from 
anomalous diffusion to quantum ergodicity 2nd dynamical localization. As we will 
see, the quantum algorithm which solves the quantum sawtooth map has certain 
advantages over, e.g., the Shor algorithm, since complex dynamics can be investi- 
gated already with less than 10 qubits, making it interesting for the first generation 
of quantum processors working with a small number of qubits’O,ll. Moreover, this 
algorithm would provide information inaccessible to  classical simulations already 
with about 40 qubits whereas the Shor algorithm becomes useful only for more 
than 1000 qubits. Therefore quantum computers could become useful devices for 
the simulation of important physical problems much before than they can afford ba- 
sic problems like integer factoring. Our investigations also show a certain stability 
of quantum computing with respect to imperfection effects. 

In Section 2 we discuss a model for the quantum computer hardware; in Section 
3 we study the statistical properties of the eigenvalues of this model; in Section 4 we 
investigate the occupation number distribution and compare different definitions for 
the effective temperature of the system; in Section 5 we review the main properties 
of the sawtooth map model; in Section 6 we discuss a quantum algorithm for the 
sawtooth map and its stability in the presence of static imperfections in the quantum 
computer hardware; in Section 7 we present our conclusions. 
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2 Themodel 

We consider a model of n qubits on a two-dimensional lattice with nearest neighbors 
inter-qubit coupling. The Hamiltonian of this model, introduced in 5 ,  reads: 

where the a, are the Pauli matrices for the qubit i and the second sum runs over 
nearest-neighbor qubit pairs on a two-dimensional lattice with periodic boundary 
conditions applied. The energy spacing between the two states of a qubit is deter- 
mined by r, = A0 + 6,, with 6, randomly and uniformly distributed in the interval 
[-6/2,6/2]. Therefore the detuning parameter 6 gives the width of the r, distribu- 
tion around its average value A,. For generality we choose the couplings Jig, which 
represent the residual interaction, randomly and uniformly distributed in the inter- 
val [-5, J ] .  The model (1) can be considered as a model for the quantum computer 
hardware, in which the unavoidable system imperfections generate residual inter- 
qubit couplings and energy fluctuations. We note that similar Hamiltonian models, 
but without coupling/detuning fluctuations, have been discussed in different ex- 
perimental proposals, based, for example, on optical lattices ’’, arrays of quantum 
dots l3 or chains of nuclear spins l4 embedded in a two-dimensional electron system. 
Fluctuations in the values of 6, appear due to imperfections, e.g., local magnetic 
field fluctuations in the proposals 13,14.  Since an inter-qubit coupling is required to 
operate two-qubit quantum gates, some residual static interaction J between qubits 
will be unavoidably present. This coupling can originate from spin-exciton exchange 
14, exchange interaction between spins of electrons trapped in neighboring quantum 
dots 13 ,  dipole-dipole interaction between electrons trapped near the surface of liq- 
uid helium 15, etc. When the inter-qubit coupling is switched off, for example via a 
potential barrier created by a point contact gate in the quantum dots proposal 13, 

some unavoidable residual interaction still remains. Therefore, the model (1) de- 
scribes the quantum computer hardware, while to study the gate operations in time 
one should include additional time-dependent terms in the Hamiltonian (see Section 
6 below). 

At J = 0, the noninteracting eigenstates of the model can be written as I&) = 
( ~ 1 ,  ..., an) ,  where a, = 0 , l  marks the polarization of qubit i. These are the ideal 
multi-qubit eigenstates of a quantum computer, the quantum register states used 
for computer operations. For J # 0, these states are no longer eigenstates of the 
Hamiltonian, and the new multi-qubit eigenstates are now linear combinations of 
different quantum register states. 

Here we focus on the case 6 << A,, which corresponds to the situation where 
fluctuations induced by imperfections are relatively weak. In this case, the unper- 
turbed energy spectrum of (1) (corresponding to J = 0) is composed of n + 1 well 
separated bands, with interband spacing 2AO. Since the 6,’s randomly fluctuate in 
an interval of size 6, the J = 0 bands have a Gaussian shape of width A, M fi6. 
The average number of states inside a band N B  is of the order of N ~ l n  = 2n/?2, 
so that the energy spacing between adjacent multi-qubit states inside one band is 
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exponentially small in the number of qubits: 

In the presence of a residual interaction J - 6, the spectrum still has the above 
band structure with an exponentially large density of states. For J ,6  << A,, the 
interband coupling is very weak and can be neglected. We concentrate our studies 
on the central band. It corresponds to the highest density of states, and in a sense 
represents the quantum computer core. On the other hand, quantum chaos and 
ergodicity first appear in this band, which therefore sets the limit for the stability 
of quantum computer hardware. Inside this band, the system properties depend 
only on the number of qubits n and the dimensionless coupling J /6 .  

3 Spectral statistics 

As shown in Refs?, the quantum chaos border in (1) corresponds to a critical inter- 
action J ,  given by: 

Cb 
J , -  -, 

n (3) 

where C is some numerical constant. Indeed, since the interaction is of a two-body 
nature, each noninteracting multi-qubit state I$k) has nonzero coupling matrix 
elements only with about n other multi-qubit states. Therefore, the number of 
directly coupled states is much smaller than the number of multi-qubit states inside 
the central band, NB = n!/([n/2]!(n - [n/2])!) (we consider the band with the 
number of spins up given by the integer part of n/2). These couplings induce 
transitions in an energy interval of order 6 (we assume that J is of the order of or 
smaller than 6). Therefore the energy spacing between directly coupled states is 

A, - 6/n. (4) 

The transition to chaos takes place for J = J ,  = A,, which leads to the relation (3). 
The border (3) is exponentially larger than the energy spacing between multi- 

qubit states A,. This is in agreement with previous studies of complex interacting 
many-body systems ', in which the transition to quantum chaos takes place when 
the interaction matrix elements between directly coupled states become larger than 
their energy spacing. 

The transition to quantum chaos and ergodic eigenstates can be detected in 
the change of the spectral statistics of the system. A convenient way is to look at 
the level spacing statistics P ( s ) ,  which gives the probability to find two adjacent 
levels whose spacing, normalized to the average level spacing, is in [s, s + ds] .  In 
fact, P ( s )  goes from the Poisson distribution Pp(s) = exp(-s) for nonergodic states 
to the Wigner-Dyson distribution Pw(s) = ( x s / 2 )  exp(-7rs2/4), corresponding to 
Random Matrix Theory, for ergodic states '. 

In Fig.1 we show the level spacing statistics near the band center (&5% of levels 
around it) at different coupling strengths J for n = 16. The transition from the 
Poisson to the Wigner-Dyson statistics is evident. 
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s 

Figure 1: Level spacing statistics at IZ = 16, J = 0.056 (circles), J = 0.26 (triangles), and J = 0.46 
(squares). Full curves show Poisson and Wigner-Dyson distributions. 

To analyze the change of P(s )  with the coupling J one can conveniently use the 
parameter r]  = s;"(P(s) - Pw(s))ds/sd;'(Pp(s) - Pw(s))ds,  where SO = 0.4729 ... 
is the first intersection point of Pp(s) and Pw(s) .  In this way Pp(s) corresponds 
to  r]  = 1 and Pw(s) to  r ]  = 0. Fig.2 gives the dependence of the parameter r ]  on 
the scaled coupling J n / 6  at different system sizes, for states near the middle of 
the energy spectrum 16. The Poisson to Wigner-Dyson crossover becomes sharper 
when n increases, suggesting a sharp transition in the thermodynamic limit. One 
can see that the minimum spreading of curves is for r](J,) x 0.2, corresponding to  
J,n/6 M 3.7. We stress that, since the chaos border (3) drops only algebraically 
with n, it is exponentially larger than the multi-qubit energy level spacing, e.g., for 
n = 18, J ,  = 0.26 >> A,, M 7 x lOP56. Therefore a relatively large coupling strength 
is required for the emergence of quantum chaos: this constitutes a very positive 
result for quantum computing. 

4 Dynamical thermalization 

The transition in the level spacing statistics reflects a qualitative change in the 
structure of the eigenstates5. While for J << J ,  the eigenstates are very close to the 
quantum register states, for J > J ,  each eigenstate Iq5m)b ecomes a superposition 
of an exponentially large number of noninteracting eigenstates I&).  The mixing 
takes place inside a Breit-Wigner energy width r given by the Fermi golden rule: 
r N J z / A ,  N J Z n / b 5 .  As a result, the residual interaction spreads a quantum 
register state over an exponentially large number of states after a chaotic time 
scale 5J7: 

(5) 
1 6  

r x x - w -  r J 2 n '  
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I I 

Figure 2: Dependence of ?J on the scaled coupling Jn/6, for n = 9 qubits (circles), n = 12 (squares), 
n = 15 (diamonds), n = 16 (empty triangles), and n = 18 (filled triangles) 

After this time the quantum computer hardware stability is certainly destroyed, 
unless one can apply quantum error-correcting codes (see and references therein) 
operating on a shorter time scale. We stress that this destruction takes place in 
an isolated system, without any external decoherence process. It happens due to 
inter-qubit coupling, which can mimic the effect of a coupling with the external 
world. 

In the following we show that in the quantum chaos regime a statistical descrip- 
tion of our isolated n-qubit system is indeed possible, similarly to  results found for 
other physical systems in 18. We concentrate on the distribution of the occupation 
numbers ni, defined as the probability that the qubit (spin) at  the site i is in its up 
polarization state. Given an eigenfunction I&) with eigenvalue Em, one can write: 

where fii is the occupation number operator, and the term ( + k ( f i i l + k )  equals 1 or 0 
depending on whether the spin at the site iis up or down. 

For noninteracting qubits one can write, e.g. for the central band, 

where EL = Em/2 + xi  4 / 2  (Em = Ci(2ni(k) - l)Si). As ni(m) = O , l ,  the rela- 
tions (7) are the usual ones used to  derive the Fermi-Dirac distribution for an ideal 
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s- 0.6 

0.2 0.2 

0.0 0.0 

0.0 

Figure 3: Distribution of the occupation numbers ni as a function of the qubit detunings 6i, for 
a given random realization and a single eigenstate for n = 16 qubits. Left: level number m = 5; 
right: m = 100 (the levels are ordered by increasing energy, m = 1 being the ground state). Top: 
J = 0.036: bottom: J = 0.36. 

gas of many noninteracting particles in contact with a thermostat. However, here 
we consider an isolated system of relatively few interacting particles. Nevertheless, 
recent studies’* have demonstrated that interaction can play the role of a heat bath, 
thus allowing one to  use a statistical description even in an isolated system with 
few particles. The Fermi-Dirac statistics appears due to the fact that the number 
of spins up/down is fixed and in this way they become equivalent, for the purposes 
of a statistical description, to electrons/holes. 

In Fig. 3 we show the occupation numbers for a single e igenstate  of a given 
random realization. In the upper figures ( J  = 0.036 << J ,  N 0.26) a given eigen- 
state significantly projects only over a single quantum register state and therefore 
half of the occupation numbers is close to  1, half close t o  0, and the Fermi-Dirac 
distribution (8) is very far from the actual distribution. On the contrary, in the 
quantum chaos regime (lower figures, J= 0.36 > Jc), where a large number of 
quantum register states are mixed in a single eigenstate, there is a good agreement 
between the occupation number distribution and the Fermi-Dirac distribution: 

where p is the chemical potential and P = ~ / T F D  is the inverse temperature (we 
set the Boltzmann’s constant k g  = 1). Taking into account the constraint set by 
the fixed number of spins up (xi nFD = [ n / 2 ] ) ,  TFD is the only fitting parameter. 

In order to make quantitative the comparison with the Fermi-Dirac distribution, 
we introduce a parameter which measures the root mean square deviation of the 
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0.4 

0.3 

0.1 I 
0.0 L 

0 
1 

2 6 8 

Figure 4: Dependence of O F D  on the scaled coupling Jn/6, for n = 9 (circles), n = 12 (squares), 
n = 15 (diamonds), and n = 16 (triangles). 

actual distribution from (8): 

. n  

The maximum value = 0.5 is obtained at the band center (TFD = 00) for 
J = 0,  when ni = 1 for [n/2] spins and ni = 0 for the remaining ones. 

The dependence of the thermalization parameter UFD o n  the scaled coupling 
J n  f b  at different system sizes is shown in Fig.4. Our data show that the crossover 
to  a thermalized distribution sharpens when the number of qubits increases, in a 
way consistent with a sharp thermalization border Jt in the thermodynamic limit, 
at J t n f 6  x 3.2. The similarity between the results of Fig.1 ( J ,n /b  x 3.7) and Fig.4 
leads us to surmise that the chaos border coincides with the thermalization border. 
This looks quite natural since the Poisson level spacing statistics indicates the exis- 
tence of uncoupled parts in the whole system, thus preventing thermalization. On 
the contrary, in the chaotic regime each eigenfunction spreads over an exponentially 
large number M of quantum register states, resulting in the Wigner-Dyson statis- 
tics. In this regime the fluctuations of eigenstate components are Gaussian m and 
therefore, according to the central limit theorem, the fluctuations of the occupation 
numbers are small: Ani c( M-'I2 << 1. For this reason eigenstates close in energy 
give similar ni-distributions, which means that there is equilibrium in the statistical 
sense. 

Finally, it is interesting to  compare the temperature TFD obtained from the 
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Figure 5: Dependence of the Fermi-Dirac temperature TFD (circles) and the canonical temperature 
Tea,, (full curve) on the scaled energy E/B (B band width), for n = 16, J = 0.36. 

Fermi-Dirac fit with the canonical temperature T,,,, defined as follows: 

N B  c Emexp (-a) 
c e x p  (-"-) Tcan 

Tan 
E(Tcan) = m=l 

N B  7 

m = l  

where Em are the exact eigenenergies of the interacting system. The very good 
agreement between TFD and Tc,, (see Fig.5) supports the validity of a statistical 
description for our isolated quantum computer model. This means that in such 
closed system inter-qubit residual interactions play the role of a heat bath in an 
open system. 

5 The sawtooth map 

We now describe a quantum algorithm which computes the time evolution of a well 
known quantum system - the so-called sawtooth map, exponentially faster than any 
known classical computation. This model is very relevant in the theory of dynamical 
systems, has a rich and complex dynamics and finds various applications, e.g., for 
dynamical localization in billiards 19. 

The classical sawtooth map is given by 
- 

(11) 
- n = n+ q e  - .rr), e = e + n ,  

where (n,e) are conjugated action-angle variables (0 5 6 < 2.rr), and the bars 
denote the variables after one map iteration. Introducing the rescaled momentum 
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variable p = Tn, one can see that the classical dynamics depends only on the 
single parameter K = kT, so that the motion is stable for -4 < K < 0 and 
completely chaotic for K < -4 and K > 0. For such a discontinuous map the 
Kolmogorov-Arnold-Moser (KAM) theorem does not apply and, for any K # 0, the 
motion is not bounded by KAM tori. The map (11) can be studied on the cylinder 
( p  E (-co,+co)), which can also be closed to  form a torus of length 27rL, where 
L is an integer. For any K > 0, one has normal diffusion: < ( A P ) ~  >= D ( K ) t ,  
where t is the discrete time measured in units of map iterations and the average 
< . . . > is performed over an ensemble of particles with initial momentum po and 
random phases 0 5 0 < 27~ .  It is possible to distinguish two different dynamical 
regimes: for K > 1, the diffusion coefficient is well approximated by the random 
phase approximation, D ( K )  x (7r2/3)K2, while for 0 < K < 1 diffusion is slowed 
down, D ( K )  N 3.3K5l2, due to the sticking of trajectories close to broken tori 
(cantori). For -4 < K < 0 the motion is stable, the phase space has a complex 
structure of elliptic islands down to  smaller and smaller scales, and we observed 
anomalous diffusion, < (Ap), >o: t a ,  (for example, cr = 0.57 when K = -0.1). 

The quantum evolution on one map iteration is described by a unitary operator 
U acting on the wave function q!J: 

where ii = -ia/a0 (we set tL = 1). The classical limit corresponds to k + co, 
T --f 0,  and K = kT = const. In this quantum model one can observe important 
physical phenomena like dynamical localization 19.  Indeed, due to quantum inter- 
ference effects, the chaotic diffusion in momentum is suppressed, in a way similar 
to  Anderson localization in disordered solids. Also in the vicinity of a broken KAM 
torus, cantori localization takes place, since a cantorus starts to  act as a perfect 
barrier to quantum wave packet evolution, if the flux through it becomes less than 
h 20,19 

6 The quantum algorithm 

The algorithm which we will now describe, is based on the Quantum Fourier Trans- 
form (QFT) 'l, and simulates the dynamics of a system with N levels in O((log, N ) 2 )  
operations per map iteration, while a classical computer, which performs Fast 
Fourier Transforms (FFT), requires O(N log, N )  operations. A further striking 
advantage of the algorithm is the optimum utilization of qubits: one needs only 
nq = log, N qubits (without any extra work space). We demonstrate that complex 
phase space structures can be simulated with less that 10 qubits, while about 40 
qubits would allow one to make computations inaccessible to  present-day super- 
computers. This is particularly important, since experiments with few qubits are 
being performed at present lo,ll. For this reason the investigation of this interest- 
ing physical system will be accessible to the first quantum computers, operating 
with few qubits and for which large-scale computations like integer factoring are 
not possible. 

The most efficient way to simulate the quantum dynamics (12) on a classi- 
cal computer is based on forward/backward FFT between 0 and n representations. 
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This is advantageous because the evolution operator U is the product of two unitary 
operators, fik = exp(ik(6 - 7 r ) , / 2 )  (kick) and UT = exp(-iTfi2/2) (free rotation), 
which are diagonal in the 0 and n representation, respectively. Therefore, for a sys- 
tem with N levels, the one map iteration (12) requires two FFT and two diagonal 
multiplications and can be performed in O(N log,(N)) operations. The dynamics 
(12) can be simulated exponentially faster on a quantum computer with nq = log, N 
qubits by means of the followin quantum algorithm: 
(i) the wave function I$) = a,ln) (given in the n representation) is multi- 
plied by UT, so that &-I$) = c, a, exp(-iTn2/2)ln). This step can be done in nt 
controlled-phase shift gates, as explained in 22; 

(ii) one can get the wave function in the 0 representation via the QFT 21, which 
requires nq single-qubit (Hadamard) gates and nq(nq - 1)/2 two-qubit gates (con- 
trolled phase-shifts); 
(iii) the action of u k  is diagonal in the angle representation and can be simulated 
in a way similar to (i) in nt two-qubit gates (we note that this is possible thanks to 
the particular form of fik for the sawtooth map); 
(iv) we go back to the momentum basis performing backward QFT in nq(nq + 1)/2 
gates. 
Therefore the whole algorithm requires ng = 3n; + nq quantum gates per map 
iteration. 

We study numerically the many-body dynamics of the quantum computer (1) 
running the quantum algorithm described above. The algorithm is realized by a 
sequence of instantaneous and perfect one- and two-qubit gates, separated by a time 
interval rg, during which the Hamiltonian (1) gives unwanted phase rotations and 
qubit couplings 23. We assume that the average phase accumulation given by A0 is 
eliminated, e.g. by means of refocusing techniques ,*. 

We study the sawtooth map in the anomalous diffusive regime, with K = -0.1, 
-7r 5 p < 7r (torus geometry). The classical limit is obtained by increasing the 
number of qubits nqr with T = 2r/N (k = KIT, -N/2 5 n < N/2). We consider as 
initial state at time t = 0 a momentum eigenstate, I$(O)) = [no), with no = [0.38N]. 
Such a state can be prepared in O(n,) one-qubit rotations starting from the ground 
state 10,. . . ,O). The dynamics of the sawtooth map reveals the complexity of the 
phase space structure, as shown by the Husimi functions 25 in Fig.6, taken after 
1000 map iterations. We note that nq = 6 qubits are sufficient to observe the 
quantum localization of the anomalous diffusive propagation through hierarchical 
integrable islands. At nq = 9 one can see the appearance of integrable islands, and 
at nq = 16 the quantum Husimi function already explores the complex hierarchical 
structure of the classical phase space down to small scales. The effect of static 
imperfections for the operability of the quantum computer is shown in Fig.6 (right 
column). The data are shown for J = 0 (we observed similar structures for J = 6). 
The main features of the wave packet dynamics remain evident even in the presence 
of significant imperfections, characterized by the dimensionless strength E = 67,. 
The main manifestation of imperfections is the injection of quantum probability 
inside integrable islands. This creates characteristic concentric ellipses, which follow 
classical periodic orbits moving inside integrable islands. These structures become 
more and more pronounced with the increase of nq. Thus quantum errors strongly 
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Figure 6: Husimi function for the sawtooth map in action angle variables ( p ,  B ) ,  with -x 5 p < T 

(vertical axis) and 0 5 B < 2x (horizontal axis), for K = -0.1, T = 2 x / Z n 9 ,  no = p o / T  = [0.38 x 
Z n q ] ,  averaged in the interval 950 5 t 5 1000. From top to  bottom: nq = 6,9,16 and classical 
density plot, obtained from an ensemble of 10' trajectories, with initial momentum po  = 0.38 x 2x 
and random angles. Left and right columns show the case without and with imperfections: in 
the quantum case the imperfection strength E = ~ T ~ S C  ales o( n i 3 ,  where E = 2 x (nq = 6), 
E = 6 x 0: in the classical case round-off errors 
are of amplitude 1 
(ApAB = T/2).  Black corresponds to  the minimum of the probability distribution and white to 
the maximum. 

(nq = 9), E = lo-' (nq = 16), at J= 
We choose the ratio of the action-angle uncertainties s = Ap/AB= 
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affect the quantum tunneling inside integrable islands, which in a pure system drops 
exponentially (K exp(-CN), C =const). It is interesting to stress that the effect of 
quantum errors is qualitatively different from the classical round-off errors, which 
produce only slow diffusive spreading inside integrable islands (see Fig.6 bottom 
right). This difference is related to the fact that spin flips in quantum computation 
can make direct transfer of probability on a large distance in phase space. 

It is clear from Fig. 6 that the main structures inside the localization domain 
turn out to be rather stable in the presence of static imperfections (see also Ref. 9). 

It should be stressed that, obviously, it is not possible to extract all exponentially 
large information hidden in the wave function with 2”. states. However, it is pos- 
sible to have access to coarse grained information. For example from a polynomial 
number of measurements one can obtain the probability distribution over momen- 
tum (or angle) states. This allows one to study the anomalous diffusion in the deep 
semiclassical regime. Such an information is not accessible for classical computers 
which cannot simulate more than 240 quantum states. Moreover, we note that an 
efficient algorithm was proposed in Ref. 2 6 ,  which allows one to measure the value 
of the Wigner function at  a chosen phase space point. This can also provide im- 
portant new information about quantum states in systems with hierarchical phase 
space structures. 

7 Conclusions 

In this paper we have discussed the effects of static imperfections on the stability 
of (i) the quantum computer hardware and (ii) an efficient quantum algorithm for 
the quantum sawtooth map. From these studies, a certain robustness of quantum 
computation emerges. We also outline that interesting phenomena like dynamical 
localization can be observed in the above described algorithm already with less than 
10 qubits. Therefore quantum algorithms for the simulation of interesting physical 
models 2799 may constitute the ideal software for the first generation of quantum 
computers operating with a small number of qubits and the most suitable testing 
ground for investigating the effects of decoherence and imperfections for quantum 
information processing. 

The authors wish to acknowledge the fruitful collaboration with Simone Mon- 
tangero and Dima Shepelyansky. Support from the ARO contract No. DAAD19- 
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DISCUSSION 
Chairman: A .  Bohm 

L. Reichl: How do you choose the form of the Hamiltonian, and how can you 
distinguish different states of the qubits? 

G. Casati: We have considered the simplest model in which system imperfec- 
tions generate energy fluctuations and residual inter-qubit couplings. In principle, 
the different states of the qubits can be distinguished by means of standard projec- 
tive spin measurements. 

L. Reichl: The model you choose doesn’t necessarily model an actual quantum 
computer? 

G. Casati: Other models of quantum computation can be devised, it is still 
not clear what will be the actual architecture of a quantum computer. 

L. Reichl: Can you make a comment about the ability of a quantum computer 
to function, if it is constructed according to  this model? 

G. Casati: The preferred regime is below the thermalization border. Above 
this border, a generic state stored in the quantum computer is destroyed after a 
“decoherence” time scale determined by the width of the Breit-Wigner distribution. 

W. Schleich: Is there something to say about the approach of classical limit? 
Because somehow you say you go much faster, you go exponentially faster, and 
we see that with this, your Husimi function goes pretty much to the classical map 
already. 

G. Casati: We have simulated a quantum model in which the approach to the 
classical limit goes exponentially fast with the number of qubits. When you plot 
the Husimi function, already with 16 qubits you obtain something which is very 
close to the classical distribution. 
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LESSONS OF COHERENCE AND DECOHERENCE - FROM 
NEUTRINOS TO SQUIDS 

L. STODOLSKY 
Max-Planck-Institut fir Physik (Werner-Heisenberg-Institut), Fohringer Ring 6, 80805 

Miinchen, Germany 

We indicate some of the lessons learned from our work on coherence and decoherence 
in various fields and mention some recent work with solid state devices as elements of 
the “quantum computer”, including the realization of simple logic gates controlled by 
adiabatic processes. We correct a commonly held misconception concerning decoherence 
for a free particle. 

The subject of “quantum information” and in particular its realization in terms 
of real devices revolves in large measure around the problems of coherence and 
decoherence. Thus it may be of interest here to review the origins of the subject and 
see what has been learned in applications to various areas. We first got involved in 
these issues through the attempt to see the effects of parity violation (“weak neutral 
currents”) in handed molecules ’. The method we found - an analogy to the famous 
neutral K meson behavior with chiral molecules - seemed too good to be true: we 
had a way of turning eV into a big effect! There must be some difficulty, we 
felt. Indeed there was; it turned out to be what we called “quantum damping” and 
what now-a-days is called “decoherence” . 

The lessons from this work were several and interesting. First, concerning parity 
violation, we realized that this could solve Hund’s “paradox of the optical isomers” 
as to  why we observe handed molecules when the true ground state should be parity 
even - or - odd linear combinations. We realized that for molecules where tunneling 
between chiral isomers is small, parity violation dominates and the stationary state 
of the molecule becomes a handed or chiral state, and not a 50-50 linear combination 
of chiral states. 

This holds for a perfectly isolated molecule, and in itself has nothing to do with 
decoherence. However, and this is very related, even a very small interaction with 
the surroundings suffices to destroy the coherence necessary for the aforesaid linear 
combination, in effect the environment can stabilize the chiral states. This now 
goes under the catch-word “decoherence by the environment”. The limit of strong 
damping or stabilization is often called the Zen0 or “watched pot” effect, an idea 
which as far as I can tell, goes back to  Turing. We were able to  show how this just 
arises as the strong damping limit of some simple “Bloch-like” equations 2,3. 

1 The Unitarity Deficit Formula 

A result of this work is that there is a simple and illuminating formula for the 
decoherence rate. There is a quantity A, given by the flux of the surrounding 
particles or excitations, and the S matrix for the interaction of our system (e.g. the 
chiral molecule) with these surroundings: 
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A = i ( f l ~ ~ )  < il(1 - S ~ S i ) l i  > (1) 

The imaginary part gives the decoherence rate or loss of phase coherence per 
unit time D: 

D = I m A  

(The real part also has a significance, a level shift induced by the surroundings. 
This turns out to be a neat way to  find the index of refraction formula for a particle 
in a medium 6 9 7 . )  

The labels (L,R) on the S refer to which state of the molecule (or other system) 
is doing the interacting with the surroundings. Here with (L,R) we have taken the 
case of the simplest non-trivial system, the two-level system. 

These equations may be derive@v6b y thinking of the S-matrix as the operator 
which transforms the initial state of an incoming object into the final state. If the 
different states (L,R) of our system scatter the object differently, a “lack of overlap” 
or “unitarity deficit” as given by Eq [l] arises. These intuitive arguments can also 
be supported by more formal manipulations ’. 

An important point that we see here, in Eq [l], is that the environment “chooses 
a direction in hilbert space”6. That is, there is some direction (here L,R) in the 
internal space of the system under study (the molecule) that is left unchanged - is 
not “flipped” - by the interaction with the surroundings. Such states however get 
a phase factor by the interaction, and this is the decoherence . If the interaction 
did not distinguish some direction, if we had SL = SR then the formula tells us 
there would be no decoherence . This is intuitively correct in accord with one’s 
ideas about “measurement”. If the probe does not distinguish any state there are 
no “wavefunction collapses” and no decoherence takes place. (This is not meant to 
imply sanctioning of “wavefunction collapses” in any way.) 

Another simple limit for the formula occurs when only one state interacts, say 
no interaction for L, or SL = 1. Then one finds that the decoherence rate is 1/2 the 
scattering rate for the interacting component ’. Thus Eqs [1,2] have two interesting 
limits: 

SL = SR D = 0 , no decoherence (3) 

D = 112 (scattering rate of R)  (4) 
and 

SL = 1 

The latter followed from an application of the optical theorem. With appropri- 
ate evaluation of the S-matrices, Eqs [1,2] can be applied to many types of problems, 
like quantum dots l1 or neutrinos 4 ,  or even gravity 8 .  

Eq [3] is quite interesting in that it says the system can interact but nevertheless 
retain its internal coherence. A lesson here is that one shouldn’t think that every 
interaction or disturbance “decoheres” or “reduces” the system. The system can 
interact quite a bit as long as the interactions don’t distinguish the different internal 
states. 
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2 A common misconception 

The fact that the interaction responsible for the decoherence must “choose a di- 
rection in hilbert space” has some interesting implications. One of these has to  do 
with the decoherence of a free particle in some background environment. 

Eq [l] was for a two-state system, and the extension to  a larger number of states, 
as long as it is a finite number, can be easily envisioned as following the l ~ g i & ~ > ~  
used in finding Eq [l]. However if we go to the continuum, that is if we have a 
infinite number of states, the problem becomes more subtle. The most common 
example of this is the free particle which, say in the limit of an infinitely large 
“box”, is described as system of continuous, dense, levels. 

A number of authors, in talking about this system, have automatically assumed, 
as indeed first seem plausible, that at long times the particle under the influence 
of some continually interacting environment becomes totally “decohered ; in the 
sense that the density matrix of the particle p ( z ,  d) approaches the situation of no 
off-diagonal elements, that p approaches a 6 function. 

Although this may seem plausible, that under the repeated bombardment by 
the surroundings the particle becomes more and more “decohered”, it is in fact 
wrong 

p(z ,  z’) +- 6(z - z’) wrong ( 5 )  
Consider the simplest case, that of a thermal environment. On general grounds 

we expect the particle in a thermal environment to  be described by the boltzmann 
factor, to  be given by a density matrix operator p - where T is the tem- 
perature and H the hamiltonian, say p2/2m for a non-relativistic particle. Now 
evaluate this operator in the position representation: 

This is the stationary, long time value of p .  It applies for nearly any state we 
care to initially throw into the medium. Evidently it shows no signs of changing 
and certainly no sign of turning into a b function. Of course at high temperature 
our expression will resemble a delta function. The practical importance of this will 
depend on the other length scales in the problem at hand. The point we wish to 
make, however, is of a conceptual nature, namely that repeated interactions with 
the environment don’t necessarily lead to  more “decoherence”. Indeed Eq [6] says if 
we were initially to put 6(x - 2’) or some other “highly incoherent” density matrix 
into the medium, the density matrix of the particle would become more coherent 
with time - until it reached the value Eq [6]. Apparently the medium can “give 
coherence” to a state that never had any to start with. 

“Creating coherence” by an outside influence is not as mysterious as it may 
sound, there are familiar cases where we know this already. For example, using 
a high resolution detector can “create a long wavepacket” or in particle physics 
neutral K oscillations and the like may be enhanced or “created” by using some 
subset of our total event sample, such as a “flavor tag”. 
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Where did the seemingly plausible argument or feeling about the indefinitely in- 
creasing decoherence go wrong? It’s the question of the “direction chosen in hilbert 
space”. The feeling is right, but we must know where to  apply it. As we can see 
from the boltzmann factor, thermodynamics likes to  work in momentum (actually 
energy) space. The intuition would have been right there, - in momentum space - 
but this then means something non-trivial in position space. The lesson here is that 
the notion of “decoherence by the environment” must be understood to  include a 
statement about the “direction chosen in hilbert space” by that environment ‘. 

3 Mesoscopic systems 

The interest in these issues has had a revival with the advances made possible by 
the technologies of mesoscopic systems. In one such system, the “quantum dot 
observed by the QPC”, one has a complete model of the measurement process, 
including the “observer”, “who” in this case is a quantum point contact (QPC) lo. 

In a slight generalization of the original experiment one can see how not only the 
density matrix of the object being observed is “reduced by the observing process, 
but also see how the readout current-the “observer” responds. In particular one 
may see how effects looking very much like the “collapse of the wavefunction”, that 
is sequences of repeated or “telegraphic” signals indicating one or another of the 
two states of the quantum dot, arise. All this without putting in any “collapses” 
by hand l l .  

We should stress that what we are not only talking about a reduction of fringe 
contrast due to  “observing” or disturbing an interference experiment, as in ’; and 
also in interesting experiments in quantum optics where an environment is simu- 
lated l2 or different branches of the interferometer l3 interact differently and ad- 
justably with the radiation in a cavity (like our two S-matrices). By the “collapses” 
however, we are referring not so much to the interferometer itself as to  the signal 
from some “observing” system, like the current in the qpc. With repeated probing 
of the same object (say electron or atom), in the limit of strong “observation” this 
signal repeats itself - this is the “collapse”. For not too strong observation there is 
an intermediate character of the signal, and so on. All this may be understood by 
considering the amplitude for the interference arrangement and the readout proce- 
dure to  give a certain result l l .  The properties of the readout signal naturally stand 
in some relation to the loss of coherence or “fringe contrast” of the interference effect 
under study. 

Following this line of thought we come to  the idea that there should be some 
relation between the fluctuations of a readout signal and decoherence. Indeed the de- 
coherence rate, the imaginary part of Eq [l] is a dissipative parameter in some sense; 
it characterizes the rate of loss of coherence. Now there is the famous “dissipation- 
fluctuation theorem” , which says that dissipative parameters are related to  fluc- 
tuations in the system. Is there some such relationship here? Indeed, one is able 
to  derive a relation between the fluctuations of the readout current and the value 
of 04. The interesting and perhaps practical lesson here is that the decoherence 
parameter can be observed in two ways. One is the direct way, just observe the 
damping out of the coherent oscillations of the system in question. Experimentally, 
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this involves starting the system in a definite, selected state. However, as just ex- 
plained, there is a second way; namely, observe the fluctuations of the readout. This 
can be done even if the system is in the totally “decohered” p N I state. 

Another mesoscopic system, the SQUID and in particular the rf SQUID, has 
been long di~cussed’~ as a candidate for showing that even macroscopic objects are 
subject to the rules of quantum mechanics. The rf SQUID, a Josephson device 
where a supercurrent goes around a ring, can have two distinct states, right- or 
left- circulation of the current. These two conditions apparently differ greatly, 
since a macroscopic number of electrons change direction. I t  would be a powerful 
argument for the universality of the quantum rules if one could demonstrate the 
meaningfulness of quantum linear combinations of these two states. 

Such linear combinations can in principle be produced since there is some am- 
plitude for a tunneling between the two configurations. In fact this was recently 
manifested through the observation of the “repulsion of levels” t o  be anticipated if 
the configurations of opposite current do behave as quantum stated6. 

Another approach, where we would directly “see” the meaningfulness of the 
relative quantum phase of the two configurations, is the method of “adiabatic in- 
version” 17,18. This method also offers the possibility of a direct measurement of the 
decoherence time. In adiabatic inversion the “spin” representing a two-level sys- 
tem 3,4 is made to  “follow” a slowly moving “magnetic field” (meant symbolically, 
as an analogy to spin precession physics), which is swept from “up” t o  “down”. 
In this way the system can be made to invert its direction in “spin space”, that 
is to reverse states and go from one direction of circulation of the current to  the 
other. This inversion is an intrinsically quantum phenomenon. If it occurs it shows 
that the phases between the two configurations were physically meaningful and that 
they behave quantum mechanically . This may be dramatically manifested if we let 
decoherence destroy the phase relation between the two configurations. Now the 
configurations act classically and the inversion is blocked. 

We thus predict that when the decoherence rate is low the inversion takes place, 
and when it is high it does not. Figs 1 and 2 show the idea of this procedure. 

Since in such an experiment we have the sweep speed at our disposal, we have 
a way of determining the decoherence time. It is simply the slowest sweep time for 
which the inversion is successful. We must only be sure that for the sweep speeds 
in question the conditions remain adiabatic. 

Setting up the adiabatic condition and taking some estimates for the decoher- 
ence time, it appears that the various requirements can be met “,18 when operating 
at low temperature. Hence it may be realistically possible to move between the 
classical and quantum mechanical worlds-to turn quantum mechanics “on and off” 
in one experiment. This would be a beautiful experiment, the main open question 
being if the estimates of the decoherence rate are in fact realistic, since we are 
entering a realm which has not been explored before. 

4 

A two-state system behaving quantum mechanically can serve as the physical em- 
bodiment of a quantum mechanical bit, the “qbit”. Furthermore, the adiabatic 

Adiabatic logic elements and the quantum computer 
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inversion procedure just described amounts to a quantum realization of one of the 
basic elements of computer logic: the NOT. If one configuration is identified as 1 
and the other as 0, then the inversion turns a linear combination of 1 and 0 into a 
linear combination of 0 and 1 with reversed weights. 

We can try to push this idea of “adiabatic logic” a step further. NOT was a one 
bit operation. The next most complicated logic operation is a two bit operation, 
which we may take to be “controlled not” or CNOT. In CNOT the two bits are 
called the control bit and the target bit, and the operation consists of performing 
or not performing a NOT on the target bit, according to the state of the control 
bit. 

To realize CNOT, an idea which suggests itself” as a generalization of adiabatic 
inversion is the following. We have a two bit operation and so two SQUIDS. These 
are devices with magnetic fields. Now if one SQUID, the target bit, is undergoing 
a NOT operation, it can be influenced by the control bit, a second nearby SQUID, 
through its linking flux. We could imagine that this linking flux can be arranged 
so that it helps or hinders the NOT operation according to the state of the second 
SQUID. This would amount to a realization of “controlled not”, again by means of 
an adiabatic sweep. 

To analyze this proposal we must set up the two-variable Schrodinger equation 
describing the two devices and their interaction. The result is a Hamiltonian with 
the usual kinetic energy terms and a potential energy term in the two variables, 
which in this case are the fluxes in the SQUIDS, 41,42: 

1 
2 v = -vo{ [11(41-~~t)2+12(~2-~~t)2-2112(42-4~t) (4 l -4;2t ) l+Plf (4 l )+P2f(4

(7) 
The qFxt are external biases which in general will be time varying. The 2’s are 
dimensionless inductances and 112 represents the coupling between the two devices. 
The f(4) are symmetric functions starting at one and decreasing with increasing 
so as to  produce a double well potential when combined with the quadratic term; 
in the SQUID f(4) = cos(4). Fig. 3 shows this “potential landscape” for some 
typical values of the parameters. 

Given the hamiltonian, we must search for values of the control parameters 
qFxt ,  the “external fields”, which can be adiabatically varied in such a way as 
to  produce CNOT. Preliminary analysis indicates favorable regimes of the rather 
complex parameter space where this can in fact be done 19. 

5 Some Experimental Proposals 

Finally we would like to recall that there are still some fundamental and beautiful 
experiments waiting to be done in these areas. 

A) One is the demonstration of the large effects of parity violation for appro- 
priately chosen and contained handed molecules ’. Because of what we now call 
decoherence this seemed very remote at  the time. But now with the existence of 
single atom/molecule traps and related techniques, perhaps it’s not so hopeless. 

B) Another, concerned with fundamentals of quantum mechanics, could be 
called the “adjustable collapse of the wavefunction” where the “strength of observ- 
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/ 

Figure 1: A successful inversion, starting from the upper figure and ending with the lower figure. 
The black dot indicates which state is occupied. The system starts in the lowest energy level and 
by staying there, reverses states. It behaves as a quantum system with definite phase relations 
between the two configurations. 

ing” can be varied, leading to effects like washing out of interferences, as already 
seen i n 9  and a number of further predictions where we vary the qualities of the 
“observer” 11, or slowing down of relaxation according to the rate of probing of the 
object ’. 

C) Then there is the second way of measuring D ,  through the fluctuations in 
the readout signal, even for a fully “decohered” system. 

D) Finally there is the direct demonstration of quantum linear combinations of 
big objects by the method of adiabatic inversion; “turning quantum mechanics on 
and off” 17918. 

Many of the questions we have briefly touched upon had their origins in an 
unease with certain consequences of quantum mechanics, often as L1paradoxes’’ and 
“puzzles”. It is amusing to see how, as we get used to  them, the “paradoxes” fade 
and yield to a more concrete understanding, sometimes even with consequences for 
practical physics or engineering. If we avoid overselling and some tendency to an 
inflation of vocabulary, we can anticipate a bright and interesting future for “applied 
fundamentals of quantum mechanics”. 
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\ 

/ 
I 
/ 

Figure 2: An inhibited inversion, starting from the upper figure and ending with the lower figure. 
Due to  the lack of phase coherence the system behaves classically and stays in the same state, the 
current is not reversed. 
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DISCUSSION 
Chairman: A .  Bohm 

G. Hegerfeldt: The final form of these off-diagonal matrix elements depends, 
of course, on the basis you choose. 

L. Stodolsky: Exactly. This was the way I explained why the environment 
answers the question of what happened to the “democracy” of Hilbert space. 

G. Hegerfeldt: The other point, I was going to make, is that the measurement 
problem is very difficult. If at the exponential fall of the non-diagonal matrix 
elements the decomposition of the density matrix is not unique, for instance, if 
we had one density matrix we can decompose the density matrix one in one half 
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and one half, and many different superpositions. If you have degeneracy then the 
decomposition is not unique. 

L. Stodolsky: Afraid I haven’t understood the question, perhaps we can dis- 
cuss this privately. 

R. Chiao: How is it related to the Zurek’s work on the “pointer basis”? Is it 
the same thing? 

L. Stodolsky: Yes. However, since I don’t believe in the “measurement prob- 
lem”, in our old work we stressed the “decoherence by the environment” more than 
“the measurement question”. 

R. Chiao: Another question I have for you. You solve only one half of the 
problem. The off-diagonal elements of the density matrix go away. There is still 
the remaining problem, which outcome will you actually get, zero or one? Do you 
have any answer to this second half of the problem? 

L. Stodolsky: I think there’s a misunderstanding or I don’t understand the 
question. The density matrix represents the result of many repeated experiments 
and not of just one trial. If we don’t see this difference we are going to  be confused. 

S. Pascazio: Have you looked at the adiabatic corrections? 
L. Stodolsky: Yes. Here are two plots addressing this point. (See Figs 4 

and 5.) These were done for a neutrino problem, but it’s independent of the kind 
of system. This first plot (Fig 4) is for a very slow adiabatic sweep, the second 
(Fig 5) for a faster, somewhat non-adiabatic sweep. The various panels in each 
figure are for different values of the decoherence rate D. With D=O we see with the 
slow sweep that we get a perfect adiabatic inversion: P3 reverses direction, it starts 
from one and goes to minus one. In Fig 5, when we make the sweep faster, we see 
that even with decoherence zero, P3 does not quite get all the way around since it 
is not adiabatic. Note, incidentally, for very large D (last panel on either plot) P3 

is practically unchanging. This is the “Zeno” effect (see ref. 2). 
S. Pascazio: Yes, I understand, the neutrino is a simple system and the MSW 

theory is a rather simple theory. I am interested in non-adiabatic corrections when 
you have SQUIDS. Do they depend on the size of the system or not? 

L. Stodolsky: Well, you can write down the analogy of this for the SQUID 
and you can write down what the adiabatic condition is (see refs 17 and 18). We 
have also studied non-adiabatic effects by computer simulations for these systems. 
So we can simulate it and we have some results but I don’t believe them yet, 
we are still playing with the program. Anyway, it is a perfectly straightforward 
problem. [Note added in proof by L S  More extensive simulations for the SQUID 
have given reasonable agreement with the theoretical estimate for the adiabatic 
condition. Also, in answer to the question that was asked: No, the size of the 
system has no direct influence on the adiabaticity.] 

P. Stamp: I have a problem. You study the so-called Landau-Zener problem 
with dissipation by using models which you have, precisely your time reversible 
problem, and they couple it to  some bath of oscillators for example. My guess is 
that you haven’t done the simulation in a way they can agree with this and the 
reason is very simple. Once you have gone past to avoid the crossing, if you have 
strong decoherence it implies that you, in fact, have strongly coupled your system to 
some bath. Then the probability that you have the spontaneous emission is rather 
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Figure 4: Behavior of the “polarization vector” representing the density matrix for a slow, adiabatic 
sweep of an applied “psuedo- magnetic field”(see refs. 2,3,4 for definitions). From the Diploma 
Thesis of J .  Flaig, Munich, 1989. 

strong. 
L. Stodolsky: In this level crossing language, you’re asking about what hap- 

pens when there’s a spontaneous jump down by emitting something as the levels 
pass each other. This could even happen off-resonance where it is more favourable 
because you have more phase space. Of course for neutrinos we can forget this 
problem because of the lack of neutrino coupling to the photon. So it depends very 
much which system you are talking about. 

So, coming to SQUIDS, we did some simulations for the SQUIDs and we just 
took results in the literature for the various time scales involved: the relaxation 
rate, which you are asking about, as well as the decoherence rate and the tunnelling 
rate between the two wells. All these frequencies seem to be well separated and, 
in particular, what impressed me, was that the relaxation rate seems to be quite 
slow, so we can forget it when we are talking about sweeping in microseconds. I 
should point out that we are speaking of working at forty milli-Kelvin. Maybe this 
is below what you are used to thinking about. 

P. Stamp: The real question is what is the amplitude of your sweeps, be- 
cause as you have pointed out, the farther you are from resonance the larger is the 
probability. 

L. Stodolsky: The amplitude of the sweep has to be large compared to the 
level splitting induced by the tunneling process, but small compared to distance to 
the next principal set of levels. These are the conditions we used in the simulations. 

E. Polzik: Let me ask you about your macroscopic superposition. Let me give 
an example from atomic physics. I have an atom with two states. I can put it in 
a superposition of these two states. Then I have many atoms like that. Will you 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



203 

I KR-0.1 0-0.0 I 
1.0 

I 

0 .  

- .5  

-1.. t...,.........,.........,.........,..... 

1.0 

5 

0. 

-.I 

-1.0 

I KR-0.1 D-0.01 I 

-1.0 

I. .  

.¶ 

0. 

-.5 

-1.. 

KR-0.1 D-0.2 1 
1.8 

.I 

-.s -.I 

1.0 -1.0 *. 
-an -1. I. w I 

KR-0.1 D-1000. 
1.0 

.5 

-.I -.I 

.I.# -1.0 *. 

Figure 5: Same as previous figure with a faster, somewhat non- adiabatic sweep 

call it the same macroscopic superposition that you have for all electrons going this 
way and all electrons going that way? 

L. Stodolsky: No, because in the system I am talking about they (the elec- 
trons) all reverse at  the same time and are not separate atoms. They are highly 
correlated. 

E. Polzik: The Rabi oscillations can be observed for arbitrary large number 
of atoms. 

L. Stodolsky: But I can also do them one at  a time. Here you cannot do them 
one at a time. The whole superconductor is reversed at the same time. 

E. Polzik: It is in a sense the same kind of problem. You cannot look at them 
one at a time, but it does not prove that it is a macroscopic superposition. 

L. Stodolsky: Well, in a sense, I agree with your tendency to  doubt because 
I also feel that people talking about “macroscopic systems” are suffering from a 
fundamental conceptual error because really there is no objective definition what 
is a macroscopic system. From the point of view of field theory, for example even 
an electron contains an infinite number of degrees of freedom, if you think of the 
photons attached to  it. But on the other hand, if you have a system where some 
macroscopic current, of say microamperes, changes its direction, I think most of us 
would consider this in some intuitive way as a macroscopic change. But I agree it 
is not an objective definition. 

E. Polzik: The superposition of states of a macroscopic system is nothing 
unusual. What can be unusual here is the sort of entanglements you can observe, 
the correlation between various parts of the system. 
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KOLMOGOROV COMPLEXITY,  COSMIC BACKGROUND 
RADIATION AND IRREVERSIBILITY 

V.G. GURZADYAN 
Yerevan Physics Institute and Garni Space Astronomy Institute, Armenia 

ICRA,  Department of Physics, University of Rome La Sapienza, Rome, Italy 

We discuss the algorithmic information approach to the analysis of the observa- 
tional data on the Universe. Kolmogorov complexity is proposed as a descriptor of 
the Cosmic Microwave Background (CMB) radiation maps. An algorithm of com- 
putation of the complexity is described, applied, first, to toy models and then, to 
the data of the Boomerang experiment. The sky maps obtained via the summing 
of two independent Boomerang channels reveal threshold independent behavior of 
the mean ellipticity of the anisotropies, thus indicating correlations present in the 
sky signal and possibly carrying crucial information on the curvature and the non- 
Riedmannian, i.e. accelerated expansion of the Universe. Similar effect has been 
detected for COBEDMR 4 year maps. Finally, as another application of these 
concepts, we consider the possible link between the CMB properties, curvature of 
the Universe and arrows of time. 

1 In t roduct ion  

In the process of the study of the Nature we are dealing not with photons, atoms, 
planets, galaxies and so on, but with the information that we are obtaining on them. 
If one can succeed to get a 'complete' information (in bits) on a given object, then, 
in principle, one can recover that object. Obviously, the main problem is whether 
one can define a universal device, so that the coding and decoding of the information 
will be independent on the device. The complexity or algorithmic information l2 

carries this idea, i.e. invariant description of an object with respect to a universal 
computer. The existence of a universal computer was proven by Kolmogorov. 

Invariant descriptors have always been of outstanding importance in any re- 
search. One can recall the discovery by De Moivre, Laplace and Gauss of the 
independence of the behavior of errors on the phenomena, among the latter, the 
coin tossing, human birth rates and observations of planetary motions. 

In the present article we apply the concepts of algorithmic information theory 
in the studies of the properties of the Universe, via the analysis of the Cosmic 
Microwave Background (CMB) radiation data. 

CMB provides one of the key windows to the early history of the Universe. In 
accordance with the currently held views, the expanding and cooling Universe at 
certain moments of time after the Big Bang at redshifts z N 1100, becomes trans- 
parent for photons which we detect now, at z = 0, as CMB with highly isotropic 
temperature and accurate Planckian spectrum. The discovery of the quadruple 
anisotropy of the CMB by Cosmic Background Explorer (COBE) satellite in 1992 
marked an important phase for cosmological studies. The next generation of experi- 
ments, Boomerang, Maxima, DASI, CPI, measured the peaks of the power spectrum 
(angular autocorrelation function). Existence of such peaks was predicted decades 
ago as a consequence of the interplay of the periods of the compression waves and 
the decoupling time at the epoch of the last scattering. On the one hand, this 
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supports the basic paradigms of the Big Bang cosmology, on the other hand, the 
existence of over 10 free parameters shows the necessity of extreme care in the 
determination of unambiguous values of the key cosmological parameters. Among 
the latter parameters which are evaluated only in combination with others, is the 
curvature of the Universe. Such degeneracy makes it hard to get an empirical proof 
of the precise flatness of the Universe. 

CMB sky maps, i.e. the distribution of the temperature anisotropies over the 
sky, have been studied via various descriptors mainly to  trace possible departures 
of the noise from the Gaussian one. The use of Kolmogorov complexity to extract 
cosmological information from the CMB maps has been proposed in ’. It was 
motivated by the possibility of tracing of the geometry of the Universe by means 
of the effect of geodesic mixing. The effect of geodesic mixing, which is absent at 
precisely flat and positively curved spaces, can therefore open a way to  distinguish 
the curvature. 

Our broader aim here however, is to illustrate the efficiency and universality of 
complexity in the analysis of profound astrophysical problems. We complete our 
discussion with considerat ion of even older problem, the irreversibility and arrows 
of time. 

We start with a brief account of the effect of geodesic mixing, definition and 
properties of complexity and then move t o  the description of algorithm of compu- 
tations for CMB maps, with subsequent application to the Boomerang data 4.  

2 Geodesics 

Let us first inquire, when the geodesic defined on a 4-dimensional manifold W with 
Lorentzian metric 4g which is oriented and time-oriented, will be a geodesic of a 
3-dimensional manifold M of Riemannian metric ’h with respect to  the operation 
of projection. 

The projection 7~ is defined uniquely as 

W M  

where 

r~ :M X R + M : ( x , t )  H 2. 

This reduces the curve y in W to  a curve c in U E M as represented 

W Z M  
\ u = 4 o y :R + R is a diffeomorphism 

rT 4 T c  c = r o y o  u-’ : R + A4 : X H .(A). 
R ~ R  

below 

The search of the conditions to  be satisfied in order for the projection of any null 
geodesic on W to  be a geodesic on M in general case is a complicated problem. 
For homogeneous-isotropic spaces this can be traced via the problem of “internal 
time” considered initially in where the corresponding sufficient conditions have 
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been obtained. For any null geodesics on W to be a geodesic on M the conditions 
include 

where 3h is one of the metrics of maximally symmetric 3-dimensional manifold. 
Thus the geodesic flow W = U x R be (3 + 1)-dimensional manifold with 

Robertson-Walker metric can be reduced to a geodesic flow on three-dimensional 
closed manifold M = U with metric a i h  and affine parameter X (for details see 6 ) .  

If the Friedmann-Robertson-Walker universe has a negative curvature, the flow 
of null geodesics which describes the free motion of photons, represents an Anosov 
system ’ (locally, if U is not compact), a class of dynamical systems with maxi- 
mally strong statistical properties. Anosov systems are characterized by exponential 
divergence of initially close trajectories, positive KS-entropy, countable Lebesgue 
spectrum, exponential decay of time correlation functions and K-mixing. 

One of the significant properties of Anosov systems is the structural stability 
(coarseness) as proved by Anosov in 1967, roughly, the robustness of properties 
with respect to perturbations. This is a crucial property also in our context, since 
we live not in a FRW Universe with strongly constant curvature but with small 
perturbations of metric, and moreover, we know the magnitude of their smallness 
from the same CMB measurements. 

The deviation of two geodesics in 3-manifold implies that 

where Lyapunov exponent x = a;’ and x = 0 when k = 0 or k = +l .  Hence 

For the geodesic flows in W we have 

The time correlation function of those geodesic flows for d = 3 

bA1,A2 (A)  = J ~i 0 f’ . ~ 2 d p  - lM ~ 1 d p  lM ~ 2 4 4  

decreases by exponential law, i.e., 3c > 0 such that for all Al,  A2 E L 2 ( S M )  but a 
finite-dimensional space in L 2 ( S M )  

S M  

I ~ A ~ , A ~ ( X ) I  1. cIIAiII . M z I I  . ch’ (6) 
where d p  is the Liouville measure, h is the KS-entropy of the geodesic flow { f ’}, 
and 

IlAll = [/ A2dp]1’2 . 
S M  
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One may readily see that if 

and 

A2(’L) = xK(v) (u)  1 

where T is the temperature of sky at u, K(w) is a Cartesian product of 3 0  ball and 
2 0  rigid angle at the point v, and x ~ ( ~ )  is the characteristic function of the set 
K: (v) , then 

and 

where 

T = hM T d p  

Therefore 

In particular, for any u we have 

lim TA(u) = T , 
A-W 

i.e. the isotropic state is the final state. 
Thus the non-zero negative curvature will lead to  the decrease of perturbations 

of the geodesic flows, i.e. of the amplitude of anisotropy of CMB, while the strong 
statistical properties of Anosov systems will lead to  the complexity of the anisotropy 
areas ’. 
3 Kolmogorov Complexity 

A crucial concept for definition of the complexity is that of the universal computer. 
A computer is considered universal, if for any computer C there exists a constant 
Sc which can be added to any program p ,  so that Scp should execute the same 
operation on computer U as the program p on computer C. The computer is a 
device performing only deterministic operations, so that the Turing machine can 
be considered as an example of universal computer, as well as the probabilistic 
computers of Shennon, which are using the random rules to  reduce the time of 
computation for problems with unique solution. 

The algorithm is the set of instructions defining which operations have to be 
executed by the computer and when. Since the computer must halt, the program 
cannot be a prefix for some other program; a word a is called prefix for a word b 
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if b = ac with some other word c. Hence, the set of accessible programs should be 
prefix-free. 

The complexity Ku(x) of the sequence x with respect to a universal computer U 
is defined as the length in bits of the smallest algorithm p by which the computer U 
starting with some initial fixed state calculates the object x as its only output, and 
halts. The complexity was introduced by Kolmogorov, Solomonoff and Chaitin 1,2 .  

The sequence is called complex if its complexity i s  comparable with its length. 
Note, that the time of calculation is not entering this definition. 

The complexity is related with another basic concept, random sequences. The 
most general definition by Martin-Lof lo is formalizing the idea of Kolmogorov that 
random sequences have very small number of rules comparing to  its length; the rule 
is defined as an algorithmically testable and rare property of a sequence. Though 
correlated for typical objects, the properties of complexity and randomness are not 
identical, however. 

Chaotic systems which are non-compressible therefore possess higher complexity 
than regular ones which are compressible. As shown by Martin-Lof, the complexity 
of finite sequences varies between N and N - log,N, since even random sequences 
can have extended non-random subsets. In such cases the specific complexity intro- 
duced by Alekseev 

K A  

I Al 
k ( A )  = -, (9) 

enables to  distinguish the random sequences and hence algorithmically complex 
systems, i.e. when at large N a finite limit does exist 

from the non-random sequences when this limit is zero. Random sequences are 
indistinguishable (for all practical purposes) from the ones generated by the proper 
stochastic process l l .  

In certain trivial cases low-complexity objects can be distinguished easily, for 
example, (0, ..., 0) or (1, ..., 1). In some other cases, the object could have a complex 
binary representation, such as r, though actually being again of low-complexity. In 
the general case, however, the situation is much less simple. Moreover, it is proved 
that there is no short algorithm to  decide whether a given complex-looking sequence 
is really complex ' , l l .  Fortunately, though in general the shortest program cannot 
be reached, i.e. the exact complexity cannot be calculated, in certain problems the 
obtained results cannot be too far from that value. 

If the length of a sequence x is N then the obvious upper limit can be estab- 
lished a 

K ~ ( x )  < N .  (10) 

Let us estimate the fraction of such sequences among all N-bit sequences, for which 

Ku(2) < N - m. 

aNote that, if I is the binary representation of some integer No, then N % log, No. 
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This means that there exists a program of length N - m which computes 2. The 
total number of programs of such a length cannot be larger than 2N-m-t1; this is 
the upper limit without taking into account the prefix-free condition. Thus, we 
have the following upper limit 

(2N-”+l- 1)/2-N M 2-m+l. 

This value is small if m is sufficiently large. Thus a more general relation than (10) 
can be established 

K ~ ( z )  M C(Z) N ,  C(Z) s 1 (11) 

Thus, the calculation of the relative complexity of an object and of a perturbed 
object via given computer and developed code (though the latter cannot be proved 
to  be the shortest possible), has to reflect the complexity introduced by the per- 
turbation. Since in our problem the complexity is a result of the propagation of 
photons after the last scattering surface (if k=-1), one can thus ‘measure the pertur- 
bation’ caused by the curvature of the space as it was performed while measuring 
the elongation of the CMB anisotropy areas in 13. 

The complexity of a dynamical system can be determined by means of the 
representation of the trajectory via a symbolic language 12. Then a trajectory of 
the considered dynamical system can be viewed as a sequence of symbols which can 
be translated into the language of bits. The dynamics can be called chaotic (for 
fixed initial conditions) if the corresponding symbolic sequence is algorithmically 
complex. Note that the partition should be detailed enough because algorithmic 
complexity is well-defined only for sufficiently long sequences of symbols. The CMB 
digitized maps when given values of averaged temperature are assigned to  the pixels 
covering a region of sky is a proper example for symbolic dynamics, and hence can 
be linked not only with complexity but also random sequences. 

Below we describe an algorithm of estimation of the complexity for anisotropy 
areas of computer-imitated CMB maps. Similarly, one can formulate the problem 
for definition and study of the random sequences of CMB maps. 

4 The Complexity Algorithm 

Strictly speaking we can estimate only the upper limit of K corresponding to  a given 
algorithm. By algorithm we will understand the computer program in PASCAL 14,  

along with the data file, describing the coordinates of the pixel of the anisotropy 
area (spot). Namely, the data file includes compressed information about the string 
of digits. The program is a sequence of commands performing reconstruction of the 
string and calculations of the corresponding lengths. Since at  the analysis of various 
areas we use the same code, the only change will be in the data files. Hence the 
complexity of t.he figure will be attributed to the file containing the information on 
the position of the pixels. 

The code describing the area works as follows. As an initial pixel we fix the 
upper left pixel of the area and move clockwise along its boundary. Each step - 
a ‘local step’ - is a movement from a current pixel to the next one in above given 
direction. This procedure is rigorously defining the ‘previous’ and ‘next’ pixels. 
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Table 1. 

first 2 bits next bits 
0 1  1 
1 0  2 
11 3 

Two cases are possible. First, when the next pixel (or several pixel areas) after 
the initial one is in the same row: we write down the number of pixels in such a 
‘horizontal step’. The second case is when the next pixel is in a vertical direction; 
then we perform the local steps in vertical direction (‘vertical step’) and record the 
number of corresponding pixels. Via a sequence of horizontal and vertical steps we, 
obviously, return to the initial pixel, thus defining the entire figure via a resulting 
data file. 

The length of the horizontal step cannot exceed the number of columns, i.e. N ,  
while the vertical step cannot exceed M ,  requiring logzM and logzN bits of infor- 
mation, correspondingly. For the configurations we are interested in, the lengths 
of the horizontal and vertical steps, however, are much less than logzM and logzN 
and therefore we need a convenient code for definition of the length of those steps. 
The code realized in l4 was for M = N = 256; apparently for each value of M and 
N one has to choose the most efficient code. 

Thus, after each step, either horizontal or vertical, a certain amount of bits of 
information is stored. The first two bits will contain information on the following 
bits defining the length of the given step in a manner given in Table 1. The case 
when the first two bits are zero, denotes: if the following digit is zero than the 
length of the step is 1, = 0, and hence no digits of the same step exist; if the next 
digit is 1, then 8 bits are following, thus defining the length of the step. If I ,  = 1, 
then after the combination 01 the following digit will be either 0 or 1 depending 
whether the step is continued to the left or to the right with respect to  the direction 
of the previous step. 

Thus, the complexity is a calculable quantity for CMB digitized sky maps 14. 
Its values correlate also with the values of the fractal dimension of the areas. 

5 Cosmic Background Maps 

The available CMB maps such as of COBE and even Boomerang, are not accurate 
enough for the meaningful calculation of the Kolmogorov complexity. However, 
its simplified descriptor can be used for those maps, namely, the mean elongation- 
ellipticity of the anisotropy spots. This aim also needs the development of special 
algorithms and careful runs to distinguish correlations from the foreground effects. 

We now briefly describe the special purpose adaptive software MAP08 16, which 
was used for the analysis of the Boomerang data. The code enabled to reveal the 
hot and cold anisotropy areas, determine their coordinates, sizes in pixel numbers, 
analysis of their shapes, of the spatial correlation functions, etc. The software runs 
in interactive regime with two input datasets A and B obtained at measurements 
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at two channels, via the sum and difference maps, as well as Gaussian and any 
simulated map. 

After the definition of the temperature threshold interval, for example, from - 
2000 pK up to  +2000 p K ,  with step 25 p K ,  the choice of the minimal and maximal 
number of pixels per area (e.g. 3-200), of the step of the input matrix (e.g. 1 arc 
min), the mode SkyMap enables the visualization of the map and a creation of a 
matrix MM containing the pixel data for positive (negative) thresholds of areas 
of equal or higher (lower) the given threshold. For parameters of the Boomerang 
data, the following choice was efficient: 1 Pix 2 x 2 pixels, Sqw - a square of 8’ x 8‘ 
(approximately), Dia - a circle of diameter 11.2’. 

The matrix MM [x, y] of a unit step and given size, e.g. 1692 x 1296 cells for 
Boomerang data of 1’ cell size, defined by the following formula 

X = ~ound(60.0 * (XY[n, 11 - 237.11)) 

Y = rcuund(60.0 * (XY[n, 21 + 41.61)); M M [ x ,  y] = 1, 

is determining the anisotropy areas via the choice of pixels with temperatures equal 
to and higher/lower than the given threshold. The non-equal size of the pixels 
and some other input inhomogeneities are taken into account here, while using 
both Cartesian or curvilinear coordinates. The scheme of the regularization can be 
performed for each coordinate frame, with the subsequent check of its efficiency by 
means of the least number of the abandoned (non-regularized) pixels. 

a field of +ll pixels in vertical and 
horizontal directions at a step 1’, and f l  cell with a step 7.5’ (in both cases within 
a field 22’ x 22‘) with the center in z o  and yo. The points of the array with a 
given code and current coordinates xt and yt are chosen and the determination 
of the center and other characteristics of the revealed (anisotropy) areas can be 
performed readily. For example, the condition rt <= rw has to be checked for each 
pixel, where rt is the distance between the current point and the central one, and 
r,  = 9‘, while the parameters and the definition of assignment of a point to  a given 
area can be modified if necessary. 

Thus upon fixing the modes of operation and the CMB temperature threshold 
range and the step, the geometrical descriptors of the sum, difference, Gaussian 
or other simulated map can be estimated. All input parameters, auxiliary and 
temporary data e.g. the numbers of pixels in any given area, and extreme and 
average values of various parameters can be displayed. 

The matrix MM is then scanned, e.g. 

6 Boomerang Maps 

The experiment BOOMERa.nG - Balloon Observations Of Millimetric Extragalactic 
Radiation and Geomagnetism - measured temperature fluctuations of the Cosmic 
Microwave Background at multipole numbers corresponding to the range of the 
predicted so-called acoustic oscillations at  the epoch of the last scattering ‘. The 
measurements have been performed by means of a millimetric telescope with bolo- 
metric detectors located on a balloon borne platform. It was flown in Antarctica in 
1998/99 and produced maps covering 4% of the sky with high resolution, - lo’, at 
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four bands from 90 to 410 GHz. The rms fluctuation of the anisotropy areas was 
N 80pK. The detected fluctuations were spectrally consistent with the derivative 
of a 2.735 K blackbody. Masi et al. had shown that contamination from local 
foregrounds was negligible in the maps at 90, 150 and 240 GHz, and that the 410 
GHz channel is a good monitor for dust emission. The maps have been obtained 
from the time ordered data using an iterative procedure, which properly takes into 
account the system noise and produces a maximum likelihood map. Structures 
larger than 10" have been removed, to avoid the dominating effects of instrument 
drifts and l / f  noise. The map has also been convolved with a Gaussian kernel to  
obtain a final FWHM resolution of 22.5 arcmin. 

The study of the Boomerang maps at 150 GHz covering around 1% of the sky 
have been performed by means of the MAP08 code together with P.De Bernardis 
and the Boomerang team 17. 

The anisotropy areas have been revealed at each temperature threshold. MAP08 
enabled the analysis of the properties of various subsets of areas, with given number 
of pixels, within given interval of pixel numbers, e.g. from 3 to 200 pixel ones, the 
distribution of the areas vs number of pixels, etc. The mean ellipticity of the areas 
has been estimated via a procedure of double averaging, first, over the are= at 
given temperature threshold, then, over the threshold interval. The dependence of 
the mean ellipticity of the anisotropy areas vs the temperature threshold obtained 
during that study are shown in Figures 1 and 2. 

The presence of a threshold interval where the ellipticity is independent on 
the threshold is seen from Figure 1. Such behavior was shown to be robust with 
respect to the pointing reconstruction procedure accuracy. The ellipticity due to the 
noise on the other hand, has to  depend on the threshold. Therefore this indicates 
correlations existing in the sky signal. Similar elongation has been detected also for 
COBEDMR 4-year maps. The mean elongation for COBE data was around 1.9 13, 
for Boomerang data it is close to 2.2 17. This is remarkable since COBEDMR and 
Boomerang data are quite different by their angular resolution and noise level. 

The described CMB ellipticity (see Figure 3), in principle, can arise due 
to still unknown processes. However, if such correlations in the sky signal 
are due to geodesic mixing, as was predicted, then this can be interpreted as 
model-independent indication of two effects, of negative curvature and the non- 
Fkiedmannian expansion of the Universe 18. 

The further work on simulated maps and especially the search of this effect at 
forthcoming more accurate experiments is of particular interest. 

7 Arrows of Time 

Let us mention another aspect of the effect of geodesic mixing which may provide 
a condition necessary for emergence of the thermodynamic arrow of time. This 
mechanism can also explain why CMB contains the major fraction of the entropy 
of the Universe. 

The thermodynamical arrow for a statistical system can be formulated as a 

1) Decorrelated (special) initial conditions; 
consequence of the following conditions (see e.g. 19,20,21,22 1: 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



213 

Figure 1. The adaptive software MAP08 revealed the dependence of mean ellipticity of anisotropy 
areas in the Boomerang sum, A+B (circles), and difference, A-B (squares), maps created from 
independent channels, on the CMB temperature in p K ;  positive thresholds. A+B maps contain 
a cosmological signal, while A-B maps contain mainly the noise. From 3 to 200-pixel areas are 
taken into account, the step of the matrix MM is 0.6 arc min, (for details see "). 

2) No memory dynamics. 
It should be emphasized that both these conditions are necessary and they 

appear already in Boltzmann's derivation of his kinetic equation, though not ex- 
plicitly. They can be traced clearly in Zwanzig's derivation of master-equation 23 

or Jaynes' information-theoretical approach to irreversibility 24.  A usual discus- 
sion about possible relations between cosmological and thermodynamical arrows of 
time concentrates mainly on the first condition 19922325. However, one can show 26 

that this is not sufficient, since special initial conditions alone can generate only a 
thermodynamical pre-arrow of time. 

We then point out that, along with the initial conditions the second ingredient of 
the thermodynamical arrow can have a cosmological context as well, due to mixing 
of null trajectories in hyperbolic spaces. 

If this is indeed the mechanism of the origin of the thermodynamic arrow, 
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Figure 2. The same as in Fig 1. Negative thresholds. 

then the thermodynamics in a flat and positively curved universe is not neces- 
sarily strongly time asymmetric. Time asymmetry is observed since we happened 
to live in a Universe with negative curvature. In other words, the symmetry of the 
Newtonian mechanics, electrodynamics, quantum mechanics might purely survive 
in some universes. On the other hand, a recent activity devoted to the founda- 
tions of thermodynamics allows to disentangle time-asymmetric elements from the 
remained basis. 

In this context the essence of thermodynamical arrow must be understood as 
not the mere increase of entropy of an almost closed system, but the fact that this 
arrow has the universal direction in the entire Universe (see 2 7 ) .  In the light of the 
suggested explanation of the emergence of this arrow, it follows that the negative 
curvature is the very mechanism unifying all local thermodynamical arrows. While 
in the flat or positively curved universes, i.e. at the absence of a global unification 
mechanism, there can be local thermodynamical arrows with various directions. 

This enabled us to formulate the curvature anthropic principle, to reflect the 
difference of conditions for life in the hyperbolic Universe and hence with unified 
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Figure 3. An example of an anisotropy area in Cosmic Microwave Background map observed by 
Boomerang *. The semi-axes defined for the estimation of the ellipticities are shown. 

arrows, and in flat or positively curved spaces, i.e. at the absence of such unification 
mechanism 26. 

Often the thermodynamical arrow of time is identified with the second law of 
thermodynamics, and the appearance of Gibbs distribution. We show 26 that the 
second law, and the Gibbs distribution can be obtained from purely time-symmetric 
arguments, and need not be consequences of the thermodynamical arrow. 

Thus CMB has to carry the direct signature of the thermodynamical and cos- 
mological arrows. 

8 Conclusion 

We showed that the algorithmic information approach can enable not only qual- 
itative but also quantitative study of astrophysical problems. The estimation of 
the Kolmogorov complexity for computer-generated CMB maps and detection of 
threshold independent ellipticity in the COBE and Boomerang sum maps, geodesic 
mixing and possible model-independent indication of the non-zero negative cur- 
vature and the accelerated expansion of the Universe, show the efficiency of the 
approach. 

One may expect the further use of algorithmic information concepts not only 
in fundamental problems but also in various applications. The seeds of such de- 
velopments are seen already now, considered as fiction several decades ago. For 
example, instead of sending a letter by post, now it is enough to send a binary 
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coded signal which then is transfered to a hardcopy. The same is true for a color 
image, music, movie. In principal the same operation can be performed, say with 
an apple, via sending the relevant complete information. One may think that, in 
future, even human beings can travel via transfer of information, thus realizing the 
speed-of-light travels. 

I am grateful to  many colleagues. Thus, many of the mentioned results have 
been obtained together with my collaborators A. Kocharyan, A. Allahverdyan and 
A. Kashin. The Boomerang data have been analyzed together with P. de Bernardis 
and the Boomerang team. Numerous discussions with R. Penrose were of particular 
importance. 
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DISCUSSION 
Chairman: A .  Bohm 

L. Reichl: Do you have a result? Does the universe have negative curvature? 
V. Gurzadyan: We have seen an effect in cosmic background radiation maps 

from the analysis of experimental data of COBE and Boomerang without any model 
dependent approach. It is not a fitting of data by a curve of a given model. The 
recent models contain 11-13 free parameters describing the content of the matter 
in the universe, of the dark matter, the initial fluctuation spectrum, etc. To fit an 
empirical curve by a model with so many free parameters is not as difficult. The 
problem is to prove that this is the only possible model. Our approach is model 
independent. We can say that we have a new effect, which would exist in a non-flat 
universe. Therefore either we have a new physical effect or this effect is due to  
non-zero curvature of the universe. 

I. KhalatnikofE Non zero, negative or positive? 
V. Gurzadyan: Negative. 
I. KhalatnikofE Closed or open? 
V. Gurzadyan: I prefer not to use the words “closed” or “open” because 

Einstein equations define the geometry but not the topology of the universe. For 
example, at zero curvature one can have a sheet, a cylinder, a torus. We can speak 
only on the negative curvature k = -1, but topologically the universe can be both 
compact (closed) or non-compact (open). 

L. Stodolsky: The usual opinion in astrophysical circles is that the curvature 
is equal t o  zero. So, you have found it different? 

V. Gurzadyan: Yes, at present flat models are preferred, in part as inflation- 
ary motivated, though there are claims for other models as well. Precise flatness 
cannot be proved however, not only due to  the observational errors, but due to  the 
degeneracy and dependence on a number of free parameters. 

M. Courbage: Does the complexity depend on the stage of the evolution of 
the universe? 

V. Gurzadyan: Of course. I have shown a formula where the complexity de- 
pends on the time from the last scattering epoch. The effect of geodesic mixing 
could be observed, in principle, from quasars. But there is not enough time (dis- 
tance) for photons from quasars to  feel the geometry. Cosmic background photons 
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are moving too long. The problem comes to the numerical measurement of the tiny 
effect, whether it is possible or not. It appears that it can be possible. 

I. Khalatnikoff: You have shown us different geometry of spots. Have you 
concluded about the curvature from the analysis of these spots? 

V. Gurzadyan: The analysis was motivated by the predicted effect and we 
have found its signature. It may be a signature of another effect. 

P. Stamp: It is a way of calculation of multiple correlations between the den- 
sities of radiation and matter. This was calculated since 1962. Can you, from these 
correlation functions, which you can simply extract from measurements, deduce the 
curvature k? 

V. Gurzadyan: If you mean the correlations in the angular power spec- 
trum, the acoustic peaks, they were indeed predicted long time ago, most clearly 
by Doroshkevich, Sunyaev and Zeldovich in 1978, They are now measured by 
Boomerang and at other experiments. The autocorrelation function indeed de- 
pends on the curvature but also on many other parameters and though provides 
important constraints on the curvature, the deduct,ion of the precise value of k is 
not as simple. Here I discussed correlations in the sky maps. 
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OBSERVATION OF THE QUANTUM ZEN0 AND ANTI-ZEN0 
EFFECTS IN AN UNSTABLE SYSTEM 

BRAULIO GUTIERREZ-MEDINA, MARTIN C. FISCHER, AND MARK G. RAIZEN" 
Center for Nonlinear Dynamics and Department of Physics, 

The University of Texas at Austin, Austin, Texas 78712-1081, USA 

We report the first observation of the Quantum Zeno effect (QZE) and Anti-Zeno effect 
(AZE) in an unstable system. These effects are the inhibition or enhancement of decay 
by frequent measurement during the non-exponential time. The experiment builds on 
our earlier observation of short-time deviations from exponential decay in the tunneling 
of atoms from accelerating lattices. Recent improvements in the experiment and devel- 
opment of the measurement method have now allowed us to observe both the QZE and 
the AZE. 

1 Introduction 

From its foundations, quantum mechanics assigns a special role to the observer of 
any physical system. The fact that any measurement of a quantum system projects 
it to one particular eigenstate has counter-intuitive consequences. One observable 
effect is the prediction that repeated observations on an unstable system can slow 
down its evolution to the point that, for frequent enough observations, decay can be 
completely inhibited ' v 2 .  This is known as the Zen0 effect. More recently, it was pre- 
dicted that under more general conditions repeated measurement can enhance the 
d e ~ a y ~ , ~ , ~ ,  a phenomenon which was called Anti-Zen0 (or Inverse-Zeno) effect. The 
experimental observation of these effects relies on the ability to  reset the evolution 
of the system during the non-exponential time of the decay. Unstable systems like 
a radioactive nucleus or an atom in an excited state possess non-exponential times 
so short that are currently inaccesible to experiment. This is why the observation 
of these effects has been elusive until now. We overcame this experimental difficulty 
by studying the tunneling of ultracold atoms in an accelerating optical lattice ', a 
system that can be shown to be unstable. The importance of this system is that it 
exhibits non-exponential decay on time scales that are accessible to  experiment. 

In this paper we first review the main aspects of non-exponential decay, an effect 
predicted more than forty years ago and only observed recently experimentally in 
our group'. The possibility of the existence of the Zen0 and Anti-Zen0 effects will 
follow the discussion. The third part describes the main features of our quantum 
system, consisting of neutral atoms transported in an accelerating optical lattice. 
The experimental realization and our results are described in the last section. 

2 

2.1 Non-exponential decay 

An exponential decay law is the universal hallmark of unstable systems and is 
observed in all fields of science. This law is not, however, fully consistent with 

Non-exponential decay, and the Zen0 and Anti-Zeno effects 

aCorrespondence to: raizen@physics.utexas.edu 
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quantum mechanics and deviations from exponential decay have been predicted for 
short as well as long  time^^,^,^^. In 1957 Khalfin showed that if the Hamiltonian of 
the system, H ,  has a spectrum bounded from below, the survival probability P is 
not a pure exponential but rather of the form 

lim P( t )  M exp(-ctq) q < 1 ,c  > 0. 
t-a? 

Winter examined the time evolution in a simple barrier-penetration problem g.  He 
showed that the survival probability begins with a non-exponential, oscillatory be- 
havior. Only after this initial time does the system start to  evolve according to  
the usual exponential decay of an unstable system. Finally, at very long times, it 
decays like an inverse power of the time. 

The initial non-exponential decay behavior is related to  the fact that the cou- 
pling between the decaying system and the reservoir is reversible for short enough 
times. Moreover, for these short times, the decayed and undecayed states are not 
yet resolvable, even in principle. 

For very short times the time evolution of the survival probability can be de- 
termined explicitly. Given that the mean energy of the decaying state is finite, it 
can be shown that lo 

dP(t)  I 
= 0. \ I  

7 It-0 

This is a general property independent of the details of the interaction. How- 
ever, the time scale over which the deviation from exponential behavior is apparent 
depends on the particular time scales of the decaying system. Greenland and Lane 
point out a number of time scales which are relevant l l .  The first time scale re is 
given by the time that it takes the decay products to  leave the bound state region. 
This time can be estimated as 

h 
7, = - 

Eo’ (3) 

where Eo is the energy released during the decay. I t  determines the amount of time 
required to pass before the decayed and undecayed states can be resolved. The 
second time scale rw is related to  the bandwidth A E  of the continuum to  which the 
state is coupled 

i=L rw = - 
AE‘ (4) 

The phases of all states in the continuum evolve at a rate corresponding to  their 
energy. Thus after the time rw the phases of these states have spread over such a 
wide range as to  prevent the reformation of the initial undecayed state. After this 
dephasing time, the coupling is essentially irreversible. 

Although these predictions are of a general nature and applicable in every 
unstable system, deviations from exponential decay have not been observed exper- 
imentally in any other system than the one described here ’. As mentioned earlier, 
the primary reason is that these characteristic time scales in most naturally occur- 
ring systems are extremely short. For the decay of a spontaneous photon, the time 
re it takes a photon to  traverse the bound state size is approximately an optical 
period, s. For a nuclear decay this time scale is orders of magnitude shorter, 
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22 1 

about s. By contrast, the dynamical time scale for an atom bound in an 
optical lattice is just the inverse band gap energy, which in our experiments is on 
the order of several microseconds. 

2.2 

The universal phenomenon of non-exponential decay of unstable systems led Misra 
and Sudarshan in 1977 t o  the prediction that frequent measurements during the 
non-exponential period could inhibit decay entirely 1,2,12. They named this effect 
the Quantum Zeno eflect after the Greek philosopher, famed for his paradoxes and 
puzzles. In his most famous paradox, Zen0 considers an arrow flying through the 
air. The time of flight can be subdivided into infinitesimally small intervals during 
which the arrow moves only by infinitesimal amounts. Assuming the summation of 
infinitesimal terms amounts to  nothing led Zen0 to  believe that motion is impossible 
and is merely an illusion. The version put forth by Misra and Sudarshan is the 
quantum mechanical version of the paradox. One can take advantage of the slow 
initial decay in order to  inhibit the decay altogether just by performing frequent 
observations on the system at very short time intervals. Each observation made 
during this time not only stops but resets the evolution of the system. 

Reviews of the Quantum Zen0 effect can be found in modern textbooks of 
quantum mechanics 13. Even though measurement-induced suppression of the dy- 
namics of a two-state driven system has been observed 14915, no such effect was ever 
measured on an unstable system. 

The original prediction of the quantum Zen0 effect has been recently revis- 
ited 314,5 .  The studies focused on the frequency of observations, and on the decay 
of an unstable system as a consequence of a reservoir of possible states. The result 
was the prediction of the opposite effect. It was found that, under more general 
conditions, repeated observations must shorten the lifetime of the unstable system, 
which was called ‘Anti-Zeno’ or ‘Inverse-Zeno’ effect. Because of the characteris- 
tic features of decay of our system, we were able to  observe both effects just by 
adjusting the interruption interval, as it will be described later. 

Quantum Zeno and Anti-Zeno effects 

3 

The system of ultra-cold atoms in a periodic optical potential offers unique means 
of studying solid state effects with quantum optics tools 16. In order to gain insight 
into our experiment, some of the basic properties of this system will be reviewed. 
A thorough treatment of the fundamental properties can be found in many solid 
state textbooks 17. The specifics of our system are described in detail in ’. 

Quantum transport in  an optical  latt ice 

3.1 

A neutral atom and light far detuned from atomic resonance interact via the dipole 
potential. The interaction is directly proportional to the intensity of the laser light 
and inversely proportional to  the detuning from atomic resonance. The number of 
spontaneous emissions can be made negligible, therefore making the system conser- 
vative. The optical potential can be created by spatially overlapping two counter- 

A n  atom an an  optical lattice 
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propagating traveling light beams of the same frequency. The system, consisting of 
an atom in the presence of the interference pattern, has the effective Hamiltonian 

assuming that beam propagation is along the z-axis. Here, M is the mass of the 
atom and kL is the laser wavenumber. 

This form of the Hamiltonian is a textbook example for a particle placed in a 
spatially periodic potential, that results in a band structure energy spectrum. The 
study of the band structure in the optical lattice can reveal information about the 
behavior of electrons in a crystal lattice 16. 

For electrons in a crystal the most commonly encountered perturbation is an 
applied static electric field. This seemingly simple perturbation leads to  a very 
rich system, whose properties were controversial for quite some time. Experimental 
tests in the field of solid state physics were hindered by decohering processes which 
are negligible in our atom optics system. A static electric field, which exerts a 
strong force on the electrons in a crystal, does not have the desired effect on a 
neutral atom in an optical potential. However, we can simulate the corresponding 
force by introducing an appropriate time dependence of the optical lattice. Let us 
consider an optical lattice composed of two counterpropagating light beams that do 
not possess the same frequency. The effective Hamiltonian for this system is given 
bv 

H = -  p 2  + vo cos (2kLZ - dJ(t)) . 
2M 

A constant acceleration of the ‘standing’ wave pattern is generated by linearly 
chirping the frequency difference of the counterpropagating beams. This is described 
by dJ(t) = kLat2, where a is the acceleration. Inserting this into the equation above 
yields 

To make the connection to the solid state system, one can transform Eq. (7) to  the 
accelerating reference frame. Applying this transformation yields 

(8)  
- P2 H = - + Vo cos(2kLx) + MU Z. 

2M 

The last term containing the mass M of the atom is an inertial term, resulting 
from the transformation. It mimics the role of the interaction potential between an 
electric field & and the electron 

Uel = & e x ,  (9) 

where e is the electric charge of the electron. 
Having established this connection, we can directly apply the results for the 

solid state system to an atom in the accelerated optical potential. One remarkable 
consequence of the equations of motion resulting from the above Hamiltonian is 
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that particles exposed to a static field are predicted to  oscillate in space rather than 
increase their velocity steadily. The period of oscillation TB is known as the Bloch 
period, and is the time it takes for a particle to  traverse the Brillouin zone of width 
K = 2 k ~ :  

where u,,, denotes the single photon recoil velocity. 

3.2 Landau-Zener tunneling 

The problem of atoms in an accelerated optical lattice can be treated using a 
Landau-Zener tunneling process based on diabatic transitions in momentum space ". 
An alternative description can be derived in the position representation 20. 

A particle approaching an avoided level crossing between energy bands might 
not be able to  follow the dispersion curve adiabatically, in which case it continues 
its motion and diabatically changes levels across the energy gap. The expression 
for the probability P of diabatic transfer between two repelled levels l9 is 

where Eg is the minimum energy separation of the perturbed levels and € 1 , ~  are the 
unperturbed energy eigenvalues of level 1 and 2, respectively. 

Let N denote the number of particles populating the lowest band within the 
first Brillouin zone. Applying formula (1 1) to  our case l8 yields an exponential decay 
of the population N as 

N = No ePrLz t ,  

with the Landau-Zener (LZ) decay rate rLz given by 

The critical acceleration a, is 
T Ei  a, = - -. 
4 h2kL 

Experimental studies of the tunneling rates out of the lowest band were per- 
formed in our group and the decay rates were compared to the Landau-Zener pre- 
diction 21,22. 

As mentioned earlier, deviations from exponential decay are expected in our 
system. Niu and Raizen 23 performed a detailed investigation of a two-band model, 
and found an initial non-exponential regime that starts with a quadratic time de- 
pendence, then becomes a damped oscillation, and finally settles into an exponential 
decay. The time scale for which the coherent oscillations damp out and the expo- 
nential decay behavior sets in is identified as the crossover time t ,  equal to 

1 4% (15) 
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For a typical value for the acceleration of a = 10, 000m/s2 and a band gap of 
E,/h = 80 kHz the crossover time is t ,  = 2 ps. This time is accesible experimentally, 
and is the key feature that allowed us to observe non-exponential decay?. 

Access to  the non-exponential time in our system also made possible the obser- 
vation of both Zen0 and Anti-Zen0 effects. By repeatedly resetting the evolution 
while the system was decaying we managed to alter the dynamics and show the 
existence of these novel quantum effects. 

4 Experimental realization 

In order to  prepare the initial condition, well developed techniques of laser cooling 
and trapping of neutral atoms were employed. We started by cooling and trapping 
approximately 3.  lo5 sodium atoms in a magneto-optical trap, followed by a stage of 
molasses cooling24. After this stage the distribution had a typical Gaussian width 
of gx = 0.3 mm in position and ov = 6ure, in velocity, where vrec = 3 cm/s is the 
single-photon recoil velocity. After switching off the cooling and trapping fields the 
interaction beams were turned on. The interaction potential was a standing wave 
created by two linearly polarized counter-propagating laser beams with parallel po- 
larization vectors. The light was far detuned from the (3S112) H (3P312) transition 
in order to avoid electronic excitation and the resulting spontaneous emission. De- 
tunings typically ranged from 40 to 60 GHz and the power in each of the beams was 
adjusted up to 150 mW. The beams were spatially filtered and focused to a beam 
waist of 1.8 mm at the position of the atomic cloud, providing a relatively uniform 
intensity distribution over the cloud. Due to the larger initial momentum spread of 
the atomic distribution, switching on the interaction potential populated several of 
the lower energy bands. Atoms projected into the lowest band are trapped within 
the potential wells whereas atoms in the second band are only partially trapped. 
Atoms in even higher bands have energies well above the potential and hence are 
effectively free. In order to have a well defined initial condition we emptied all 
but the lowest band. We achieved this by accelerating the standing wave with an 
accelqation atrans to  a velocity of 210 = 35urec by linearly chirping the frequency 
of one of the counter-propagating beams while keeping the frequency of the other 
beam fixed. The acceleration of the potential leads to a loss of population in the 
lower bands due to Landau-Zener tunneling of atoms into higher untrapped bands. 
Energy gaps between successive energy bands decrease rapidly (as an increasing 
power of the well depth). Therefore, the transport acceleration atrans was chosen to  
maximize tunneling out of the second band while minimizing losses from the first 
trapped band. This ensured that after the initial acceleration only the first band 
still contained a significant number of atoms. After reaching the velocity vug the 
acceleration was suddenly increased to  a value atunnel where appreciable tunneling 
out of the first band occurred. The beginning of this large acceleration period de- 
termined the start of the experiment, or t = 0, and was maintained for a period 
of time ttunnel. At the end of this tunneling period we continued the frequency 
chirping at the decreased rate corresponding to  atrans. During this segment atoms 
that escaped the potential were left behind while atoms still trapped at the end of 
tunneling were taken to higher velocities. After reaching a final velocity of 75vrec 
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time position [mm] 
2 

Figure 1: Part (a) shows a diagram of the acceleration sequence. Part (b) displays a typical 
integrated spatial distribution of atoms after the time of ballistic expansion. The large peak on 
the left shows atoms that were lost during the preparation of the initial condition, first segment of 
the acceleration sequence. The peak with label A indicates the atoms that escaped the potential 
during the tunneling time. The atoms that remained trapped the entire sequence correspond to 
label B. The survival probability is therefore equal to A over A + B. 

the interaction beams were switched off suddenly. A diagram of the velocity profile 
versus time is shown in Fig. l(a). 

The quantity to  be measured in our experiment was the fractional number of 
atoms that remained trapped in the first band after the tunneling time. At the 
end of the acceleration sequence the atoms were separated in momentum space but 
overlapped in position space. To distinguish the two classes of atoms a period of 
ballistic expansion was implemented. After an atom tunneled out of the potential 
during the sequence, it would maintain the velocity it had at the moment of tun- 
neling. Turning off the light beams allowed the atoms to  expand freely. During 
this period each atom moved a distance proportional to  its velocity. Due to  the 
difference in final velocity, trapped and tunneled atoms separated and could be 
spatially resolved. In the detection phase the resonant cooling beams were turned 
back on with no magnetic field gradient present. This temporarily restricted move- 
ment of the atoms in a 'freezing molasses'. The fluorescence of the atoms in the 
presence of the laser beams was imaged onto a charge-coupled-device camera. Since 
the potential is one-dimensional we integrated the two-dimensional image in the 
direction perpendicular to the transport. A typical integrated distribution is shown 
in Fig. l(b). For this trace, about one third of the initially trapped atoms have 
tunneled out of the well during the fast acceleration period. 

We measured the decay of the unstable system by repeating the experiment for 
various tunneling durations ttunnel, holding the other parameters of the sequence 
fixed. In the past, our group observed deviations from exponential decay7 following 
a similar procedure. In our case we focused on the effect of measurements on the 
system decay rate. There are two key facts used towards the observation of both 
Zen0 and Anti-Zen0 effects. The first one corresponds to the possibility of having 
experimental access to  the non-exponential time of decay. The second concerns the 
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Figure 2: Part (a) shows a diagram of the interrupted acceleration sequence. The total tunneling 
time is the sum of all the tunneling segments. Part (b) shows a typical integrated spatial distribu- 
tion of atoms after the time of ballistic expansion. One interruption was implemented in this case. 
The peaks can be identified as in Fig. 1. However, the area A containing the tunneled fraction 
of the atoms is now composed of two peaks. Atoms that left the well during the first tunneling 
segment are offset in velocity from the ones having left during the second period of tunneling. The 
amount of separation is equal to the velocity increase of the well during the interruption segment. 

resetting of the evolution during the non-exponential region. As mentioned before, 
the quantity to  be measured is the fraction of atoms remaining trapped in the 
potential after some tunneling time. This measurement could be realized, as before, 
by suddenly interrupting the tunneling duration by a period of reduced acceleration 
uinterr, as indicated in Fig. 2(a). During this interruption tunneling was negligible 
and the atoms were therefore transported to a higher velocity without being lost out 
of the well. This separation in velocity space enabled us to  distinguish the remaining 
atoms from the ones having tunneled out up to  the point of interruption, as can be 
seen in Fig. 2(b). At the end of the measurement the acceleration is switched back to 
utunnel, and the system can then be returned to  its unstable state where it continues 
its decay. This procedure defined a new initial state with the remaining number 
of atoms as the initial condition. Since the ‘clock’ was reset, the system starts 
its evolution again with the same non-exponential decay features. I t  is important 
to note that the requirements for this interruption section were very similar to 
those during the transport section, namely the largest possible acceleration while 
maintaining negligible losses for atoms in the first band. This ensured that the 
only effect of the measurement was the separation in velocity space of trapped and 
untrapped atoms. This is why uinterr was chosen to  be the same as atrans. The 
sequence tunneling-measurement-tunneling can be repeated many times, and only 
the short tunneling segments contribute to  the total tunneling time. 

The result of such a series of frequent measurements can be seen in Figure 3. 
The hollow squares indicate the decay curve without interruption. The solid circles 
in Fig. 3 depict the measurement of the survival probability in which after each 
tunneling segment of 1 ps  an interruption of 50 ps  duration was inserted. The sur- 
vival probability clearly shows a much slower decay than the corresponding system 
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Tunneling time [ps] 
Figure 3: Probability of survival in the accelerated potential as a function of duration of the 
tunneling acceleration. The hollow squares show the non-interrupted sequence, the solid circles 
show the sequence with interruptions of 50 ps duration every 1 p. The error bars denote the 
error of the mean. The data have been normalized to  unity at ttunnel = 0 in order to compare to 
the simulations. The solid lines are quantum mechanical simulations of the experimental sequence 
with no adjustable parameters. For these data the parameters were: atunnel = 15,000m/s2, 
ainterr = 2, 000m/s2, tinterr = 50ps and Vo/h = 91 kHz, where h is Planck's constant. 

measured without interruption. This constitutes the first observation of the Zen0 
effect in an unstable system, following the spirit of the original proposal by Misra 
and Sudarshan. I t  is important to  note that our experimental setup had a limited 
time response, and care was taken to include this into the analysis of the data. The 
response time was limited by electronic and electro-optic devices used in the exper- 
iment. The frequency response was measured and the resulting transfer function 
was used to calibrate the response of the optical potential to  a desired change in 
acceleration. This ensured that only sections were included for which tunneling was 
substantial and established a lower bound for the actual tunneling duration. This 
effect was taken into account for the curves in Fig. 3. Quantum mechanical simula- 
tions of the decay were performed by numerically integrating Schrodinger's equation 
for the experimental sequence and determining the survival probability numerically. 
The results are indicated as solid lines in Fig. 3. These simulations contained no 
adjustable parameters and are in good agreement with the experimental data. The 
seemingly larger decay rate for the Zen0 experiment as compared to  the simulation 
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Tunneling time [ps] 
Figure 4: Survival probability as a function of duration of the tunneling acceleration. The hollow 
squares show the non-interrupted sequence, the solid circles show the sequence with interruptions 
of 40 ps duration every 5 ps. The error bars denote the error of the mean. The experimental 
data points have been connected by solid lines for clarity. For these data the parameters were: 
atunnel = 15, 000m/s2, ainterr = 2,800m/s2, tinterr = 40ps and Vo/h = 116 kHz. 

may be attributed to an under-estimate of the actual tunneling time. 
During the non-exponential time, the uninterrupted decay curve shows two 

very distinct features. For acceleration times less than one microsecond the decay 
is much slower as compared to  the exponential decay. This was used in observing 
the Zen0 effect by realizing the observations after such short times of tunneling. 
The other feature, however, is the complete opposite. After the initial period of 
slow decay the curve shows a steep drop as part of an oscillatory feature, which 
for longer time damps away to show the well-known exponential decay. Therefore, 
interrupting the decay right after the steep drop would lead the system to  an overall 
decay that is faster than the uninterrupted decay4. This is the predicted Anti-Zen0 
effect. The solid circles in Fig. 4 show such a decay sequence, where after every 5 ps 
of tunneling the decay was interrupted by a slow acceleration period. The length of 
the tunneling segments between the measurements are chosen in such a way as to 
include the periods exhibiting fast decay. As in the Zeno-case, these interruption 
segments force the system to repeat the initial non-exponential decay behavior after 
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Figure 5: Survival probability as a function of duration of the tunneling acceleration. The hollow 
squares show the non-interrupted sequence, other symbols indicate the sequence with a finite 
interruption duration after every 5 ps of tunneling. The error bars denote the error of the mean. 
A further increase of the interruption duration than as indicated does not result in a further 
change of the decay behavior. The experimental data points have been connected by solid lines 
for clarity. For these data the parameters were: atunnel = 15,000 m/s2, ainterr = 2,000 m/s2 and 
Volh = 91 kHz. 

every step. The interrupted curve of Fig. 4, indicated by hollow squares, clearly 
shows such a reproduction. The result is a dramatic decay that is much faster than 
for the uninterrupted case, namely the Anti-Zen0 effect. 

The ability to restart the quantum evolution translates to the ability to  separate 
the two classes of atoms in momentum space. However, the atoms trapped in 
the lowest band of the optical lattice have some distribution, which in our case 
is the width of the first Brillouin zone, Sp = 2mvrec. This is the reason behind 
our procedure not being instantaneous, for it takes some time for an atom to  be 
accelerated in velocity by this amount, corresponding to  the Bloch period TB = 
2v,,/ainterr. An interruption shorter than this time will not resolve the tunneled 
atoms from those still trapped in the potential and therefore results in an incomplete 
projection of the atom number. To investigate the effect of the interruption duration 
we repeated a sequence to  measure the Anti-Zen0 effect for varying interruption 
durations while holding all other parameters constant. Fig. 5 displays the results 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



230 

of this measurement, interrupting the decay every 5 ps with an acceleration of 
ainterr of 2000m/s2. The hollow squares show the uninterrupted decay sequence as 
a reference. For an interruption duration smaller than the Bloch period of 30 ps 
the procedure is incomplete and has little or no effect. For a duration longer than 
the Bloch period the effect saturates and results in a complete restart of the decay 
behavior after every interruption. 
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DISCUSSION 
Chairman: T. Petrosky 

L. Stodolsky: Of course, this pure exponential decay, for example, in the 
radioactivity, means that the particle escaped to  infinity gets totally away from any 
influence of the initial state they came from. Your initial wiggles, do they have any 
remnants of Rabi oscillations? 

M. Raizen: No, those initial wiggles can be interpreted as a tunnelling time 
through the forbidden barrier as I discussed with Rolf Landauer. This problem is 
identical to Zener break-down. 

L. Stodolsky: But still these particles are not really escaping to infinity like 
in radioactivity. 

M. Raizen: They are escaping in the sense that there is no possibility for 
return. 

L. Stodolsky: You always have both non-exponential and true decay processes. 
M. Raizen: Why is that? 
A. Bohm: Because you always have the background. I agree fully. 
M. Raizen: That is the problem of time resolution and ”setting the clock”. 
L. Stodolsky: No, because you have a true continuum. In all this problems 

you are never getting out of the source. 
M. Raizen: I disagree with that statement. As far as I understand it is really 

just a question of the time scale. 
T. Petrosky: You are using the word “measurement”, but your measurement 

is not in the sense of von Neumann. You are actually disturbing the system therefore 
the system starts to change the behaviour. 

M. Raizen: Yes, that is presumably, what is happening. 
S. Pascazio: I have a question and a comment. My question is technical: 

how large is your wave packet, how many wells do you have? And my comment 
is that I completely disagree with two previous comments. There is a coupling to  
a continuum, the continuum is not flat therefore there is the deviation from the 
exponential decay. 

M. Raizen: I can say that the extent of the wave packet oscillations during 
the Bloch oscillations become larger as the tilt becomes smaller, typically the extent 
is two or three wells, to  be more precise. 

H. Walther: Can you tell us some more about last items, the recent results 
of slowing molecular beams? Is it slowing or is it rather cooling? 

M. Raizen: It is slowing. Cooling is a much harder problem than slowing. 
But the first step is to  make the big jump from room temperature to sub Kelvin. 
The way we are planning to do this is to start from a supersonic beam with very 
high expansion ratios to get extremely monochromatic beams. We are working on 
slowing the beam by reflection off a cold single-crystal surface. These crystals have 
high enough Debye temperature so that the probability of elastic reflection is very 
large at low temperatures. And then if you just translate the crystal you can slow 
the beam. 

L. Vaidman: What I see here is, probably, the best Zen0 effect experiment 
because in the earlier experiments, they changed the oscillator evolution. The Zen0 
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effect was first proposed for decay. It works for everything but if we try to have an 
original name, it is decay. And this is, probably, the first experiment on something 
like decay because tunnelling is decay. I think your worries about measurement are 
not grounded. At the end of your measurement you see the atoms, and this is really 
the irreversible measurement. It is true that until you saw the atoms there is no 
measurement. These atoms at the end, plus the idea giving the time between the 
accelerations, give exactly the right effect. So, I think it is a beautiful example of 
the Zen0 effect, according to the name, as it was proposed originally. 

M. Raizen: In fact, the question is really whether we have to observe those 
atoms. I could also argue that, in principle, once you have the atoms resolved in 
velocity space we could in principle do velocity-selective Raman transitions that 
would distinguish them. 

L. Vaidman: Until you see them nothing happens. 
M. Raizen: I am not sure because they are in principle distinguishable in this 

space. 
L. Stodolsky: Could you show the first transparency? The fact that the mass 

in the last term is the same as the mass in the first term is a kind of equivalence 
principle result. And if by this sensitive quantum measurement we shall be able 
to control things, we could have very simple analogue of what we have seen this 
morning. 

M. Raizen: I think it is an interesting comment. I don’t see yet how to do this 
sensitive measurement, but in principle, you are right. If we could, for example, 
run an atomic clock in the accelerating frame that might be interesting. 

I. Antoniou: I have two questions which will help us to understand what is 
happening. You realize the von Neumann projection by modifying the Hamiltonian. 
Have you estimated to what extent this modification of the Hamiltonian is close to 
the ideal von Neumann projection? This is the first question. The second question 
is: can you give us some detailed estimation of the error at the very short time? 

M. Raizen: Yes. Let me answer the second question, as I don’t have a good 
answer for the first one. The second question is what is the time scale for switching 
and the answer is under three hundred nanoseconds. That settles the limit on how 
short a time we can look at. In practice that meant that we could only interrupt 
with about a microsecond. On the time scale shorter than that we just start to see 
the ramp of acousto-optic modulators which cause this switching. In principle, it 
can be made shorter. I don’t think that it is a fundamental limit. 

I. Antoniou: I think these interesting estimations can be done, so we can see 
how close you are and decide the issue. 

M. Raizen: Right. 
T. Petrosky: If you really can make it very short, really continuous observa- 

tion, as was proposed by Sudarshan and Misra, maybe you can really distinguish 
the von Neumann arguments. 

M. Raizen: My feeling is that in our problem there is no possibility, even in 
principle, of determining whether the atom has tunnelled or not on such a short 
time scale. 
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QUANTUM ZEN0 EFFECT 

B. MISRA' AND I. ANTONIOU'22 
International Solvay Institutes for Physics and Chemistry, ULB-CP 231, Bd. du 

Triomphe, 1050 Brussels, Belgium 
Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, 

Greece (E-mail: iantonio@vub.ac. be) 

1 Introduction 

Quantum Zen0 effect predicts that the decay of an unstable system will be inhibited 
by sufficiently frequent measurements. If the frequency of measurements is further 
increased inhibition of decay will be more pronounced. This conclusion holds also 
for transitions between general non stationary states, for example coherent oscilla- 
tions. The general formulation of this conclusion is given in [l]. An earlier work 
attributed to Turing by Yourgrau, which is based on second order perturbation for- 
mula for transition probability, suggests such a conclusion (21. The relation between 
Zen0 effect and the existence of an initial period of "slow decay" is made explicit 
in [3]. Existence of such a period (the short time deviation from "exponential decay 
law") follows from quite general arguments [4-81. 

The Zen0 effect is concerned with the behaviour of survival or "non decay" 
probability under successive measurements, when the time interval between succes- 
sive measurements becomes sufficiently small. We have based the consideration of 
such probabilities on the validity of state collapse, for obtaining the probabilities 
of outcomes of subsequent measurements (s2). 

A more fundamental approach should perhaps be based on a theory of mea- 
surement process. Problems of measurement theory are, however, well known since 
Von Neumann's initial analysis of the question [9]. The measurement problem has 
not yet received any definitive solution, but attempted solutions tend to  show the 
validity of state collapse. For a thorough and critical examination of issues related 
to  measurement problem and more general issues concerning the interpretation of 
Quantum Mechanics, the reader may see [lo, 111. It seems t o  us that at the present 
stage the validity of state collapse, which is consistent with the properties of mea- 
surement, is the only general principle for considering Quantum effects involving 
successive measurements, like the Zen0 effect. 

This does not, of course, imply that particular experiments showing Zeno-type 
effect should not be subjected to  critical examination to see, if a purely dynamical 
explanation of the observed effect can be given. 

We shall not discuss in detail several reported observations of Zen0 effect except 
to  make some preliminary remarks. One of the first reported observations of Zen0 
effect is that of Itano et a1 (121 realizing an experiment proposed by Cook [13). This 
experiment has been widely discussed and differing opinions have been expressed as 
to  whether it demonstrates Zen0 effect [14-22 to cite only a few]. What is striking 
is that different approaches reproduce the same result as would be expected from 
the validity of state collapse. This, of course, does not show the invalidity of 
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state collapse interpretation of the experiment [12] and supports even less the view 
advocated in the ”ensemble interpretation” of quantum mechanics, which denies the 
validity of state collapse for all predictions pertaining to  the outcome of successive 
measurements. Even before the experiment [la], it has been remarked that in some 
cases appropriate modification of the Hamiltonian may mimic the effect of repeated 
measurements [23]. But the need for other experiments, which would show more 
convincingly the effect of repeated measurements, as emphasized in [14], remained. 
There is also a much older remarkable effect, which seems at first sight as some 
kind of Zen0 effect, namely the narrowing of resonance line in NMR experiments 
in gaseous or liquid samples [24]. It seems unlikely that it is some kind of Zen0 
effect, although no detailed consideration of this experiment from the point of view 
of Zen0 effect has been made. 

The recent experiment by Raizen and co-workers [25] discussed in this con- 
ference [26] shows more convincingly the effect of repeated measurements on the 
decay of an unstable system. The repeated selective measurements are sufficiently 
”non invasive” and both Zen0 effect and anti Zen0 effect are observed depending 
on the interval between successive measurements. Interpretation of both Zen0 and 
anti Zen0 effects is based on the validity of state collapse (54). The word state 
collapse is not used in [25], but the idea of state collapse in this case is very sim- 
ply expressed by saying that repeated measurements repeatedly redefine a new 
initial state, which must start evolution again with the initial non exponential de- 
cay feature. The problem of making ”instantaneous” measurements is ingeniously 
bypassed in this experiment. Therefore, it seems that in this experiment one can 
observe stronger inhibition of decay by making repeated measurements at shorter 
intervals. Moreover, as mentioned in 54, inhibition of decay can be seen even in 
the period when ”exponential decay law” holds by allowing the system to  evolve up 
to  time to  uninterrupted and then performing repeated measurements. These will 
not only show even more convincingly the effect of repeated measurement but will 
also raise conceptual questions about the significance of ”exponential decay law” 
for unstable quantum systems. 

Some final brief remarks on the implications of consideration on Zen0 effect. 
Experimental observation of Einstein-Podolsky-Rosen correlation violating Bell’s 
inequality, has excluded the possibility of ”local” hidden variable theory. But ”non 
local” hidden variable formulation of Quantum Mechanics by Bohm or its variation 
is still of some interest [27, 281. It  is doubtful whether quantum Zen0 effect, e.g. 
for the tunnelling, from a potential, will survive within this formulation. If this 
is investigated, an appropriate experiment of Zen0 effect will help t o  decide the 
tenability of ”non local” hidden variable theories. 

The Zen0 effect exists in principle for actually decaying systems such as the 
excited levels of atoms or unstable particles. Although it cannot probably be ob- 
served for such systems, its existence raises conceptual questions. Can one mean- 
ingfully speak of occurrence of Quantum Jump? Can one meaningfully say that 
such systems survive up to time t and decay during a subsequent period, even 
in a probabilistic sense? Can one assign meaning to  ”time of decay” and relate 
it to  ”life time”? The initial motivation of the work on Zen0 effect was partly to  
study these questions. But all theoretical descriptions of unstable systems, begin- 
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ning with Weiskopf-Wigner theory, deal with survival probability at time t or the 
related probability of transition to the continuum. One cannot strictly speak of 
survival up to time t, although one often uses such expressions when thinking of 
transition of an unstable system. 

Even Dirac reverts to  such expressions, e.g. when he starts with perturbation 
expression for transition probability at time t and then makes the well-known ap- 
proximations to  obtain the so-called golden rule and speaks of transition probability 
per unit time [29]. But Dirac emphasizes that this approximation is not valid for 
times too small or too large. Existence of Zen0 effect even in the period when 
”exponential decay law” holds, shows that one cannot strictly speak of survival 
probability or transition probability up to time t. Theory of unstable particles 
cannot, of course, be based only on general principles of Quantum Mechanics. It 
involves considerations of Quantum Field Theory. Moreover, the fact that ”decay 
products” have ”outgoing character” has to  be incorporated in theories of unstable 
particles. How these will affect the consideration of Zeno effect remains to  be seen. 
Exponential decay law was formulated before quantum theory, based on classical 
probability applied to occurrence of events. There are in general no quantum 
events independent of observation. How to  account for occurrence of events in 
a purely quantum world, is the main problem of interpretation of quantum theory. 
It seems that the notion of unstable particle and ”life time” attributed to  it as an 
intrinsic property, has not yet received a completely satisfactory quantum theoreti- 
cal description. Consideration of Zen0 effect for the neutral K-meson, raises further 
intriguing issues. We will not discuss these questions further here. 

The rest of this communication is a straightforward brief account of Zen0 effect 
with occasional comments. It should be stressed that we do not adhere to  interpre- 
tations of quantum theory which involve partial tracing upon degrees of freedom 
of a larger system. At the same time we do not take a too realistic view of Quan- 
tum states, and state collapse, but rely only on the validity of state collapse for 
predicting probabilistic outcome pertaining to successive measurements. We hope 
to  discuss issues related to  Zen0 effect in greater detail in a future communication. 
There is a fairly large literature on issues related to Zen0 effect. This communica- 
tion is, however, not intended to  be even a partially comprehensive review of the 
subject. 

2 Survival probability under repeated measurements and 
”wave-packet reduction” 

Consider a quantum system. Its states are represented by density operators p of 
a Hilbert space 1-I. If p is the one-dimensional projection IM >< MI (Dirac’s 
notation [29]) on the vector IM > of 1-I then p corresponds to  the pure state 
( M  >. More general density operators represent (weighted) ”mixtures” of pure 
states. Dynamical evolution of the system is described by the unitary group e P i H t ,  
where H is the time-independent Hamiltonian of the system. An initial state p 
evolves in time t to  the state pi = e-iHtpeiHt. Consider now a projection E onto 
a non- stationary subspace 7 - l ~  of 31 : [ H ,  E ]  # 0. Although we are considering 
a general non-stationary subspace we shall use the language of decay and non- 
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decay of unstable systems. The subspace 'HEwill thus be called the subspace 
of undecayed states and its orthogonal subspace 31; will be called the subspace 
of decayed products. A measurement of the observable E has only two possible 
outcomes: "yes" or "no" corresponding to  finding the system to be undecayed or 
decayed. In general measurement of a projection corresponds to  determining if 
certain property of the system, e.g. the system being "localized'' in given region of 
space, holds. If the initial state of the system is p, the probability Q(t) of finding 
the system undecayed (survival probability) at time t is given by 

Q(t) = tr(e-iHfpeiHIE). (1) 
In the situation that E is a one-dimensional projection IM >< MI and p is the 
pure state IM><MI, the survival probability (1) reduces to I<Mle-iHfM>12. The 
formulation of Quantum Zeno effect starts from the consideration of the probabil- 
ity that a sequence of measurements at times 0, i, f . . . *t and t ,  with yield 
the result "yes" (undecayed) for each of these measurements. Such probabilities 
concerning the outcomes of a sequence of successive measurements, have not been 
considered widely in the literature. A general formula concerning the outcomes 
of successive measurement was first stated by Wigner [30]. Wigner's expression 
for the probability that each of the sequence of measurements of (possibly differ- 
ent) projections El ,  E2, . . . &, . . . En at successive instants t l ,  t2, . . . tk, . . . tn 
(respectively) yields the result "yes" when the initial state is p is: 

tr[&(tn). . . Ek(tk). . . &(tl)pEl( t l ) .  . . Ek(tk). . . En(tn)]. ( 2 )  

Here Ek(tk) = eiHfkEke-iHtk. 

at times 0,  i, 
"yes" for each of these measurements reduces to  

In the special case that one repeats the measurement of the same projection E 
. . . t ,  the expression ( 2 )  for the probability of finding the result 

tr[Wn(t)~W,'(t)l Q(n,  t ;  P ) ,  (3) 
where Wn(t )  = [Ee-aHf/"E]". If the undecayed subspace is one-dimensional with 
corresponding projection JM >< Mland p corresponds also to the undecayed state 
IM >, then the probability (3) reduces to: 

Q(n,t; P)  = Q(t/n)" (4) 

where Q(t /n)  = I < Mle-iHf/"M > l 2  , the survival probability of IM > at time 
t /n .  

The probability Q(n ,  t ;  p )  given by (3) or its special case (4) will be called sur- 
vival probability under repeated measurements. Unlike the survival prob- 
ability at a given t ,  the expressions (2), (3)' (4), which refer to  the probability 
of outcomes of a sequence of measurements, do not result from Schrodinger time 
evolution and Born's probability rule alone. Their justification involves the validity 
of " wave-packet reduction" or state collapse upon measurement. 

To see this let us briefly consider the meaning of survival probability under 
repeated measurements. For this we need to  consider only two measurements of 
E at t l n  and 2t/n when the initial state is the "undecayed" state p = EpE. 
The meaning of survival probability under these repeated measurements is then 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



237 

the following: one considers an ensemble of a very large number m l  of identically 
prepared systems corresponding to  the state p, which evolve in time t /n to  form the 
ensemble C1 of ml  systems in the state pt / ,  = e - - iHt /npe+ iHt /n .  Theoretically, one 
then makes independent measurements of E on each system in Cland retain only 
the systems that give the result ”yes” (undecayed). In practice, the experimental 
procedure should be such that it selects effectively from systems in C1, only those 
giving the result undecayed. In principle, this selective experimental procedure 
need not be instantaneous. Let C2 be the ensemble of systems that are retained 
by such a selective measurement device. The systems in C2 are then allowed t o  
evolve under Schrodinger evolution for a further period t/n and then a similar 
selective measurement is made on the resulting ensemble. Let C3b e the ensemble 
resulting from this second selective measurement of E and m3 be the number of 
systems in it. Then the survival probability under repeated measurements of E 
at t /n  and 2t/n is ml/m3 or more precisely limml+a? ml/m3. The probability, in 
the more general situation t o  which formula ( 2 )  refers, has similar meaning. From 
Born’s probability rule, we know that the number m2 of systems in the ensemble 
C2 is mltr(pt/,E) (when m l  is very large). But to  calculate the number m3 of 
systems in C3 on the basis of Schrodinger evolution law and Born’s probability 
rule, we need to know the state, which should be attributed to (the systems in) the 
ensemble C2 that has resulted from a selective measurement of E on the ensemble 
C1. This raises the question of state collapse, namely, if the state of the system 
prior to  measurement is p what state [PIE should be attributed to  the system after 
the measurement of E ,  if the measurement gives the result ”yes”. One may be 
reluctant to  attribute a state p to  individual systems. In that case, p, refers t o  an 
ensemble of identically prepared systems and [PIE to  the ensemble that results from 
the selective measurement of E corresponding to the result ”yes”. Since there is 
no satisfactory Quantum theory of measurement, this question cannot be answered 
on the basis of quantum dynamics and additional hypothesis must be made about 
[PIE which is consistent with the quantum formalism and certain general properties 
of quantum measurement. Before considering the specific types of measurements 
and their implications for [ P I E ,  let us note that the probability lim,,,, ml/m3 is 
given by 

tr(ptIn E)tr[e-aHtln [pt/,] Ee+iHtln E 1 = t r (p t / ,E) t r[[p t / , lEE( t /n) l  ( 5 )  
It may be asked if Heisenberg picture and Schrodinger picture are equivalent for the 
consideration of survival probability under repeated measurements. In the preced- 
ing discussion we have adopted the Schrodinger picture. In the Heisenberg picture 
the successive measurements of E at t /n  and at 2t/n correspond to  (immediately) 
successive measurements of E(t/n) and E(2tln) on the state p. Similar argument 
will give the survival probability under these two measurements: 

tr[pE(t/n)ltr[[plE(t/n)E(2t/n)l (6) 
Equivalence of Schrodinger picture and Heisenberg picture (i.e. the equality of (5) 
and (6) obviously implies strong restriction on the form of the ”collapsed” state 
[PIE that ”results” from a selective measurement of E on p. 

While considering the survival probability under repeated measurements or the 
probability in the more general case referred t o  by ( 2 ) ,  it is natural to  consider only 
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measurements of the first kind. An immediate repetition of such a measurement 
gives the same result without any indeterminacy. Requiring the measurement of E 
to  be of first kind means that the state [p]E will give the result ”yes” with certainty 
under the measurement of E. Thus 

t r [ [ p ] ~ E ]  = 1 or equivalently E[~]EE = [PIE (7) 

When E is a one-dimensional projection IM >< MI, (7) immediately implies that 

When the subspace corresponding to E is not one-dimensional, more general forms 
of state collapse than that given by (8) are possible and are considered in (311. The 
general form of state collapse allows the possibility that even if p is an eigenstate 
corresponding to the eigenvalue 1 (yes) the ”collapsed” state [PIE is different from 
p. If one considers the measurement to be such that it leaves the eigenvectors of E 
unchanged, the form of [PIE is again given by (8). In a sense, such a measurement 
affects the state in a minimal way, and is called ideal measurement. 

Under ideal (selective) measurement, then state collapse proceeds according to 
the scheme: 

This hypothesis about state collapse is due to  Von Neumann [9] and Liiders [32]. It 
is interesting to recall that Dirac has found the notion of state collapse to be a nat- 
ural consequence of the formalism of Quantum theory. Starting from the property 
of measurement (of first kind), he comes to  the conclusion that ” a  measurement al- 
ways causes the system to jump into an eigenstate of the dynamical variable that is 
being measured, the eigenvalue this eigenstate belongs to, being equal to  the result 
of measurement’’ [29]. Obviously, Dirac is thinking of the system being in a pure 
state prior to  measurement and collapse (9) is in accord with Dirac’s conclusion. 
When the observed eigenvalue is degenerate, Dirac’s conclusion is ambiguous about 
the eigenstate to which the system would ”jump”. This ambiguity is removed by 
considering ideal measurements. 

It is easy t o  see that expressions (3) or (4) for survival probability under repeated 
measurements as well as expression (2) for probability pertaining to a more general 
sequence of measurements follow from the state collapse hypothesis (9). It should be 
noted that under state collapse [9], the Schrodinger picture and Heisenberg picture 
are equivalent for consideration of probabilities pertaining to outcomes of successive 
measurements. Under more general form of state collapse this equivalence can fail 
to hold. Moreover, the probabilities will not be uniquely determined only by the 
outcomes of successive measurements and initial state. I t  may be mentioned that 
Wigner, after stating formula (2), passingly suggested that it may be accepted as 
part of interpretative rule of Quantum theory; for one can then avoid talking about 
state collapse! 
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3 

Although in almost all theoretical discussion as well as reported experimental ob- 
servations of Zen0 effect since its general formulation in [l], the relevant non sta- 
tionary or undecayed subspace is one-dimensional, we begin with a brief review of 
the general formulation. 

Zen0 effect concerns the behaviour of survival probability under repeated mea- 
surements given by relation (3) when the interval t /n  between successive measure- 
ments decreases. It is found that for any given time t ,  limn-m Q(n, t ;  p )  = tr(pE),  
so that if the initial state p is undecayed (tr(pE) = l), then limn-,m Q(n, t ;  p )  = 1. 
Thus for any  given t ,  if n is sufficiently large Q(n, t ;p)  will be close to 1, which 
is the prediction that sufficiently frequent measurements will inhibit decay and 
if the frequency of measurement is further increased this inhibition will be more 
pronounced. This general conclusion is based on the following three assumptions, 
which can be either verified or dispensed with in special cases. 

1) The existence of lim Q(n, t ;  p )  as n -+ ca is assumed without specifying what 
this limit is. This can be assured by requiring that the strong limit 

Q u a n t u m  Zen0 effect: general formulation 

lim (Ee- 
n- ca 

exists for t 2 0. Verifying the existence of W ( t )  for general E and H poses non triv- 
ial mathematical problems which we shall not discuss here. But if E = IM >< MI, 
a very mild condition on IM > leads to  Zen0 effect (Section 4). 

2) One also adopts the natural assumption that the Hamiltonian H is bounded 
from below. This assumption seems unavoidable if one wants to establish the 
general formulation of Zen0 effect. But if E is one-dimensional even this assumption 
can be dispensed with (Section 4). 

3) Further, on grounds of physical continuity, one assumes that 
limt,o+ W ( t )  = E.  This assures the desirable continuity property that 
limn+m Q(n, t ;  p)  -+ 1 as t -+ O+ if the initial state p is undecayed. From a 
purely mathematical point of view, however, this is an additional assumption and 
implies certain restrictions on E.  The continuity of W ( t )  as well as its semigroup 
property for t > 0, follow from general results in [33] but its continuity at t = 0 
although expected is not known to follow from any general argument. 

Under these assumptions it is shown that W(t )  is of the form: W ( t )  = Ee-iAtE, 
where A is a non negative self adjoint operator commuting with the projec- 
tion E: E A  = AE = A. Hence, W*(t)W(t)  = E ,  and lim,,,Q(n,t;p) = 
tr(W(t)pW*(t)) = tr(pE), for any given t .  The form of W ( t )  shows also that 
W ( t )  is a unitary group in the subspace corresponding to E. The group property 
of W ( t )  has been discussed in some detail for specific H and E recently in con- 
nection with question as to whether ”Quantum Zen0 dynamics” W ( t )  is reversible 
or irreversible [34]. The argument in [I] relied also on an additional assumption, 
which was a weak formulation of time reversal or CPT invariance. An important 
unpublished remark of Chernoff shows that this assumption is not necessary [35]. 

The above genera.1 formulation for the multidimensional projection E shows 
that sufficiently frequent measurements of E will stabilize states which may be 
unknown to  remain within the subspace corresponding to the projection E.  This 
may have applications for error prevention in Quantum computing devices. 
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4 Quantum Zen0 effect, Anti Zen0 effect and deviation from 
exponential decay law 

The general formulation of Zen0 effect in [I] did not directly appeal to short time 
deviation from exponential decay law. However short time deviation follows from 
the Corollary in [l]. The connection between short time deviation from exponen- 
tial decay and the Zen0 effect is explicitly shown in a subsequent work [3] where 
Zen0 effect is discussed in the case when there is exactly one (undecayed) unsta- 
ble state ( M  >, i.e. the "undecayed" subspace is one-dimensional. The unsta- 
ble state IM >, being non stationary, must remain orthogonal under dynamical 
evolution to all bound states of the Hamiltonian H associated with the discrete 
spectrum. Hence, without loss of generality, we may consider H to  have only 
absolutely continuous spectrum. The survival probability Q(t) of IM > at time 
t is the absolute square of the survival amplitude < M(e-"'M >= a( t )  and 

tion of IM > [6]. Mathematically, w(X) = < MlExlM >, where Ex (A real) 
denotes the spectral projections of the Hamiltonian H .  Physically, the quantity 
SEE+AE w(X)dX is the probability that the energy of the system in the state IM > 
lies in the interval [ E ,  E + AE]. 

In theoretical descriptions of unstable systems, it is the survival probability 
Q ( t )  at time t is shown to be exponentially decreasing, e- i r t ,  with r > 0. But this 
exponential decay law is not exact because "approximations" involved in obtaining 
this law are not valid for very short and very large times. A model independent 
argument showing short time deviation from exponential decay law, results if one 
puts a mild condition on the state IM >: 

< Mle-iff'IM >= J_" 03 e-2" w(X)dX where w(X) is the energy distribution func- 

If the Hamiltonian H is bounded from below, this condition simply says that the 
expectation value of the energy for the state IM > is finite. If H is not semibounded, 
condition (11) puts a slightly stronger restriction on IM >. The argument given in 
[3,4] shows that if 1M > satisfies ( l l ) ,  then the survival probability Q ( t )  = la(t)I2 
is a differentiable function o f t ,  its derivative Q(t) is a continuous function o f t  and 

Q(t) l t=o = 0 (12) 

The continuity of Q(t) and property (12) obviously imply that the decay for short 
time must be slower than that expected from exponential decay law. It may be 
mentioned that in [3] it was unduly emphasized that for obtaining short time devi- 
ation from exponential decay law, H should be semibounded. It is condition ( l l ) ,  
which is needed for the validity of the argument and it is independent of whether H 
is semibounded or not. Short time deviation from exponential decay law has been 
studied in detail in the problem of decay from a potential barrier by Winter [7].  

The survival probability Q(n, t )  z Q(n ,  t ,  [ M  >< MI)  under repeated measure- 
ment at intervals t /n is now given by (4): Q(n , t )  = [Q(t/n)ln.  The Zen0 effect, 
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i.e. the conclusion that limn-m Q(n, t )  = 1 for any given t ,  follows from the con- 
tinuity of Q(t )  and (12). The popular argument for Zen0 effect assumes survival 
probability Q(t) at time t to be given by 

Q(t) M 1- < AH >2 tZ  (13) 

for small t imes t. However, the validity of (12) requires restrictive conditions 
on IM > when the Hamiltonian H is not bounded. This approximation for Q(t) 
can fail for states IM > of physical interest. The Zen0 effect depends only on the 
existence of a short initial interval during which decay is slow as implied by the 
continuity of Q(t) and relation (12). 

Recently, it has been suggested that for an unstable state IM >, after the initial 
period of slow decay, called the Zen0 period, there can be a period ("anti-Zen0 
period") when Q(t )  will show a faster decay than eventual exponential decay to 
which Q(t) settles for longer time [36-381. This has indeed been verified by the 
numerical integration of relevant Schrodinger equation in the recently reported 
observation of Zen0 effect [25]. This possibility has suggested that if repeated 
measurement is performed at intervals in this period of faster decay, then overall 
decay will be faster than uninterrupted exponential decay. This effect has been 
called anti-Zen0 effect or inverse Zen0 effect [36-381 and it has been observed in the 
recently reported experiment [25]. 

In fact, if 7 is a time in this period of faster decay, then 
- r ( T ) T  Q(r) = e 

with r(7) > r, where r is the uninterrupted "decay rate". The survival probability 
under repeated measurements at 7 ,  27 . . . n7 = t will be given as before by 

[Q(T)]" = e-r(T)t. 

The "effective decay rate" r(7) shows therefore enhancement of decay. But a 
somewhat different interpretation of anti-Zen0 effect is given in [37], which seems 
to  be questionable. In [37], [Q(7)ln is taken to be the survival probability under 
n repeated measurement at intervals with duration 7 .  Then no matter how large 
n may be, the "effective decay rate" is the same r(7) for given 7 .  Of course, 
r(7) is different for different choices of rbu t r(7) is completely determined by the 
Hamiltonian H and the state IM > because 

Q(.) = I < Mle-'HrM > 12 e-r(T)7 

There is no "measurement induced level width" as this interpretation of Zen0 effect 
and anti-Zen0 effect seems to  imply. Repeated measurements do not "create" a new 
unstable state with larger or smaller life time depending on the interval 7 between 
measurements. The state of the system after repeated (selective) measurements 
is still the same state IM > with the same energy distribution function w(X).  
Invoking time-energy uncertainty relation for the interpretation of Zen0 and anti- 
Zen0 effect seems also to be questionable. Although the time-energy uncertainty 
relation has been discussed since the early days of Quantum mechanics, its precise 
interpretations and theoretical basis are still a subject of controversy. It will be 
outside the scope of the present communication to  go into this discussion but it 
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seems to  us that there is no valid interpretation of time-energy uncertainty relation 
which forbids sufficiently frequent measurements considered here even in the case of 
"genuine" decay such as nuclear @-decay. If Zen0 effect cannot be observed for such 
systems, it is only because the "Zeno Period" is too small for making measurements 
at intervals in this period. 

It may be mentioned that Zen0 effect exists even in the period when "exponential 
decay law" holds. In fact, the unstable (undecayed) state ( M  > may be allowed 
to  evolve uninterrupted for a period T when "exponential decay law" holds and 
measurements are done at T ,  T + At, . . . T + nAt = T + t with At = t/n. The 
survival probability under these repeated measurements will be given as before by: 

Q(T)[Q(tln)ln = e-r'T'[Q(t/n)ln (14) 

which approaches the limiting value e-r(T) as n + DC), for any given t .  Therefore if 
n is large, it will be significantly larger than e-r(T+t). Since "exponential decay 
law" holds for times smaller than the "lifetime", the fraction Q(T) of the initial 
number of systems in the undecayed state IM > which will be found to survive by 
the measurement at T ,  will be appreciable if T is not too large than the "lifetime" 
l/r. Such an observation of Zen0 effect in the period of "exponential decay" seems 
possible in the recently reported experiment [25]. For similar reasons it is also 
possible to observe anti-Zen0 effect in the period of "exponential decay" in this 
experiment. 

5 Estimation of Zen0 period for unstable state 

Estimation of Zeno period has to depend, of necessity, on model theoretic de- 
scriptions of unstable states. We shall briefly present here the results of two such 
attempts. The first one is a "resonance model" considered in [3]. 

One starts with the representation of survival amplitude of the state IM > given 
by: 

with p(z) =< MIR(z)IM >, R(z )  = ( H  - z)-' the resolvent of H and C the 
contour in the complex plane shown in the figure 1. 

The function p(z )  is analytic and free of Zeros in the complex plane except for 
the cut along the spectrum of H, which is taken t o  be continuous and extending 
from 0 to  +m. In terms of the energy distribution function w(X) of IM >, p(z)  is 
given by: 

Introducing the function y ( z ) r  & which is also analytic and free of Zeros, we 
can write: 
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Figure 1. 

The representation (16) of survival amplitude a ( t )  holds for quite general states 
IM >. In order that IM > represents an unstable state with a "characteristic 
lifetime", y(z) should satisfy certain "resonance condition", viz. the condition 
that analytic continuation of y(z) to the second sheet has a Zero at EO - ir/2 
with EO >> r > 0. Under this condition the survival amplitude a ( t )  will receive 
a contribution e--iEote-r/2 from the pole of l/y(z) and a contribution from the 
"background integral" of the deformed contour, which leads to  the deviation from 
exponential decay. Estimation of Zen0 period thus amounts to  an estimation of 
the time T, so that for t < T, the contribution from the "background integral" 
is significant compared to exponential contribution from the pole of l/y(z). To 
achieve the estimation, one makes specific choice of y(z). In making this choice, 
one is guided by certain (suitably subtracted) dispersion relation, which y(z) should 
satisfy and also by the form of y(z) occurring in the theoretical description of 
unstable states in the Lee model [39]. Two such choices of y(z) are considered 
in [3]. 

For both choices, it was found that for t << T, M 25/Eo, the "background 
contribution" to  survival amplitude is significant. For one of these choices, it was 
found that for t << T,: 

(18) Q(t) c( -t1l2 with Q(t)  = 0 for t = 0. 

This choice corresponds to the form of y(z) occurring in Lee Model. For this choice, 
the energy expectation < MIHIM > of the unstable state is finite. This shows that 
1 - Q(t )  is not always proportional to  t2 ,  for small times t. But T, is very small 
and in fact of the order of lop2' sec, when estimated for the decay of charged pion 
T --f pv with Eo M mrr - m,. 

The other choice corresponds to a state IM > whose energy expectation value 
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is not finite. In this case, for t << T,, 

&(t )  0: -z 1 + 00, as t -+ 00. (19) 

There is no Zeno period but an initial anti-Zeno period! But because the energy 
expectation value of the state is infinite, ( M  > represents an unphysical situation. 

For very long time, the background contribution again dominates over the expo- 
nential contribution and the expected long time deviation from exponential decay 
law holds. 

The other estimation of Zen0 time and anti-Zen0 time [40] starts with the second 
quantized version of Friedrichs model. The Hamiltonian H = Ho + XV is given by: 

HO = wla tu  + dwwbLb,, and V = dwf (w) (abL  + atb,) (20) J J 
Here, at and a are creation and annihilation operators of the harmonic oscillator. 
The energy eigenstates are the discrete levels nw1, n, integer corresponding to the 
excited levels of the atom. bL and b, are the corresponding creation and annihila- 
tion operators for photons of frequency w. The unperturbed Hamiltonian Ho has 
continuous spectrum with discrete levels nw1 embedded in the continuum (w1 > 0). 
The interaction V makes the discrete levels unstable and causes transitions between 
the unstable states of the atom and the continuum of photon states. The survival 
probability Q ( t )  at time t of the first discrete state atlo >r 11 > is given by 

Q(t )  = I < Ola(t)at10 > 1 2 ,  where a( t )  = eiHtae-iHt.  (21) 

f2(w) = A@(w/A) (22) 

From dimensional argument, one writes the form factor f(w) in the form: 

where @(x) is a dimensionless function and A a parameter with the dimension of 
energy. The model can be exactly solved to give 

with 

w1 y(z) = - - 2 - X2 d X W ,  y-(y) = y(y - i0) X im 2--2 

Three choices of @(x) with corresponding choice of parameters A, w 1  and X2 are 
made to correspond to models of photo detachment [41], quantum dot [42] and 
hydrogen atom [43]. They are (respectively): 
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For these choices, the behaviour of Q ( t )  as a function of t is analysed and T, is 
estimated to  be respectively of the order: 

1 2& 

With appropriate values of A, w1 and A', T, turns out to be 10-los, 10-17s, and 
10-19s respectively. It is also shown that for the choice @I(.), the short time 
behaviour of Q(t )  is given by Q(t) N 1 - Kt3/' + K't', where K and K' are 
constants depending on the parameters A and A. This shows again that Q ( t )  is 
not necessarily analytic near t = 0 for physically interesting states. For the models 
corresponding to + ~ ( z )  and @3(z)  the existence of an anti-Zen0 period is also found. 
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DISCUSSION 
Chairman: T. Petrosky 

T. Petrosky: I will use my privilege of the chairman to ask the first question. 
10 years ago, when Itano did the first experiment in order to  check the Zen0 effect, 
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he tried to drive all these formulae from von Neumann’s postulate. Together with 
Tasaki and Prof. Prigogine, we have shown that during the measurement one 
disturbs the system by sending a signal from the ”outside world”, which corresponds 
to  use of the time dependent Hamiltonian. In this way, you can drive the same result 
without using the von Neumann postulate. 

B. Misra: Yes. I know this. Itano’s experiment used an externally driven 
system and ”measurement pulses” were in a sense too ”invasive”. So it was not as 
clear indication of the Zen0 effect as the experiment of Prof. Raizen is. Secondly, 
measurements usually disturb the system. There is no satisfactory theory of mea- 
surement, but several proposals for such a theory tend to  show the validity of ”state 
collapse” when subsequent measurements are involved. If in some cases one can do 
without it using the time dependent Hamiltonian, well, it is very interesting, but 
it is not the general situation. 

L. Reichl: I believe that in Prof. Raizen’s experiment the continuous spectrum 
has no lower bound because it is equivalent to  the presence of a constant field. So 
the explanation in terms of the branch point would not hold. This is one comment. 
A question now about the anti Zen0 effect. There is an oscillation, which comes 
from, I would guess, the interference of several complex poles. Is the anti Zen0 effect 
due to  the fact that the oscillation starts negative that brings you below what you 
would expect if you had a sequel pole? 

B. Misra: The anti Zen0 effect was found in several models of decaying states. 
It does not follow as the Zen0 effect from very general principles. Regarding the 
lower bound for the spectrum of the Hamiltonian, it is sufficient and perhaps un- 
avoidable for proving Zen0 effect in the general case, where the subspace of ”unde- 
cayed” states is multidimensional. In particular cases, and specially if the ”unde- 
cayed subspace is one-dimensional, the Zen0 effect occurs even if the Hamiltonian 
is not bounded from below. So there is no difficulty in explaining Prof. Raizen’s 
experiment as Zen0 effect. 

E. C .  G .  Sudarshan: I want to  emphasize the points that Prof. Misra has 
made. First of all, it is with regard to  a certain system, in which to  talk about 
the projection postulate is really very bad. One must distinguish one-dimensional 
projection from multidimensional. I am anticipating Prof. Pascazio’s talk. When 
you have more than one dimension some time dependence can happen but not going 
outside of the system. The second comment that I wanted to  make is that Prof. 
Misra emphasized that it is conventional quantum mechanics. When I used the 
analytic continuation and the complex vector states it was not to  go outside the 
quantum mechanics it was to  repeat the calculations but using a different method. 
There are people who followed me but who have invented a new kind of systems in 
which one departs from the quantum mechanical systems. In particular, the pole 
by itself, is not a state which is available in the physical Hilbert space. The physical 
state is the pole plus the background integral. The background integral gives the 
corrections, which may be very important for short times. This enables the Zen0 
effect to  come. The Zen0 effect may be thought of as a reinsurance of whether you 
calculate with complex variables or with the real variables, you should do the same 
physics, which is reflected in the fact that in the region of the pole you must have 
the background integral. 
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B. Misra: I have not much to add to Prof. Sudarshan’s comments. Only 
some more remarks about the feeling of some people that state collapse (projec- 
tion postulate) is very bad, which he has mentioned. Even in the case of Itano’s 
experiment, several different theories of the experiment, of which that of Profs. 
Petrosky, Tasaki and Prigogine was one of the first, obtained the same result as 
that of Itano based on the validity of state collapse. Thus, these different theories 
do not show the invalidity of Itano’s account of his experiment but show only that 
in this case ”state collapse” may not be needed, and these do not, of course, prove 
the invalidity of state collapse in general. For various reasons it seems to me that 
Prof. Raizen’s experiment shows the validity of state collapse. The word ”collapse” 
evokes a too realistic view and a more neutral language as used in Prof. Raizen’s 
paper should be used. Too realistic a view of state collapse and in fact of quantum 
states leads one, as some authors have advocated, to change the linear nature of 
dynamics or to ”many world Interpretation”. of quantum mechanics. I rely only 
on predictive validity of state collapse consistent with certain general properties of 
measurement and general formalism of quantum theory. As mentioned before this 
predictive validity is shown in several attempted theories of measurement includ- 
ing the one developed in the more recent ”consistent history theory” of quantum 
mechanics. Some authors desire and attempt to develop a theory of ”dynamical 
Zeno effect”. It seems to me that such a theory is not possible at  the present stage 
and any such theory should be able to explain Prof. Raizen’s experiment and other 
such conceivable Zeno-type experiments. 

L. Stodolsky: Let me show you a very simple argument, which Michael Berry 
explained me when we were discussing these things. Why the Zen0 effect will occur 
in a two level system and more general in any finite level system but not for the 
true decay to the continuum. Consider some typical two level system with some 
tunnelling between the two levels. The Zen0 effect occurs when you have some 
random noise, which makes these levels move back and forth. So you don’t have 
exactly the degeneracy which you need for good tunnelling. Obviously, this random 
noise will slow down the tunnelling because you remove the perfect degeneracy 
between the two levels. On the other hand, if you are decaying to the true continuum 
you may move this level but, of course, you are always degenerate with somebody. 
This is the physical explanation of what you get from mathematics, why you don’t 
have the flat perturbative beginning when you decay to the continuum. That is 
why it works for the two level system and not for the continuum. 

B. Misra: I do not feel that noise has anything to do with Zeno effect although 
I know that some authors tend to interpret measurement as introducing noise or 
random phasing. The effect of ”noise” is not always similar. Let me mention a 
much older ”effect, the narrowing of resonance line in NMR experiment in gaseous 
or liquid sample. Existing theory considers it as the effect of fluctuating field 
considered as random classical signals. In this case ”noise” inhibits transition to 
the continuum. Also Prof. Raizen’s experiment is not the inhibition of ”tunneling” 
between two or finite levels. I also do not understand the relevance of removing 
”degeneracy” for Zeno effect. Zen0 effect can occur only if the state or subspace 
of states is non stationary and that is the case for unstable systems including 
excited levels of atoms or unstable particles which decay into the ”continuum” of 
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decay products. The existence of initial flat beginning (short time deviation) does 
not follow only from perturbative argument but follows from quite general model 
independent argument. Of course, the period of short time deviation is very small 
for unstable particles or excited levels of atom and therefore Zen0 effect can not 
probably be observed for such systems. But this limitation has nothing to do with 
Berry's and your argument. 

S. Pascazio: You should put the form factor to  the decaying state. 
B. Misra: It is a simple quantum mechanical problem, everybody can do it. 
L. Reichl: We have looked at the system with the constant field. This is not 

your mechanism but there is something like the Zen0 effect. 
B. Misra: In the general proof, the positivity of the Hamiltonian is sufficient 

condition. But as I said before, the Zen0 effect can be obtained in special cases, 
specially for a single unstable state, even when Hamiltonian is not bounded from 
below. 

C. Nicolaides: The Zen0 effect of the short time breakdown of the exponential 
law has nothing to  do with the lower bound, because the lower bound is just a cut 
off of the Fourier integral, which gives you really necessarily the long time deviation. 
The short time deviation is simply the result of the expansion of e- jHt for short 
times. You can have it no matter how the Hamiltonian is. In all these works in the 
past thirty years, people have been using form factors that are models. I wanted 
just to  point out that in a couple of papers, which recently appeared in Physical 
Review, we have solved for multiparticle real atoms the time evolution and in fact 
it does come out the t2 evolution for short times rather than any other stages of the 
evolution. If you have an excitation with the femtosecond, you have a wave packet 
and the question is how do you really know where the unstable state is formed so as 
to be able to  clock the decay and really pinpoint where the deviation might occur. 
Another question is related to  people who propagate the Zen0 effect blindly have 
in mind a real nucleus that decays not in femtosecond but each hour, so you can 
clock it. Then by clocking it, no matter how fast or slow you can do it, can you 
stop the nucleus from decaying? What does the Zen0 effect in this regime imply? 
Perhaps, this experiment with nucleus is easier t o  prepare because the femtosecond 
decay is too fast. 

B. Misra: I agree with you that short time deviation does not depend on 
the semiboundedness of Hamiltonian. But the general reason for this is not the 
expansion of e P i H t  which may fail for unstable states of physical interest. The 
deviation is also not always given by "t21a w". It may behave as t3I2for example. 
We (Chiu, Sudarshan and I) have estimated the Zen0 time for proton decay which 
was predicted in the GUT. We found the Zen0 time to  be of the order of s 
although proton lifetime was about 1031 years. The fact that lifetime is longer does 
not imply that the Zen0 time will also be longer. 

T. Petrosky: I have the same comment. When you consider the problem in 
the language of generalized master equation, even in classical mechanics, you can 
see the same effect: the evolution for short times is flat and then the exponential 
decay starts. Therefore, the boundedness of the Hamiltonian from below is not 
necessary for the Zen0 effect. 
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B. Misra: I have said before about this. It is true that you can have deviation 
from exponential relaxation even in classical mechanics. But in classical mechanics 
you cannot take advantage of this to inhibit relaxation by frequent measurements. 
In that sense there is no Zen0 effect in classical mechanics. 

L. Stodolsky: We should not forget the question. Where is the time equal to  
zero? 

B. Misra: It is when you prepare your initial unstable state. Moreover, it is 
not necessary to know exactly the time when the unstable state is prepared. In 
experiments like that of Prof. Raizen you can see inhibition of (further) decay by 
starting frequent measurements at any time t ,  provided t is not too large compared 
to "lifetime". 

L. Stodolsky: When you prepare a wave packet you have to  define where really 
the t = 0 is. 

L. Accardi: Something I don't understand. You speak about Zen0 time. Then 
you speak about the connection to  the standard von Neumann quantum mechanics. 
But in your arguments of the standard quantum mechanics there is privilege of time. 
You have to take short intervals but your argument applies to  any interval of time. 
You have to  take short intervals in order to  have the t2 but the whole interval which 
you divide can be totally arbitrary. There is no scale of time. There is not any 
privilege of time. Why do you speak about short time effects? 

B. Misra: Zen0 time is the short time where the deviation from exponential 
decay holds. The whole interval [O,T] can be arbitrary but n (the number of 
measurements) should be large in order that T I N  is smaller than the Zen0 time. 
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QUANTUM ZEN0 SUBSPACES AND DYNAMICAL 
SUPERSELECTION RULES 

PAOLO FACCHI AND SAVER10 PASCAZIO 
Dipartimento di Fisica, Universitd di Bari 

and Istituto Nazionale di Fisicn Nucleare, Sezione di Bari 
1-701.26 Bari, Italy 

The quantum Zeno evolution of a quantum system takes place in a proper sub- 
space of the total Hilbert space. The physical and mathematical features of the 
“Zeno subspaces” depend on the measuring apparatus: when this is included in 
the quantum description, the Zeno effect becomes a mere consequence of the dy- 
namics and, remarkably, can be cast in terms of an adiabatic theorem, with a 
dynamical superselection rule. We look at several examples and focus on quantum 
computation and decoherence-free subspaces. 

1 Int roduct ion  

The quantum Zen0 effect has a curious history. It was first understood by von 
Neumann, in 1932 ’: while analyzing the thermodynamic features of quantum 
ensembles, at page 195 of his book on the Mathematical Foundations of Quantum 
Mechanics (page 366 of the English translation), von Neumann proved that any 
given state 4 of a quantum mechanical system can be “steered” into any other state 
$J of the same Hilbert space, by performing a series of very frequent measurements. 
If 4 and coincide (modulo a phase factor), the evolution is “frozen” and, in 
modern language, a quantum Zen0 effect takes place. 

This remarkable observation did not trigger much interest, neither in the mathe- 
matical, nor in the physical literature. It took 35 years before Beskow and Nilsson 
applied the same ideas to  a rather concrete physical problem (a particle in a bubble 
chamber) and wondered whether it is possible to  influence the decay of an unsta- 
ble system by performing frequent “observations” on it (a bubble chamber can be 
thought of as an apparatus that “continuously” checks whether the particle has 
decayed). This interesting idea was subsequently physically analyzed by several 
authors 3,4,5,6. The classical allusion to  the sophist philosopher Zen0 of Elea is 
due to Misra and Sudarshan 4,  who were also the first to  provide a consistent and 
rigorous mathematical framework. During those years it was also realized that the 
formulation of the “Zeno effect” (or “paradox” as people tended to  regard it) hinged 
upon difficult mathematical issues 

The interest in the quantum Zen0 effect (QZE) was revived in 1988, when 
Cook lo proposed to test it on oscillating (mainly, two-level) systems, rather than 
on bona f ide unstable ones. This was an interesting and concrete idea, that led 
to experimental test a few years later ll. The discussion that followed 12J3 pro- 
vided alternative insight and new ideas 14, eventually leading to  new experimental 
tests. The QZE was successfully checked in experiments involving photon polar- 
ization 15, chiral molecules l6 and ions l7 and new experiments are in preparation 
with neutron spin lS. One should emphasize that the first experiments were not 
free from interpretational criticisms. Some of these criticisms could be successfully 

most of which are yet unsolved. 
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countered (e.g., the serious problem related to  the so-called “repopulation” of the 
initial state 19,20 was avoided in 17),  but some authors insisted in arguing that the 
QZE had not been successfully demonstrated on bona fide unstable systems, as in 
the seminal proposals. 

Fortunately (or unfortunately, depending on the perspective) the recent exper- 
iments by Raizen and collaborators are conclusive, in our opinion: the presence of 
a short-time quadratic region for an unstable quantum mechanical system (particle 
tunnelling out of a confining potential) was experimentally confirmed in 1997 21 

and then, a few years later, the existence of the Zen0 effect (hindered evolution 
by frequent measurements) was demonstrated 22. This last experiment is of great 
conceptual interest, for it also proved the occurrence of the so-called inverse (or 
anti) Zen0 effect (IZE) 23,24,25), first suggested in 1983 (!), according to  which the 
evolution can be accelerated if the measurements are frequent, but not too frequent. 

The QZE is a direct consequence of general features of the Schrodinger equation 
that yield quadratic behavior of the survival probability at short times 26,20. Ac- 
cording to  the standard formulation, the hindrance of the evolution is due to  very 
frequent measurements, aimed at ascertaining whether the quantum system is still 
in its initial state. We call this a “pulsed measurement” formulation 20, according 
to von Neumann’s projection postulate ’. However, from a physical point of view, 
a “measurement” is nothing but an interaction with an external system (another 
quantum object, or a field, or simply a different degree of freedom of the very sys- 
tem investigated), playing the role of apparatus. If the apparatus is included in 
the quantum description, the QZE can be reformulated in terms of a “continuous” 
measurement 20,27,25, without making use of projection operators and non-unitary 
dynamics, obtaining the same physical effects. It is important to stress that the 
idea of a “continuous” formulation of the QZE is not new 5 , 6 ,  but a quantitative 
comparison with the “pulsed” situation is rather recent 28. 

Nowadays, it  seems therefore more appropriate to  frame the Zen0 effects in 
a dynamical scenario l3 by making use of a continuous-measurement formula- 
tion 2 0 9 2 7 9 2 8 9 2 9 , 3 0 .  Also, it is important to focus on additional issues, in view of 
possible applications. For instance, it is interesting to notice that a quantum Zen0 
evolution does not necessarily freeze the dynamics. On the contrary, for frequent 
projections onto a multidimensional subspace, the system can evolve away from its 
initial state, although it remains in the subspace defined by the “measurement” 31. 

By blending together these three ingredients (dynamical framework, continuous 
measurement and Zen0 dynamics within a subspace) the quantum Zen0 evolution 
can be cast in terms of an adiabatic theorem 32: under the action of a continuous 
measurement process (and in a strong coupling limit to be defined in the follow- 
ing) the system is forced to evolve in a set of orthogonal subspaces of the total 
Hilbert space and an effective superselection rule arises. The dynamically disjoint 
quantum Zen0 subspaces are the eigenspaces (belonging to different eigenvalues) of 
the Hamiltonian that describes the interaction between the system and the appa- 
ratus: in words, they are those subspaces that the measurement device is able to  
distinguish. 

This paves the way to possible interesting applications of the QZE: indeed, if 
the coupling between the ‘‘observed system and the “measuring” apparatus can 
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be tailored in order to  slow (or accelerate) the evolution, a door is open to  control 
unwanted effects, such as decoherence and dissipation. It is therefore important to  
understand in great detail when an external quantum system can be considered a 
good "apparatus," able to  yield QZE and IZE, and why. 

We have organized our discussion as follows. We first review in Sec. 2 some 
notions related to  the (familiar) "pulsed" formulation of the Zen0 effect and sum- 
marize the celebrated Misra and Sudarshan theorem in Sec. 3. This theorem is then 
extended in Sec. 4, in order to  accommodate multiple projectors, and the notion 
of continuous measurement is introduced in Sec. 5 ,  by looking at several exam- 
ples. We propose in Sec. 6 a broader definition of QZE (and IZE) 2o and prove 
in Sec. 7 an adiabatic theorem, defining the Zen0 subspaces 32,33. Finally, in Secs. 
8-12, we elaborate on some interesting examples, focusing in particular on quantum 
computation and applications. We conclude in Sec. 13 with a few comments. 

2 Notation and preliminary notions: 
pulsed measurements 

Let H be the total Hamiltonian of a quantum system and la) its initial state at 
t = 0. The survival probability in state la) is 

p ( t )  = Id(t)I' = I(ale-iHtla)12 (1) 

p ( t )  N 1 - t 2 / T . ,  72' (U.(H'(U) - (Ulff(U)2, (2) 

and a short-time expansion yields a quadratic behavior 

where TZ is the Zen0 time 34. Observe that if the Hamiltonian is divided into a free 
and an (off-diagonal) interaction parts 

H = Ho +Hint, with Ho(a) = w,(a), (a(Hintla) = 0, (3) 

7;' = ( U I H k t l U )  (4) 

the Zen0 time reads 

and depends only on the interaction Hamiltonian. 
Perform N (instantaneous) measurements at time intervals T = t / N ,  in order 

to  check whether the system is still in state la). The survival probability after the 
measurements reads 

p ( N ) ( t )  = p ( T ) N  = p ( t / ~ ) ~  - exp (-t'/TgN) + 1. 

If N = co the evolution is completely hindered. For very large (but finite) N the 
evolution is slowed down: indeed, the survival probability after N pulsed measure- 
ments (t = N T )  is interpolated by an exponential law 24 

( 5 )  
N-CC 

d N ) ( t )  = ~ ( 7 ) ~  = exp(Nlogp(7)) = exp(-y,tf(~)t), (6) 

with an eflectiue decay rate 

(7) 
1 2 2 

T ~ R ( T )  = -7 logp(7) = --log Id(.r)I = -- Re [ l o g d ( ~ ) ]  2 0 . 
7 7 
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I .  I 

0 7- 0 . 4  0.8 t 

Figure 1. Evolution with frequent “pulsed” measurements: quantum Zeno effect. The dashed 
(full) line is the survival probability without (with) measurements. The gray line is the interpo- 
lating exponential (6). 

For 7 -+ 0 (i.e. N + m) one gets p ( ~ )  - exp(-T2/7g), whence 

red.) - ./.,”. (. -+ 0) (8) 

Increasingly frequent measurements tend to hinder the evolution. The physical 
meaning of the mathematical expression “7 -+ 0” is a subtle issue 34,24,20,35, in- 
volving quantum field theoretical considerations 36,30,25 that will not be considered 
here. The Zen0 evolution for “pulsed” measurements is pictorially represented in 
Figure 1. The notion of “continuous” measurement will be discussed later (Sec. 5). 

3 Misra and Sudarshan’s theorem 

We briefly sketch Misra and Sudarshan’s theorem and introduce more notation. 
Let Q be a quantum system, whose states belong to the Hilbert space 1-1 and whose 
evolution is described by the unitary operator U(t) = exp(-iHt), where H is a 
time-independent lower-bounded Hamiltonian. Let P be a projection operator and 
RanP = ‘HHpit s range. We assume that the initial density matrix PO of system Q 
belongs to X p :  

Po = PPOP, %[POP] = 1. (9) 
Under the action of the Hamiltonian H (i.e., if no measurements are performed in 
order to get information about the quantum state), the state at time t reads 

= w > P o m  (10) 
and the survival probability, namely the probability that the system is still in ‘Hp 
at time t, is 

p ( t )  = Tr [u(t)pout(t>P] . (11) 

No distinction is made between one- and multi-dimensional projections. 
The above evolution is “undisturbed,” in the sense that the quantum systems 

evolves only under the action of its Hamiltonian for a time t, without undergoing 
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any measurement process. Assume, on the other hand, that we do perform a 
selective measurement at time T ,  in order to  check whether Q has survived inside 
l i p .  By this, we mean that we select the survived component and stop the other 
ones. (Think for instance of spectrally decomposing a spin in a Stern-Gerlach setup 
and absorbing away the unwanted components.) 

The state of Q changes (up to a normalization constant) into 

Po + P ( 7 )  = PU(T)poUt(T)P (12) 

and the survival probability in l i p  is 

p ( T )  = Tr [U(7)PoUt(7)P] = Tr [ V ( T ) p o V t ( T ) ]  , v(T) Z PU(7)P.  (13) 

The QZE is the following. We prepare Q in the initial state po at time 0 and 
perform a series of (selective) P-observations at time intervals T = t / N .  The state 
of Q at time t reads (up to a normalization constant) 

p ( N ) ( t )  = VN(t)pOVJ(t), V , ( t )  [PU(t /N)PIN (14) 

and the survival probability in l i p  is given by 

p ( N ) ( t )  = Tr [vN(t)POv$(t)] . (15) 

In order to  consider the N + 00 limit, one needs some mathematical requirements: 
assume that the limit 

V ( t )  = lim vN(t) 
N-CC 

exists (in the strong sense) for t > 0. The final state of Q is then 

P ( t )  = d+CC im p")(t)  = V(t)poVt(t)  

and the probability to find the system in 'Hp is 

p( t )  = lim p ( N ) ( t )  = ~r [ ~ ( t ) p o ~ + ( t ) ]  . 
N-+m 

By assuming the strong continuity of V ( t )  at t = 0 

lim V ( t )  = P, 
t - O +  

Misra and Sudarshan proved that under general conditions the operators 

V ( t )  exist for all real t and form a semigroup. 

Moreover, by time-reversal invariance 

u t ( t )  = U ( - t ) ,  

P ( t )  = Tr [poVt(t)V(t)] = Tr [POP] = 1. 

one gets Vt ( t )V( t )  = P. This implies, by (9),  that 

If the particle is very frequently observed, in order to check whether it has sur- 
vived inside 'Hp, it will never make a transition to Fib (QZE). In general, if N is 
sufficiently large in (14)-(15), all transitions outside 'Hp are inhibited, 
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We emphasize that close scrutiny of the features of the survival probability 
has clarified that if N is not too large the system can display an inverse Zen0 
effect 2 3 3 2 4 9 2 5 ,  by which decay is accelerated. Both effects have recently been seen 
in the same experimental setup 22. We will not elaborate on this here. 

Notice also that the dynamics (14)-(15) is not reversible. On the other hand, 
the dynamics in the N + M limit is often time reversible 31 (although, in general, 
the operators V ( t )  in (20) form a semigroup). 

The theorem just summarized does not state that the system remains in its 
initial state, after the series of very frequent measurements. Rather, the system 
evolves in the subspace Xp, instead of evolving “naturally” in the total Hilbert 
space H. The features of this evolution will be the object study of the following 
sections. 

4 Multidimensional measurements 

We now analyze the (most interesting) case of multidimensional measurements. 
We will apply the von Neumann-Luders 1,37 formulation in terms of projection 
operators, by adopting some definitions given by Schwinger 38. 

4.1 Incomplete measurements 

We will say that a measurement is “incomplete” if some outcomes are lumped 
together. This happens, for example, if the experimental equipment has insuffi- 
cient resolution (and in this sense the information on the measured observable is 
“incomplete”). See, for example, 39. The projection operator P ,  which selects a 
particular lump, is therefore multidimensional. Let us first consider a finite dimen- 
sional H p  = RanP, 

dimHp = TrP = s < 00. (23) 

The resulting time evolution operator is a finite dimensional matrix and has the 
explicit form 

It is easy to show that if X p  c D ( H ) ,  the domain of the Hamiltonian H ,  then 
U ( t )  in (24) is unitary within Xp and is generated by the self-adjoint Hamiltonian 
PHP (an example is given in 40). Reversibility is recovered in the N --f M limit. 

For infinite dimensional projections, s = 00, one can always formally write the 
limiting evolution in the form (24), but has t o  define the meaning of PHP. In such 
a case the time evolution operator U ( t )  may be not unitary and one has to  study 
the self-adjointness of the limiting Hamiltonian P H P  3 1 , 7 9 8 , 9 .  

In general, for incomplete measurements, system Q does not remain in its initial 
state. Rather, it is confined in the subspace Hp and evolves under the action of 
V ( t ) ,  instead of evolving “naturally” in the total Hilbert space H. 
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4.2 Nonselective measurements 

We will say that a measurement is “nonselective” 38 if the measuring apparatus 
does not “select” the different outcomes, so that all the “beams” (after the spec- 
tral decomposition 4 1 , 1 3 3 4 2 )  undergo the whole Zen0 dynamics. In other words, a 
nonselective measurement destroys the phase correlations between different branch 
waves, provoking the transition from a pure state to  a mixture. 

We now consider the case of nonselective measurements and extend Misra and 
Sudarshan’s theorem in order to  accommodate multiple projectors and build a 
bridge for our subsequent discussion. Let 

{Pn}n, Pnpm = 6mnPni C pn = 1, (25) 
n 

be a (countable) collection of projection operators and RanP, = Hp, the relative 
subspaces. This induces a partition on the total Hilbert space 

H = $ l ip , .  (26) 
n 

Consider the associated nonselective measurement described by the superopera- 
tor 1,3’ 

n 

The free evolution reads 

U t p o  = U(t)poU+(t ) ,  ~ ( t )  = exp(--iHt) (28)  

and the Zen0 evolution after N measurements in a time t is governed by the super- 
operat or 

R(N) = P (U ( t / N )  P )  N-l . 

This yields the evolution 

where 

vr!:?.nN ( t )  = pnNu ( t / N )  pTIN-, . . . Pn, u ( t / N )  pnl 7 (31) 

which should be compared t o  Eq. (14). We follow Misra and Sudarshan and 
assume, as in Sec. 3, the time-reversal invariance and the existence of the strong 
limits (t > 0 )  

Then Un ( t )  exist for all real t and form a semigroup 4,  and 

Vi(t )Vn(t)  = Pn. (33) 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



258 

Moreover, it is easy to show that 

Notice that, for any finite N ,  the off-diagonal operators (31) are in general non- 
vanishing, i.e. ViyL,,,,(t) # 0 for n’ # n. It is only in the limit (34) that these 
operators become diagonal. This is because U ( t / N )  provokes transitions among 
different subspaces Xp,,. By Eqs. (32)-(34) the final state is 

n n n 

The components Vn(t)poVA(t) make up a block diagonal matrix: the initial density 
matrix is reduced to a mixture and any interference between different subspaces 
‘Hp,,is destroyed (complete decoherence) . In conclusion, 

p n ( t )  = Tr [p(t)Pn] = ’JI [POP,] = Pn(O) ,  VTL (36) 
In words, probability is conserved in each subspace and no probability “leakage” 
between any two subspaces is possible: the total Hilbert space splits into invariant 
subspaces and the different components of the wave function (or density matrix) 
evolve independently within each sector. One can think of the total Hilbert space 
as the shell of a tortoise, each invariant subspace being one of the scales. Motion 
among different scales is impossible. (See Fig. 4 in the following.) 

If TrP, = s, < m, then the limiting evolution operator Vn( t )  (32) within the 
subspace IHp,has the form (24), 

Vn( t )  = Pn exp(-iPnHP,t). (37) 
If Xp,, c D ( H ) ,  then the resulting Hamiltonian PnHP, is self-adjoint and V,(t) is 
unitary in Xp,, . 

The original limiting result (22) is reobtained when p n ( 0 )  = 1 for some n, in 
(36): the initial state is then in one of the invariant subspaces and the survival 
probability in that subspace remains unity. However, even if the limits are the 
same, notice that the setup described here is conceptually different from that of 
Sec. 3. Indeed, the dynamics (31) allows transitions among different subspaces 
‘Hp,, -+ ‘Hp,,,, while the dynamics (14) completely forbids them. Therefore, for 
finite N ,  (31) takes into account the possibility that a given subspace Xpn gets 
repopulated 19,20 after the system has made transitions to other subspaces, while 
in (14) the system must be found in Xp,, at every measurement. 

5 Continuous observation 

The formulation of the preceding sections hinges upon von Neumann’s concept of 
“projection” ’. A projection is (supposed to be) an instantaneous process, yielding 
the “collapse” of the wave function, whose physical meaning has been debated since 
the very birth of quantum mechanics 42. Repeated projections in rapid succession 
yield the Zen0 effect, as we have seen. 

A projection a la von Neumann is a handy way to “summarize” the complicated 
physical processes that take place during a quantum measurement. A measurement 
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process is performed by an external (macroscopic) apparatus and involves dissipa- 
tive effects, that imply an interaction and an exchange of energy with and often 
a flow of probability towards the environment. The external system performing 
the observation need not be a bona fide detection system, namely a system that 
“clicks” or is endowed with a pointer. It is enough that the information on the state 
of the observed system be encoded in the state of the apparatus. For instance, a 
spontaneous emission process is often a very effective measurement process, for it 
is irreversible and leads to  an entanglement of the state of the system (the emit- 
ting atom or molecule) with the state of the apparatus (the electromagnetic field). 
The von Neumann rules arise when one traces away the photonic state and is left 
with an incoherent superposition of atomic states. However, it is clear that the 
main features of the Zen0 effects would still be present if one would formulate the 
measurement process in more realistic terms, introducing a physical apparatus, a 
Hamiltonian and a suitable interaction with the system undergoing the measure- 
ment. Such a point of view was fully undertaken in ’’, where a novel and more 
general definition of QZE and IZE was given, that makes no explicit use of pro- 
jections a la von Neumann. It goes without saying that one can still make use of 
projection operators, if such a description turns out to be simpler and more eco- 
nomic (Occam’s razor). However, a formulation of the Zen0 effects in terms of a 
Hamiltonian description is a significant conceptual step. When such a formulation 
is possible and when the Hamiltonian has (at most) a smooth dependence on time, 
we will speak of QZE (or IZE) realized by means of a continuous measurement 
process. 

A few examples will help us clarify these concepts. 

5.1 Non-Hennatian Hamiltonian 

The effect of an external apparatus can be mimicked by a non-Hermitian Hamilto- 
nian. Consider a two-level system 

This yields Rabi oscillations of frequency 52, but at the same time absorbs away the 
12) component of the Hilbert space, performing in this way a ‘‘measurement.1’ Due 
to  the non-Hermitian features of this description, probabilities are not conserved. 

Prepare the system in the initial state 11). An elementary calculation ‘O yields 
the survival probability 

which is shown in Fig. 2 for K = 0.4,2,10R. As expected, probability is (exponen- 
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K\ 

Figure 2. Survival probability for a system undergoing Rabi oscillations in presence of absorption 
(K = 0.4,2,lOfl). The gray line is the undisturbed evolution (K = 0). 

tially) absorbed away as t -+ co. However, as K increases, the survival probability 
reads 

and the effective decay rate y e ~ ( K )  = R2/K becomes smaller, eventually halting the 
“decay” (and consequent absorption) of the initial state and yielding an interesting 
example of QZE: a larger K entails a more “effective” measurement of the initial 
state. Notice that the expansion (41) is not valid at  very short times (where there 
is a quadratic Zen0 region), but becomes valid very quickly, on a time scale of order 
K-’ (the duration of the Zen0 region 20,34335). 

The (non-Hermitian) Hamiltonian (39) can be obtained by considering the evo- 
lution engendered by a Hermitian Hamiltonian acting on a larger Hilbert space and 
then restricting the attention to  the subspace spanned by {Il), 12)): consider the 
Hamiltonian 

which describes a two-level system coupled to the photon field { Iw)} in the rotating- 
wave approximation. It is not difficult to  show ’’ that, if only state 11) is initially 
populated, this Hamiltonian is “equivalent” to  (39), in that they both yield the 
same equations of motion in the subspace spanned by 11) and 12). QZE is obtained 
by increasing K: a larger coupling to the environment leads to  a more effective 
“continuous” observation on the system (quicker response of the apparatus), and 
as a consequence to  a slower decay (QZE). The quantity 1/K is the response time 
of the “apparatus.” 

5.2 Continuous Rabi observation 

The previous example might lead one to think that absorption and/or probability 
leakage to  the environment (or in general to  other degrees of freedom) are funda- 
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Figure 3. Survival probability for a continuous Rabi “measurement” with K = 1,3,9R: quantum 
Zeno effect. The gray line is the undisturbed evolution (K = 0). 

mental requisites to obtain QZE. This expectation would be incorrect. Even more, 
irreversibility is not essential. Consider, indeed, the 3-level system 

(11 = ( I1  O,O),  PI= ( 0 , k  01, (31= (O,O, 1) (43) 

and the (Hermitian) Hamiltonian 

H 3 i ~  = n(11)(21 + 12)(1() + K(12)(31 + 13)(21) = fl 0 K , (44) (1 : 1) 
where K E B is the strength of thezoupling between level 12) (“decay products”) 
and level 3 (that will play the role of measuring apparatus). This model, first con- 
sidered by Peres 5 ,  is probably the simplest way to include an “external” apparatus 
in our description: as soon as the system is in 12) it undergoes Rabi oscillations 
to (3). We expect level (3)t o perform better as a measuring apparatus when the 
strength K of the coupling becomes larger. 

A straightforward calculation 2o yields the survival probability in the initial 
state 11) 

This is shown in Fig. 3 for K = 1,3,9R. We notice that for large K the state of 
the system does not change much: as K is increased, level 13) performs a better 
“observation” of the state of the system, hindering transitions from (I} to 12). This 
can be viewed as a QZE due to a “continuous,” yet Hermitian observation performed 
by level 13). 

In spite of their simplicity, the models shown in this section clarify the physical 
meaning of a L‘continuousl’ measurement performed by an “external apparatus” 
(which can even be another degree of freedom of the system investigated). Also, 
they capture and elucidate many interesting features of a Zeno dynamics. 
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6 Novel definition of quantum Zen0 effect 

The examples considered in the previous section call for a broader formulation of 
Zen0 effect, that should be able to include “continuous” observations as well as 
other situations that do not fit into the scheme of the “pulsed” formulation. We 
proposed such a definition in Ref. 20. It comprises all possible cases (oscillating as 
well as unstable systems) and situations (quantum Zen0 effect as well as inverse 
quantum Zen0 effect). Although in this article we are mostly concerned with the 
QZE for oscillating systems, we give here all definitions for the sake of completeness. 

Consider a quantum system whose evolution is described by a Hamiltonian H .  
Let the initial state be po (not necessarily a pure state) and its survival proba- 
bility p ( t ) .  Consider the evolution of the system under the effect of an additional 
interaction. so that the total Hamiltonian reads 

where K is a set of parameters (such as coupling constants) and Hmeas(K = 0) = 0. 
Notice that H is not necessarily the free Bamiltonian; rather, one should think of 
H as a full Hamiltonian, containing interaction terms, and Hm,,(K) should be 
viewed as an “additional” interaction Hamiltonian performing the “measurement.” 
If K is simply a coupling constant, then the above formula simplifies to 

HK = H + KHmeas. (47) 

Notice that if a projection is viewed as a shorthand notatian for a (generalized 13) 

spectral decomposition 41,  the above Hamiltonian scheme includes, for all practical 
purposes, the usual formulation of quantum Zen0 effect in terms of projection op- 
erators. In such a case the scheme (46) is more appropriate, for a fine tuning of K 
might be required 13. 

All the examples considered in the previous sections (for both “pulsed” and 
“continuous” measurements) can be analyzed within the scheme (47) and a fortiori  
(46). We can now define all possible Zen0 effects. 

6.1 Oscillating systems 

We shall say that an oscillating system displays a QZE if there exist an interval 
I ( K )  = [t!K’, tiK)] such that 

p ( K ) ( t )  > p ( t ) ,  vt E P), (48) 

where p ( K ) ( t )  and p ( t )  = p(’)(t) are the survival probabilities under the action of 
the Hamiltonians HK and H ,  respectively. We shall say that the system displays 
an IZE if there exist an interval I ( K )  such that 

p ( K ) ( t )  < p ( t ) ,  V t  E I ( K ) .  (49) 

The time interval I ( K )  must be evaluated case by case. However, 
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where Tp is the Poincark time of the system. Obviously, in order that the definition 
(48)-(49) be meaningful from a physical point of view, the length of the interval 
I ( K )  must be of order Tp. 

The above definition is very broad and includes a huge class of systems [even 
trivial cases such as time translations p( t )  -+ p(t - t o ) ] .  We would like to stress 
that we have not succeeded in finding a more restrictive definition and we do not 
think it would be meaningful: many phenomena can be viewed or reinterpreted as 
Zen0 effects and this is in our opinion a fecund point of view 2 0 .  

In order to  elucidate the meaning of the above definition, let us look at  some 
particular cases considered in the previous sections. The situations considered in 
Figs. 2 and 3 are both QZEs, according to this definition: one has tiK) = 0 and 
tiK’ _< Tp = 7r/R [and (tiK’ - t iK’) = O(Tp)] .  The case outlined in Fig. 1 is also a 
QZE, with tiK’ = 0 and tiK,”’ 5 Tp (notice that Tp may even be infinite). 

6.2 Unstable systems 

In this paper we mostly deal with few-level systems. However, for unstable systems, 
the definition of Zen0 effect can be made more stringent and expressed in terms of 
a single parameter, the decay rate. In fact, in such a case, one need not refer to a 
given interval I ( K ) ,  but can consider the global behavior of the survival probability. 

Let us consider Eqs. (3) and (47). For an unstable system, the off-diagonal 
interaction Hamiltonian Hint in Eq. (3) is responsible for the decay. Let 

Y = 2r(alffintb(wa - H0)Hintla) (51) 
be the decay rate (Fermi “golden” rule 43, valid at second order in the decay coupling 
constant), la) being the initial state, which is an eigenstate of Howit h energy w,. 
We define the occurrence of a QZE or an IZE if 

YeB(K) Y, (52) 

(53) 

respectively, where - y e ~ ( K )  is the new (effective) decay rate under the action of H K ,  

Yef f (K)  = 2n(al(Hint + KHmeas) 6(wa - Ho) (Hint + KHrneas)la). 

Notice that this case is in agreement with the definitions (48)-(49). Moreover, 
t iK)  + m for IZE, while tiK,”’ 5 tpow for QZE, where tpow is the time at which a 
transition from an exponential to a power law takes place. (Such a time is of order 
log(coup1ing constant), at least for renormalizable quantum field theories 44.) 

It is worth noticing that (52) is of general validity when it refers to physical 
decay rates, even when the perturbative expressions (51) and (53) are not valid. In 
such a case the decay rate is simply given by the imaginary part of the pole Epole 
of the resolvent nearest to  the real axis in the second Riemann sheet of the complex 
energy plane 26. The pole is the solution of the equation 

Epole = wa + xII(Epole)i Y = -2Im [Epole], (54) 
where C I I ( E )  is the determination of the proper self-energy function 
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on the second Riemann sheet. 
Hint -+ Hint + KH,,, in Eq. (55). For a more detailed discussion, see 20. 

Analogously for - y e ~ ( K ) ,  with the substitution 

7 Dynamical quantum Zen0 effect 

The broader formulation of quantum Zen0 effect (and inverse quantum Zen0 effect) 
elaborated in Sec. 6 triggers a spontaneous question about the form of the interac- 
tion Hamiltonian H,,, between system and apparatus [Eq. (47)]. In the case of 
pulsed measurements, in order to get a Zen0 effect one has to prepare the system 
in a state belonging to the measured subspace ‘Hp as in Eq. (9) [or to any subspace 
‘Hpn of the partition (26) for nonselective measurements]. On the other hand, in the 
case of a continuous measurement it is not clear which relation must hold between 
the initial state of the system po and the structure of the interaction Hamiltonian 
H,,, in order to get a Zen0 effect. We have introduced two paradigmatic exam- 
ples in Sec. 5, but we still do not know why they work. It is therefore important t o  
understand in more detail which features of the coupling between the LLobserved” 
system and the “measuring” apparatus are needed to obtain a QZE. In other words, 
one wants to know when an external quantum system can be considered a good 
apparatus and why. We shall try to clarify these issues and cast the dynamical 
quantum Zen0 evolution in terms of an adiabatic theorem. We will show that the 
evolution of a quantum system under the action of a continuous measurement pro- 
cess is in fact similar to that obtained with pulsed measurements: the system is 
forced to evolve in a set of orthogonal subspaces of the total Hilbert space and 
an effective superselection rule arises in the strong coupling limit. These quantum 
Zeno subspaces 32 are just the eigenspaces (belonging to different eigenvalues) of 
the Hamiltonian describing the interaction between the system and the apparatus: 
they are subspaces that the measurement process is able to distinguish. 

7.1 A theorem 

Our answer to the afore-mentioned question is contained in a theorem 33,32, which 
is the exact analog of Misra and Sudarshan’s theorem for a general dynamical 
evolution of the type (47). Consider the time evolution operator 

U K ( ~ )  = exp(-iHKt). (56) 

We will prove that in the “infinitely strong measurement” (“infinitely quick detec- 
tor”) limit K -+ 0;) the evolution operator 

U ( t )  = X-w lim U K ( t ) ,  (57) 

becomes diagonal with respect to Hme,: 

Pn being the orthogonal projection onto ‘Hp,,, the eigenspace of H,,, belonging to 
the eigenvalue qn. Note that in Eq. (58) one has to consider distinct eigenvalues, 
i.e., qn # qm for n # m, whence the ‘Hp,,’s are in general multidimensional. 
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Moreover, the limiting evolution operator has the explicit form 

where 

n 

is the diagonal part of the system Hamiltonian H with respect to  the interaction 
Hamiltonian H,,,. 

In conclusion, the generator of the dynamics is the Zeno Hamiltonian 

n 

whose diagonal structure is explicit, and the evolution operator is 

7.2 Dynamicnl superselection rules 

Before proving the theorem of Sec. 7.1 let us briefly consider its physical impli- 
cations. In the K + 03 limit, due to (58),  the time evolution operator becomes 
diagonal with respect to H,,,, 

[U( t ) ,  Hmeasl  0,  (63) 
a superselection rule arises and the total Hilbert space is split into subspaces 'Hp, 
which are invariant under the evolution. These subspaces are simply defined by the 
Pn's, i.e., they are eigenspaces belonging to  distinct eigenvalues qn: in other words, 
they are subspaces that the apparatus is able to  distinguish. On the other hand, due 
to  (61)-(62), the dynamics within each Zen0 subspace 'Hp, is essentially governed 
by the diagonal part PnHPn of the system Hamiltonian H (the remaining part of 
the evolution consisting in a (sector-dependent) phase). The evolution reads 

p( t )  = U(t)poUt( t )  = e-iHZtpoeiHZt (64) 
and the probability to find the system in each 'Hp, 

pn( t )  = ~r [ ~ ( t ) ~ n ]  = ~r [ ~ ( t ) p o ~ + ( t ) ~ n ]  = ~r [ ~ ( t ) p o ~ n ~ + ( t ) ]  
= Tr [popn] = Pn(0) (65) 

is constant. As a consequence, if the initial state of the system belongs to  a specific 
sector, it  will be forced to  remain there forever (QZE): 

$0 E X P ,  + $(t) E ap,. (66) 
More genefally, if the initial state is an incoherent superposition of the form po = 

Ppo, with P defined in (27), then each component will evolve separately, according 
to  

p ( t )  = U(t)poUt( t )  = c e-iHZtP nPo P n eiHZt 
n 

n n 
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I 

Figure 4. The Hilbert space of the system: a dynamical superselection rule appears as the coupling 
K to the apparatus is increased. 

with Vn(t)  = P,, exp(-iP,,HP,,t), which is exactly the same result (35)-(37) found 
in the case of nonselective pulsed measurements. This bridges the gap with the 
description of Sec. 4.2 and clarifies the role of the detection apparatus: it  defines 
the Zen0 subspaces. In Fig. 4 we endeavored to  give a pictorial representation of 
the decomposition of the Hilbert space as K is increased. 

Notice, however, that there is one important difference between the dynamical 
evolution (64) and the projected evolution (35). Indeed, if the initial state PO 

contains coherent terms between any two Zen0 subspaces Zp, and Xp,,, , P,,poPm # 
0, these vanish after the first projection in (35), P,p(O+)Pm = 0, and the state 
becomes an incoherent superposition p ( O + )  # P O ,  whence Trp(O+)’ < T r p g .  On 
the other hand, such terms are preserved by the dynamical (unitary) evolution (64) 
and do not vanish, even though they wildly oscillate. For example, consider the 
initial state 

P O  = (pn + Pm)~o(pn + pm), 

P ( t )  = Vn (t)POVi ( t )  + Vm (t)POVA ( t )  

PnPOpm # 0. (68) 
By Eq. (64) it evolves into 

+e-wv”-vm)tL)  (qp oV&(t) + ,iK(vm-vm)tVm (t)poVi(t), (69) 
at variance with (67) and (35). Therefore Trp(t)’  = Trpg  for any t and the Zen0 
dynamics is unitary in the whole Hilbert space ‘H. We notice that these coherent 
terms become unobservable in the large-K limit, as a consequence of the Riemann- 
Lebesgue theorem (applied to  any observable that “connects” different sectors and 
whose time resolution is finite). This interesting aspect is reminiscent of some re- 
sults on “classical” observables 45, semiclassical limit 46 and quantum measurement 
theory 47138. 
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It is worth noticing that the superselection rules discussed here are de facto 
equivalent to the celebrated "W3" ones 48, but turn out to be a mere consequence 
of the Zen0 dynamics. For a related discussion, but in a different context, see 49. 

7.3 Proof of the theorem 

We will now use perturbation theory and prove 33 that the limiting evolution op- 
erator has the form (59). Property (58) will then automatically follow. In the next 
subsection we will give a more direct proof of (58), which relies on the adiabatic 
theorem. 

Rewrite the time evolution operator in the form 

UK(t) = eXp(-iHKt) = exp(4HA.r) = Ux(T) (70) 

A = 1/K, T = Kt = t/A, H A  = XHK = Hme, + A H ,  (71) 

where 

and apply perturbation theory to the Hamiltonian HAfor small A. To this end, 
choose the unperturbed degenerate projections Pn, 

Hmewpna = VnPna, Pn = C Pna, (72) 
a 

whose degeneration a is resolvecat some order in the coupling constant A. This 
means that by denoting f j n a  and Pna the eigenvalues and the orthogonal projections 
of the total Hamiltonian H A ,  

I I 

HAP,, = f jnapna, (73) 

(74) 

they reduce to the unperturbed ones when the perturbation vanishes 
A-0 - A-0 I 

Pna + Pna, qna + vn. 
Therefore, by applying standard perturbation theory 5 0 ,  we get the eigenprojections - 

Pn, = Pn, + APZ) + O(X2) 

where 
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Write now the spectral decomposition of the evolution operator (70) in terms of 
the projections Pna 

- 

n,a n,a 

and plug in the perturbation expansions (75), to obtain 

Let us define the operator 

where Eqs. (77)-(78) were used. By plugging Eq. (81) into Eq. (80) and making 
use of the property 

we finally obtain 

1 U ~ ( T )  = exp(-ifixT) + X exp(-ifix.r) + O(X2). (83) 

Now: by recalling the definition (71), we can write the time evolution operator 
U K ( ~ )  as the sum of two terms 

1 
U K ( t )  = Uad,K(t)  + F U n a , K ( t ) l  (84) 

(85) 

where 
~ ~ ~ , ~ ( t )  = , - i ( ~ ~ m e a a + C ,  pnHpn++ En PnH+HPn+O(K-2))t 

is a diagonal, adiabatic evolution and 

is the off-diagonal, nonadiabatic correction. In the K -+ cm limit only the adiabatic 
term survives and one obtains 

1 (87) ~ ( t )  = lim uK ( t )  = lim Uad,K ( t )  = e-i(KHmeas+C- p * ~ p n ) t  
K - w  K-rn 

which is formula (59) [and implies also (58)]. The proof is complete. As a byproduct 
we get the corrections to  the exact limit, valid for large, but finite, values of K .  
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Notice that in our derivation we assumed that the eigenprojections and the 
eigenvalues of the perturbed Hamiltonian H A  admit the asymptotic expansions 
(75) and (77) up to order O(X2) and O(X3), respectively. With these assumptions 
we have been able to exhibit also the first corrections to  the limit. However, it is 
apparent that in order to prove the limit (87), it  is sufficient to  assume that the 
eigenprojections and the eigenvalues admit the expansions 

- - 
Pna = pna + o(l) ,  qna = 7, + Xqyi + .(A), for X + 0, (88) 

whence 

U K ( t )  = e-i[Kffmeas+Cn PnffPn+o(l)]t +o( l ) ,  for K -+ 03. (89) 

Notice however that in such a case, unlike in (84), we have no information on the 
approaching rate and the first-order corrections. 

7.4 

We now give an alternative proof [and a generalization to  time-dependent Hamil- 
tonians H ( t ) ]  of Eq. (58). We follow again 33. The adiabatic theorem deals with 
the time evolution operator U ( t )  when the Hamiltonian H ( t )  slowly depends on 
time. The traditional formulation 50 replaces the physical time t by the scaled time 
s = t /T  and considers the solution of the scaled Schrodinger equation 

Zeno evolution from an adiabatic theorem 

(90) 
d 
ds i--UT(S) = TH(S)UT(S)  

in the T --f oc) limit. 
Given a family P ( s )  of smooth spectral projections of H ( s )  

H ( s ) P ( s )  = E(s)P(s) ,  (91) 
the adiabatic time evolution U A ( S )  = limT,, UQ-(S) has the intertwining property 
51,50 

valid for generic time dependent Hamiltonians, 

H K ( ~ )  = H ( t )  + KHmeas(t), (94) 
are easily proven by recasting them in the form of an adiabatic theorem 32. In the 
H interaction picture, given by 

the Schrodinger equation reads 

(96) 
d 
dt 

Z-UL(t) = KHLe,(t) U L ( t ) .  
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The Zen0 evolution pertains to  the K -+ oc) limit: in such a limit Eq. (96) has 
exactly the same form of the adiabatic evolution (90): the large coupling K limit 
corresponds to the large time T limit and the physical time t to  the scaled time 
s = t /T.  Therefore, let us consider a spectral projection of H,!,,,,(t), 

is constant: if the initial state of the system belongs to  a given sector, it will be 
forced to  remain there forever (QZE). 

For a time-independent Hamiltonian Hme,(t)  = H,,,, the projections are 
constant, P,(t) = P,, hence Eq. (93) reduces to  (58) and the above property holds 
a fortiori and reduces to (65). 

Let us add a few comments. It is worth noticing that the limiting evolutions 
(57), (99) and (102) are understood in the sense of the intertwining relations (58), 
(100) and (103), that is 

K - m  lim (uKP,  - P,uK) = 0, (106) 

while, strictly speaking, each single addend has no limit, due to  a fast oscillating 
phase. In other words, one would read Eq. (103) as 

UK(t)Pn(O) - Pn(t)UK(t)  = o(l), for K -+ oc). (107) 
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As a matter of fact, there is no single adiabatic theorem 52. Different adiabatic 
theorems follow from different assumptions about the properties of Hk,,(t) and 
PL(t), the notion of smoothness, what are the optimal error estimates, and so on. 
But all these theorems have the structure of Eq. (107) and only differ in their 
respective approaching rates [for example, for noncrossing energy levels, o(1) is in 
fact 0 ( 1 / K ) ,  while for crossing levels the rate is O(l/*)]. The theorem we have 
shown must therefore be understood in this variegated framework. 

The formulation of a Zen0 dynamics in terms of an adiabatic theorem is power- 
ful. Indeed one can use all the machinery of adiabatic theorems in order to  get re- 
sults in this context. An interesting extension would be to consider time-dependent 
measurements 

whose spectral projections P,= P,(t) have a nontrivial time evolution. In this 
case, instead of confining the quantum state to  a fixed sector, one can transport 
it along a given path (subspace) ‘ H H ~ , ( ~ ) ,  according to Eqs. (104)-(105). One then 
obtains a dynamical generalization of the process pioneered by Von Neumann in 
terms of projection operators 1 1 5 3 .  

8 Example: three-level system 

In the present and in the following sections we will elaborate on some examples 
considered in 2 0 9 2 7 9 2 5 .  Our attention will be focused on possible applications in 
quantum computation. 

Reconsider (and rewrite) Peres’ Hamiltonian (44) 

where 

H = R(11)(21+ 12)(11) = R 1 0 0 , (1 : 00) 
Let us reinterpret the results of Sec. 5.2 in the light of the theorem proved in 
Sec. 7. As K is increased, the Hilbert space is split into three invariant subspaces 
(eigenspaces of H,,,) ‘H = @ ‘Hp, 

‘HP, = {11)17 NP,  = ((12) + 13))/JzI, RP-, = ((12) - 13))/Jz), (112) 
corresponding to  the projections 

P o = ( :  !), P I = : ( !  y n), P - I = ; ( ! - : - ~ ) .  (113) 
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with eigenvalues 70 = 0 and 7*1 = f l .  The diagonal part of the system Hamil- 
tonian H vanishes, Hdiag = cP,HP,= 0, and the Zen0 evolution is governed 
by 

(114) 
2 H31ev = Hdiag + KHm,, = KHmeaS = 

Any transition between 11) and 12) is inhibited: a watched pot never boils. This 
simple model has a lot of nice features and will enable us to  focus on several 
interesting issues. We will therefore look in detail at its properties and generalize 
them in the following sections. 

9 

In the preceding example the initial state of the apparatus (namely the initial 
population of level 13)) has a strong influence on the free evolution of the system 
(levels 11) and 12)). Such an influence entails also unwanted spurious effects: the 
apparatus is, in some sense, “entangled” with the system, even if K = 0. In other 
words, the evolution of the system has an unpleasant dependence on the state of 
the apparatus: the system can make Rabi transitions (between states 11) and 12)) 
only if the “detector” is not excited (i.e. state 13) is not populated). If, on the other 
hand, state 13) is initially considerably populated, the dynamics of the system is 
almost completely frozen. This is not a pleasant feature (although one should not 
be too demanding for such a simple toy model). 

In a certain sense the QZE is counterintuitive in this case just because, if the 
initial state is N 11), although the interaction strongly tends to drive the system into 
state 13), the system remains in state 11). On the other hand, one wonders whether 
such an effect would take place if the initial state of the apparatus would have 
little or no influence on the system evolution. This would give a better picture 
of the QZE: the interaction Hamiltonian should be chosen in such a way that 
the measured system modifies the state of the apparatus without significant back 
reaction. In other words, the dynamics of the system should not depend on the 
state of the apparatus: the apparatus should simply “register” the system evolution 
(performing a spectral decomposition 41,13) without “affecting” it. 

The most convenient scheme for describing such a better notion of measurement 
is to  consider the system and the detector as two different degrees of freedom living 
in dzfleerent Hilbert spaces ?is and ‘Hd, respectively. The combined total system 
evolves therefore in the tensor-product space 

Zeno dynamics in a tensor-product space 

‘H = ‘ H s  8 ‘Hd (115) 

(116) 

according to  the generic Hamiltonian 

Hprod = Hs 8 Id + 1, 8 Hd + KH,,,,. 

The theorem of Sec. 7.1 is naturally formulated in the total Hilbert space H, 
without taking into account its possible tensor-product decomposition. On the 
other hand, one would like to shed more light on the Zen0 evolution of the system 
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and the apparatus in their respective spaces, IH, and Xd, in order to  understand 
whether there is such a simple prescription as (61) and (62) in each component 
space. 

9.1 Three-level system revisited 

Let us first reconsider the example of Sec. 8. The (3-dimensional) Hamiltonian (109) 
is expressed in terms of a direct-sum Hilbert space IH = 7-1, $‘Hd, but can be readily 
reformulated in terms of the tensor-product Hilbert space of two 2-dimensional 
Hilbert spaces, i.e. in terms of two coupled qubits li)s and li)d (i = 0, l ) ,  as 

H3lev  = 0 0 1 s  8 POd + K Pls 8 g l d r  (117) 
where 0 1  = l O ) ( l l  + Il)(Ol and Pi = li)(il. Indeed, it is easy to show that, by 
identifying 

11) = loo), 12) = IW,  13) = 110, (118) 
where lij) = l i ) , 8 / j ) d r  the Hamiltonian (117) becomes the Hamiltonian (109). The 
fourth available state 14) = 101) of the tensor-product space is idle and decouples 
from the others. 

The unwanted features of the apparatus discussed at the beginning of this sec- 
tion are apparent in Eq. (117): the system-Hamiltonian Ouls is effective only if the 
detector is in state 1O)d. It is also apparent that the minimal modification that fits 
the general form (116) is simply 

Hilev = 0 0 1 s  8 Id + K PIS €3 o ld .  (119) 
Note that ffmeaS = PI, 8 (Tld = 12)(31 + 13)(21 is not changed, whence its three 
eigenspaces are still 

xp0 = w1 14)) = {IW, 111))~ 

RP-i = ((12) - l3))/JZ} = (11)s 8 I - z ) d )  

RPi = ((12) f 13))lJZ) = (11)s 8 I + Z ) d ) r  

(120) 
[remember that the enlarged product space contains also a fourth idle state 14) = 
I O l ) ] ,  with eigenprojections 

PO = POs 8 Id, pl = P l s  @ Pfzd, p-1 = PIS 8 P-zd ,  (121) 
where I f x) = [lo) + Il)]/fi and P*z = I f z)(fz(.  As a consequence, the Zeno 
evolution is the same as before 

+ 1  
1 2  - 

ff3lev - C Pnff31evPn = K 9 s  €3 c l d  = Kffmeas = H:lev, (122) 
n=-1 

see (114). This proves that the answer to  the implicit question at the beginning of 
this section is affirmative: it is indeed possible to design the apparatus in such a 
way that its initial state has little or no influence on the system evolution (so that 
the apparatus can be properly regarded as a sort of “pointer”); nevertheless, the 
measurement is as effective as before and yields QZE. 
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9.2 Two coupled qubits 

In order to  understand better the role of Hme, in a product space, we study two 
coupled qubits (system and detector), living in the product space 

3-1= c2 ‘8 c2, (123) 
whose evolution is engendered by the Hamiltonian (116), with an interaction of the 
same type as (119) 

Hmeas = p1s ‘8 vd. (124) 
This describes an ideal detector, with no “false” events: the detector never clicks 
when the system is in its initial “undecayed” state lo),. 

The spectral resolution of the interaction reads 

VdPq,d = %Pvnd ,  (n = 172) 7 (125) 

Hme, = PIS €9 (%pv ld  + 772Pq2d)> (126) 

that is, 

where the two eigenvalues 771 and 772 are not necessarily different and nonvanishing. 
Therefore, the Hilbert space is at most split into three Zen0 subspaces: a two- 
dimensional one, corresponding to 70 = 0, 

Hmeaspo  = 0,  PO = PO, ‘8 1dr (127) 

H m e a s p n  = VnPni  p n  = p1s ‘8 Pq,d, (n = 192) (128) 

and two one-dimensional ones 

corresponding t o  q1 and 772. There are three different cases. 

9.2.1 Nondegenerate case 0 = 770 # 771 # 772 # 770 

distinguish the three subspaces and the total Hilbert space is split into 
In the nondegenerate case 0 = 770 # q1 # q2 # 770 the apparatus is able to 

3-1 = Ho @ H1 @ 3-12 

3-10 = {loo), lol)>, 3-11 = {ll)s ‘8 I%)d}, 3-12 = (11)s ‘8 1772)d). (129) 
Therefore (116) yields (for large K )  the Zen0 Hamiltonian 

n=O 

= (POSHspOs + PlsHsPls) ‘8 I d  

€9 H d  + PIS ‘B ( P v l d H d P q l d  + Pv2dHdPqzd)  + KHrneas .  (130) 
One should notice that the resulting effect on the system Hamiltonian H, ‘8 l d i s  

simply the replacement 

H s  -+ H,“ = posHsPo, + P~,HSP1,, (131) 
satisfying our expectations (QZE). On the other hand, for the detector Hamilto- 
nian 1, €9 H d  such a simple replacement is not possible, for the resulting dynamics 
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is entangled. This is a consequence of the fact that the interaction is able to  distin- 
guish between different detector states [P, in (128)] in the subspace of the decay 
products PlS '8 I d .  If the interaction Hamiltonian (124) commutes with the detector 
Hamiltonian, 

[Vdr H d ]  = 0,  (132) 

then the above-mentioned entanglement does not occur, for the detector Hamilto- 
nian 1, '8 H d  remains unchanged. In such a case, if H d  is nondegenerate, i.e. if 
it is not proportional to  the identity operator I d ,  then Vdis not a good measure- 
ment Hamiltonian. Indeed, for any value of the coupling constant K ,  the detector 
qubit does not move and remains in its initial pointer eigenstate (eigenstate of H d ) .  

Nevertheless, the QZE is still effective. See also the next case. 
On the other hand, a good detector has an interaction Hamiltonian v d  which 

is a complementary observable 1,38 of its free Hamiltonian H d .  For example, if we 
set, without loss of generality, H d  = ba3d, the interaction should be v d  = Old (or 
v d  = g2d) .  In such a case, the diagonal part of an observable with respect to the 
other vanishes, i.e. PqldHdPqld +Pq2dHdPV2d = 0,  and the Zen0 Hamiltonian (130) 
reads 

(133) 
Z 

Hprod = (pOsHspOs + P l s H s P l s )  '8 Id  + POs '8 H d  + KHrneas. 

It is therefore apparent that, in the case of a good detector, not only the system 
evolution, but also the detector evolution is hindered (QZE). Indeed, in the large- 
K limit, if the system qubit starts (and remains) in then the pointer qubit is 
frozen as well in one of its eigenstates (the eigenstates of H d ) .  

9.2.2 Degenerate interaction 0 = 770 # 111 = 772 

In this case there are only two projections 

PO = POs '8 I d ,  = + PZ = '8 Id  

and two 2-dimensional Zen0 subspaces 

1-1 = 1-10 a3 I 7 1  

1-10 = {loo), IOl)) ,  3.11 = (110) + 111)). 

The Zen0 Hamiltonian reads 
Z 

Hprod = POHprodPO + P l H p r o d P l  

= (POsHsPOs + P l s H s P l s )  '8 Id $- 1 s  '8 H d  + KHrneas (136) 

and the QZE occurs again according to (131), leaving the detector Hamiltonian un- 
altered and without creating entanglement. Notice that in this case the interaction 
(124) reduces to 

Hmeas = %PIS '8 Id (137) 

and does not yield an evolution of the detector qubit. In spite of this, the Hilbert 
space is split into two Zen0 subspaces and a QZE takes place. This happens because 
some information is stored in the phase of the detector qubit. 

(134) 

(135) 
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9.2.3 Imperfect measurement 0 = qo = 771 # 772 
In this last situation, there are again two projections, 

P O  = PO + pl = PO, '8 Id -k 4 s  €3 P q l d r  p 2  = pls '8 Pqzd,  (138) 
and two Zeno subspaces, 

3.1 = 770 @ 3.12 

2 0  = {loo), lol), 11)s 8 1771)d}, 3.12 = (11)s '8 1772)d) (139) 
a 3-dimensional one, corresponding to the eigenvalue 70 = 0 and a 1-dimensional 
one, corresponding t o  772 # 0. However, in this case the measuring interaction is not 
able to  perform a clear-cut distinction between the initial state lo), of the system 
and its decay product ll)s, i.e. it yields an imperfect measurement. 

The Zen0 Hamiltonian reads 

H$,d = POHprodPO + P 2 H p r o d P 2  

= ffs '8 p q l d  + (POSHSPOS -k P l s H s P l s )  €3 Pqzd 

+pOs '8 H d  + P l s  '8 (PqldffdPqld + Pq2d H d P q 2 d )  -k KHrneas. (140) 
Notice that Hzrod displays an interesting symmetry between the system and the 
apparatus. The origin of this symmetry is apparent by looking at the interaction 
Hamiltonian Hmeas: 

Hrneas = %pis €3 p q 2 d .  (141) 
A partial QZE is still present. In fact, the evolution of the system is frozen only if 
the detector is in state I Q ) ~ ,  while it is not hindered if the latter is in state 1Vl)d 

(and a similar situation holds for the detector evolution). 
The three cases analyzed in this subsection are paradigms for examining the 

rich behavior of the Zen0 dynamics engendered by Hamiltonian (116) in a generic 
tensor-product space (115). In particular, one can show that, by considering a good 
detector (whose free and interaction Hamiltonians, Hd and v d ,  are two generic com- 
plementary observables 5 4 ) ,  the Zen0 Hamiltonian (133) admits a straightforward 
natural generalization to the N-dimensional case. We shall elaborate further on 
this issue in a future paper. 

10 

Let us look at  another interesting model. Consider 

A watched cook can freely watch a boiling pot 

/ o  R 0 o \  

where states 11) and 12) make Rabi oscillations, 
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while state (3) “observes” them, 

\ o  0 0 0 1  

and state 14)  observe^" whether level 13) is populated, 

/ o  0 0 o \  

If K >> R and K‘, then (142) must be read 

H41ev = H + KH,,,, with H = 001 + K’ri, H,,, = TI ,  (146) 

and the total Hilbert space splits into the three eigenspaces of H,,, [compare with 
(112) and (120)l: 

ZP, = {11), N)),  ZP,  = ((12) + 13))/&}, ZP-, = ((12) - 13))/fiI. (147) 

Moreover, Hdiag = En PnHPn = 0 and the Zen0 evolution is governed by 

0 0 0 0  

H41ev z = K T ~  = ( g  ff g ) .  (148) 

The Rabi oscillations between states 11) and 12) are hindered. 

read 
On the other hand, if K’ >> K and R (and even if K >> R), then (142) must be 

H41ev = H + K’H,,,, with H = 001 + Krl ,  H,,, = T:, (149) 

the total Hilbert space splits into the three eigenspaces of H,,, [notice the differ- 
ences with (147)l: 

%p6 = (11)~ 1 2 ) ) ~  xp; = ( (13)  + 14))/JZi, xpL1 = ( (13)  - 14wJZ) (150) 

and the Zen0 Hamiltonian reads 

O R  0 

H:llv = Ru1 + K’T~ = (151) 
0 0 K’ 

The Rabi oscillations between states 11) and 12) are fully restored (even if and in 
spite of K >> R) 55. A watched cook can freely watch a boiling pot. 
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Figure 5. Schematic view of the system described by the Hamiltonian (152). 

11 

We now look at  a more realistic example, analyzing the possibility of devising 
decoherence-free subspaces 56,  that are relevant for quantum computation. The 
Hamiltonian 57 

Quantum computation and decoherence-free subspaces 

L 

Hme, = i g x  ( b  12)ii(11 - bt ll)ii(21) - inb'b (152) 
i= 1 

describes a system of two (i = 1,2)  three-level atoms in a cavity. The atoms are 
in a A configuration with split ground states l0)i and ll)i and excited state 12),z, as 
shown in Fig. 5(a), while the cavity has a single resonator mode b in resonance with 
the atomic transition 1-2. See Fig. 5(b). Spontaneous emission inside the cavity is 
neglected, but photons leak out through the nonideal mirrors with a rate K .  

The excitation number 

commutes with the Hamiltonian, 

Therefore we can solve the eigenvalue equation inside each eigenspace of N (Tamm- 
Duncoff sectors). 

A comment is now in order. Strictly speaking, the Hamiltonian (152) is non- 
Hermitian and we cannot directly apply the theorem of Sec. 7.1. (Notice that the 
proof of the theorem heavily hinges upon the hermiticity of the Hamiltonians and 
the unitarity of the evolutions.) However, we can apply the technique outlined at 
the end of Sec. 5.1 and enlarge our Hilbert space 7-1, by including the photon modes 
outside the cavity a, and their coupling with the cavity mode b. The enlarged 
dynamics is then generated by the Hermitian Hamiltonian 

2 

fimeas = i g x  ( b  12)ii(11 - bt 11)ii(21) 
i=l  
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and it is easy to show that the evolution engendered by H,,,, when projected 
back to  7-1, is given by the effective non-Hermitian Hamiltonian (152), provided the 
field outside the cavity is initially in the vacuum state. Notice that any complex 
eigenvalue of H,,, engenders a dissipation (decay) of ‘H into the enlarged Hilbert 
space embedding it. On the other hand, any real eigenvalue of H,,,, generates 
a unitary dynamics which preserves the probability within ‘H. Hence it is also 
an eigenvalue of H,,, and its eigenvectors are the eigenvectors of the restriction 
Hme,(w. Therefore, as a general rule, the theorem of Sec. 7.1 can be applied also 
to non-Hermitian measurement Hamiltonians ‘Time,, provided one restricts one’s 
attention only to  their real eigenvalues. 

- 

The eigenspace So corresponding to N = 0 is spanned by four vectors 

so = {IOOO), I O O l ) ,  lolo), loll)), (156) 
where l O j t j 2 )  denotes a state with no photons in the cavity and the atoms in state 
l j l ) l l j 2 ) 2 .  The restriction of H,,, to  Sois the null operator 

HmeasIso 01 (157) 
hence So is a subspace of the eigenspace l i p o  of H,,, belonging to  the eigenvalue 
770 = 0 

SO C  PO, HrneasPo = 0. (158) 

(159) 

The eigenspace S1 corresponding to N = 1 is spanned by eight vectors 

s1 = {1020), 1002), IW, IW, IW, 1021), 1012), 1111)), 
and the restriction of H,,, to  &is represented by the 8-dimensional matrix 

‘ 0  0 0 ig 0 0 0 0 
0 0 0 0 ig 0 0 0 
0 0 - i K 0  0 0 0 0 

-ig 0 0 -2K 0 0 0 0 
0 -2g 0 0 -2K 0 0 0 
0 0 0 0 0 0 0 ig 
o o o o o o o i g  

\ 0 0 0 0 0 - i g - i g  -iK 

It is easy to prove that the eigenvector (1021) - 1012))/fi has eigenvalue 770 = 0 and 
all the other eigenvectors have eigenvalues with negative imaginary parts. Moreover, 
all restrictions Hme,I~, with n > 1 have eigenvalues with negative imaginary parts. 
Indeed they are spanned by states containing at least one photon, which dissipates 
through the nonideal mirrors, according to  - iKb tb  in (152). The only exception 
is state 10,2,2)of Sz, but also in this case it easy to  prove that all eigenstates of 
Hme,Isz dissipate. In conclusion, blending these results with (156), one infers that 
the eigenspace ‘Hpo of H,,, belonging to the eigenvalue 770 = 0 is 5-dimensional 
and is spanned by 

‘HP, = {IOOO), IOOl ) ,  lolo), loll), (1021) - lOl2))/Jz}, (161) 
If the coupling g and the cavity loss K are sufficiently strong, any other weak 
Hamiltonian H added to  (152) reduces to  PoHPo and changes the state of the 
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system only within the decoherence-free subspace (161). This corroborates the 
conclusions of 57 and completely characterizes the decoherence-free subspaces in 
this example. This could be relevant for practical applications. 

12 Spontaneous decay in  vacuum 

Our last example deals with spontaneous decay in vacuum. Let 

This describes the spontaneous emission 11) + (2) of a system into a (structured) 
continuum, while level 12) is resonantly coupled to a third level 13) 20. The quantity 
y represents the decay rate t o  the continuum and TZ is the Zen0 time (convexity of 
the initial quadratic region). This case is also relevant for quantum computation, 
if one is interested in protecting a given subspace (level 11)) from decoherence by 
inhibiting spontaneous emission. A somewhat related example is considered in 58. 
Model (162) is also relevant for some examples analyzed in 56 and 57, but we will 
not elaborate on this point here. 

Notice that, in a certain sense, this situation is complementary to that in (152); 
here the measurement Hamiltonian H,,, is Hermitian, while the system Hamil- 
tonian H is not. Again, one has to enlarge the Hilbert space, as in Secs. 5.1 and 
11, apply the theorem to the dilation and project back the Zen0 evolution. As a 
result one can simply apply the theorem to the original Hamiltonian (162), for in 
this case H,,,, has a complete set of orthogonal projections that univocally defines 
a partition of IH into Zen0 subspaces. We shall elaborate further on this interesting 
aspect in a future paper. 

As the Rabi frequency K is increased, one is able to hinder spontaneous emission 
from level 11) (to be “protected” from decay/decoherence) to level 12). However, 
in order to get an effective “protection” of level Il), one needs K > 1/72, More to 
this, if the initial state 11) has energy w1 # 0, an inverse Zen0 effect takes place 25 

and the requirement for obtaining QZE becomes even more stringent 24,  yielding 
K > 1/7gy. Both these conditions can be very demanding for a real system subject 
to dissipation 2 0 , 2 4 3 2 7 .  For instance, typical values for spontaneous decay in vacuum 
are y N 

We emphasize that the example considered in this subsection is not to be re- 
garded as a toy model. The numerical figures we have given are realistic and the 
Hamiltonian (162) is a good approximation at short (for the physical meaning of 
“short”, see 20,24,27) and intermediate times. 

7; N 10-29s2 and 1/7;y N 1020s-1 34. 

13 Conclusions 

The usual formulation of the QZE (and IZE) hinges upon the notion of pulsed 
measurements, according to von Neumann’s projection postulate. However, as 
we pointed out, a “measurement” is nothing but an interaction with an external 
system (another quantum object, or a field, or simply another degree of freedom of 
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the very system investigated), playing the role of apparatus. This remark enables 
one to  reformulate the Zen0 effects in terms of a (possibly strong or finely-tuned) 
coupling to an external agent and to cast the quantum Zen0 evolution in terms 
of an adiabatic theorem. We have analyzed several examples, which might lead 
to interesting applications. Among these, we have considered in some detail the 
possibility of tailoring the interaction so as to obtain decoherence-free subspaces, 
useful also for quantum computation. 
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DISCUSSION 
Chairman: T. Petrosky 

T. Petrosky: The mechanism seems to  be very simple, but the result is sur- 
prising. 

G .  Leuchs: My comment is about the use of the decoherence-free subspaces in 
quantum computing. Back in 1994, among the works on quantum error correction, 
the first proposal for protecting quantum information was to  use the Zen0 effect to  
consequently project to a symmetric subspace and thereby preventing the quantum 
qubit from getting out of that. 

S. Pascazio: Yes. Thank you. Since I am not very familiar with these old 
ideas in quantum computing, I am not sure that what I am going to say makes 
sense in that context. Assume that you are interested in the evolution in a given 
subspace and want to perform quantum computing in that subspace, but that 
subspace is leaking out, namely is decohering towards something else. This is a 
kind of exponential decay towards the environment. I can describe this situation 
by the Hamiltonian H in (162), which is not a bad approximation. I perform the 
evolution with the Hamiltonian H in its own subspace and find that this subspace 
leaks out with a certain decay rate. How could I perform a measurement in the 
Zen0 sense? I simply take H ,  couple it to H,,, and look at the evolution. The 
idea is that due to the strong coupling K between levels #2 and #3, the decay is 
suppressed. Even the experiment performed by Mark Raizen fits into this scheme. 
In the large coupling limit you get a superselection rule. The decaying subspace is 
isolated and the other subspace is also isolated (they’re both “Zeno” subspaces), 
but the time scales involved turn out to be extremely short. You need an extremely 
strong coupling of order 1 / ~ * ,  where T* = $7 is the transition time introduced in 
Ref. [24], in order to freeze your quantum state. The real problem is therefore the 
following. When the coupling is very strong I don’t trust my Hamiltonian anymore. 
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In the strong coupling regime you should go back to your theory and look at the 
Hamiltonian you started with. If you can trust your Hamiltonian, you can be sure 
that you obtain Zen0 at those timescales. If you don’t trust it anymore, you’d 
better look at your theory again and find a better Hamiltonian. As a general rule 
you have to  be careful, because your mathematics might not describe well your 
physics. For example, counter-rotating effects might become important and could 
not be neglected. I hope I have answered your question. 

I. Antoniou: I would like to understand the superselection rule, which ap- 
pears when you change the coupling parameter. In order to  have these quantum 
transitions you must have a continuous spectrum and resonances. If you have a 
continuous spectrum and resonances, you have spectral instabilities. How does this 
superselection rule appear? 

S. Pascazio: You are right. I did not give enough details. The theorem is 
proved by transforming the evolution in the interaction picture and rephrasing the 
theory in terms of an adiabatic evolution. In the limit of large coupling K the total 
space adiabatically splits into the Zen0 subspaces and a superselection rule appears. 
Of course one is assuming a discrete spectrum for the “measurement” Hamiltonian 
H,,,. When K is not too large, transitions between the different sectors are still 
allowed. So the point is to  evaluate the mistakes you make, which are the same as 
in adiabatic theory. You are often able to  evaluate the non-adiabatic transitions 
between subspaces and you can also look at the problems arising from crossings 
and from other details of your Hamiltonian. I completely agree that in general the 
problem of the appearance of superselection rules can be a very serious one, but in 
this case many factors can be efficiently controlled. 

L. Stodolsky: I would like to  comment on the argument about 1 - t2 at short 
times. This is a perfectly fine argument, of course. We never find the finite number 
of levels, but there is a problem when you go to  the continuum with a singular 
limit. As we all know, when you do scattering theory there are infinities that you 
have to deal with. It is not obvious whether you can take off your arguments, 
which you have for the two level system and apply them to the continuum. It is a 
mathematical problem. The argument of Michael Berry shows that this is different. 

E. C. G. Sudarshan: I completely disagree with what he said because we 
have exact solutions without any approximations. 

S. Pascazio: This question is a delicate one. Michael Berry’s argument is of 
general validity, when the coupling to  the continuum is flat. However, when you 
study physical systems in greater details, you have to  look at the exact coupling 
and form factors, yielding the exact survival amplitude. We looked in particular (in 
Ref. [34]) at the hydrogen atom with the exact relativistic QED matrix elements, 
without any assumptions and free parameters (the only constants are the electron 
charge and mass). How do you compute the evolution? The survival amplitude 
is expressed as an inverse Fourier-Laplace transform in the complex energy plane. 
You cut the plane, you go to  the second Riemann sheet and uncover the pole. 
The pole gives you the Weisskopf-Wigner term, while the contribution of the cut, 
which is of second order in the coupling constant, yields all deviations from the 
exponential law. The self-energy function in this case can be computed exuctly. 
For the 2P -+ 1s transition in the hydrogen atom this is a ratio of two known 
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polynomials plus a logarithmic term. 
A. Bohm: What is the pole? What is the vector that corresponds to  the pole? 
S. Pascazio: If you take the contribution of the pole plus the contribution 

of the cut, the exact evolution exhibits deviation from the exponential law and in 
particular a short-time quadratic region (see Ref. [34]). When you take only the 
pole contribution into account, the evolution is given by a pure exponential. Notice 
that this exponential is renormalized. The renornialization of the wave function 
yields Z,  which is 1-O(g2), where g is the coupling constant. By looking carefully 
at the renormalization procedure you get a Zen0 region also for a decaying atom. 
I should also say (I  agreed with Leo Stodolsky on this point) that the duration 
of the short-time Zen0 region for the hydrogen atom is very short, about lo-'* 
seconds. This is too short to be directly observed, but has important observable 
consequences at the level of the inverse Zen0 effect, see P. Facchi and S. Pascazio, 
Phys. Rev. A 62, 023804 (2000). 

W. Schleich: I want to stimulate the discussion during the coffee break by the 
following comment. As you have said already, this effect exists in many other fields 
of physics. In classical Newtonian statistical physics for short times if you take a 
larger number of particles you consider the Liouville equation. If you propagate it 
a little bit in time, you see that the average position always changes quadratically 
while the first moment changes linearly. This is the same effect. 

S. Pascazio: I agree that there is also a classical Zen0 effect. 
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FASTER-THAN-LIGHT PROPAGATIONS, NEGATIVE GROUP 
DELAYS, AND THEIR APPLICATIONS 

RAYMOND Y. CHIAO 
Department of Physics, University of California, Berkeley, CA 94720-7300, U. S. A.  

(E-mail: chiao@physics. berkeley. edu) 

Conceptual tensions between the three pillars of physics consisting of quantum 
mechanics, relativity, and statistical mechanics, will be reviewed. Relativity is 
not violated by our earlier experiments showing that quantum tunneling is super- 
luminal, nor by the recent observations of faster-than-c group velocities, including 
the recent Princeton NEC experiments, nor by our electronic circuit experiments, 
which demonstrate the existence of negative group delays. In fact, relativity does 
not forbid the group velocity in transparent optical media from exceeding c, nor 
the occurrence of seemingly anti-causal negative group delays in any other linear- 
response media. We have observed such counter-intuitive behaviors in electronic 
circuits, in particular, the occurrence of negative group delays of analytic signals, 
in which the peak of an output pulse leaves the exit port of the circuit before the 
peak of the input pulse enters the input port. Moreover, we predict that similar 
negative group delays will occur for atomic wavepackets incident at low energies 
on an atomic BEC. Some applications of these counter-intuitive effects, including 
the speeding up of computers, will be discussed. 

1 Introduction 

For this 22nd International Solvay Conference in Physics, let us begin by broad- 
ening the discussion that Einstein and Bohr had during the 20th century Solvay 
Conferences, which concerned mainly quantum mechanics, to include a discussion 
of the three pillars of physics, as they stand at the beginning of the 21st century, 
viz., quantum mechanics, relativity, and statistical mechanics. These three pillars 
correspond to  the three 1905 papers of Einstein, and can be represented by three 
circles in a Venn-like diagram (see Figure 1). Even today, there exist conceptual 
tensions at the intersections of these three circles. 

Why examine conceptual tensions? A brief answer is that they often lead t o  new 
experimental discoveries. It suffices to  give just one example from 19th and early 
20th century physics: the clash between the venerable concepts of continuity and of 
discreteness. Since this conference is being held in Greece, it is appropriate to  trace 
these concepts back to  their early Greek roots. The concept of continuity, which 
goes back to the Greek philosopher Heraclitus (“everything flows”)., clashed with the 
concept of discreteness, which goes back to Democritus (“everything is composed 
of atoms”). Eventually, Heraclitus’ concept of continuity, or more specifically that 
of the continuum, was embodied in the idea of field in the classical field theory 
associated with Maxwell’s equations. The atomic hypothesis of Democritus was 
eventually embodied in the kinetic theory of gases in statistical mechanics. 

Experiments on blackbody radiation in the 19th century were exploring the 
intersection, or borderline, between Maxwell’s theory of electromagnetism and sta- 
tistical mechanics, where this conceptual tension was most acute, and eventually led 
to  the discovery of quantum mechanics through the work of Planck. The concept 
of discreteness was thereby embodied in the concept of the quantum. This led in 

287 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



288 

Figure 1. Three pillars of physics at the beginning of the 21st century, represented in a Venn-like 
diagram: Quantum Mechanics, represented by Planck’s constant h; Relativity, represented by the 
speed of light c; Statistical Mechanics and Thermodynmics, represented by Boltrmann’s constant 
ka. At the beginning of the 20th century, Planck, working at the intersection of these three 
circles, discovered quantum mechanics. That his discovery involved all three fields of physics is 
indicated by the fact that his formula for blackbody radiation involved all the three fundamental 
constants, h, c, and ke. 

turn to the concept of discontinuity embodied in Bohr’s quantum jump hypothesis, 
which was necessitated by the indivisibility of the quantum. Experiments, such 
as Millikan’s measurements of hle ,  were in turn motivated by Einstein’s heuristic 
theory of the photoelectric effect based on the quantum hypothesis. This is a 
striking example showing that many fruitful experimental consequences can come 
out of one particular conceptual tension. 

Now it may at once be objected that in drawing Figure 1, one is assuming that 
statistical mechanics is on an equal footing with quantum mechanics and relativity. 
One common viewpoint is that statistical mechanics is not as fundamental as quan- 
tum mechanics, from which it can in principle be derived, nor is it as fundamental 
as relativity, since the notion of spacetime underlies all statistical mechanical and 
thermodynamic phenomena. However, this may not be not so. For example, it  
may turn out to be the case that the concept of spacetime itself is valid only in the 
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thermodynamic limit. 
Furthermore, it is well known that in the problem of measurement in quantum 

mechanics, one must introduce the notion of irreversibility, which is fundamentally 
a thermodynamic concept arising from the second law, into the description of all 
observable quantum phenomena, before they can become physically meaningful. 
Wheeler, following Bohr, has emphasized the important role played by irreversibility 
in the process of quantum measurement in the following statement ’: 

“A phenomenon is not yet a phenomenon until it has been brought to 
a close by an irreversible act of amplification such as the blackening of 
a grain of silver bromide emulsion or the triggering of a photodetector.” 
[Italics mine.] 

Moreover, the irreversible arrow of time of statistical mechanics also enters in 
a fundamental way into relativity, at the point where Einstein introduced into the 
light-cone structure of spacetime the important distinction between past and future 
light-cones. This distinction is based on a common-sense notion of causality, in 
which only past events can be causally connected to  future events, a notion which 
fundamentally requires the existence of an irreversible arrow for time. This step 
taken by Einstein in special relativity is quite similar in spirit to  the ad hoc step 
in classical electrodynamics, in which, again on the basis of common sense, one 
discards the advanced Green function solution, in favor of the retarded solution. 
However, Wheeler and Feynman have shown that one can retain both advanced and 
retarded solutions in such a way as to be consistent with relativistic causality ’. 

At the intersections of these fields, there exist certain deep conceptual tensions 
such as: 

(I) Reversibility versus irreversibility of time. 

(11) Objectivity versus subjectivity of probabilities. 

(111) Locality versus nonlocality of space. 

(I) First, there is the profound problem of the “arrows of time,” that is, the 
apparent irreversibility of time, versus the reversibility of most of the fundamental 
processes of microscopic physics. However, there exists a very fundamental micro- 
scopic process in which a breakdown of time-reversal symmetry occurs, which has 
been observed in the weak decays of the K (and, according to preliminary data, 
the B) mesons. It is unclear how this microscopic arrow of time is related to the 
other arrows of time, but some physicists argue that in any case, in any eventual 
hierarchy for the arrows of time, this arrow must be the most fundamental one, 
since it is the most microscopic one. In two recently proposed views concerning 
the hierarchy of the various arrows of time ’, both place this microscopic arrow at 
the most fundamental level, from which all the other arrows of time must somehow 
originate. According to  these viewpoints, any theory which ignores the existence of 
this microscopic arrow of time must be regarded with suspicion as being not truly 
fundamental. 

At the macroscopic level, it is well known that the phenomenon of irreversibility 
originates from the second law of thermodynamics. Closely connected with this 
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thermodynamic arrow of time are the physiological and psychological arrows of 
time. The question naturally arises: Is the irreversibility of time observed in the 
macroscopic world a fundamental feature of the physical world, or is it a law that 
appears only as a practical necessity in describing the macroscopic world, or in the 
words of Bell, true only “For All Practical Purposes (FAPP)”? 

There also exist two other closely related, macroscopic arrows of time, namely, 
the cosmological arrow arising from the expansion of the universe, and the elec- 
tromagnetic arrow of time, imposed by the boundary conditions for the radiation 
field at infinity (i.e., “black-universe” boundary conditions ’). For example, the 
use of these boundary conditions implies that a spontaneously emitted photon from 
an atom escapes into a black universe, never t o  return, FAPP. This suggests that 
there may be a nested hierarchy of arrows of time, starting from the microscopic to 
the macroscopic ’. However, this problem is still far from a satisfactory solution, 
in my opinion. 

(11) Second, the concepts of probability in quantum mechanics and in statistical 
mechanics are quite different in nature. In statistical mechanics, probabilities are 
subjective, in the sense that it is our ignorance of all the microscopic physical 
conditions necessary to specify completely a system, which is the source of an 
apparent randomness in these systems. For example, in the kinetic theory of 
gases in classical statistical mechanics, if we have all the necessary information for 
the positions and velocities as initial data for all the particles in a box, we could 
in principle follow all the Newtonian trajectories of each particle with complete 
certainty, and there would be no fundamenta l  randomness in system at all. In 
quantum mechanics, by contrast, probabilities are objective, since it is not our 
ignorance, but an in-principles unknowability arising from the uncertainty principle, 
which is the origin of a truly fundamental  randomness in physical systems. Closely 
related to the problem of the nature of probabilities is the problem of the nature 
of information. Is information truly physical, as indicated by Landauer’s principle 
for computers, and therefore objective, or is it  merely a measure of the subjective 
state of our knowledge or our ignorance of system? 

(111) Third, locality is a fundamental notion in relativity and all of classical 
physics, whereas nonlocality, in the sense of the spatial nonseparability of physi- 
cal systems, is a ineluctable consequence of the quantum mechanics. This is best 
illustrated by the Einstein-Podolsky-Rosen (EPR) effects for two particles in an 
entangled state. Experiments have shown that such systems violate Bell’s inequal- 
ities, so that physical systems are, in general, fundamentally nonseparable. 

2 

I shall examine the outgrowth of one particular conceptual tension between quan- 
tum mechanics and relativity, namely, the one connected with the question: How 
fast does a particle traverse a tunnel barrier? Our experiments at Berkeley have 
shown that the particle tunnels superluminally through the barrier. For earlier 
reviews of this subject, see and 5 ,  in which the data showing the phenomena of 
superluminal tunneling times of photons, the various theories of tunneling times, 
and the theoretical predictions of superluminal light pulse propagation in transpar- 

Experiments on superluminal group velocities 
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ent media, were critically reviewed. Here, I shall discuss some other recent ex- 
perimental and theoretical developments concerning faster-than-light propagation 
phenomena in optics, electronics, and condensed matter physics. I hope thereby 
to be able to  help and correct the commonly held, but mistaken, belief that only 
the phase velocity in a medium can exceed c, but not the group velocity. Several 
situations in which the group velocity in fact exceeds c will be discussed, and some 
applications of these phenomena, such as to  speed-up of computer circuits by us- 
ing negative group delays to  cancel out deleterious positive group delays, will be 
pointed out. These ideas will then be applied to  novel situations in condensed mat- 
ter physics, such as to  the transmission of helium atoms through a slab of superfluid 
helium, or of atoms identical to those in a condensate, through an atomic Bose- 
Einstein condensate. The transmission times of such atoms, under the appropriate 
experimental conditions, can be negative, and should be clearly observable '. 

2.1 

A simple phasor picture (see Figure 2) helps explain how such superluminal group 
velocities can occur for all kinds of waves (e.g., for light and for matter waves), 
in complete generality. The peak of a Gaussian wave packet, indicated by point 
B in Figure 2, is the moment when all the phasors which represent the various 
Fourier components of the wave packet, line up in a straight line, so that the 
resultant phasor has a maximum amplitude. Therefore, the peak of the wave packet 
represents a point of maximum constructive interference. By the same token, a 
point in the early part of the wave packet where the amplitude is small, represented 
by point A in Figure 2, is a moment of almost total destructive interference, in which 
the same phasors curl up to form a polygon which almost closes in on itself. Hence, 
the resultant amplitude at point A in the early tail of the Gaussian wave packet, is 
small. 

After propagation through a dispersive medium, there is no physical reason why 
the phasors at the early point A cannot precess due to dispersion, in such a way 
that the curled-up polygon becomes uncurled, forming a large resultant phasor at  
point A'. The phasors at this point are now aligned in constructive interference, 
and the peak occurs earlier in time in the wave packet compared with what would 
have happened in the vacuum. By the same reasoning, the aligned phasors at 
point B now curl up to form a polygon which almost closes in on itself, leading 
to almost total destructive interference at point B' in the trailing tail of the wave 
packet. The result is an advancement  of the entire Gaussian wave packet relative 
to vacuum propagation; this occurs whenever the spectrum of this wave packet lies 
in a region of negative wave-number dispersion relative to that of the vacuum. In 
the case of optics, this can occur in a spectral region of anomalous dispersion. 

Furthermore, if the dispersion in the group velocity vanishes at the carrier fre- 
quency, the entire wave packet can propagate superluminally with negligible change 
in shape. Moreover, by the superposition principle, one can add up many such 
wave packets to form an arbitrary, analytic waveform, which can propagate faster 
than c with negligible distortion. 

Much more commonly, the medium possesses a posit ive dispersion, and the pha- 

Phasor description of superluminal propagation 
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pekphasors all line up 

> time 

wing: phasors nearly 
(destructive interference) 

> time 
w 
pulse advancement 

Figure 2. Phasor description of superluminal propagation. 

sors precess in the opposite sense from the above case of negative dispersion. There 
results a retardation of the Gaussian wave packet relative to  vacuum propagation, 
rather than an advancement. For example, in optical media such as ordinary 
glass, one normally observes subluminal pulse propagation in spectral regions of 
normal dispersion. Nevertheless, the underlying physical mechanisms for both the 
retardation and the advancement of the wave packet are identical, apart from the 
sign of the precession of the phasors, and both are possible in principle. 

However, it should be emphasized that there are conditions on the above phasor- 
precession processes, which must be fulfilled before they can be physically signif- 
icant. In general, the group advancements or retardations of an incident wave 
packet will be destroyed by the decoherence of the system. For example, in the 
optical case it is necessary to maintain the phase coherence of a light pulse during 
the phasor-precession process which produces the advanced peak; otherwise, the 
constructive interference will be destroyed. In particular, for an optical medium 
with gain, stimulated emission must always be accompanied by spontaneous emis- 
sion. Hence, spontaneous emission will lead to  phasor decoherence, and this will 
limit the maximum possible amount of superluminal advancement *. One possible 
definition of a signal velocity in terms of a signal-to-noise ratio which is limited by 
amplified spontaneous emission, leads to  a velocity which is less than c ’. Thus, 
signals so defined cannot propagate faster than c. 

Why do such superluminal pulse propagation phenomena not violate relativity? 
The answer can be seen in Figure 3, where the Gaussian wave packet is multiplied 
by a step function, such that there results a f ront  in its early tail, ahead of which 
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Figure 3. Front defined by discontinuity. 

the electromagnetic field is strictly zero. Here, all phasors representing the field 
ahead of the front have strictly zero length. Since the discontinuity at the front 
contains Fourier components of infinite frequency, where the index of refraction of 
any dispersive medium approaches unity, it follows that the front velocity is exactly 
c, as was pointed out by Sommerfeld and Brillouin lo. Although the peak of the 
Gaussian wave packet moves at the group velocity, which may exceed c, this peak 
can never overtake the front. The reason is that there is no way that phasors of zero 
length ahead of the front can ever produce a resultant phasor of finite length. Thus, 
no signal can overtake the front, and this sets a fundamental limit on superluminal 
pulse propagation, in agreement with the principle of causality in special relativity. 

It is important to distinguish between two kinds of signal waveforms: analytic 
waveforms, such that of a Gaussian wave packet, and nonanalytic wave forms, such 
as that of a step function. Any small but finite piece of the the early part of an 
analytic wave form can be extrapolated into the future by means of a Taylor series; 
therefore, there is no surprise associated with the arrival of any of the features of 
the subsequent waveform, including its peak. Conversely, the same extrapolation 
of the signal ahead of the Sommerfeld front would predict that the waveform would 
remain identically zero for all time. When the front arrives, there is a genuine 
surprise associated with its arrival ll. This suggests another definition of signal 
velocity in terms of discontinuities ‘. Again, signals so defined cannot travel faster 
than c. 

However, other definitions of “signal velocities” that differ from this one have 
been proposed. Perhaps the oldest definition is that the signal velocity is simply 
the group velocity. For a discussion of this possibility, see the article by Nimtz in 
this volume, and also the earlier review ‘. One of the earliest other alternative 
definitions of “signal velocity” was formulated in Brillouin’s book Group Velocity 
and Wave Propagation lo in terms of the half-maximum amplitude velocity. Both 
of these alternate definitions suffer from the fact that under the circumstances of 
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Wang’s experiment, “signals” so defined travel faster than light, which leads to the 
false impression that relativistic causality is somehow violated. 

An important special case of superluminal propagation occurs when the group 
velocity becomes negative. Recent optical experiments at Princeton NEC l2 have 
verified my prediction that superluminal pulse propagation, in particular, propa- 
gation even with a negative group velocity, can occur in transparent media with 
optical gain 13.  These experiments have shown that a laser pulse can indeed propa- 
gate with little distortion in an optically pumped cesium vapor cell with a negative 
group velocity 14: The peak of the output laser pulse left the output face of the cell 
before the peak of the input laser pulse entered the input face of the cell. This 
implies a negative time offlight of the pulse through the cell. A negative-time- 
of-flight process is represented in Figure 4 by a zigzag world-line for the motion of 
the peak of the wave packets. Note that a time slice through the middle of the 
zigzag world-line shows that at that moment, three wave packets are simultane- 
ously present in the system: the input wave packet propagating to  the right, whose 
peak is about to enter the input face of the cell, a wave packet propagating to the 
left, which is in the middle of the cell, and an output wave packet propagating to 
the right, whose peak has already left the output face of the cell. 

The question immediately arises as to  how energy can be conserved in such a 
process. One answer is that there can be optical gain, for example, through the 
population inversion of an atomic system: the atoms can then possess enough extra 
energy which can then be “loaned” to  the light in order to  produce the two extra 
pulses at point ,O at the output face of the medium, in a process reminiscent of “pair 
creation” (in the sense of the creation of a pair of wave packets). The borrowed 
energy is later restored to the inverted atomic system at point CY at the input face 
of the medium, in the process reminiscent of “pair annihilation” (in the sense of 
the annihilation of a pair of wave packets). Note that for this zigzag process, if 
one were to double the cell length, the output laser pulse would have to  come out 
twice as early. 

This process is reminiscent of the zigzag world line introduced by Feynman 
in quantum electrodynamics shown in Figure 5(b). In this diagram, Feynman 
interpreted the backwards-in-time propagation of a particle (an electron) as the 
forwards-in-time propagation of an antiparticle (a positron). Point b, which cor- 
responds to electron-positron pair creation in the vicinity of a nucleus of charge 
+Ze, occurs earlier in time than point a, which corresponds to  pair annihilation 
in the vicinity of the nucleus. The net result of this Feynman process is that the 
peak of the scattered electron wave packet comes out earlier from the scattering 
region than when it entered 15. This is in contrast to  the more intuitive process 
shown in Figure 5(a), where the electron wave packet comes out later from the 
scattering region than when it entered. Both processes are possible, and must be 
added coherently when the final states are indistinguishable. However, there is 
a fundamental limit on the magnitude of the wave packet advancement associated 
with the counter-intuitive zigzag diagram. Note that the intermediate state con- 
sisting of the positron portion of the zigzag is a virtual state. The energy-time 
uncertainty principle 

A E A t  N h, (1) 
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Figure 4. Zigzag world-line diagram. 

allows the temporary borrowing of the energy A E  from the nuclear Coulomb field 
at point b, as long as the borrowed energy is paid back later at point a after a 
short time At, where At is the duration of the intermediate state during which the 
positron exists. The resulting negative group delay for the scattered electron wave 
packet is plotted schematically in Figure 6. Note that there results a “negative 
Hartman effect,” in which a negative group delay saturates at a value given by the 
above uncertainty principle. This behavior is analogous to  the positive Hartman 
effect seen for wave packets which tunnel through a barrier. In this effect, the 
tunneling particle experiences a positive group delay, which saturates for thick 
barriers at a positive value given by the uncertainty principle. The Hartman effect 
l6 represents the thick-barrier limit of the Wigner tunneling time 17, which is also 
plotted in Figure 6, for the sake of comparison. 

We performed some early experiments on the speed of the quantum tunneling 
process 18. We found that a photon tunneled through a barrier at an effective 
group velocity which was faster than c. In these experiments, spontaneous para- 
metric down-conversion was used as a light source which emitted randomly, but 
simultaneously, two photons at a time (i.e., photon “twins”). These photons were 
detected by means of two equidistant Geiger counters (silicon avalanche photodi- 
odes), so that the time at which a “click” was registered was interpreted as the time 
of arrival of the photon. Coincidence detection was used to  detect these photon 
twins. One photon twin traverses a tunnel barrier, whilst the other traverses an 
equal distance in the vacuum. 

The idea of the experiment was to measure the time of arrival of the tunnel- 
ing photon with respect to  its twin, by measuring the time difference between 
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Figure 5. Feynman processes in QED for multiple scattering of an electron from a nuclear (+Ze) 
Coulomb field. In the zigzag process (b), pair creation occurs at point b before pair annihilation 
occurs at  point a. Lorentz transformations leave the interval between a and b space-like, and 
hence “superluminal.” 

Wigner time I) Hartman effect 

AE At -3 I, Negative Hartman effect 

Figure 6. Positive group delays in Wigner tunneling time lead to a positive Hartman effect; neg- 
ative group delays (see Figure 5(b)) lead to a negative Hartman effect. 

the two “clicks” of their respective Geiger counters. (We employed a two-photon 
interference effect in the Hong-Ou-Mandel interferometer l9 in order to achieve suf- 
ficient time resolution.) The net result was surprising: On the average, the Geiger 
counter registering the arrival of the photon which tunneled through the barrier 
clicked earlier than the Geiger counter registering the arrival of the photon which 
traversed the vacuum. This indicates that the process of tunneling in quantum 
physics is superluminal. 

The earliest experiment to demonstrate the existence of faster-than-c group 
velocities was performed by Chu and Wong at Bell Labs. They showed that 
picosecond laser pulses propagated superluminally through an absorbing medium 
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in the region of anomalous dispersion inside the strong optical absorption line ’O. 
This experiment was reproduced in the millimeter range of the electromagnetic 
spectrum by Segard and Macke ’l. These experiments verified the prediction of 
Garrett and McCumber 22 that Gaussian pulses of electromagnetic radiation could 
propagate with faster-than-c group velocities in regions of anomalous dispersion 
associated with an absorption line. Negative group velocities were also observed 
to  occur in these early experiments. However, these kinds of superluminal pulse 
propagation phenomena were not known to occur in transparent optical media at 
the time. 

Subsequently, we observed these counter-intuitive pulse sequences in experi- 
ments on electronic circuits 23. In the first of these experiments, we used an 
electronic circuit which consisted of an operational amplifier with a negative feed- 
back circuit containing a passive RLC network. This circuit produced a negative 
group delay similar to that observed in the recent optical pumping experiment ”: 
The peak of the output voltage pulse left the output port of the circuit before 
the peak of the input voltage pulse entered the input port of the circuit. Such a 
seemingly anti-causal phenomenon does not in fact violate the principle of causal- 
ity, since there is sufficient information in the early portion of any analytic voltage 
waveform to  reproduce the entire waveform earlier in time. We showed that causal- 
ity is solely connected with the occurrence of discontinuities, such as “fronts” and 
“backs” of signals, and not with the peaks of voltage waveforms, and, therefore, 
that causal loop paradoxes could never arise 24. Since there was gain in these 
electronic circuits, the output signal was not strongly attenuated, in contrast to  
the earlier optical experiments. 

I believe that these counter-intuitive ideas can be applied to  the design of micro- 
electronic devices, in particular, computer chips 2 5 .  This is timely, since it is widely 
believed that Moore’s law for microprocessor performance will fail to  hold in the 
next decade due to a “brick wall” arising from fundamental physical limitations 26. 

Therefore, there have been many proposals for new transistor technologies to try 
to  solve this problem 2728. At the present time, the “transistor latency” problem 
is one of the main factors limiting computer performance, although the “propaga- 
tion delays” due to  the RC time constants in the interconnects between individual 
transistors on a computer chip are beginning to  be another serious limiting fac- 
tor. As the scale of microprocessor circuits fabricated on a silicon wafer is reduced 
to  become ever smaller in size, the transistor switching time becomes increasingly 
faster, but the propagation delay from transistor to  neighboring transistor becomes 
increasingly longer 29. This will still be true even after new technologies to replace 
MOSFETS with faster devices are implemented. 

3 General principles for negative group delays in electronic circuits 

We now begin our discussion of superluminal effects in electronic circuits, using 
the concept of negative group delays as the starting point. Electronic circuits 
are usually very small in size compared with the wavelengths corresponding to  the 
typical frequencies of operation of these circuits; thus, the retardation due to the 
speed of light across these circuits is usually negligible. Nevertheless, a concatena- 
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Figure 7. Operational amplifier circuit with negative feedback. 

tion of such negative-delay circuits interspersed periodically along a transmission 
line, could lead to  superluminal propagation of pulses with a negative group veloc- 
ity. Hence, we focus here only on how a negative group delay can be generated in 
general. 

3.1 Negative group delays necessitated by the “Golden Rule” for operational 
amplifier circuits with negative feedback 

In Figure 7, we show an operational amplifier with a signal entering the noninverting 
(+) port of the amplifier. The output port of the amplifier is fed back to  the 
inverting (-) port of the amplifier by means of a black box, which represents a 
passive linear circuit with an arbitrary complex transfer function F ( w )  for a signal 
at frequency w. We thus have a linear amplifier circuit with a negative feedback 
loop containing a passive filter. In general, the transfer function of any passive 
linear circuit, such as a RC low-pass filter, will always lead to apositive propagation 
delay through the circuit. 

However, for operational amplifiers with a sufficiently high gain-feedback prod- 
uct, the voltage difference between the two input signals arriving at the inverting 
and noninverting inputs of the amplifier must remain small at all times. The oper- 
ational amplifier must therefore supply a signal with a negative group delay at its 
output, such that the positive delay from the passive filter is exactly canceled out 
by this negative delay at  the inverting (-) input port. The signal at the inverting 
(-) input port will then be nearly identical to  that at the noninverting (+) port, 
thus satisfying the “Golden Rule” which demands small voltage differences at all 
times. The net result is that this negative feedback circuit will produce an output 
pulse whose peak leaves the output port of the circuit be f o r e  the peak of the input 
pulse arrives at the input port of this circuit. 

In Figure 8, we show experimental evidence for this counter-intuitive behavior 
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Figure 8. Experimental results showing the pulse advancement. 

for the special case of an RLC tuned bandpass circuit in the negative feedback 
loop 23. The peak of an output pulse is advanced approximately by 12 milliseconds 
relative to  the input pulse. The output pulse has obviously not been significantly 
distorted with respect to  the input pulse by this linear circuit, apart from a slight 
amplification factor. Also, note that the size of the advance of the output pulse 
is comparable in magnitude to  the width of the input pulse. At these very low 
frequencies, the role of spontaneous emission is entirely negligible, and the pulse 
advance can obviously satisfy Rayleigh’s criterion for pulse resolution, as can be 
seen by inspection of the data shown in Figure 8. 

That causality is not violated is demonstrated in a second experiment, in which 
the input signal voltage is very suddenly shorted to zero the moment it reaches 
its maximum. By inspection, we see that the 
output signal is also very suddenly reduced to zero voltage at  essentially the same 
instant in time that the input signal has been shorted to zero. This demonstrates 
that the circuit cannot advance in time truly discont inuas  changes in voltages: 
These are the only points on the signal waveform which are directly connected by 
the principle of causality 24. However, for the analytic changes of the input signal 
waveform, such as those in the early part of the Gaussian input pulse which we 
used, the circuit evidently has the ability to  extrapolate the input waveform into 
the future, in such a way as to  reproduce the output Gaussian pulse peak before 
the input pulse peak has arrived. In this sense, the circuit anticipates the arrival 
of the Gaussian pulse. 

The result is shown in Figure 9. 
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Figure 9. Experimental results showing that discontinuities cannot be advanced. 

3.2 The “Golden Rule” and the inversion of the transfer function of any 
passive linear circuit 

Now we shall analyze under what conditions the “Golden Rule” holds and negative 
group delays are produced. In Figure 7, A (w )  denotes the complex amplitude of 
an input signal of frequency w into the noninverting (+) port and B (w)  refers to  
that of the feedback signal into the inverting (-) port of the amplifier. The output 
signal 8 (w )  is then related to  the feedback signal k ( w )  by means of the complex 
linear feedback transfer function F (w) (the black box) as follows: 

- 

E (w)  = F ( w ) 2  (w)  . (2) 

The voltage gain of the oTerationa1 amplifier is characterized by the active complex 
linear transfer function G (w) ,  which amplifies the difference of the voltage signals 
at the (+) and (-) inputs to produce an output signal as follows: 

2; (w )  = E (w )  (A@) - E ( w ) )  . (3) 

Defining the total complex transfer function ? (w) 2; (w )  /A” ( w )  as the ratio of the 
output signal 8 (w )  to input signal 1 (w ) ,  we obtain for the total transfer function, 

- 5 ( w )  T (w )  = 
1 + F (w )  E (w )  . (4) 
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Figure 10. Circuit with RC filter placed before the negative feedback circuit. 

If the gain-feedback product is very large compared to  unity, i.e., 

I F ( w ) z I ( w ) /  >> 1, (5) 

we see that to a good approximation this leads to the inversion of the transfer 
function of any passive linear circuit by the negative feedback circuit, i.e., 

T ( w ) z l / F ( w ) =  ( “ w ) ) - ‘ .  

This also implies through Eq. (2), that the “Golden Rule,” 

A” (w )  = E (w )  , (7) 
holds under these same conditions. Equation (6) also implies that the negative 
feedback circuit shown in Figure 7 can completely undo any deleterious effects, such 
as propagation delays, produced by a linear passive circuit (whose transfer function 
is identical to F ( w ) )  when it is placed before this active device. 

In Figure 10, we show one example, where an RC low-pass filter is placed before 
the negative feedback circuit. The positive propagation delay - r ~ ( ~ ,  due to  this RC 
low-pass circuit, can in principle be completely canceled out by the negative group 
delay produced by the active circuit with the same RC circuit in its feedback loop. 
This will be true in general for any linear passive circuit, if an identical copy of the 
circuit is placed inside the negative feedback loop of the active device. The group 
delay of the negative feedback circuit in the high gain-feedback limit is then given 
by 

darg (1/F ( w ) )  d arg ( w )  - 
- -?qw,. ( 8 )  - -  - darg T (w )  

N 

dw dw dw 7- - 
T ( w )  - 

This shows that the positive group delay from any linear passive circuit can in 
principle be completely canceled out by the negative group delay from a negative 
feedback circuit. 
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0 Time (ms) 1 .o 
Figure 11. VOut with (upper) and without (lower) the negative feedback. 

It is important to note that this negative feedback scheme places a requirement 
on the gain-bandwidth product of the amplifier. For this active circuit to advance 
the waveform, it must have a large gain at all of the frequency components present 
in the signal. In particular, if we want to counteract a particular RC time delay, 
the amplifier must have a large gain at frequencies greater than l /RC. 

3.3 Data demonstrating the elimination of propagation delays f r o m  RC t ime 
constants by means of negative group delays 

In a recent, simple experiment with the circuit shown in Figure 10, we obtained 
the data shown in Figure 11, of the outputs from a square wave input into an RC 
low-pass circuit, with (in the upper trace), and without (in the lower trace) negative 
feedback. It is clear by inspection of the data in Figure 11, that the propagation 
delays due to the RC time constant on both the rising and falling edges of the square 
wave have been almost completely eliminated by means of the negative feedback 
circuit. However, there is a ringing or overshoot phenomenon accompanying the 
restoration of the rising and falling edges. Since the CMOS switching levels between 
logic states occur within 10% of zero volts for LO signals, and within 90% of volt- 
level HI signals 25, the observed ringing or overshoot phenomenon is not deleterious 
for the purposes of computer speedup. 

It is clear from these data that not only the RC time constants associated with 
transistor gates (the “latency” problem), but also the RC “propagation delays” from 
the wire interconnects between transistors on a computer chip, can in principle be 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



303 

eliminated by means of the insertion of negative feedback elements. In particular, 
the finite rise time of a MOSFET arising from its intrinsic gate capacitance can be 
eliminated. 

3.4 

In the optical domain, there has been a debate concerning whether or not the 
velocity of energy transport by the wave packet can exceed c when the group velocity 
of a wave packet exceeds c. In the case of anomalous dispersion inside an absorption 
line, Sommerfeld and Brillouin showed that the energy velocity defined as follows: 

Energy transport by pulses in the optical and electronic domains 

where (S) is the time-averaged Poynting vector and (u) is the time-averaged energy 
density of the electromagnetic wave, is d i f f e r e n t  from the group velocity 1033. 
Whereas the group velocity in the region of absorptive anomalous dispersion exceeds 
c,  they found that their energy velocity is less than c. Experiments on picosecond 
laser pulse propagation in absorptive anomalous dispersive media, however, show 
that these laser pulses travel with a superluminal group velocity, and not with the 
subluminal energy velocity of Sommerfeld and Brillouin ’O. Hence, the physical 
meaning of this energy velocity is unclear. 

When the optical medium possesses gain, as in the case of laser-like media 
with inverted atomic populations, there arises ambiguities as to  whether or not 
to include the energy stored in the inverted atoms in the definition of (u) or not 
3435. However, in regions of anomalous dispersion well outside of the gain line, and, 
in particular, in a spectral region where the groupvelocity dispersion vanishes, a 
straightforward application of Sommerfeld and Brillouin’s definition of the energy 
velocity would imply that the group and energy velocities both exceed c. The 
equality of these two kinds of wave velocities arises because the pulses of light are 
propagating inside a transparent medium with little dispersion. In particular, in 
the case when the energy velocity is negative, the maximum in the pulse of energy 
leaves the exit face of the optical sample be f m e  the maximum in the pulse of energy 
enters the entrance face. A recent paper defined the energy velocity in terms of a 
time expectation integral over the Poynting vector without any use of the concept 
of “energy density,” and therefore avoids the above ambiguities associated with the 
definition of the energy density of the optical medium 36.  The result is that the 
energy velocity so defined can be superluminal. 

In the case of the electronic circuit with negative feedback which produces neg- 
ative group delays, the question of when the peak of the energy arrives, can be 
answered by terminating the output port of Figure 7 by a load resistor, which 
connects the output to  ground. The load resistor (not shown) will be heated up 
by the energy in the output pulse. I t  is obvious that the load resistor will then 
experience the maximum amount of heating when the peak of the Gaussian output 
pulse arrives at this resistor, and that this happens when the peak of the output 
voltage waveform arrives. For negative group delays, the load resistor will then 
heat up earlier than expected. However, there is no mystery here: The operational 
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amplifier can supply the necessary energy to heat up the load resistor ahead of 
time. The negative group delay and the negative energy delay are identical to each 
other in this case, and likewise the negative group and energy velocities are equal. 

3.5 Kramers-Kronig relations imply faster-than-c group velocities, and the 
Bode relations necessitate negative group delays 

These counter-intuitive results also follow quite generally from the Kramers-Kronig 
relations for optical media 30, and the Bode relations for electronic circuits 31. For 
optical media, we have proved two theorems starting from the principle of causality, 
along with the additional assumption of linearity of the media, that superluminal 
group velocities in any optical medium must generally exist in some spectral region, 
and that for an amplifying medium, this spectral region must exist outside of the 
regions with gain, i.e., in the transparent regions outside of the gain lines 32. Neg- 
ative group delays for electronic circuits similarly follow quite generally from the 
Bode relations. These dispersion relations can also be generalized to apply to  the 
transmission of atoms through the quantum many-body systems which we shall 
discuss below. Negative group delays in this case means negative transmission 
times of atomic wave packets through the many-body system. Thus, the principle 
of causality itself necessitates the existence of these counter-intuitive, superluminal 
phenomena. 

4 Anomalous transmission t imes  i n  condensed matter sys tems 

So far, we have considered examples from optics and electronics. The quantum- 
mechanical tunneling process is another example of a superluminal phenomenon; 
however, this example involved only single-particle propagation. Here we con- 
sider other quantum mechanical examples taken from condensed matter physics. 
Unusual many-body systems, such as superfluid helium and atomic Bose-Einstein 
condensates (BECs), might also exhibit anomalous transmission times. These ef- 
fects arise from Bose exchange symmetry and macroscopic quantum coherence. In 
such systems, one cannot know, even in principle, which identical particle of the 
many-body system was involved in a particular collision process. The Bose sym- 
metrization of the total wavefunction leads to a long-range, macroscopic entangled 
state of the entire many-body system, and thus to off diagonal long range order. 

4.1 Condensate-mediated transmission of helium atoms through superfluid 
helium slabs 

We first focus on superfluid helium. Solving the scattering problem of 4He atoms 
from a superfluid helium surface is not an easy task. Several approaches have been 
taken to reproduce the experimental data on quantum evaporation and conden- 
sation obtained by Wyatt and Tucker 37, and others. These approaches include 
semiclassical treatments (Mulheran and Inkson 38), time-dependent density func- 
tional theory using a phenomenological density functional (Dalfovo et al. 39) and 
the correlated basis function method used by Campbell et al. 40. The difficulty of 
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N 

N 

condensate condensate 

(b) 

Figure 12. Condensate-mediated processes associated with the coherent transmission of an incom- 
ing atom. 

the problem arises from the necessity of a self-consistent many-body solution for a 
system of strongly interacting bosons. 

Circumventing all these difficulties, we give here some general arguments for 
why there can in principle be anomalous transmission times in the transmission of 
a helium atom through a superfluid helium slab, if measurements with sufficiently 
high time resolution are performed. 

Halley et al. 41 proposed the possibility of the transmission of helium atoms 
through a superfluid helium slab due to a condensatemediated process with trans- 
mission time delays independent of the slab thickness. Consider a superfluid helium 
slab in an N particle ground state. In the Halley et al. process, the transmission 
of an incoming helium atom through the slab occurs via a virtual transition of the 
N particle ground state plus the incident particle, to  the N + 1 particle ground 
state, followed by the coherent reemission of one particle on the opposite side of 
the superfluid (see Figure 12(a)). Following the steps of the paper first suggesting 
this process 41, we consider the transfer Hamiltonian 

HT = x ( T & b k f , t a i  + T$bk,,,ao + h.c.) (10) 
k’ 

The bt and b operators are creation and annihilation operators of particles with 
momentum k’ at the left ( L )  and right ( R )  surfaces; the ah and a0 operators create 
and annihilate the particles in the condensate part of the fluid. The coefficients T 
depend on the microscopic structure of the fluid surface and must be determined 
by experiment. 

We assume that Ileft) = IN,No)lk)~lvac)~ is the initial state of the system 
with a total number of N atoms in the fluid, out of which No particles are in 
the condensate; one helium atom with momentum k is incident from the left. A 
transmission of an atom from the left to the right side of the slab can occur in 
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the second-order process shown in Figure 12(a), for which the transition matrix 
element is the following: 

(11) 
(right I HT li) (i I HT I l e f t )  

Here li) = IN + 1, NO + 1)1mC)L[mc)R is the intermediate state, E, its energy, and 
lrzght) = IN, N0)lvac)Llk)R the final state. 

Using the standard definitions for the creation and annihilation operators, it is 
easy to show that the numerator of Eq. (11) is 

E - Ei 

In this scattering process, the energy in the initial and the final state is given by 
the sum of the kinetic energy of the incoming particle plus the energy of the N 
particle ground state 

The energy in the intermediate state is 

This leads to  an energy denominator in second-order perturbation theory of 

A E  = Ek EN -  EN+^ = Ek + lpl. (15) 

Here, p is the chemical potential (-7.16 K in the case of superfluid helium). Thus, 
the transition matrix element for this process is 

If the intermediate state used above were the only one coupling the initial and 
final states, a transition rate in the form of Fermi's golden rule could be given by 
squaring the transition amplitude 41. However, a coherent sum of the transition 
amplitudes over all possible intermediate states has to  be performed, and there is 
another process which was not taken into account in Ref. 41. This process is equally 
important and leads to negative time delays in transmission. It is pictured in Figure 
12(b), and we will refer to it as the primed process. A helium atom approaches the 
slab, and, before the atom reaches the superfluid, the condensate coherently emits 
another atom on the other side of the slab. In this intermediate state there are two 
atoms outside of an N - 1 particle ground state. Finally, the atom on the left side 
of the superfluid gets absorbed into the condensate, and the fluid is brought back 
into the N particle ground state. 

The energy for the intermediate state in the primed process is 
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The energy difference between the initial and the intermediate state is 

so that the transition matrix element for the primed process is 

For plane waves, the final states of these two condensate-mediated processes are 
indistinguishable. Therefore the two transition matrix elements must be added up 
coherently. Comparison of Eq. (16) with Eq. (20) shows that the two processes 
destructively interfere with each other, and that they almost cancel out in the large 
NO limit. This implies that the transmission probability for very long, single-particle 
wave packets via a condensate-mediated process becomes vanishingly small. 

The energy-time uncertainty relation restricts the durations of the intermedi- 
ate states, so that the transmission times will be of the order of *:h/lAEl for the 
unprimed and primed processes, respectively. For low energy incident atoms the 
transmission times are approximately given by .th/lpl, which is of the order of a 
picosecond in the system considered. In order to detect either one of these pro- 
cesses experimentally, the final states have to be made distinguishable. This could 
be achieved by temporal resolution, i.e., the formation of atomic wave packets with 
a duration comparable to the lifetimes of the respective intermediate states, so that 
the transmitted wave packets would be Fbyleigh resolved, and an actual measure- 
ment of the time sequence of events could be performed. A wave packet this short 
in time will have an energy uncertainty comparable to the size of the chemical 
potential, so that Rayleigh resolution will only barely be possible. 

It should be noted that both of the processes considered here depend in the 
same way on the macroscopic coherence and on the off diagonal long range order 
of this quantum system. Both processes will lead to faster-than-light effects. In 
the primed process this is due to the intrinsic negativity of the transmission time. 
In the unprimed process faster-than-light effects can be achieved by the choice of a 
sufficiently thick slab, since the transmission time, although positive, is independent 
of the slab thickness, similar to the case of the Hartman effect in tunneling discussed 
earlier. 

4.2 

In connection with condensate-mediated transmission of atoms, it is simpler to 
consider the recently observed atomic BECs 42, which are weakly-interacting Bose 

Transmission times of atoms through an atomic BEC 
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gases, than superfluid helium, which is a strongly-interacting Bose liquid. The 
microscopic theory of a dilute, weakly-interacting Bose gas is well characterized 
in terms of the Bogoliubov theory 43, which has been verified by experiment. In 
the case of the atomic BECs, the chemical potential sets the energy scale for the 
uncertainty-principle lifetime or duration of the intermediate state, and hence for 
the transmission times (either positive or negative) through the condensate of low- 
energy incident atoms identical to the atoms of the BEC. The chemical potential p 
in the condensate can be calculated in the Bogoliubov approximation, and is given 
bY 

27rh2a 
p z N 0 -  

mV ’ 
where No is the number of atoms in the condensate, a is the S-wave scattering 
length, m is the mass of the atom, and V is the volume of the condensate. The 
typical experimental parameters for a BEC consisting of sodium atoms are a = 2.75 
nm, No/V = 1.5 x 1014 ~ m - ~ ,  and D = 10 pm for the typical size of the conden- 
sate 44. The speed of sound for such a condensate has been observed to be v, N 1.0 
mm/s, which is close to that predicted by the Bogoliubov theory. E’rom these num- 
bers, we infer that the chemical potential for an atom in the typical sodium BEC is 
p = 7.4 x erg N 54 nK. The typical time scale associated with condensate- 
mediated processes is therefore h / p ,  which is two orders of magnitude shorter than 
the transmission time due to sound wave propagation across the condensate. Hence 
it should be easy to distinguish the condensate-mediated processes from sound-wave 
mediated processes. Note that the time scale h/p  is independent of the size D of 
the condensate, and leads to a Hartman-like effect, which resembles the Hartman 
effect in tunneling. The positive and negative condensate-mediated transmission 
times, or group delays, which correspond to the two processes depicted in Figure 
12(a) and (b), respectively, are 

These times are much larger than those observed in the photon tunneling exper- 
iments. Again, as in the case of superfluid helium, it should barely be possible 
to distinguish, by Rayleigh’s resolution criterion, a negative group delay from a 
positive group delay, for cold atoms whose incident kinetic energy is comparable 
to the chemical potential. Nevertheless, this effect should be experimentally ob- 
servable with a sufficiently high signal-to-noise ratio, as has already be done in the 
case in the measurement of the tunneling times for photons. Furthermore, each 
atomic transmission event detected in an experiment would result in a definite sign 
for the transmission time for that event. The post-selection of rare, condensate- 
mediated transmission events leads to a “weak measurement” of this post-selected 
subensemble in the sense of Aharonov 45, and results, as in the case of tunneling 46, 

in surprising “weak values,” such as negative transmission times. Thus, not only 
can light pulses be slowed to a stop in atomic BECs 47, but atoms can also be 
transmitted superluminally through such BECs. 
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5 Conclusions 

There is a widespread view among electrical engineers and physicists that although 
the phase velocity can exceed the vacuum speed of light, the group velocity can 
never do so. Otherwise, signals would be able to  propagate faster than light, since 
conventional wisdom equates the group velocity with the signal velocity. From 
this conventional point of view, the group velocity is essentially the same as the 
energy velocity in transparent media, and the latter could never exceed c. Several 
generations of students have been taught this. Many of the standard textbooks and 
handbooks state this conventional viewpoint, some, however, with qualifications 
which unfortunately are not strong enough, so that the net result is still misleading. 
For example, The Electrical Engineering Handbook in its discussion concerning the 
group velocity states the following 48: 

“When traveling in a medium, the velocity of energy transmission (e.g. 
a light pulse) is less than c, and is given by [the group velocity] .” 

This statement, and other similar statements in many of the early standard 
textbooks in optics and classical electrodynamics, are misleading. As a result, 
we have been blinded by our misconceptions, and thereby have been prevented 
from exploring and discovering many new, interesting, and possibly important, 
phenomena, which could have been discovered long ago. Some of these are only 
now being uncovered, and some of these phenomena may in fact lead to important 
applications, such as the speed-up of computers. 

The effects reported in this paper do not violate relativity. The front velocity of 
Sommerfeld and Brillouin, which is strictly c, is the only velocity which is relevant 
to  relativity. However, the group, the energy, and Brillouin’s “signal,” velocity can 
all exceed c, without violating the principle of relativistic causality ‘. 

Returning to the larger picture of physics in Figure 1 discussed of this lecture 
depicted, I believe that there still exist many conceptual tensions at the intersections 
of quantum mechanics, statistical mechanics, and relativity. The most fruitful 
method to  proceed from here is not to  speculate on these matters, but to perform 
experiments to probe these tensions. 
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DISCUSSION 
Chairman: G. Leuchs 

W. Schleich: Great. Coming back to  the Compton scattering where you end 
up with the probability amplitude because you cannot decide which of the pulses 
came first or you cannot distinguish between these processes. In your example, in 
order to  decide you would need a sharp wave front. Is it your argument? 

R. Chiao: What you say is absolutely true. If we have monochromatic wave 
planes these two processes are completely indistinguishable and you must add the 
two processes coherently and then square to find the transmission probability. But 
if you have a superposition of various frequency components to  construct a Gaussian 
wave packet such that the wave packet becomes comparable to the delay given by 
the uncertainty principle, then you are beginning to  resolve these two processes one 
from the other and that is an interesting situation. In fact, in all experiments that 
I know with atomic Bose condensate, it is extremely difficult t o  put a sharp front 
on the pulses. This is an easy experiment and also the most spectacular result. 

T. Petrosky: One question is about this two photons case. I don’t see the 
original explanation of the anomalous reflection coefficient. Another comment is 
that in the second experiment, the existence of evanescent modes is essential. At 
the boundary there is a resonate component that can travel to  the infinity. And 
also there is a sticking evanescent mode. This is a place, I suppose, where the effect 
appears. And as the evanescent modes are related to  the non-pole (cut) effect 
problem which is related to the Zeno’s phenomenon, therefore these evanescent 
modes should be related to  the quantum Zeno’s effect. 

R. Chiao: Let me first answer the first question. There is no anomalous disper- 
sion in the tunnelling experiment. It is the evanescent wave phenomenon that gives 
rise to the positive group delays, not negative group delays. But still, group delays, 
which are so short that they violate the naive Einstein causality. The apparent 
group velocity is faster than the speed of light and the peak appears behind the 
tunnel barrier earlier then light would come through air. This is due to  the expo- 
nential tail of tunnelling. Concerning the second question, I haven’t even thought 
in terms of quantum Zen0 effect for the explanation of this phenomenon but one 
can explain it in terms of Aharonov’s ideas of weak values or weak measurements. 
If you postulate only a small subensemble of all possible events, namely, the ones 
which succeeded in tunnelling, they will have unusual values like faster than light 
velocities. 

M. Raizen: In your talk you gave two extreme examples. One is the discon- 
tinuous pulse and the other is analytic pulse. Do you have anything in between? 

R. Chiao: Yes. It is a good point. Let me look at  Fourier decomposition in 
the intermediate case and ask the following question: are the Fourier components 
above or below the resonance of the system? If they are above you are going to  get 
something like front velocities. If they are below you can get something like group 
velocity, which is superluminal. 

M. Raizen: From the information point of view, I would say that whatever 
the receiver can predict, can be very far from the speed of light because it does 
not carry anything new. From this point of view, it is not just a front but also the 
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non-analytic part of the signal. Is there any possibility to test not just a front but 
the discontinuity? 

R. Chiao: That is an excellent point. I took a very simple extreme example 
where the front has this discontinuity in the amplitude of the signal but the front 
may have discontinuity in the slope or in second derivative and in any derivative 
as you like and still you cannot apply Taylor series. In that case you should also 
see the non-analytic points going at  the front velocity at the speed of light. The 
experiment has not been done because it is very difficult to do. The only one that 
has been done is the discontinuous front, which I have just shown to you. 

L. Stodolsky: I have a conceptual question. Maybe you can clear it up. In your 
first discussion with Sommerfeld and the front and the peak, the examples involve 
just Fourier transforms and classical mathematics, no quantum mechanics. On the 
other hand in your Wigner delay time I saw some h's. Is it quantum mechanics or 
Fourier transforms? 

R. Chiao: Excellent question. This is a Fourier transform plus, when we go to 
the quantum level, we use the Born interpretation. The wave's form is interpreted as 
a probability amplitude for finding the particle. That is the "click" of the particle. 
With this interpretation of the classical wave's forms you have the whole story. 

L. Stodolsky: So, if you did some other quantum optics experiment not in- 
volving photon counting but something else you might see some other kind of effect. 
Photon is a quantum concept involving h. There should be something you can do 
like the (EPR), which would not involve h. 

R. Chiao: Yes. In fact, that is what we did. The (EPR) experiments do not 
involve A. 

L. Stodolsky: But I mean even with light. 
R. Chiao: This experiment for tunnelling was verified by the group in Vienna 

using femtosecond laser pulses, which are completely classical. I have just presented 
our results, which are at the quantum level. 

L. Stodolsky: So, the Wigner formula should be interpreted as a classical 
formula? 

R. Chiao: Yes. 
0. Kocharovskaya: There is a recent paper by Brandel, which stated that 

the result of the beautiful experiment by Dr. Wang is the same as in a two level 
amplifying system. It is due to  the reshaping of the pulse. Could you comment on 
it? 

R. Chiao: No. I don't agree with that at all. I know the paper and it is wrong. 
A. Steinberg: I want to come back to  the Bose condensation experiment which 

is obviously incredibly interesting to  see. In your final result you really wrote down 
0.4 milliseconds. I did not see plus or minus 0.4 milliseconds. Because, you know, 
you can observe one of those processes or the other. You can distinguish them and 
can translate with the limit of the short enough wave packet. As you know if the 
wave packet is short, all these effects go away. That is what happens for the short 
front. If you are in one of the intermediate regimes this implies for both of them. 
How have you calculated whether the peak of that wave packet will move at  plus 
0.4 milliseconds or minus or something in between? 
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R. Chiao: Excellent question. The question is how can we really resolve the 
advance of the wave packet. If we construct a wave packet out of many Fourier 
components, whether we can resolve the delayed wave packet with respect to the 
advanced wave packet. 

A. Steinberg: You have actually a negative time. 
R. Chiao: Oh, yes, you do have negative time. If you like I can show my 

calculation, which I skipped in my talk. 
G. Ordonez: You mentioned sharp fronts. Sharp fronts in quantum mechanics, 

are they compatible with the Heisenberg principle? 
R. Y .  Chiao: This is an excellent question. I think I would refer this also to 

Prof. Hegerfeldt’s talk. He will answer your question. 
E.C.G. Sudarshan: The interpretation of Pendry about the diffraction is 

conceptually wrong. There is a group in Texas (I am not an author) who has 
shown that the group velocity is just as would normally be expected and there is 
no faster than light propagation. I am fond of faster than light propagation but in 
this case it apparently does not work. 

R. Chiao: OK. 
G. Nimtz: Two brief comments. You are claiming always that the signal is 

not defined. In fact, the signal is well defined, otherwise we could not communicate 
to  mobile phones and to  computers. The engineers know very well what they want 
from signal. A well-defined effect, that is a signal. The second comment is you 
are always talking about Hegerfeldt, about the front. If you read the books for 
engineers, we don’t have in physics unlimited frequencies. In this case, we don’t 
have front. The engineers are talking about the envelope of signal. 

R. Chiao: Of course, I agree with you, this is a matter of definition what we 
call signal. In fact, there are different definitions of signal and the one, which is 
more natural in the light of special relativity and causality is the front. This is 
what I am saying. In that sense, I am very conservative. 

G. Nimtz: We have just heard that the front is not defined by Heisenberg. 
R. Chiao: That is not true. It is defined and we will hear talks about it 

later. We have done experiments where we have seen that the front velocity is well 
defined. It is a question of the Fourier components present in the discontinuity 
whether they are below or above the resonance frequency of your circuit or your 
amplifying medium. So, it is a practical definition, which works in experiment. We 
have done the front velocity experiment. 
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SIGNAL VELOCITY OF SUPERLUMINAL LIGHT PULSES 

L. J. WANG 
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA 

Email: LwanOresearch.nj.nec. com 

We review the recent work on producing a transparent, linear, anomalously dispersive 
medium. Experimentally, a light pulse propagating through the atomic vapor cell has its 
peak reaching the exit side before entering it, resulting in a negative transit time, and 
negative group velocity. We further review a recently proposed operational definition of 
the velocity of information transport based on a close analysis of quantum fluctuations. 

1 Introduction 

In the process of light propagation through a transparent medium, it is well known 
that a number of velocities are involved. First, there is the “wave (phase) velocity,’’ 
c /n ,  determined by the refractive index n of the medium. The envelope of the 
pulse, however, travels at the group velocity vg = c / n g ,  determined by the group 
index: ng = n + udn/du.  In a dispersive medium where the wave velocity depends 
on the frequency, i.e., d n l d u  # 0, the group velocity can be very different from the 
phase velocity. The topic has been extensively discussed in the past ‘T’. Further- 
more, Sommerfeld and Brillouin considered to define a “signal velocity,” and have 
concluded that it is impossible to do so for a noiseless “classical” analytical signal. 
Hence, they concluded that the proper definition of a signal is the propagation of 
an abrupt discontinuity; the resulting “front velocity” should be considered the ve- 
locity of signal transfer. And finally, there is the problem of defining the velocity 
of energy t r an~fe r l -~ .  Of course, in vacuum, all five velocities are equal to  c.  In 
this paper, we will summarize our recent study of the superluminal group velocity 
in a transparent anomalously dispersive medium. We also discuss the definition of 
the signal velocity for a smoothly-varying optical pulse. The discussion of energy 
velocity is beyond the scope of this present paper. 

A pulse of light propagates at  the group velocity in a dispersive medium. In re- 
cent years, much attention has been paid to the case where an artificial steep normal 
dispersion is realized in an EIT medium. Consequently, very slow or vanishingly 
small group velocity can be achieved. To the opposite, if a medium can be obtained 
to be both transparent and anomalously dispersive, i.e., n + d n / d u  < 1, the group 
velocity v9 = c /n9  will exceed c (“superluminal” group velocity), or even become 
negative. Of coursejt is well known that inside an absorption line, the dispersion 
is anomalous, resulting in a superluminal group velocity 1,2,5-7. However, when 
absorption is large, the medium becomes opaque. 

Generally, for all passive, transparent matter such that it is absorptive at all 
frequencies in the electromagnetic spectrum, the medium’s optical dispersion is 
normal. Landau and Lifshitz ’ showed that under the condition 

S [ x ( u ) ]  2 0,  for any u (1) 

and in the special case for media with a magnetic permeability p(u)  = 1, two 
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inequalities hold simultaneously: 

Here ng is the group index. Obviously, we have ng > 1. 
However, for media with gain, the general assumption in Eq.(l) no longer holds. 

In a series of papers 8 1 9 7 1 0 * 1 1 , 1 2 7 1 3 3 1 4 ,  Chiao and coworkers showed theoretically that 
anomalous dispersion can occur inside a transparent material. It was predicted 
that, by using a gain doublet 13, it is possible to obtain a transparent anomalous 
dispersion region where the group velocity of a light pulse exceeds c. 

Here we use gain-assisted linear anomalous dispersion to demonstrate superlu- 
minal light pulse propagation with a negative group velocity through a transparent 
atomic medium 15316,17. We place two Raman gain peaks closely to obtain an es- 
sentially lossless anomalous dispersion region that results in a superluminal group 
velocity. The group velocity of a pulse in this region exceeds c and can even become 
negative, while the shape of the pulse is essentially preserved. We measured 15,16 

a negative group velocity index of ng = -315(&5). Experimentally, a light pulse 
propagating through the atomic vapor cell exits from it earlier than propagating 
through the same distance in vacuum by a time difference that is 315 times of the 
vacuum light propagation time L/c.  

The experimental situation invites the question of what the velocity of a light 
signal is. And it is fitting to address this question in the Solvay conference in Physics 
where the topic is the physics of information. 

As noted many years ago by Sommerfeld and Brillouin I ,  group velocity is not 
the velocity of signal transmission. For a smoothly varying pulse that is described 
by an analytic function, the signal velocity cannot be defined. Because an ana- 
lytic signal is entirely determined by its very small leading edge, there is no new 
information being carried by the peak. Furthermore, this leading edge of the pulse 
can in principle extend infinitely far back in time, making it impossible to assign a 
point marking the onset of a signal. They noted that the “front velocity,” the veloc- 
ity at which an infinitely sharp stepfunction-like disturbance of the light intensity 
propagates, should be used as the velocity of information transmission I. 

These ingenious arguments, however, are not immediately applicable in prac- 
tice. First, it is impossible even in principle to realize the infinite bandwidth as- 
sociated with a step-function “front.” But more subtle questions arise when one 
considers a smoothly-varying pulse, where a tiny leading edge of a smooth pulse 
determines the entire pulse. In practice, one cannot extend the “arrival time” to 
any time before the detection of the first photon. Furthermore, if the tiniest lead- 
ing edge of a smooth “superluminal” pulse determines the entire pulse, we must 
account for the effect that quantum fluctuations at the leading edge might have on 
the detection of the p u l ~ e ~ ~ . ’ ~ .  

Recently, we suggested 2o an operational definition of the signal velocity and 
applied it to the observed superluminal propagation of a light pulse in a gain medium 
15,16. Previous considerations of quantum noise in this context focused on the 
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motion of the peak of a wave packet, and on the observability of the superluminal 
velocity of the peak at the one- or few-photon level 18,19. Here we showed that 
quantum noise associated with the amplifying medium can act in effect to retard 
the observed signal. In order to  achieve a given signal-to-noise ratio (SNR) at 
the output of an amplifying medium, a larger signal is required, resulting in a 
retardation of the signal. This retardation is found in numerical simulation to  be 
larger than the propagation time reduction due to  anomalous dispersion, leading to 
a signal velocity 5 c.  The operational definition given and the conclusions reached 
here are independent of the intensity of the input pulse. 

The paper is organized as the following. We first summarize the realization of 
a transparent, linear, anomalously dispersive medium. Pulse propagation and the 
“rephasing” process in such a medium is then reviewed. The experimental details 
and observational results are left out and can be found in references 1 5 3 .  Finally, 
we review the operational approach to defining a signal velocity for a smooth pulse 
propagating through such an anomalously dispersive medium ’O. 

2 Transparent Anomalous Dispersion 

Let us start by considering a classical Lorentz oscillator model of the refractive 
index. The electric displacement is given by: 

D = EO E + P = ~ 0 ( 1 +  x ) E  = EO E(1+ N L ~ ) ,  (3) 

where N is the atomic density and a is the atomic polarizability. The polarization 
density P = - N e x  = EONCYE can be obtained using a simple Lorentz model. 

In order to  obtain the dipole polarization p = -ex for a bound charge with an 
intrinsic angular frequency wo and an angular damping rate r = 27, we start from 
the equation of motion of the electron: 

Hence, one obtains that, 

eE 1 eE 1 
m w2 - w i  + i w r  

25- x = -  
2mwo w - wo + irp’ (5) 

where the approximation is good as long as wo >> r. We further obtain for the 
polarizability, 

(6) 
e2 1 

Ly = -~ 
2 ~ o m w o  w - wg + i y  ‘ 

The dielectric susceptibility of the medium thus can be written: 

AT-2 1 1 6  1 v c  I 1v1 
x(v) = -~ X =-f x 

2 ~ 0 m w o  w - wo + i y  w - wg + i y ’  (7) 

where M = w;/wg with w p  being the effective plasma frequency and f being the 
oscillator strength. When two absorption lines of frequencies w1 and w2 are placed 
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IF = 4, m = -4) 

Figure 1: Gain-assisted anomalous dispersion. (a) frequency-dependent gain coefficient and re- 
fractive index, (b) schematic atomic level diagram. 

nearby with equal oscillator strengths f1 = f2 = 1, the dielectric susceptibility can 
be written: 

(8) 
M - M 

x ( v )  = - w - w l  +iy w -w2 +iy’ 
For a narrow frequency region in the middle between the two absorption lines, a 
steep normal dispersion region occurs resulting in an ultra-slow group velocity ‘l. 

Conversely, for gain lines, a negative oscillator strength f = -1 is assigned’. 
Hence between two closely placed gain lines, the effective dielectric constant can be 
obtained: 

For dilute gaseous medium, we obtain from Eq.(9) for the refractive index n ( w )  = 
d ( w )  + in”(w)  = 1 + x(w) /2  and the real and imaginary parts of the refractive 
index are plotted in Fig.l(a). It is evident from Fig.l(a) that a steep anomalous 
dispersion region appears without the heavy absorption present. In fact, a residual 
gain persists. Furthermore, with the correct choice of experimental parameters, 
the steep drop of refractive index as a function of frequency can be made a mostly 
linear one in this region. Thus a light pulse with a frequency bandwidth within 
this narrow linear anomalous dispersion region will experience almost no change in 
pulse shape upon propagating through such a medium. 

While the details of the experimental realization and parameters can be found 
in references 15*16, here we review the basics of the experiments. Illustrated in 
Fig.l(b), in a gaseous medium of atoms each of which has three levels: an excited 
state 10) and two ground states 11) and 12), we first prepare all atoms to be in a 
ground state 11) via optical pumping. For simplicity, let us first ignore the Doppler 
shift and assume that the atoms are at rest. We apply two strong continuous-wave 
(CW) Raman pump light beams El and E2 that propagate through the atomic 
medium. The frequencies of El and E2, v1 and v2, are different by a small amount 
2A and both fields are detuned from the atomic transition frequency vol (11) to 
10)) by a large average amount A,. Since the Rabi frequencies associated with the 
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fields El and Ez are small compared with the common detuning A,, the atoms 
mostly remain in state 11). When a probe light beam Ep is introduced, a Raman 
transition can occur causing an atom to  absorb a Raman pump photon from the 
fields El or Ez and emit a photon into the field Ep while in the mean time making 
a transition from 11) to  12). Obviously, there are two frequencies where the gain in 
the probe field is maximized. The maximum gain occurs when the probe field is 
resonant with the Raman transitions caused by either of the two pump fields El 
and E2. We hence obtain a medium whose optical susceptibility for the probe field 
is described by Eq.(9). Here we have 

with poz, Rl,z, and N being the dipole moment of the 10) to 12) atomic transi- 
tion, the Rabi frequencies of the Raman pump fields El and Ez, and the effective 
atomic density difference of states 11) to 12), respectively. The quantum mechanical 
treatment of atomic polarization that yields Eq.(lO) and discussion related to the 
Doppler broadening, as well as linewidth of the gain lines can be found in reference 
15.16 

3 Pulse Propagation in an Anomalously Dispersive Medium, Pulse “re- 
phasing” versus “reshaping” 

Now, we consider the propagation of a light pulse of an arbitrary shape but of long 
duration (important to have a limited bandwidth within the anomalously dispersive 
region between the two gain lines) through a transparent anomalous dispersing 
medium of a length L as illustrated in Fig.2. For a scalar light pulse that can be 
decomposed into its positive and negative frequency parts: 

E(z , t )  = E(+)(z , t )  + E(-) (z , t ) ,  (11) 
we have for its Fourier decomposition: 

(12) x / da E(+)(R) e-2 { n t - [ k ( w O + n ) - k ( w O ) l Z } ,  

where wo is the carrier frequency of the light pulse. Inside the transparent anomalous 
dispersion medium, if over the narrow bandwidth of the incident light pulse E(w - 
W O ) ,  the gain is essentially constant, the propagation is largely governed by the wave 
vector k ( w ) .  We can expand the wave vector in a Taylor series: 

1 
219 

k ( W )  = k ( W o )  + -(w - w O )  + . (W - ~ 0 ) ’  + . . . . 

When the higher order terms in Eq.(13) are negligible, i.e., the dispersion is essen- 
tially linear, from Eqs.(l2) and (13) we obtain: 

(14) E(+) (L ,  t )  = 9 . e-2 (wot--ko.L) E(+) (0 ,  t - L/. ) 
Q I  
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Figure 2: Pulse propagation through a medium of a length L at a group velocity v9 = c/(n + 
v d n / d v ) .  and through vacuum for the same length. 

where g z 1 is a gain factor. Hence, the intensity of the light pulse as a function 
of time measured with a detector, I (L , t ) ,  is related to the incident pulse’s time- 
dependent intensity by: 

I ( L ,  t )  = I(0,  t - L/wg). (15) 

Ordinarily, in a normal dispersion medium, the group velocity wg < c.  Hence, 
the output intensity of a pulse propagating through the medium is retarded by 
the propagation time L/wg, resulting in a delay longer than the vacuum transit 
time L/c. In a transparent anomalous dispersion medium, the group velocity wg = 
c/[n+ v dnldv] can exceed c provided the anomalous dispersion is sufficiently strong 
such that: n + v dn/dv < 1. In this case, the group velocity becomes superluminal: 
wg > c,  resulting in a “superluminal transit time:” L/wg < L/c. 

Furthermore, when the transparent anomalous dispersion becomes stronger to 
yield: n + v dn/dv = 0,  the group velocity vg = c/[n + v dnldv] approaches infinity, 
resulting in a ‘‘zero transit time”, such that Eq.(ll)  gives I (L , t )  = I (0 , t ) .  In this 
case, the output pulse and the input pulse vary the same way in time and there is 
no time delay experienced by the pulse propagating through the medium. 

Finally, when the transparent anomalous dispersion becomes very steep, the 
dispersive term v dn/dv which is negative becomes very large in its magnitude such 
that Iv dn/dv( >> 1, resulting in a negative group velocity wg = c/[n + v dnldv] < 0. 
In this case, Eq.(ll)  gives I (L , t )  = I(0,t + lL/wgl), where the quantity IL/wgI = 
In9/ L/c is positive and can becomes very large compared to the vacuum transit 
time L/c. This means that the intensity at the output of the medium of length 
L, I (L , t ) ,  will vary in time earlier than that of the input pulse I(0,t). Thus in 
this case, a “negative transit time” can be observed. The time difference between 
the output pulse and the input pulse in the form of a pulse advance, is lngl fold 
of the vacuum transit time L/c. Practically, since the shape of the pulse is not 
changed, this results in a rather counterintuitive phenomenon where a certain part 
of the light pulse has already exited the medium before the corresponding part of 
the incident light pulse even enters, by a time difference that is lngl times of the 
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vacuum transit time Llc. 
This rather counterintuitive effect is a result of the wave nature of light. 
To bring about a physical insight of the phenomenon, we have analyzed the 

behavior of pulse propagation by examining the phase change of the various fre- 
quency components of the pulse 17. In fact, Lord Kelvin first pointed out that 
the peak of a light pulse is merely the point in space where at a given time, all of 
its various frequency components are “in-phase.” Inside a medium at a time t, the 
phase of a frequency component becomes $(w) = w t  - k(w)z. Hence, the space-time 
point where phases of all the frequency components “line-up” is the point where 
the phase is independent of the frequency: 

where U = c/n,  is the group velocity. 
In the special case where U < 0, one can find that a “rephasing” peak of 

the pulse exits the medium before the incoming pulse arrives at the input port. 
A detailed description and an animation of the pulse behavior can be found in 
reference 17. 

In some quarters”, however, it was insisted that our experimental results must 
be attributed to a “reshaping” or “differential-gain’’ effect. In their lines of reason- 
ing, the medium is so adaptive such that it can selectively “‘amplify’ the front of 
a pulse and ‘absorb’ its tail.” Thus came the argument of the “differential gain,” 
where the medium can respond to the derivatives of the pulse intensity variation 
22. Here we simply point out an experimental fact that this type of theory cannot 
explain. Namely, in the experiments reported in references 15,16, the pulses used 
had a typical duration of about 4 psec, and the typical atomic dwell-time inside 
the beam is merely 1 psec. Hence, the ‘front’ and the ‘tail’ of the pulse see the 
same ground-state inverted atoms and the same steady-state CW-Raman pump 
beams. Consequently, it can never be that the ‘front’ is amplified while the ‘tail’ is 
absorbed. If the argument of reference” is correct, both the front and the tail will 
be amplified. 

4 

In order to properly analyze the signal velocity of light, let us start by considering 
the detection of a signal carried by a light pulse shown in Fig.2. We assign a time 
window T centered about a prearranged time t o  at the detector and monitor the 
photecurrent produced by the detector. We assume that there is a background 
level of irradiation that causes a constant photo-current io when no light pulse was 
sent. We further assume that an increased photo current il(t) is registered as a 
result of a light pulse being received. If the detector’s integrated photo current rises 

dt  il(t) rises above the background level during that time by a certain number of 
the level of noise fluctuation, we can confidently determine that a signal has been 
received. The time when this preset level of confidence is reached in the detection is 
to be defined as the time the signal has arrived, assuming perfect detectors allowed 
by physical laws. 

Signal velocity and quantum fluctuation 
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Hence, the realistic observable that should be considered for the definition of 
the arrival of the signal carried by a light pulse is the time-dependent integrated 
photon number in the pulse 

S ( L ,  t )  = 77 

where k(+)(L,t~) and A(-)(& tl) are respectively the positive- and negative-fre- 
quency parts of the reduced electric field operator at the exit point ( z  = L )  of the 
medium. t o  = T, + L/c  where Tc is the time corresponding to the pulse peak. T/2 
is half the time window assigned to the pulse, typically a few times the pulse width. 
r ]  is a constant containing the quantum efficiency and will be taken as unity for the 
rest of the analysis. The expectation value (S(L ,  t ) )  is proportional to the number of 
photons that have arrived at the detector at the time t. If &(L,t)) and (So(L, 
are respectively the expectation values of S(L,  t )  with a?d without an input pulse, 
then the photocurrent difference for an ideal detector is (S1(L, t)) - (So(L,  t ) ) .  Since 
the second-order variance of the integrated photon number, (A2S(L, t ) ) ,  character- 
izes the noise power due to quantum fluctuations, we define an optical signal-to-noise 
ratio in accord with standard signal detection practice?' 

As discussed above, we define the arrival time t ,  of a signal as the time at which 
SNR(L,  t )  reaches a prescribed threshold level determined by the allowed error rate. 

The positive-frequency part of the reduced electric field operator can be written 
as 24 

where wo is the carrier frequency of the pulse, and [B(u),Bt(w')]  = S(w - w'). 
Eq.(19) assumes plane-wave propagation in the z direction and that the group- 
velocity approximation is valid. 

In the experiment discussed above the anomalously dispersive medium is a 
phase-insensitive linear amplifier for which 25 

where Bin and Bout refer respectively to the input ( z  = 0) and output ( z  = L )  
ports of the amplifier and the operator &(w) is a bosonic operator ([6(w), it(w')] = 
6(w-w')) that commutes with all operators Bi,(w) and &(w) and whose appearance 
in Eq.(20) is required among other things to  preserve the commutation relations for 
the field operators Bout and BLut. 1g(w)I2 is the power gain factor given by Eq.(l). 

We first consider the case of propagation over the distance L in a vacuum where 
g(w) = 1. We assume that the initial state I$) of the field is a coherent state such 
that B(w)l$) = a(w)l$)  for all w, where a ( w )  is a c-number. For such a state we may 
write k(+)(O, t)l$) = a(t)l$), where a(t)  3 T-~/~(N~/T)~/' exp(-(t - T c ) 2 / 2 ~
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Np is the average number of photons in the initial pulse of duration 7. We obtain 
after a straightforward calculation that 

SNRvac(L,t) = (Sl(L,t))vac = SNRvac(0,t - L/c ) .  (21) 

Clearly, the point SNR,,,(L, t )  = const. propagates at the velocity c without excess 
noise. 

Next we treat the case of pulse propagation over the distance L in the anoma- 
lously dispersive medium, using Eq.(20) with g(w) # 1 and the same initially co- 
herent field. We obtain in this case 

(Sl(L,t)) - (%(L , t ) )  = lg(o)l2(S1toJ - L/Vg))vac (2’4 

where (&(L, t ) )  = (1/27~) ~ ~ o - T , 2 d t l  S C ! U [ ~ ~ ( W ) ~ ~  - 11 is the photon number in the 
absence of any pulse input to  the medium. The fact that (SO(& t ) )  > 0 is due to 
amplified spontaneous emission (ASE) 23; in the experiment of interest the ASE is 
due to a spontaneous Raman process. 

For a probe pulse with sufficiently small bandwidth, the gain factor becomes 

(23) e 4 ~ M y / ( A v Z + y Z ) . L / X  , 1g(O)I2 = 

and the effective signal ( S l ( L , t ) )  - (So(L,t)) is proportional to  the input signal 
(Sl(0, t - L/wg))vac with time delay L/w, determined by the group velocity wg. In 
the anomalously dispersive medium wg = c / ( n  + vdn/dv) and can be > c or even 
negative, resulting in a time delay 

which is shorter than the time delay the pulse would experience upon propagation 
through the same length in vacuum, or can become negative. In other words, the 
effective signal intensity defined here can be reached sooner than in the case of 
propagation in vacuum. 

In order to determine with confidence when a signal is received, however, one 
must evaluate the SNR. Again using the commutation relations for the field opera- 
tors, we obtain for the fluctuating noise background 

Here 

+ I t  dtl J’ dt21F(tl - t2 )12  
t o - T / 2  t o - T / 2  

(25) 
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Figure 3: Evolution of quantum noise terms. Curves 1 to 5 indicate noises associated with terms 1 
to 4 in Eq.(lO), and the total noise, respectively. Parameters used in the figure are adopted from 
the experiments reported in References and 16. There are lo6 photons per pulse. Noise retards 
the detection of the signal by reducing the SNR. (Fig. adopted from reference 2 0 ) .  

is a correlation function for the amplified spontaneous emission noise. The four 
terms in Eq. (25) can be attributed to amplified shot noise, spontaneous emission 
noise, beat noise, and ASE self-beat noise, respectively 26. Fig.3 shows the evolu- 
tion of these noise terms within the time window T .  Clearly, amplified shot noise 
dominates when the input pulse is strong. 

Using Eqs. (22) and (25), we compute sNR( , ,d) (L , t )  for the propagation 
through the anomalously dispersive medium. In Fig.4 we plot the results of such 
computations for SNR(,,d)(L,t)  as a function of time on the output signal. For 
reference we also show S N R  for the identical pulse propagating over the same length 
in vacuum. It is evident that the pulse propagating in vacuum always maintains 
a higher SNR. In other words, for the experiments of interest here l5>l6, the signal 
arrival time defined here is delayed, even though the pulse itself on average is 
advanced compared with propagation over the same distance in vacuum. 

To further examine the signal velocity, we require that at a time t’ the SNR 
of a pulse propagating through the medium be equal to that of the same pulse 
propagating through a vacuum at a time t: 

Hence, we obtain a time difference bt = t’ - t that marks the retardation due to 
quantum noise. At = t’ - t + L / c  gives the propagation time of the light signal, 
and L/At gives the signal velocity. 
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Figure 4: Signal-to-noise ratios for light pulses propagating through the gain-assisted anomalous 
dispersion medium SNR,,d(L, t ) ,  and through the same distance in a vacuum SNR,,(L, t ) ,  
Parameters used are appropriate t o  the experimental situation of reference 15716 ,20 .  

It is useful to further examine the optical noise figure23 defined as the ratio of 
the input SNR to that of the output: F, = S N R p ) / S N R p ) .  

It is apparent from the result we derived that transparent anomalous dispersion 
medium not only is not able to improve the noise figure Fo but actually increases it. 
This should come as no surprise: it is well known that a phase-insensitive amplifier 
(PIA) at large gains has at its best the noise figure of 2. 

5 Summary 

In conclusion, we note that the observed superluminal and negative group velocity is 
a result of the wave nature of light. The measured negative and superluminal group 
velocity of a light pulse propagating through a transparent anomalous dispersion 
medium is due to the physical effect of “rephasing” 2oi22. Specifically, inside a 
medium with refractive index n,  the effective wavelength of a light ray is modified: 
A‘ = X In, where X is the vacuum wavelength. It is easy to  derive: 

Under the condition ng < 0, we have d(X/n)/dX < 0. Hence a longer wavelength 
(redder) component of the incident pulse becomes a shorter wavelength ray inside 
the medium, and vice versa. This results in an unusual situation where the phases 
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of the different frequency components of a pulse become aligned at the exit surface 
of the medium earlier than even in the case of the same pulse propagating through 
the same distance in a vacuum. 

Finally, we note that a superluminal group velocity is not at odds with causality 
or special relativity 1-4,8-z0 . S‘ imply put, causality only requires that the signal 
velocity, instead of the group velocity, be limited by c; the signal velocity is dif- 
ferent from the group velocity, as first noted again by Sommerfeld and Brillouin 
’. We further reviewed an operational definition of the signal velocityzo. In the 
experimental cases where the medium is transparent, we must consider the excess 
noise due to the gain lines. We found that, in these cases the excess spontaneous 
emission noise from the gain resonances retards the onset of the signal by retarding 
the time at which a prescribed signal-to-noise ratio (SNR) is reached 20. Hence, it 
was concluded that the quantum noise associated with an amplifier (which is re- 
lated to the “no-cloning” theorem and the linear nature of quantum mechanics) is 
associated with the basic requirement of causality that states that no LLsignal” can 
be transmitted faster than c. 
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DISCUSSION 
Chairman: G. Leuchs 

L. Stodolsky: My question is whether quantum mechanics is involved or not. 
In non-relativistic quantum mechanics there is no problem with defining position 
operator, so you can make eigenstates of x. However, it is well known that in the 
field theory there is no position operator for the position of a photon. So, maybe, 
we are really reaching the limit that we cannot say where the particle is. 

L. Wang: I think this is also related to the localization problem. 
E. C. G. Sudarshan: The statement that the position operator is not defined 

for photon is a little confusing. The Newton-Wigner position operator is defined 
with point eigenvalues. This does not exist because the photon must be transverse. 
However you can take a final packet as small as you want and define a series of 
states which are zero outside and one inside a finite region. The only thing to do 
is to take a function vanishing with all its derivatives at the boundaries and there 
are a lot of such test functions. 

W. Schleich: My question goes back to your argument. You said that quantum 
fluctuations protect causality. How does this argument really work? 

L. Wang: The statement is a very loose way of saying that it is due to quantum 
fluctuations. Even the bulk of the energy in the pulse comes out earlier but the 
energy in your detector fluctuates more, so you are not even sure at  the onset of 
the pulse that the signal has actually been sent. In other words, if you don't send 
anything your fluctuation is so large that you miss the moment where the level goes 
UP. 
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W. Schleich: Are you speaking about shot noise? 
L. Wang: Various kinds of noise. At the beginning the amplified shot noise 

is not so important because the pulse itself is small. The shot noise is photon 
number in the pulses, which you have detected. At the beginning it is the amplifier 
noise, which overtakes everything. The amplified shot noise is not a major problem 
because the amplification is very small in between the peaks. 

W. Schleich: Is this a fundamental limit or just an experimental limitation? 
L. Wang: I cannot prove it. My “math” is not so good. That is why I became 

experimentalist . 
L. Vaidman: Is it the same argument as in the Aharonov’s paper on superlu- 

minal propagation? 
L. Wang: There axe many questions, which I didn’t read too well but the 

language is fine. Maybe we can discuss afterwards. 
A. Steinberg: I find the operational definition of the signal to noise ratio very 

interesting. But I still want to  take issue with the idea that it is the way to protect 
causality, because if you even ignore the quantum noise and just write down the 
classical impulse response function as you did that already demonstrates that at no 
time does the output have any dependence whatsoever on the input. So, I don’t 
believe in a need for quantum fluctuations to  protect causality. 

L. Wang: Certainly, theory must fit reality and when you do the experiment 
you are going to see the quantum fluctuations. It is the fact that the impulse 
response function itself merely stays classical and the classical theory works pretty 
well. But if you do real experiment trying to measure that you are going to see 
fluctuations. 
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MATTER-WAVE D I F F R A C T I O N  O F F  N A N 0  GRATINGS: 
Q U A N T U M  EFFECTS 

GERHARD C. HEGERFELDT 
Institut f i r  Theoretische Physik 

Universitat Gottingen 

In recent years it has become possible to carry optical diffraction experiments over 
to  atoms and molecules, in particular diffraction by double slits and transmission 
gratings. However, small deviations from the usual wave-optical theory occur, and 
a fully quantum mechanical theory yields new surprising insights on the interaction 
of atoms with surfaces and on the size of molecules. 

1 Introduction 

In 1923 de Broglie introduced the idea of the wave nature of subatomic particles, 
an idea which later led Schrodinger to his wave equation. The simple idea of de 
Broglie has been very fruitful and suffices to  explain many diffraction experiments in 
complete analogy to wave optics. However, as shown in this contribution, in many 
cases this analogy is not sufficient. To describe and evaluate more sophisticated 
recent experiments, full quantum mechanics is necessary. 

Only recently have advances in micro-technology made atomic diffraction ex- 
periments possible. For usual beam velocities of a few hundred meters per seconds 
the de Broglie wavelength X of light atoms is only about 1 A, where X = h / p ,  
with p the particle momentum. Therefore very small slit widths and slit distances 
are needed to  obtain diffraction angles which can be resolved experimentally. As 
a consequence, for atoms the simple but fundamental double slit experiment has 
been just a thought experiment for a long time. 

When a classical wave passes through a transmission grating of period d with 
N slits of width sone observes behind it and outside the original direction an 
intensity with characteristic directional modulation. For a perpendicularly incident 
plane wave the diffraction maxima are at the angles 

sin.9, =nX/d ( n = O , f l , f 2 , . . . )  , (1) 
with the intensity 

For many purposes this simple wave-optical approach gives a good description of 
matter diffraction also. 

The typical experimental setup for atomic and molecular diffraction consists 
of a beam of particles with very small velocity distribution which pass through 
a transmission grating or double slit 'p2s3. The setup of the Toennies group in 
Gottingen is shown in Fig. 1 with a transmission grating of period d = 100 nm. 
Fig. 2 shows a picture of the  grating bars '. For helium atoms a high resolution 
diffraction picture provided by the Toennies group is shown in Fig. 3. A spectacular 
diffraction pattern is shown in Fig. 4 3i5. In the inset in the upper right hand corner 
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. . . . 

beam 
source 

slit 1 slit 2 , 

transmission ---% 
spectrometer 

grating detector 

i 16cm 82 cm ;$%mi 43 cm ; - - 
Figure 1. Experimental setup for diffraction of atoms and molecules '. 

Figure 2. Bars of the transmission grating '. Period d = 100 nm. The substrate below the bars 
is later removed. Note the trapezoidal form of the bars. 

one observes the first helium diffraction order and left of it at half the angle another 
small maximum. The latter provided the first direct evidence of the exotic helium 
dimer molecule 4He2. In the atomic beam there can be helium clusters, all moving 
with the same velocity. Therefore their de Broglie wavelengths and their diffraction 
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33 1 

angles are inversely proportional to  their mass. The main part of the figure shows 
diffraction maxima of higher clusters up t o  Hez6. Diffraction of the fullerenes c60 
and c70 was also recently observed ‘. 

l o 5  

d = 100 microns c 

5 1 0 4  

i7j 103 

a, 
v) 
cn \ 

Y - 
([I c 
0 

102 

10’ 
-1 2 43 -4 0 4 8 12 

Deflection Angle 9 [mrad] 

Figure 3. Diffraction pattern of helium atoms up to 22nd order. 

Deviations from the simple wave-optical diffraction theory are expected to Oc- 
cur ’du e to  

1. the inner structure of the particles and surface van der Waals potentials 

2. the spatial size of the particles 

3. the breakup of weakly bound molecules. 

These deviations are not just “dirt effects” but contain surprises with useful infor- 
mation. This information can be extracted from experimental data by means of a 
full quantum theory. 

2 Quantum theoretical description 

In principle, matter diffraction off a grating is not a classical wave phenomenon 
but a quantum mechanical scattering problem. The diffraction is not caused by the 
slits but by scattering of the particles off the grating bars. This is depicted in Fig. 
5. In addition to  the reflective particle-surface interaction one also has to take an 
attractive van der Waals surface interaction into account. 
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f \ '. 
\ 

I 
I 

in .- 
0.0 0.5 1 a 

Deflection Angle [rnradl 

Figure 4. Diffraction pattern of helium atoms and molecules up to He26, yielding the first definite 
detection of these exotic molecules (cf. Refs. and 5 ) .  

particles 

(atoms) 

a 
a 
a 
a 
\ 
\ grating bar potential 

Figure 5. Matter diffraction as scattering off grating bars. 

In the context of diffraction and for usual beam velocities, an atom with tightly 
bound electrons can be considered as a single point particle. However, diffraction 
of a weakly bound molecule, such as the helium dimer, has to  be treated by mul- 
tichannel scattering theory since there may be breakups or excitations. We have 
carried the Faddeev scattering theory in the formulation of Alt, Grassberger and 
Sandhas and starting from 
the Schrodinger equation we have obtained a general expression for the diffraction 

over to  bound particles with an external potential 
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intensity I ,  of atoms or extended molecules off a grating with an additional weak 
attractive interaction in the form lo 

1 sin2(n7rs,tf/d) + sinh2(n7r6/d) 
(n7rs,tf/d)2 + (n7r6/d)2 (3) 

where s,tf denotes an effective slit width which is smaller than s. The term 6 di- 
minishes the contrast and the exponential term takes into account that the number 
of molecules in the individual diffraction orders may decrease due to breakups at 
the bars and that small variations in the bar widths may occur. All these param- 
eters may depend on the particle-grating interaction, on the spatial extent of the 
particles and on their velocity. 

3 

During the passage through a slit an atom experiences an additional attractive 
surface van der Waals potential V = -C3/l3 where I denotes the distance from 
the surface of a grating bar and where C3 depends on the particle species. Quite 
recently we have found the as yet unpublished result that for rare gas atoms in the 
groundstate s , ~  behaves as s,tf 0: l / f i  where u is the particle velocity. Therefore 
we have plotted s,tf (v) obtained from experimental diffraction patterns for variable 
helium beam velocities as a function of l/& in Fig. 6. From the slope one can 
determine C3. The intersection with the ordinate axis yields the true slit width. 
The result agrees with an alternative procedure we have used before lo. The method 
is so sensitive that the geometrical trapeze form of the grating base has to be taken 
into account. Fig. 7 shows results for the interaction strength of various groundstate 
atoms with the surface material of the grating. 

For atoms in a highly excited metastable state the situation is very different. 
In this case the surface van der Waals interaction is much stronger than for atoms 
in the groundstate. As a consequence Eq. (3) no longer holds and the notion of an 
effective slit width is no longer adequate. The strength of the surface interaction can 
still be obtained from diffraction data, but now a much more complicated expression 
for the diffraction intensity in terms of phase integrals involving C3 as a parameter 
has to be numerically fitted to the experimental data. This requires many runs and 
is more prone to experimental and numerical errors than the approach by means of 
effective slit width. Recently, measurements for the metastables He* and Ne* have 
been evaluated by this method l1 and the results are shown in Fig. 8. 

Effects of the atom-surface van der Waals interaction 

4 Determination of the helium-dimer size 

Quantum effects in matter diffraction become important when size and breakups 
become relevant and when excitations of higher levels occur 12. Size and breakup 
effects are particularly interesting for the exotic He2 which is fifty times larger than 
a hydrogen molecule and whose binding energy is a hundred million times smaller 
than that of an electron in a hydrogen atom. Therefore He2 is extremely fragile and 
thus very difficult to investigate by conventional methods. But at small diffraction 
angles most helium dimers arrive at the detectors unbroken so that deviations of 
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Figure 6 .  Plot of s , ~  over l/fi for helium. From the slope of the straight line one can calculate 
C3. The ordinate intersection gives the true slit width of s = 71.2 nm. 

Figure 7. Strength of grating surface potential for various atoms in the groundstate. 
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Figure 8.  Comparison of measured ( x )  and theoretical ( 0 ,  0) values for Cs.  The data points on 
the straight line are for the groundstate atoms He, Ne, D2, Ar, Kr of the previous figure. 

the diffraction pattern from the predictions of wave optics can be measured and 
analyzed. 

To do this the van der Waals surface interaction of the dimer constituents has 
to be taken into account. Again one can use Eq. (3). In Ref. l3 experimental 
dimer diffraction intensities up to 7th order have been measured and fitted to the 
expression I ,  from Eq. (3). From this s , ~  was determined. Now multi-channel 
scattering theory enters. It was possible to express the effective slit width in the 
form 

where T ( ( )  is the slit function for the diffraction of He atoms and ( T )  is the inter- 
atomic distance of the dimer constituents. The first term on the right hand side 
of Eq. (4) accounts for the reduction of the true slit width s by the van der Waals 
interaction of each atomic constituent with the grating bars. The bond length ( T )  

is determined from Eq. (4) by calculating T ( ( )  with the measured s and the C, 
value for He from Ref. lo and then fitting the experimentally determined effective 
slit widths of 4Hez to Eq. (4) with ( r )  as a parameter. A least-squares fit yields 
( ~ ) = 5 2 f 4 A .  
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5 Conclusions and future developments 

Matter diffraction has developed from a textbook experiment to  a new tool in 
atomic, molecular and surface physics. Its most direct use is that of a mass spec- 
trometer, and this has led to  a direct verification of the exotic helium molecules 
and higher clusters. Quantum effects in matter diffraction, i.e. deviations from 
the simple wave-optical theory, have been used to  determine particle-surface in- 
teractions. This has been achieved both for rare gas atoms in the groundstate as 
well as for highly excited metastable atoms. For the latter alternative methods 
are practically not available since usually the metastables immediately ionize when 
interacting with a surface. In diffraction the angle of incidence is essentially zero 
and therefore sufficiently many metastables survive. 

The influence of particle size on the diffraction pattern has been used to de- 
termine the size of the delicate helium dimer molecule. Again, its small binding 
energy and the absence of excited states make it very difficult to use alternative 
met hods. 

In Ref. l2 it was proposed to  use diffraction to verify the existence of an excited 
state of the helium trimer, believed to  be a long sought Efimov state. Alternative 
methods are also difficult in this case, due to  the small binding energy. 

Interferometers for atoms and molecules will allow an even more precise study. 
External fields in one arm of the interferometer can be used for polarizability mea- 
surements, and in principle surface interactions could be investigated with interfer- 
ometric precision. 
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DISCUSSION 
Chairman: G. Leuchs 

M. Raizen: It seems that your calculation has to  take into account the detailed 
structure of grating. 

G .  Hegerfeldt: When I showed the slide with the grating I was insisting on 
the slope of the grating bars. If you neglect that you will never be able to fit the 
experimental data to the theory. It is very sensitive to this angle. 

M. Raizen: I also wanted to  point out that various measurement on sodium 
atoms were done. Instead of diffraction, which is very small in general they very 
accurately determined correlations. 

G .  Hegerfeldt: I am sorry for not giving all the references here, but they will 
be in the proceedings, in particular the early work by Mlynek (with He*) and by 
Pritchard (with sodium). 

A. Zeilinger: I was very intrigued by your result that the C, values for excited 
atoms are not on the line. The reason for us being intrigued is that we only 
understand our (370 interferometer results if we assume that C, is much smaller 
than what polarizability indicates. 

G .  Hegerfeldt: This is in line with our results. 
L. Stodolsky: Experimental question. How big a molecule can I diffract in 

G .  Hegerfeldt: I am a theorist but Prof. Zeilinger hopes to have bacteria 

A. Zeilinger: This is a question of money available. 
L. Stodolsky: Is this because the grating has to  be very good and you need a 

high angular resolution? What is the experimental problem? 
A. Zeilinger: The grating is not a problem because you can use steady light or 

whatsoever. I don't think that it is a serious problem, just a matter of knowledge, 
experience and work. 

G .  Hegerfeldt: With larger particles there may be more what I call dirt effects, 
so the theory becomes more complicated. But in principle, it would be interesting 
to  probe the limit. 

W. Schleich: I have two remarks. The first remark. I know that about 50 
years ago in Gottingen, Weizsacker and Heisenberg discussed what could happen if 
you take a big molecule and send it through a slit that is more than the molecule 
and the question was whether it is just a geometric size that determines how many 
atoms are going to get through or rather whether any wave effects are involved. 
That was the first step towards what you are doing here. Well they couldn't do a 
calculation but the author does obviously the calculation. Why is this complicated? 
Because if you model, as you are doing, this grating by potentials you now have to  
solve the two-particle problem of going through the slit with interaction. Obviously, 
this system is even classically not separable anymore. Even on the classical level 
there are scales. 

G .  Hegerfeldt: Thank you for this question, because now I can give a theoret- 
ical remark why it is so difficult. You all know that the three-body problem is very 
complicated. This here is only a two-body problem. Why is that so complicated? 

practice? 

diffracted. I cannot comment on that. 
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The reason is because the grating effectively acts as a third body although it is 
treated as an external potential, but mathematically it introduces the same singu- 
larities in your perturbation theory as in three-body problem. What we did is we 
looked at the three-body problem and then saw how we could carry that over to  the 
two-body problem with an external potential. People doing few body problems are 
excited because they seem to have never thought about introducing an interesting 
external potential like this one. 

L. Stodolsky If I saw the graph correctly this is the He26 complex detected. 
How can this get through the grating if the He2 is already almost too big? 

G. Hegerfeldt: The He2 is very big because it is weakly bound, but the higher 
clusters are much more tightly bound, and so they are smaller. Here, He26 is not 
26 times or 13 times larger that Hez. It is much smaller than Hez. Similarly, the 
diameter of c60 is only about lOA while that of He2 is about 50A. 
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S U P E R L U M I N A L  T U N N E L I N G  DEVICES 

G U N T E R  NIMTZ 
II. Physikalisches Institut, Universitat Koln 

Photonic tunneling permits superluminal group velocity. The principle of causality 
is not violated but the time duration between cause and effect can be shortened 
compared with an interaction exchange with velocity of light. This outstanding 
property can be applied to speed-up photonic modulation and transmission as well 
as to improve micro-electronic devices. Superluminal photonic pulse transmission 
has been presented at microwave and infrared frequencies already. Presumably 
superluminal photonic and electronic devices can become reality having in mind the 
experimental evidence of the universal tunneling time of photons and of electrons. 

1 In t roduct ion  

In 1992 Enders and the author have demonstrated that photonic tunneling takes 
place with superluminal group velocity The experiments were carried out with 
microwaves. At that time any application of superluminal tunneling was not ex- 
pected in spite of the popular semiconductor tunneling diode. A decade later I am 
going to present some potential applications of superluminal tunneling in photonics 
and electronics. 

The special features of evanescent modes and wave mechanical tunneling are 
presented in this chapter. In the following chapters the essential properties of a 
technical signal as well as the universal tunneling time are introduced. There are 
chapters devoted to  applications of the tunneling process as well as finally to  a 
summary of the strange tunneling properties. 

Tunneling is the wave mechanical presentation of evanescent modes 2,3. Evanes- 
cent modes are predominantly found in undersized waveguides, in the forbidden 
frequency bands of periodic dielectric heterostructures, and with double prisms in 
the case of frustrated total reflection 4,5. These prominent examples of photonic 
tunneling barriers are sketched in Fig. 1. The dielectric lattice is equivalent to  the 
electronic lattice of semiconductors with forbidden energy gaps. 

Evanescent modes and tunneling wave functions are characterized by a purely 
imaginary wave number. For instance the wave equation yields for the electric field 
E ( z )  

where w is the angular frequency, t the time, x the distance, k the wave number, 
and K the imaginary wave number of the evanescent mode. 

In the three introduced examples the modes are characterized by an exponential 
attenuation of transmission due to  reflection by tunneling barriers and by a lack 
of a phase shift inside the barrier. The latter means a zero time barrier traversal 
according to the phase time approach 

r = d+/dw, 
where 7, 4, w are the phase-time, the phase, and the angular frequency, respectively. 
The observed very short tunneling time is caused at the barrier front boundary. In 
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Figure 1. Sketch of three prominent photonic barriers. a) illustrates an undersized wave guide 
(the central part of the wave guide has a cross-section being smaller than half the wavelength 
in both directions perpendicular to propagation), b) a photonic lattice (periodic dielectric hetero 
structure), and c) the frustrated total internal reflection of a double prism, where total reflection 
takes place at the boundary from a denser to a rarer dielectric medium. 

this report the tunneling time is defined as the time a group or a pulse spent travers- 
ing a barrier. The time is measured outside the barrier with detectors positioned 
at the front and the back of the barrier. 

This time corresponds to  the phase-time or group delay, see Refs. for ex- 
ample. 

In Fig.2 a pulse (i.e. a wavepacket) is sketched which represents a digital signal. 
The front of the envelope is very smooth corresponding to a narrow frequency band 
width. The frequency band is choosen with respect to  the barrier in question in 
such a way that the pulse contains essentially evanescent frequency components. 
Such an evanescent pulse travels in zero time through opaque barriers, which in 
turn results in an infinite velocity in the phase-time approach neglecting the phase 
shift at the barrier front 4,9.  

In the review on The  quantum mechanical tunnelling t ime problem - revisited 
by Collins et al. lo, the following statement has been made: the phase-time-result 
originally obtained by Wigner and by Hartman is  the best expression to  use f o r  
a wide parameter range of barriers, energies and wavepackets. The experimental 
results of photonic tunneling have confirmed this statement 4.  

Einstein causality prohibits superluminal signal velocity in vacuum and in media 
with a finite real component of the refractive index. (The general principle of 
causality prohibits only the exchange of cause and effect l1 .) Einstein causality does 
not hold for media characterized by a purely imaginary refractive index, where the 
phase shift is zero as in the case of evanescent modes. A zero phase shift corresponds 
to  an instantaneous field spreading, i.e. represents an action at a distance. 

In order to avoid signal reshaping due to  the dispersion of the special media 
the signal has to  be frequency band limited. Frequency band limitation and finite 
time duration are found in technical signals and have been discussed and analyzed 
in for example. The energy problem of unlimited frequency bands of 
signals has been solved by quantum mechanical arguments 14,11. Actually, technical 
signals of limited frequency band and limited time duration have been transmited 
in the multiplex telephony for more than a hundred years. The theory for these 
technical signals and more general for all physical signals, presents the sampling 
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Figure 2. Sketch of two wave packets (i.e. pulses), amplitude vs time. The larger packet travelled 
slower than the attenuated one. The horizontal bars indicate the half width of the packets which 
do not depend on the packet's magnitude. The figure illustrates the gradually beginning of the 
packets 12. The forward tail of the smooth envelope may be described by the relation [l - 
ezp( - - t /~)][s in(wt )]  for instance, where T is a time constant. 

theorem, which has been introduced by Shannon around 50 years ago 15. More 
details about signal properties are presented in the Chapter on Signals. 

Evanescent modes are solutions of the classical Maxwell equations, however, 
they display some nonclassical properties as for instance: 

1. The evanescent modes seem to  be represented by nonlocal fields as was pre- 
dicted and later shown by transmission and partial reflection experiments 4,9,16. 
Tunneling and reflection times are equal and independent of barrier length 16,17. 

2. Evanescent modes have a negative energy, thus they cannot be measured l7-l8. 

3. Evanescent modes can be described by virtual photons 19. 

4. Evanescent modes are not Lorentz invariant as (q,/c)'  -+ 00 holds, where 
wv = X/T is the phase time velocity and c the velocity of light in vacuum. x 
represents the barrier length. 

Obviously, evanescent modes are not fully describable by the Maxwell equations 
and quantum mechanics has to be taken into consideration. This is similar to the 
photoelectric effect which is explained by quantum mechanics, i.e. by photons. In 
general, electric fields are only detectable by a quantized energy exchange. 

The tunneling time raised at the front of opaque barriers is constant, i.e. it 
is independent of barrier length. Thus with increasing barrier length the group 
velocity increases at the same rate as the length. This phenomenon is often called 
Hartman effect 20,21. 
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Figure 3. An example of a resonant electromagnetic tunneling structure with evanescent mode 
solutions (forbidden frequency bands) at microwave frequencies. Two periodic quarter wavelength 
heter-tructures of perspex and air which are separated by a distance of 18.9 cm forming a 
resonant cavity with a total length of 28 cm. 

The effective barrier length can be significantly lengthened by resonant barrier 
structures without decreasing the transmission. Resonant tunneling structures with 
forbidden frequency bands are advantageous to  speed-up signals with a narrow fre- 
quency band width 4,22. Figure 3 displays a resonant barrier built of two photonic 
lattices. The dispersion relations of the respective transmission coefficients and 
the group velocity of the periodic dielectric quarter wavelength heterostructure are 
displayed in Fig.4. For narrow frequency band limited signals there is no signifi- 
cant dispersion effect if the carrier frequency is placed in the centre of a forbidden 
frequency gap. 

1 .o 

@ 0.4 
t- 

0.0 ' I a 9 10 11 12 
Frequency [GHz] Frequency [GHz] 

(b) 

Figure 4. The graph (a) shows the dispersion relation for the resonant heterostructure vs frequency 
(Fig.S(a)). The transmission dispersion of the periodic heterostructure displays forbidden gaps 
separated by resonant peaks. The forbidden frequency gaps correspond to  the tunneling regime, 
for details see Ref. '. The evanescent regime is characterized by a strong attenuation due to 
reflection. In (b) the group velocity vSig in units of c is displayed for the resonant periodic 
dielectric quarter wavelength heterostructure vs frequency. 

The three barriers introduced in Fig.1 have different dispersion relations. A 
simple one describes the frustrated total internal reflection of a double prism. In 
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Figure 5. Transmission vs air gap measured at two frequencies 2 5 .  The data follow the theoretical 
relation of &s.3,4. 121 = 1.6,n2 = 1. 0 = 45O, (critical angle of total reflection BC = 38.5'). 

this case the transmitted electric field Et and the imaginary wave number r; are 
given by the relations 3: 

where 0 is the angle of the incident beam, Eo the electric field at the barrier en- 
trance, n l  and 722 are the refractive indices, and (nl/nz) sin0 > 1. The transmission 
t = E,/Eo as a function of air gap of a double prism was measured with microwaves 
and is shown in Fig. 5. The displayed data are in agreement with Eqs. 3, 4. 

The tunneling time in the case of frustrated total internal reflection (FTIR) has 
been revisited recently 23,24,25. There is a theoretical shortcoming in describing the 
time behaviour of FTIR which is based on the approach with ideal plane waves. 
This approach holds for an unlimited beam diameter, but is not mimicking properly 
the experimental procedure with limited beam diameters 25,26. 

In this report two experiments are introduced, which demonstrate superluminal 
group velocity in photonic barriers. The signal is represented by a pulse as used in 
digital communication systems 14918; one example was measured with microwaves 
and one in the infrared frequency range as shown in Figs. 6, 7. 

The digital signal displayed in Fig. 6 tunneled with a frequency band width of 
less than lop2 at a speed of 8 c. The carrier frequency was 9.15 GHz. The starting 
of detecting the envelope of the tunneled pulse is about 0.8 ns earlier than that 
of the airborne pulse. The signal frequency band contained essentially evanescent 
components only. 

The experimental set-up to  determine and to  demonstrate superluminal group 
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0.9 

5 0.8 

E 0.7 
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!= 
Q, 
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tunnel - 

5 10 15 20 
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Figure 6. Measured propagation time of two pulses. The faster one has tunneled in the forbidden 
gap of the photonic barrier of the length of 28 cm. The pulses magnitudes are normalized. The 
tunneled signal (the half-width of the pulse, representing one bit) traversed the barrier more than 
800 ps faster than the airborne pulse. The corresponding velocity of the tunneled pulse was 8.c . 

l l l l l l l l l l i  

1.0 

c 
0.5 

v) 

1 O.015 -10 -5 0 5 10 15 
Frequency [GHz] 

Figure 7. Measured propagation time of three digital signals 37. (a) Pulse trace 1 was recorded 
in vacuum. Pulse 2 traversed a photonic lattice in the center of the frequency band gap (see part 
(b) of the figure), and pulse 3 was recorded for the pulse travelling through the fiber outside the 
forbidden band gap. The photonic lattice was a periodic dielectric hetero-structure fiber. 

velocity is shown in Figs. 8 and 9. The group arrival was measured in vacuum 
where group, energy, and signal velocities are equal to c 12,27, (actually, a signal 
does not depend on its magnitude as illustrated in Fig. 2). Amplitude modulated 
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Tunnel (Barrier) Detector (Oscilloscope) 

A 

Figure 8. Experimental set-up for the periodic dielectric quarter wavelength heterostructure to  
measure the group velocity, i.e. the pulse velocity. 

microwaves with a frequency of 9.15 GHz (A = 3.28 cm) are generated with an HP 
8341B synthesized sweeper (10 MHz - 20 GHz). A parabolic antenna transmitted 
parallel beams. The transmitted signal has been received by another parabolic 
antenna, rectified by a diode (HP 8472A (NEG)) and displayed on an oscilloscope 
(HP 54825A). 

The propagation time of a pulse was measured across the air distance between 
transmitter and receiver and across the same distance but partially filled with the 
barrier of 28 cm length. The barrier structure is formed by quarter wavelength 
slabs of perspex and is introduced and analyzed in Figs. 3, 4. Each slab is 0.5 cm 
thick and the distance between two slabs is 0.85 cm. Two structures are separated 
by an air distance of 18.9 cm forming a resonant tunneling structure '. Comparing 
the two travelling times we see that the tunneled pulse arrived the detector about 
900 ps earlier than that pulse which travelled the same distance through a.ir. The 
result corresponds to  a signal velocity of the tunneled pulse of 8.c. 

The performed measurements are asymptotic. There is no coupling between 
the generation process, the detection process, and the photonic barrier. In addition 
the experiment is not stationary and the pulse is measured in the dispersion free 
vacuum. The experimental situation is the same as that performed in the Hong- 
Ou-Mandel interferometer, in which the measurement is also asymptotic and yields 
the group velocity, the energy and the signal velocity at the same time 11,28. An 
infrared example of superluminal pulse velocity is displayed in Fig. 7. 

So far we have discussed transmission experiments only. An experimental set-up 
for measuring the partial reflection by photonic barriers at microwave frequencies 
is presented in Fig. 9. The procedure of varying the barrier length in such an 
experiment is sketched in Fig. 10. 
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Detector t 

(Oscillosco 
A h -  

t 

Figure 9. Experimental set-up for the periodic dielectric quarter wavelength heterostructure to 
measure partial reflection as a function of barrier length. 

*XO 

Mirmrl Mirror2 

a b, -d- 

- x p -  

Figure 10. Experiment: procedure to measure parti; 
structure. 

re ction pending on photonic lattice 

2 Signals 

Fw instance, a signal may be a photon, which excites an atom with a well defined 
energy and polarization or it may be a word, which informs the receiver. Both 
examples are described by wavepackets of limited frequency band width and of 
limited time duration. The envelope of such a signal is travelling at the speed 
of light in vacuum, however, the front and the end are continuous rather than 
discontinuous like in the case of an ideal signal 12. 

Technical signals like those displayed in Figs. 6,7,11 are frequency band limited. 
Technical signals are either amplitude modulated (AM) or frequency modulated 
(FM). Definitions of the frequency bandwidth, of the time duration, and of the 
bandwidth-time interval product are introduced and explained in Ref. l 3 l 3 O  for 
example. Frequency components of a signal outside the band width in charge of a 
hypothetical signal front are usually smaller than -60 dB compared with the signal 
peak component. 
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The Fourier transform yields for frequency band limited signals an unlimited 
time extension and hence a noncausal behaviour. However, the noncausal time 
components have never been detected. In the case of an unlimited frequency band 
the wave packet is presented by an analytic function and the information contained 
in the forward tail of the packet determines the whole packet 32. This is mathe- 
matically correct but not relevant for signals from the physical point of view. 

As mentioned above engineers have transmitted frequency band and time du- 
ration limited signals with the multiplex technology already a hundred years ago. 
An historic picture of such a multiplex transmission system is shown in Fig. 12. 
Obviously, the five signals transmitted over one guide are frequency band limited 
and time duration limited. In this example the frequency band width has been 
2 kHz and the time length about 0.3 ms. Shannon’s and many other’s theoretical 
investigations yielded the result that the product of frequency band and of time 
duration represents the amount of information. The Fourier transform of such a 
multiplex technique yields a noncausal behaviour. This indicates that noncausal 
time components obtained from Fourier transform are not detectable 14911. 

3 Universal Tunneling Time 

An analysis of different experimental tunneling time data obtained with opaque 
barriers (i.e. K z > 1) pointed to  a universal time 33. The relation 

r M 1/v = T 
r M h/W, 

was found independent of frequency and of the type of barrier studied 33,34, where 
7 , v and T are the tunneling time, the carrier frequency or a wave packet’s energy 
W divided by the Planck constant h, and T the oscillation time of the wave. The 
microwave experiments near 10 GHz displayed a tunneling time of about 100 ps, 
experiments in the optical frequency regime near 427 THz a tunneling time of 
2.2 fs for instance. In Ref. 33 it was conjectured that the relation holds also for 
wave packets with a rest mass having in mind the mathematical analogy between 
the Helmholtz and the Schrodinger equations. Quantum mechanical studies point 
to  this conjecture 9,10,35. Recently electron tunneling time was measured in a field 
emission experiment 36. The measured tunneling times are between 6 fs and 8 fs. 
Assuming an electron energy of 0.6 eV (the barrier height was 1.7 eV) the empirical 
relation Eq. (5) yields a tunneling time of 7 fs. 

4 Photonic Applications 

Tunneling transmission has an exponential decrease with barrier length, the trans- 
mission loss is due to reflection. Actually, the transmission loss is not converted 
into heat and may be recycled in a special circuit design. 
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4.1 Tunneling 

a) Recently Longhi et al. 37 performed tunneling of narrow band infrared pulses 
over a distance of 20 000 wavelenghts corresponding to 80 000 quarter wavelengths 
layers. Experimental results are presented in Fig. 7. The overall distance of the 
photonic fiber lattice was 2 cm. (Scaling the barrier length to 10 GHz microwaves 
the barrier would be 400 m long.) The periodic variation of the refractive index 
along the fiber between the two different quarter wavelength layers is only of the 
order of The measured group velocity was 2 c and the transmission intensity 
of the barrier was 1.5 %. 

b) An analogous tunneling barrier of 16.81 m length is under construction at the 
University of Koblenz. The long structure is designed for microwave signals at 
a frequency of 9.15 GHz, i.e. at a wavelength of 3.28 cm. 159 dielectric layers 
differing in the refractive index between 1.00 (air) and 1.05 of a plastic material. 
The transition time of the huge barrier will be 14 ns compared with a vacuum time 
of 56 ns. The expected group velocity will be 4 c at  a transmitted intensity of 
0.16 % 38. The tunneled pulse will arrive at the detector 49 ns earlier than the 
airborne one. 

4.2 Partial Reflection By Photonic Barriers 

a) Photonic barrier reflection is used at 1.5 p m  wavelength in fiber optics. Barriers 
are performed by a 20 mm long piece of glass fiber with a weakly periodically 
changed refractive index similar to the barrier used in the superluminal transmission 
experiment by Longhi et al. mentioned above 37. The losses of reflection by a 
photonic barrier (imaginary impedance) are less than that of a metal. Photonic 
barriers represent more effective mirrors than metallic ones. For example photonic 
barriers are profitably used to stabilize infrared laser diodes in optoelectronics. 

b) Figure 13 shows time dependent reflection data by two mirrors at  different po- 
sitions and by photonic barriers of different lengths. Only the magnitude of the 
reflected pulse is changed but not the reflection time by the barrier length. The 
observed reflection time of about 100 ps equals the tunneling time in transmission 
of the barrier. The nonlocal behavior of tunneling modes gives the information on 
barrier length within one oscillation time at the barrier front. 

We have designed an ultrafast modulator on the basis of partial reflection. The 
effective barrier Length is modulated by an  electric field induced change of the 
refractive index at half of the total barrier length. This results in an amplitude 
change of reflection, see Fig. 13. Another type of modulation can be achieved due 
to a local change of refractive index by signals exciting an optical active dielectric 
medium. For example this principle has been applied in experiments on negative 
group velocity, see e.g. Ref. 40. In the case of the above microwave experiment 
the modulations at the distance of 150 mm away from the barrier entrance appears 
at the barrier front within 100 ps, whereas the corresponding luminal propagation 
time is five times longer. 
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0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 
Time (ns) 

Figure 11. Signals: Measured signal in arbitrary units. The half width in units of 0.2 11s corre- 
sponds to the number of bits. From left to right: l,l,O,O,l,O,l,O,l,O,l,l,l,l,l,l,l, ..... The infrared 
carrier frequency of the signal is 2 .  1014 Hz (wavelength 1.5 pm). The frequency-band-width of 
the signal is about 2.10'O Hz corresponding to a relative frequency-band-width of 29. 

Figure 12. Historical picture of a multiplex transmission system Ref. 31. 

5 Electronic Applications 

5.1 The Tunneling Diode 

The first man-made tunneling device was the tunneling diode. It was invented by 
Esaki around 1960. This nonlinear electronic device is more and more used since 
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Figure 13. Measured partial reflected microwave pulses vs time. Parameter is the barrier com- 
position as shown in Fig. 10. The signal reflections from metal mirrors either substituting the 
barrier's front or back position are displayed 16. In this example the wavelength has been 3.28 
cm and the effective barrier length was 41 cm. 

that time. However, the tunneling time which would give the ultimate dynami- 
cal specification of such a diode has never been measured yet. Our conjecture is: 
the universal photonic tunneling time Ref. 33 is valid also for the electronic tun- 
neling process. Actually, recent electronic tunneling time experiments support the 
conjecture 36. The experimental data is in agreement with relation Eq. 6. 

5.2 Superluminal Electron Transport 

It was shown in several quantum mechanical studies by Low and Mende for instance 
that a particle suitably localized in space and tame, which is transmitted through a 
long, high barrier, travels as i f  it tunneled it in zero tame. 35. Of course, the time 
spent inside the barrier was considered only. Again as in the case of photonic tun- 
neling the barrier traversal velocity was superluminal even in the case of relativistic 
approaches 10,35939. 

The electronic transport in a semiconductor is rather slow compared with the 
velocity of light. The utmost highest electron velocity is given by the ballistic 
electron transport like in the case of an electron microscope or some semiconductor 
nano-device structures. Bias voltages of electronic devices are of the order of 1V. 
This results in a ballistic electron velocity of the order of magnitude of lo6 m/s, 
which is two orders of magnitude smaller than c. 

5.2.1 Electronic Lattice Structures 

We propose an electronic lattice structure with alternating quarter wavelength lay- 
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ers of slightly different bandgaps, which can be traversed at superluminal speeds. 
The conduction band electron wavelength is of the order of magnitude of 1 nm. 
Ultrafast coupling of electronic device elements in a circuit could be performed and 
accelerate the speed of computers. For instance a periodic structure of Si/SiGe 
quarter wavelength layers represents an electronic lattice. Such a doping of a Si- 
semiconductor structure with the SiGe alloy yields a weak variation of the band 
gap analogous to the periodic dielectric fiber structure mentioned above. The elec- 
tronic structure could have extensions up to more than 1 pm and could be used to  
perform ultra-fast interconnections between device elements. 

5.2.2 pn-Tunnel Junctions 

Interband tunneling the basis of the classical tunneling diode can also be used for 
fast electronic interconnections. By an appropriate doping profile the tunneling 
path can be adjusted between some 100 nm up to  several 1000 nm. 

There is a problem left with all the tunneling applications: the high reflection 
at the barrier entrance. However, tunneling is not a dissipative process with energy 
loss. As mentioned above the reflected electronic power should be recycled by a 
smart circuit design. 

6 Summing up 

The tunneling process shows amazing properties in the case of opaque barriers which 
we are not used to from classical physics. The tunneling time is universal and arises 
at the barrier front. It equals approximately the reciprocal frequency of the carrier 
frequency or of the wave packet energy divided by the Planck constant h. Inside 
a barrier the wave packet does not spend any time. Another strange experience 
is that evanescent fields are solutions of the Maxwell equations, but they are not 
fully describable by them. They carry a negative energy for instance which makes it 
impossible to detect them 17~18,41 and they are nonlocal. Incidentally, the properties 
are in agreement with the wave mechanical tunneling. This is a situation similar 
to  the Hydrogen atom and the photoelectric effect, where quantum mechanics is 
necessary to  explain the atom’s stability and the photon-electron interaction. 

The energy of signals is always finite resulting in a limited frequency spectrum. 
This is a consequence of Planck’s quantization of radiation with an energy minimum 
of liw. An electric field cannot be measured directly. All detectors need at  least 
one energy quantum liw in order to  respond. This is a fundamental deficiency of 
classical physics, which assumes any small amount of field and charge is measurable. 

The front and the end of a frequency band limited signal are continous rather 
than discontinuous as an ideal signal 6,12. The latter would need infinite high 
frequency components with an accordingly high energy ‘I. In addition, signals are 
not presented by an analytical function, otherwise the complete information would 
be contained in the forward tail of the signal 32. 

the disputes on zero tunneling time (the time spent 
inside a barrier) are redundant after reading the papers by Wigner and Hartman. 
The discussions about superluminal tunneling remind me the problem of multiplex 

According to  Collins et al. 
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transmission displayed in Fig. 12. Here a signal's finite time duration and frequency 
band limitation violate causality according to Fourier transform. However, no one 
had a ringing-up before the other phone was switched on. This indicates the crucial 
role of finite frequency bands and finite time duration of technical signals without 
violating the principle of causality ll. 

In spite of so much arguing about violation of Einstein causality, all the proper- 
ties introduced above are useful for novel fast devices, for both fields of photonics 
and electronics. 
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DISCUSSION 
Chairman: R. Chiao 

A. Steinberg: I understand your operational definition of a signal. In very 
different cases there are different ways of defining a signal. What I would ask is 
if you really think about the information received and you ask yourself if someone 
equidistant from the two of us sends me a signal through the air, and you a signal 
through a tunnel barrier, at a given time t is there any function you can calculate 
based on what you received that I am incapable of calculating at the same time? 
And the answer is “no” precisely because of this impulse response function that Dr. 
Wang shown you. 

G. Nimtz: I have shown a graph with a multiplex transmission system. This 
example is used to  discuss that a signal has a well-defined effect whether it is a 
digital or a frequency modulated signal. Remember Shannon’s sampling theorem. 
The frequency components are shifted with superluminal velocity and the signal 
does not depend on its magnitude. For instance, a cellular phone has a dynamical 
signal range of 9 orders of magnitude. 
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G. Hegerfeldt: I think there is confusion in terminology between what I call 
a signal and what you call a signal. You cannot argue about definitions. What you 
should argue about is what Einstein used and Einstein used another definition not 
the engineering definition. I will just show a figure, which summarizes one of his 
(Nimtz) beautiful experiments. This is a pulse through the air and this is the tun- 
nelling pulse, which is always smaller in the amplitude than the transmitted pulse. 
Here you see clearly how the peak velocity is larger for the tunnelling pulse but still 
lower in amplitude than the transmitted envelope. Only after the amplification you 
can compare. You have superluminal peak velocity. 

G. Nimtz: No. He is calculating with infinite frequency band. I t  is mathemat- 
ically correct what he did but it does not describe the physical signal. 

T. Petrosky: You said that you don’t know how to construct the evanescent 
modes for Maxwell equation. Actually, the evanescent modes are the result of the 
boundedness of the frequency from below. Therefore, even in the free wave equation 
if you construct a wave packet with only the positive frequency you can find the 
evanescent mode at the level of Maxwell equation. We have such kind of paper for 
free wave equation. 

G. Nimtz: Having a negative energy, you cannot measure an evanescent mode. 
The impedance is imaginary corresponding to a reactive power. 

S. Pascazio: I found Prof. Hegerfeldt’s explanation convincing. If the am- 
plitude of tunnelled pulse is below the amplitude of ”free” pulse gives the perfect 
explanation. Can you tell me in a few words why you don’t agree with Prof. 
Hegerfeldt? 

Professor 
Hegerfeldt is always discussing the front velocity, which is not defined nor car- 
ries information in the case of frequency band limitation and physical signals are 
frequency band limited. In the experiments the detector made “click”, i.e. it mea- 
sured the signal travelled at a superluminal speed. 

G. Leuchs: You said that the evanescent wave has negative energies. If your 
wave is under some angle like you present it, the evanescent wave will be locked 
and you have quantum vector parallel to the surface with perfectly positive energy. 
What do you mean by the evanescent wave has negative energy? 

G. Nimtz: The dielectric function is negative in the case of an evanescent mode. 
This means the energy of the evanescent mode is negative and the impedance is 
purely imaginary. As I mentioned, you cannot measure it. I t  is the same, like you 
cannot measure a particle inside a tunneling barrier in quantum mechanics. 

G. Leuchs: Then you cannot separate the evanescent modes. You cannot 
scatter it out. 

G. Nimtz: Yes. This is the reason why we cannot measure it. 
E. C. G .  Sudarshan: I have two brief questions. One refers to the measure- 

ment by a double prism. We also did it. We thought we could calculate how much 
is the evanescent wave, what is the polarization, what is the amplitude as a function 
of distance. You seem to say something to the contrary. Is that right? 

G .  Nimtz: Yes certainly, as we published last year in Physical Review. The 
theories do not describe correctly the polarization and do not properly take into 
account the influence of the beam diameter. All these parameters have an influence 

G. Nimtz: The importance of the information is its envelope. 
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on the tunnelling process as recent experiments revealed. 
E. C .  G .  Sudarshan: Another question is with regard to scalar waves, the 

quantum mechanical waves. When you are in the domain of evanescent waves, the 
wave number is purely imaginary but the energy density is not negative and the 
energy transport is zero. 

G. Nimtz: No, it is negative. 
E. C. G. Sudarshan: OK. I will trust you. 
W. Schleich: I also have problems with this evanescent wave concept because 

in experiments in quantum optics this evanescent wave is used to  reflect atoms and 
you see very clearly that evanescent wave and you measure it really, because if you 
change the intensity of the field you see this reflection. 

G. Nimtz: I like these experiments because they represent an example to 
explain that you don't reflect particles by evanescent modes but by the surface 
mode and this mode has a real wave number or reflection takes place by destroying 
the evanescent mode. 

W. Schleich: These are different experiments. I am talking about the experi- 
ment of Cohen-Tannoudji. 

G. Nimtz: It is the same situation. In all these total reflection experiments, 
you always have a surface component with a real wave number (Goos-Hanchen 
shift) and a component with an imaginary wave number. The component with an 
imaginary wave number is the evanescent mode and there is no interaction with an 
evanescent mode without its annihilation, i.e. the total energy of the process must 
be positive. 
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MEASUREMENTS OF NONLOCAL VARIABLES 

LEV VAIDMAN 
School of Physics and Astronomy 

Raymond and Beverly Sackler Faculty of Exact Sciences 
Tel-Aviv University, Tel-Aviv 69978, Israel 

Nonlocal variables are briefly reviewed and it is shown that all nonlocal variables 
related to two or more separate sites can be measured instantaneously, provided we 
restrict ourselves to verification measurements. The method is based on quantum 
teleportation. 

Seventy years ago Landau and Peierls claimed that the measurability of non- 
local variables contradicts relativistic causality. Twenty years ago, Aharonov and 
Albert showed that some nonlocal variables can be measured and that this does 
not contradict causality. The question: "What are the observables of relativistic 
quantum theory?" remains topical even today '. In the thriving field of quantum 
communication this question is relevant for quantum cryptography and quantum 
computation performed with distributed systems. Here, using the techniques of the 
process of teleportation ', I will show that all nonlocal variables related to two or 
more separate sites are measurable. 

Although there are many papers on nonlocal measurements, there is no clear and 
unique definition of the concept of nonlocal variable. I will start with the discussion 
of a nonlocal variable of a compound quantum system consisting of several separated 
parts. One possible definition is: 

Definition 1 
Variable 0 of a compound system is nonlocal if it cannot be measured (in 
a nondemolition way) using measurements of local variables of all separate 
parts of the system. 

According to this definition, for a system of two separated spin-i particles, 
variable O A ~  + UB, is nonlocal, while ( T A ~  + 2UBz is local. Indeed, measurements of 
C T A ~  and UB, separately yield values of both variables of the composite system, but 
an eigenstate of oxz +uB=, %(lt)ll) + 1l)lt)) is disturbed by local measurements 
while all four eigenstates of U A ~  + 2UBz are not. 

The requirement that the measurement is nondemolition might not be relevant 
for some considerations. Then we can modify the definition: 

Definition 2 
Variable 0 of a compound system is nonlocal if it  cannot be verified 
(maybe in a demolition way) using measurements of local variables of 
all separate parts of the system. 

According to this definition, the above variables are both local, but there are 
other variables of two spin-; particles which are nonlocal. Probably the most 
popular example is the Bell operator which is defined by its four nondegenerate 
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eigenstates: 

It is interesting that entanglement of the eigenstates is not a necessary condition 
for the nonlocality. The variable with the following set of eigenstates which are all 
product states is also nonlocal 6 :  

Pi) = I f z ) ~ I T z ) ~ ,  
1*2) = I f z ) A I l z ) B ,  

(93) = I l z ) A l f Z ) B ,  

1’@4) = I L z ) ~ I L Z ) ~ .  
The question I want to  discuss here is the measurability of nonlocal variables. 

I consider instantaneous von Neumann measurements relaxing the requirement of 
repeatability, i.e., as in Definition 2, the requirement that the measurement is 
nondemolition. The existence of a measurement which yields the eigenvalue of a 
variable with certainty, if prior to  the measurement the quantum system was in 
the corresponding eigenstate, gives the physical meaning for such a variable. (The 
need to relax the requirement of repeatability was clear before ’, when it has been 
shown that measurements of some nonlocal variables erase local information and, 
therefore, cannot be nondemolition.) 

The meaning of “instantaneous measurement” is that in a particular Lorentz 
frame, at time t ,  we perform local actions for a duration of time which can be as 
short as we wish. At the end of the procedure (arbitrary small period of time after 
t )  there are local records which together yield the outcome of the measurement 
of the nonlocal variable. The question I ask: “Is it possible to measure nonlocal 
variables (defined by Definition 2) in instantaneous measurements of this type?” 
We assume that it is allowed to perform, beyond local measurements, arbitrary 
local interactions and to  use prior entanglement between the sites of different parts 
of the system. 

that the Bell operator variable can be measured, 
and even in a nondemolition way. The variable (2) cannot be measured in a non- 
demolition way: its measurability would allow superluminal communication. The 
question of measurability (in a demolition way) of nonlocal variable of all types 
has been answered only recently ’. Here I will report this result, showing that all 
nonlocal variables related to  two or more separate sites are measurable. 

I will start explaining the method by describing the measurement of a nonlocal 
variable with nondegenerate eigenstates (2). The first step of the measurement is 
the teleportation of the state of the spin from B (Bob’s site) to  A (Alice’s site). Bob 

In fact, it was known before 
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and Alice do not perform the full teleportation (which invariably requires a finite 
period of time), but only the Bell measurement at Bob’s site which might last, in 
principle, as short a time as we wish. (I will continue to use the term “teleportation” 
just for this first step of the original proposal ‘.) This action teleports the state of 
particle B except for a possible rotation by x (known to  Bob) around one of the 
axes of teleportation: 51, 52, or 53. 

The second step is taken by Alice. She can perform it at  time t without waiting 
for Bob. She measures the spin of her particle in the z direction. If the result is “up”, 
she measures the spin of the particle teleported from Bob in the z direction and if 
the result is “down”, she measures the spin in the z direction. This completes the 
measurement. Indeed, the eigenstates of the spin in the z direction are teleported 
without leaving the z line and the eigenstates of the spin in the x direction are 
teleported without leaving the z line. Thus, Bob’s knowledge about possible flip 
together with Alice’s results distinguish unambiguously between the states Q i .  

Next, consider the measurement of a nonlocal variable of two spin-; particles 
located in separate locations A and B 
ization of (2): 

1Ql) = 

1%) = 

1*3) = 
I q 4 )  = 

whose eigenstates are the following general- 

(3) 

where Ite) is an eigenstate of a spin pointing in a direction d making angle 0 with 
the z axis. The method of measurement of this variable was found recently using 
a different approach lo and this result inspired the current work. 

The first step is, again, the Bell measurement at Bob’s site which teleports the 
state of the spin from B to A except for a possible rotation by x (known to  Bob) 
around one of the axes of teleportation: 21, 2 2 ,  or 23. This time Bob modifies the 
axes of teleportation (which define the eigenstates of the Bell measurement) in the 
following way: 53 = i and 2l is such that d lies in the plane of 53 and see 
Fig. 1. 

The second step is taken by Alice at time t .  As in the previous case, she measures 
the spin of her particle in the z direction. 

If the result is “up”, she measures the spin of the particle teleported from Bob 
in the z direction and this completes the measurement since the eigenstates of 
the spin in the z direction are teleported without leaving the z line and, there- 
fore, Bob’s knowledge about possible flip together with Alice’s results distinguish 
unambiguously between Qland Qz. 

If the result is “down”, Alice cannot perform a measurement on Bob’s teleported 
particle because it has spin either along the line of 0 (corresponding to teleportation 
without rotation or rotation around 2 2 )  or along the line of 8’ obtained from the line 
of d by R rotation around 21 (or 23) .  In this case, Alice teleports Bob’s teleported 
state back to Bob using a new teleportation axes defined by 5; = d and 2; = 2 2 .  

In the third step, Bob performs an action similar to  that of Alice in step 2,. He 
knows whether the spin state in 0 direction was teleported to  Alice along the 0 line 
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fX3 

Figure 1 .  The axes of teleportations. Bob starts with teleportation choosing i 3  and such that 
8 lies in the plane defined by the axes. Alice teleports back with 2; = 0. Bob continues with 
ij.= 8', etc. 

or al?ng the 8' line. In the former case, the state teleported to  him is still along 
the 0 line, so he completes the procedure by spin measurement in this direction. 
In the latter case, he receives the spin either along the 8' line or along the 6" line 
obtained by n rotation around the 0 axis. In this case, he teleports the particle 
back with the teleportation axes i?!= 6' and i?y= ?2. 

Alice and Bob continue this procedure. If 8 = &T, the line &") coincides with 
the line 8("-l) because the angle between the lines is: 0(") - 8("-') = (2"O)modn. 
In this particular case the process is guaranteed to  stop after n teleportation steps. 
If the lines do not coincide, the probability that after n teleportations the result of 
the measurement is not known is 2-", so the probability of success can be made 
as large as we wish. There is no minimal time for performing all the steps of this 
procedure. Bob and Alice need not wait for each other: they only have to specify 
before the measurement the teleportation channels they will use. Note, that usually 
Alice and Bob will use only a small number of teleportation channels: they stop 
when both Alice and Bob make teleportations which do not change the line of the 
spin. Thus, this method requires less resources than the alternative approach lo. 

Groisman and Reznik lo showed also how to  measure other nonlocal variables 
of two spin-; particles. The method I presented above can be modified for these 
variables too. However, I will turn now to  another, universal, method which is 
applicable to any nonlocal variable O ( q A , q B ,  ...), where qA belongs to  region A,  
etc. I will not try to optimize the method or consider any realistic proposal: my 
task is to  show that, given unlimited resources of entanglement and arbitrary local 
interactions, any nonlocal variable is measurable. 

I will start with the case of a general variable of a composite system with two 
parts. First, (for simplicity), Alice and Bob perform unitary operations which 
swap the states of their systems with the states of sets of spin-l articles. In this 
way Alice and Bob will need the teleportation procedure for spin-5 particles only. ? PI 
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Teleporting the states of all individual spins teleports the state of the set, be it 
entangled or not. 

The general protocol is illustrated in Fig. 2. Bob teleports his system to Alice. 
Again, he does not send to Alice the results of his Bell measurements, but keeps 
them for his further actions; we signify the possible outcomes of these measurements 
by i = 1, ... N. The outcome i = 1 corresponds to finding singlets in all Bell 
measurements and in this case the state of Bob’s system is teleported without 
distortion. 

Alice performs a unitary operation on the composite system of her spins and 
the teleported spins which, under the assumption of non-distorted teleportation, 
transforms the eigenstates of the nonlocal variable (which now actually are fully 
located in Alice’s site) to product states in which each spin is either “up” or “down” 
along the z direction. Then she teleports the complete composite system consisting 
of her spins and Bob’s teleported spins to Bob. From now on this is the system which 
will be teleported back and forth between Bob and Alice. In all these teleportations 
the usual z,  2, y basis is used. Hence, if the state is in the one of the product states 
in spin z basis, then it will remain in this basis. 

If, indeed, Bob happened to teleport his spins without any distortion, i.e., i = 1 
(the probability for which is &), Bob gets the composite system in one of the spin 
z product states and his measurements in the spin z basis that he now performs, 
complete the measurement of the nonlocal variable. If i # 1, Alice’s operation does 
not bring the eigenstates of the nonlocal variable to the spin z basis, so Bob cannot 
perform the measurement and he teleports the system back to Alice following a 
protocol that we explain below. 

Alice and Bob have numerous teleportation channels arranged in N - 1 clusters 
numbered from 2 to N. Each cluster consists of two teleportation channels capable 
to teleport the complete system and M - 1 clusters of a similar type, where M is 
the number of possible outcomes of the Bell measurement for teleportation of the 
complete system. In turn, each of the M - 1 clusters consists of two teleportation 
channels and M - 1 further nested clusters, etc. 

If in his first teleportation the result of Bob’s Bell measurements is i, he teleports 
now the composite system back to Alice in the teleportation channel of cluster i. 
Alice does not know in which channel she gets the system back (if she gets it back 
at all). So she must work on all of them. She knows that if she does get the system 
in channel i, the result of the Bell measurement in Bob’s first teleportation was i. 
Thus, she knows all the transformations performed on this system except for the last 
teleportation. Alice performs a unitary operation that transforms eigenstates of the 
nonlocal variable to product states under the assumption that the last teleportation 
was without distortion and teleports the system back to Bob. 

Let us denote the result of the Bell measurement in Bob’s last teleportation 
by i’, i’ = 1, ..., M .  Again, for i’ = 1 which corresponds to finding singlets for all 
Bell measurements, Bob performs the spin z measurement on the system which 
he receives in the teleportation channel of the cluster i. This then completes the 
nonlocal measurement. Otherwise, he teleports the system back in the channel of 
the sub-cluster 2’. Alice and Bob continue this procedure. The nonlocal measure- 
ment is completed when, for the first time, Bob performs a teleportation without 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



361 

Figure 2. The scheme of the measurement of a nonlocal variable of a two-part system. 
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distortion. Since, conceptually, there is no limitation for the number of steps, and 
each step (starting from the second) has the same probability for success, &, the 
measurement of the nonlocal variable can be performed with probability arbitrarily 
close to 1. 

The generalization to a system with more than two parts is more or less straight- 
forward. Let us sketch it for a three-part system. First, Bob and Carol teleport 
their parts to Alice. Alice performs a unitary transformation which, under the 
assumption of undisturbed teleportation of both Bob and Carol, transforms the 
eigenstates of the nonlocal variable to product states in the spin z basis. Then she 
teleports the complete system to  Bob. Bob teleports it to Carol in a particular 
channel iB depending on the results of the Bell measurement of his first telepor- 
tation. Carol teleports all the systems from the teleportation channels from Bob 
back to Alice in the channels (i~,ic) depending on her Bell measurement result 
ic. The system corresponding to  ( i ~ ,  ic) = ( 1 , l )  is not teleported, but measured 
by Carol in spin z basis. Alice knows the transformation performed on the system 
which arrives in her channels (i~,ic) except for corrections due to  the last tele- 
portations of Bob and Carol. So she again assumes that there were no distortions 
in those, and teleports the system back to  Bob after the unitary operation which 
transforms the eigenstates of the variable to  product states in the spin z basis. Al- 
ice, Bob and Carol continue the procedure until the desired probability of successful 
measurement is achieved. 

The required resources, such as the number of teleportation channels and re- 
quired number of operations are very large, but this does not concern us here. 
We have shown that there are no relativistic constraints preventing instantaneous 
measurement of any variable of a quantum system with spatially separated parts, 
answering the above long standing question. 

Can this result be generalized to  a quantum system which itself is in a super- 
position of being in different places? The key to this question is the generality of 
the assumption of the possibility to  perform any local operation. If a quantum 
state of a particle which is in a nonlocal superposition can be locally transformed 
to  (an entangled) state of local quantum systems, then any variable of the particle 
is measurable through the measurement of the corresponding composite system. 
However, while for bosons it is clear that there are such local operations (trans- 
formation of photon state to entangled state of atoms has been achieved in the 
laboratory 1 1 ) ,  for fermion states the situation is different 12. If the transformation 
of a superposition of a fermion state to local variables is possible, then these local 
separated in space variables should fulfill anti-commutation relations. This is the 
reason to expect super-selection rules which prevent such transformations. 

It is a pleasure to  thank Yakir Aharonov, Shmuel Nussinov and Benni Reznik 
for helpful discussions. This research was supported in part by grant 62/01 of the 
Israel Science Foundation and by the Israel MOD Research and Technology Unit. 
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DISCUSSION 
Chairman: R. Chiao 

G. Hegerfeldt: I have a very simple question. As I understand you are working 
in non-relativistic quantum mechanics. Then you are using the finite velocity of 
light. How can you bring them together? 

L. Vaidman: The context of the work is following. We have non-relativistic 
quantum mechanics and then, when people talk about relativistic quantum me- 
chanics, they usually go to field theory, string theory and so on. The question is: 
Can we go and use the concept of non-relativistic quantum mechanics correctly in 
relativistic quantum mechanics? If we have a variable of the form o(q,, q b ,  qc, t ) ,  
does it have meaning in relativistic quantum mechanics? The claim is that it does 
have a meaning. I t  is clearly physical and it is measurable in Nature. There is 
a procedure, which will tell us exactly what it is. I t  will transform accordingly 
from one Lorentz frame to  another because it is measurable. So, this variable has 
a meaning in relativistic quantum mechanics. 

E. Polzik: Your results imply that if there is an entanglement shared between 
two particles, the presence of this entanglement can be verified instantaneously. 

L. Vaidman: No. When you make a quantum measurement, you measure an 
operator. You find an eigenvalue. You don't know that before the measurement 
the state was the eigenstate with this eigenvalue. You know that the state was 
not orthogonal to this eigenstate. so, if I found an entangled state L ( l f ) A ( l ) B  - 
I 1 ) A ( f ) B  it might be that before the measurement it was just 1f)AI l )B.  I had a 50% 
chance to  find it entangled. 
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NONLOCAL GROSS-PITAEVSKII EQUATION COUPLED TO THE 
NONCONDENSATE QUANTUM KINETIC EQUATIONS IN THE 

FLUCTUATIONS, AND DECOHERENCE 
THEORY OF BOSE-EINSTEIN CONDENSATE FORMATION, 

V. V. KOCHAROVSKY 1v2,3, VL. V. KOCHAROVSKY lV3 ,  M. 0. SCULLY ‘ ~ 3 ~  

Institute for Quantum Studies, 
Texas A d M University, College Station, T X  77843-4242, USA 

Department of Physics, 
Texas A d M University, College Station, T X  77843-4242, USA 
Institute of Applied Physics of the Russian Academy of Sciences, 

46 Ulyanov str., Nizhny Novgorod 603600, Russia 
Max-Planck Institut fur Quantenoptik, 85748 Garching, Germany 

We study kinetics of the formation, quantum fluctuations, and decoherence of Bose- 
Einstein condensate (BEC) in a weakly interacting Bose gas. These processes deter- 
mine, in particular, the properties of the atom lasing and quantum information prc- 
cessing based on BEC. We develop the method of the canonical ensemble quasiparti- 
cles in the theory of interacting Bose gases that solves the problem of uncontrollable 
particle-number non-conservation of the standard grand canonical ensemble approxima- 
tions, e.g., Bogoliubov-Popov approximation. It yields a solution to the problem of the 
non-Gaussian anomalously large fluctuations of the ground state occupation in a con- 
densed interacting Bose gas at all temperatures below the critical value. 

This method allows us also to  derive a time-dependent equation for a coherent or- 
der parameter in a partially condensed weakly interacting Bose gas, i.e., a generalized 
Gross-Pitaevskii equation, that takes a form of a nonlocal nonlinear Schrodinger equation 
coupled to the equation for the noncondensate excitations via nonlocal inhomogeneous 
source term responsible for an exchange of particles between condensate and noncon- 
densate. In this way we make gapless approximations particle-number-conserving and 
provide a well-grounded basis for the analysis of the formation and decoherence of a 
coherent condensate due to coupling with an incoherent noncondensate. 

1 Introduction 

Standard techniques in the theory of Bose-Einstein condensation in the interacting 
gases, such as the Green’s function methods and diagram technique, utilize a grand 
canonical ensemble approach and approximations that often do not conserve exactly 
a total number of particles in the system but control only an average number of 
particles In a series of problems, it is important to avoid the uncontrollable 
effects of the non-conservation of the number of particles. One of such problems is 
the kinetics of a condensate growth from an incoherent noncondensate, especially 
at an early stage of the condensate formation since fluctuations of the ground state 
occupation are extremely sensitive to the particle number constraint N = const 7J’. 
In particular, grand canonical fluctuations of the ground state occupation are much 
stronger than canonical or microcanonical fluctuations. Another example is a well- 
known dilemma of “conserving versus gapless approximations” ’. In many respects, 
it is essential to work within the approximations that preserve the conservation laws 
of the number of particles, energy, and momentum. These features are important 
for the dynamics and fluctuations of an atom laser that emits coherent matter 
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waves from a partially condensed Bose gas and holds promise for the applications 
in gyroscopes and other supersensitive gauge systems. 

This paper is a brief outline of our presentation at the XXII Solvay Conference 
in Physics (Delphi, Greece, 24-29 November, 2001) and is devoted to a convenient 
met hod of an explicit account for a particle-number conservation in the partially 
condensed interacting Bose gases and its applications to  the kinetics of the forma- 
tion, quantum fluctuations, and decoherence of the BEC. In particular, it allows one 
to  upgrade usual approximations, such as a Bogoliubov-Popov approximation, in 
order to ensure a conservation of the number of particles. A careful analysis of these 
problems is necessary to  resolve an unprecedented discrepancy (up to  about 400%) 
between the existing theory and the experimental growth curves for the BEC 6 ,11 .  

The method is based on the concept of the canonical ensemble quasiparticles de- 
scribed in 7,8. 

2 

This concept utilizes the operators 

The Concept of Canonical Ensemble Quasiparticles 

fit = a,’&, ,& = c:&k, t o  = (1 + fiO)-”’h(J, (1) 

introduced by Girardeau and Arnowitt lo. 

Two main ideas stand behind this concept. First idea is to  use everywhere 
only particle-number-conserving creation and annihilation operators (1)  that de- 
scribe transitions between ground (k = 0) and excited (k # 0) states. (For the 
sake of simplicity, throughout this paper, we write down formulas for a case of 
a homogeneous gas. A generalization to  the case of a trap with arbitrary ex- 
ternal potential Uezt (x) is straightforward.) Any approximation in these terms 
automatically conserves the total number of particles, N = const. Standard ap- 
proximations replaced the creation-annihilation operators of the actual particles 
in the ground state by the c-numbers, ii$,& --t that introduced suspicious 
particle-number non-conserving terms NOiik6-k and N06kf&Tk in the Hamiltonian 
and even some difficulties in the physical interpretation. For instance, the very 
coherent order parameter, i.e., the macroscopic wave function = (NI6IN + l), 
where = VP1/’ Cr=, i ikeikx, turned out to  be a transition matrix element re- 
lated to two different physical systems (with N and N + 1 particles in a trap) and 
not just a quantum-mechanical average for a given physical system of N particles. 
(For a standard discussion of this subtlety, see ’.) 

Our method of the canonical ensemble quasiparticles (they could be named 
also by phonon excitations, or phonons) cures both the non-conserving terms and 
interpretatio?. In particular, the coherent order parameter is determined now by 
a canonical 9No-operator which is related to a standard +-operator by a simple 
formula 

9 = ErJ6No = (1 + &)-1/’iio[(fi”v)1’’ + Bx], (2) 
where 
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NOW the macroscopic wave function % N ,  = (NI$N,IN),  or, for a general mixed 
state with a density matrix p ,  

is exclusively related to a given physical system of N particles. 
The second main idea is to  approximate a canonical ensemble Hilbert space ' H C E  

by a subspace with non-zero ground-state occupation 'H$f&, where the canonical 
ensemble quasiparticles obey the Bose canonical commutation relations exactly 

This allows us to use the usual many-body techniques for Bose operators, including 
the diagram techniques. The canonical $N,-operator has the following Fourier 
decomposition (see also Eq.(2)), 

k=O 

1: is important that the constant in space, i.e. k = 0, contribution to the canonical 
Q ~ v ~  (x)-operator is completely determined by the fluctuation operator &. 

An incorrect attempt of a particle-number-conserving modification of the stan- 
dard theory of Bose-Einstein condensation was criticized by Girardeau 12. 

3 Equation of Motion for the Canonical $N,-operator and Generalized 
Gross-Pitaevskii Equation 

Similarly to a well-known Heisenberg equation for the standard $-operator 

-ihd$/dt = (h2/2m)A8 - (Uo/V)$+@, (7) 

we derive a Heisenberg equation for the canonical @N,-operator 

in the coordinate x-representation where H is the Hamiltonian of an interacting 
Bose gas. 

It yields coupled equations for the noncondensate fluctuations A$, = $N, - 
G N ,  and for the quantum-mechanical average of an operator wave function %N,(x). 
The latter equation, by definition, is the Gross-Pitaevskii equation for a coherent 
order parameter. In our analysis it has a form of a nonlocal nonlinear Schrodinger 
equation 

-ihdGN,(x)/dt = ((h2/2m)A + p - (UO/V)I\IIN,(X)~~)GN,(X) + F(x). (9) 

The explicit expressions for the effective chemical potential p and for the source term 
F(x) include integral, nonlocal contributions due to  the particle number constraint 
N = const. We can analyze the related effects in different approximations. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



367 

4 Continuity Equation and Exchange of Particles between Condensate 
and Noncondensate 

The most important effect is an exchange of particles between condensate and non- 
condensate. It can be seen most clearly from the continuity equation for the average 
density and current of particles, 

d( f i ) /d t  = -div(j). 

Being split into the condensed and noncondensed parts, it yields two coupled equa- 
tions with a source terms of opposite signs, 

d(fi.,)/dt = -div(j), + S(X), 
d(fi.,,)/dt = -div(j),, - S(X) .  

(11) 

It is related to the source term in the Gross-Pitaevskii equation as follows 

The generalized Gross-Pitaevskii equation (9) is coupled to  the quantum ki- 
netic equations for the noncondensate which can be derived in a way similar to that 
used in 3 9 4 3 1 3 9 1 4  but with additional nonlocal contributions. (They will be presented 
elsewhere.) On this basis, we can discuss different physical mechanisms responsible 
for a growth or decay of the Bose-Einstein condensate in the canonical or micro- 
canonical ensembles and resolve a huge discrepancy between the experiment and 
the existing standard theory of the BEC formation 6,11. A simple Gross-Pitaevskii 
equation for a pure coherent condensate alone preserves the norm of the coherent 
order parameter in the volume of a trap, s, I G N ~ ( x ) ~ ~ ~ ~ ~  = c a s t ,  and, hence, 
cannot give an account for a condensate growth or decay. It describes only the dy- 
namics of the existing condensate, e.g., modifications or oscillations of a superfluid 
flow pattern. 

5 Conclusions 

The method of the canonical ensemble quasiparticles efficiently improves the stan- 
dard analysis of the Bose-Einstein condensation in all aspects that concern the 
conservation of the number of particles. Hence, it is preferable for the studies of the 
canonical and microcanonical ensembles and such effects in the condensate forma- 
tion and in the spectral, decaying, and dynamical behavior of a partially condensed 
interacting Bose gases where many-particle correlations induced by the particle- 
number constraint N = c a s t  are important. In particular, it  yields explicitly 
nonlocal coupled equations for the condensate wave function and noncondensate 
fluctuations that preserve the continuity equation for the total density and cur- 
rent of particles and describe an exchange of particles between the condensate and 
noncondensate. 

The concept of the canonical ensemble quasiparticles yields also a very transpar- 
ent solution to the problem of calculation of the anomalously large non-Gaussian 
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fluctuations of the ground state occupation in a partially condensed interacting 
Bose gas in the canonical or microcanonical ensembles at all temperatures below 
the critical value 7,8 .  
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DISCUSSION 
Chairman: R. Chiao 

R. Chiao: Are you talking about the depletion when you say “non-condensate”? 
V. Kocharovsky: Yes. The depletion of the ground state contributes to the 

non-condensate if the condensate, i.e., the average value of the canonical-ensemble 
quasiparticle field operator decreases and the fluctuation component increases. In 
other words, the non-condensate is everything except of the average value of the 
canonical-ensemble quasiparticle field operator. 

R. Chiao: Does it mean that there will be some dissipation in the non- 
condensate because of this coupling between condensate and non-condensate, which 
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means that, for example, sound waves in the superfluid will be dissipated? 
V. Kocharovsky: This coupling between the condensate and the non-conden- 

sate components can contribute to the dissipation, for example, of the oscillations in 
the condensate. This dissipation was discussed usually in terms of the processes like 
Landau damping or Belyaev process. We analyze this coupling and the full quan- 
tum kinetic equations for the non-condensate in the canonical or microcanonical 
ensemble. 

W. Schleich: You have mentioned non-locality. How does it emerge here? 
V. Kocharovsky: Non-locality emerges here due to  this kind of non-local 

term, which is the integral over the trap volume, and the reason for this non- 
locality is exactly the conservation of the total number of particles in the trap. 
A process where the non-condensate particles go from some excited levels to the 
condensate is non-local because the condensate is spread over the trap in accord 
with a macroscopic wave function. Finally, the particle-number constraint is an 
integral condition, this results in a non-local behaviour of the condensate. 

W. Schleich: Is there a similar effect in laser theory? 
V. Kocharovsky: If we have a mode in the resonator then the mode is also 

distributed over the whole volume of a laser. It is a similar effect. In a laser we 
usually have a kind of non-local contribution to  the generating mode. 

A. Steinberg: It seems to me that the contribution in the laser will only 
come up if the other mode in the laser cavity is the lasing mode. The lasing mode 
consequently is the condensate here and you need interaction with the other kinds 
of modes. 

V. Kocharovsky: If you have different active atoms distributed along the 
laser cavity, they just go from an upper energy level to a lower energy level and emit 
photons in the lasing mode. This is equivalent to  some extent to the transformation 
of the non-condensate component to  the condensate component in the Bose gas. 
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MICROSCOPIC ENTROPY FLOW AND ENTROPY 
PRODUCTION IN RESONANCE SCATTERING 

G. ORDONEZ, T. PETROSKY AND I. PRIGOGINE 
Center for Studies in  Statistical Mechanics and Complex Systems, The University of 

Texas at Austin, Austin, T X  78712 USA 
and International Solvay Institutes for Physics and Chemistry, CP231, 1050 Bmsels ,  

Belgium 

A microscopic dynamical entropy (or ‘H function) for a two-level atom interacting 
with a field is introduced. The excitation process of the atom due to the resonance 
scattering of a wave packet is discussed. Three stages of scattering process (before, 
during and after the collision) are described in terms of entropy production and 
entropy flow. The excitation of the atom may be considered as the construction 
of a non-equilibrium structure due to entropy flow. The emission of photons dis- 
tributes the energy of the unstable state among the field modes, leading to an 
increase of microscopic entropy. In this process, instability in dynamics associated 
with resonances plays a central role. The ‘H function is constructed outside the 
Hilbert space, which allows strictly irreversible time evolution, avoiding probabilis- 
tic arguments associated with ignorance. 

. 

1 Introduction 

Irreversible processes can be characterized by the existence of an entropy or H 
function with monotonic behavior in time. One of the simplest models where we can 
find irreversible processes is a two-level atom interacting with a field (the F’riedrichs 
model 1,2) .  The excited state is unstable and decays to the ground state emitting 
a photon. Conversely, the ground state may absorb a photon and go to the excited 
state. Both processes include an exponentially decaying component exp( -2yt) in 
the excitation probability, associated with the lifetime (2y)-’of the excited state. 
This component breaks time symmetry. 

As shown in 2 1 3  for the Friedrichs model one can introduce an H function, which 
is the microscopic analogue of Boltzmann’s H function in statistical mechanics. In 
our earlier work 4,536,7 we have shown that if there exists a microscopic entropy it 
must be an operator. In the F’riedrichs model we can construct an H function in 
terms of the operator 4,2 

where 161) is “Gamow state” outside the Hilbert space. We do not go here to  a 
detailed discussion on a general aspect of entropy. Let us only notice that there 
have always been two points of view: the point of view of Planck, relating entropy 
to dynamics and the point of view of Boltzmann, relating entropy to probabilities 
(ignorance) ’. We understand now that Planck could not realize his program as 
he worked in the usual representation of dynamics, equivalent to a Hilbert space 
representation. 

The Heisenberg evolution of Eq. (1) is given by 

(2) H(t) = , i H t H e - i H t  = e - 2 ~ t ~  
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37 1 

In this paper we consider the relation between dynamics and the monotonic 
decrease of ‘H. We consider a scattering process, where a localized wave packet 
is sent to collide with the atom in its ground state. For simplicity we consider 
scattering in a one-dimensional space. 

In this process we identify three periods: 1) before the collision, 2) during the 
collision, and 3) after the collision. All the three periods can be understood in 
terms of microscopic entropy production and entropy flow, which added together 
give a positive entropy production for the whole system, given by 

where diS is the total internal entropy production, and ( ) means an expectation 
value for a given state. Before the collision we have to target the wave packet 
towards the atom in order to have scattering. This introduces a long range cor- 
relation that makes the value of ‘H higher (the entropy lower). The ‘FI function 
decreases as the “precollisional correlation” decreases, leading to a positive entropy 
production .a 

During the collision, the atom is excited. There appears an entropy flow from 
the field to the atom. This flow makes the atom component of the entropy lower, in 
spite of the total entropy production always being positive. Hence, the excitation 
of the atom may be considered as a construction of a non-equilibrium structure due 
to entropy flow. 

After the collision, the atom decays back to the ground state. In this moment 
the dominant part of the entropy production is due to the decay of the atom. 
The emitted field, moving away from the atom, now has a very small correlation 
component (postcollisional correlation) that gives a small correction of the entropy 
production. 

In Secs. 2 and 3 we discuss the model and the Gamow states, which are used 
to define the 31 function in Sec. 4. In Sec. 5 we describe the scattering of the wave 
packet. In Sec. 6 we introduce a decomposition of the wave packet into two nonlo- 
cal components, one moving away from the atom, the other towards the atom lo. 

As shown in Sec. 7, they give very different behavior of the ‘H functions. This cor- 
responds to the distinction between precollisional and postcollisional correlations. 
In Sec. 8 we analyze the scattering process in terms of entropy production and 
entropy flow. Finally, in Sec. 9 we discuss the effects of momentum inversion on 
‘H. 

2 The Friedrichs model 

We consider the F’riedrichs model in one-dimensional space. The Hamiltonian of 
this model is given by 

H = H o  +xv (4) 

aThe question of the meaning of the decrease of .H before the collision has been raised in Ref. g. 
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We use units with h = 1 and c = 1. The state 11) represents a bare atom located at  
the origin 5 = 0 of space in its excited level and no field present, while the state Ik) 
represents a bare field mode of momentum k together with the atom in its ground 
state. Hereafter we will refer to the states Ik) as “photon” states as a convention. 
For a,@ = 1, k we have 

(&I@) = da,p, c l4(4= 1. (5) 
a=l,k 

The energy of the ground state is chosen to be zero; w1 is the bare energy of 
the excited level and wk = Ikl is the photon energy. The coupling constant X is 
dimensionless. We put the system in a “box” of size L and eventually take the 
limit L -+ M. As usual, we assume periodic boundary conditions. For L finite the 
momenta k are discrete. In the limit L -+ 00 they become continuous, i.e., 

The summation sign is written with the understanding that the limit (6) is taken 
at  the end. The potential v k  is of order L-’j2. To indicate this we write 

vk = ( 2 r / L ) 1 / 2 V k ,  (7) 

where vk is of order 1 in the continuous spectrum limit L + m. We assume 
that w1 > 0. We consider the situation where the state 11) is unstable due to the 
interaction with the field, i.e., the interaction is weak enough (A << 1) so that it 
does not lead to a stable solution for the dressed atom. 

The survival probability of the excited state 11) decays in an approximately 
exponential way. The exponential behavior is given by the complex pole at  

z1 LJ, - iy, (8) 

of Green’s energy function [@(W)]-’ where 6 1  > 0 is the renormalized energy of 
the excited state, 27 > 0 is the decay rate, and 

V * ( W )  = w - w 1 -  (9) 

The pole z1 is the solution of q+(z1) = 0 that reduces to w1 when X = 0. In Eq. 
(9) the superscript I‘+” (or -) indicates analytic continuation of z from the upper 
(or lower) half plane to z = w ll,’. 

In addition to the exponential component the survival probability contains non- 
exponential components related to the “Zeno” effect 12,3 and long time tails 13. 

These components come from the branch cut contribution of Green’s function. 

3 Gamow states 

The complex pole z1 can be associated with a generalized eigenstate (the so-called 
“Gamow state”) of the Hamiltonian H ‘,14-16 

H l h )  = zlb?h)7 ( & I f f  = ( i i l z i .  (10) 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



373 

The left eigenstates ($11 are different from the Hermitian conjugates of the right 
eigenstates 1 4 1 ) .  Both the left and right eigenstates do not belong to  the Hilbert 
space, since these states have no Hilbert norm. This allows the Hamiltonian H to 
have complex eigenvalues. 

For the field modes there are also right and left eigenstates, 

H 1 4 k )  = W k l $ k ) ,  ( $ k l H  = ( 6 k l w k .  ( 1 1 )  

The eigenstates are given by 1 1 ) 2  

where 

The eigenstates of H form a bi-complete and bi-orthonormal set in the wave function 
space as 

( i a l 4 P )  = 6a,P, c l4a)( ia l  = 1. (17) 
a = l , k  

They give a complex spectral representation of H ,  

In addition to this complex representation, there also exists a real representation 
of H in terms of the states I & )  (called “Friedrichs eigenstates”) ’. These states, 
by themselves form a complete set 

and give the real spectral representation 
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4 U function 

Because of the instability due to the resonance effect, one can introduce a micrc- 
scopic analog of Boltzmann's 'H-theorem through the operator H = [&)(&I defined 
at Eq. (1). This quantity is defined outside the Hilbert space. 

Our definition of 'H through Gamow vectors is closely related to the microscopic 
H operator in the Liouville space that has been first introduced many years ago 
by one of the authors (I.P.) 5 3 6 .  The relation between this operator and the one 
defined in Eq. (1) is briefly discussed in Appendix A. 

Let us consider the time evolution of the expectation value of 7-1 with an initial 
state It), 

('H(t)) = ( E I ~ ( t ) l t )  = (ml41)(6llW7 ( 2 1 )  

where 

It(t)) = epiHtlC).  

Since ( 4 1 1  is an eigenstate of H ,  we have the exponential behavior 

(&IE(~) )  = e--y-iG1 ( & I E ( o ) ) ,  
which leads to 

('H(t)) = e-2Yt( 'H(0)) .  

This shows that ('H(t)) is a Lyapounov function 5,6 (or the 71 function) that decays 
monotonically for all times. 

5 Scattering of a wave packet 

The monotonic decrease of the 'H function can be understood as a balance between 
entropy production and entropy flow. We will show this for the scattering process 
where a wave packet of the field collides with the atom. 

As an initial condition at t = 0 we assume that the atom is in its ground state 
and the localized wave packet away from the atom, as shown in Fig. 1. To 
simplify calculations, we choose a rectangular shape for the wave packet with an 
initial momentum ko and a width b in x, 

( 2 5 )  

where W is a normalization constant, 

XI = xo + b / 2 ,  2 2  = xo - b / 2 ,  

and the state ( X I  is defined through the momentum state Ik) by 

(xlk) = (2wkL) -1 '2  exp(ikx). 

The packet is centered at  z = xo < 0. We assume that 

b >> Jko1-l. 
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Figure 1. Field intensity I(z, t )  
approaching the atom located at 
ko = 31 = 0.95, 7 = 0.02. 

for a rectangular wave packet at t = 0. The wave packet is 
z = 0 from the left hand side. Parameters are b = 100, 20 = -70, 

As we will see, this condition ensures a small distortion of the wave packet during 
free motion. 

The momentum representation of the state is given by ( k i t )  = (2?T/L)1/2& with 

For the purpose of evaluating contour integrals, we may add an infinitesimal ic to 
the denominator: 

1 
=+ 

1 
k - k o  k - k 0 - k '  

As k = ko is not a singular point in Eq. (29), we may choose the sign of c at our 
convenience. 

For ko > 0 the main part of the wave packet moves to the right towards the 
atom located at  z = 0, while for ko < 0 it moves towards the left, away from 
the atom. Actually, as we will see later, there is a more detailed structure in the 
motion, which can be seen by decomposing the wave packet into two nonlocalized 
components moving in opposite directions. 

In Figs. 1-3 we show numerical plots of the field intensity for the case ko > 0. 
The numerical plots are obtained by solving the Schrodinger equation through 
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Figure 2. Wave packet during the collision with the atom at t = 56. 

diagonalization of the Hamiltonian (see l7 for a description of the numerical method; 
we have used a 2500 x 2500 Hamiltonian matrix). In these figures the parameters 
have been chosen as w1 = 1, X = 0.1. For the numerical plots we have introduced 
a cutoff k,, for the momenta that leads to a discreteness Ax of space. We have 
k,,, = 7r/Ax. For the potential we have used Vk  = (2~k/L)'/~~(k,,, - lkl) with 
L = 1250 and k,,, = 27r. With these parameters we have obtained Ljl = 0.95 and 
y = 0.02 by the numerical solution of q+(,z1) = 0 (see Eq. (9)). We have chosen 
the value of ko at the resonance point ko = (;I1 to maximize absorption of the wave 
packet by the atom. 

In Fig. 2 one can see the interaction between the incident wave packet and the 
atom at a intermediate time t l  < t < t2 when the wave packet is passing through 
the atom (with t l  = lxll and t2 = 1.21). During this period the atom is excited. 
The interference pattern to the left of the atom is due to the interference between 
the incident wave packet and the emitted photons. To the right of the atom we have 
the part of the incident wave packet that has been transmitted. It presents a dip 
towards the origin as a result of absorption by the excited atom. For t > t2 (Fig. 
3) the excited state decays with an emission of resonant photons. The transmitted 
wave packet is seen to the right of the atom. The distant profile to the left of the 
atom (in the region x < -Q, where Q = t - t2) represents the photons that were 
emitted as soon as they were absorbed (i.e. the reflected photons). Around the 
atom at x = 0 we see the cloud and the field emitted after t = t 2  in the region 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



377 

0.02 

X 

Figure 3. Field intensity after the collision with the atom at t = 160. The field emitted after the 
excitation of the atom appears in the region 121 < Q t - t 2 .  The transmitted wave packet is in 
the region z > Q and the reflected wave packet is in the region z < -Q. 

1x1 < Q. In this region there is a universality in the structure of the field around 
the decaying atom. Indeed, if we prepare the initial atom in a bare excited state 
without field, the same cloud and emitted field appear in the time evolution '. 

6 

To study the motion of the wave packet, we introduce a decomposition of the initial 
wave packet into two nonlocal wave packets. 

In the lowest order approximation of A, the time evolution of the wave packet 
is given by the free motion. In z representation we have 

Nonlocality in the wave packet 

Inserting a complete set of momentum states we have 

Using W k  = Ikl and decomposing the wave packet into the two components, 
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we have 

=t (z - t )  + c-(s + t ) .  (34) 

Under free motion, the two components move undistorted in opposite directions. 
As shown in lo both components are nonlocal, i.e., they have long tails in space. 
The long tails decrease as an inverse power law of the distance from the center of 
the wave packet. At t = 0 the long tails cancel to obtain the rectangular shape of 
16). For t > 0, as the two components move away from each other, the long tails no 
longer cancel (we have called this the “curtain” effect lo). The long tails may excite 
the atom immediately after t = 0. This nonlocal effect does not violate causality, 
because the components move with the finite speed c = 1 (the wave packet I<-) 
moves to the left and It+) to the right). We note that nonlocal tails appear even 
if the initial wave packet is not strictly localized. For example, if it is a Gaussian 
wave packet, there will appear tails that extend over a much larger range than the 
Gaussian tails. 

The relative intensity of the nonlocal wave packets depend on the initial mo- 
mentum ko. For ko > 0, with the condition (28), the intensity of the nonlocal wave 
packet moving towards the atom is large while the nonlocal wave packet away from 
the atom is small. The latter can be seen in Fig. 2. It corresponds to the two small 
peaks on the left hand side. The central part of the wave packet I<-), as well as 
the tails extending to the sides are too small to be seen. In this figure the wave 
packet I[+) (which is much larger) is already interacting with the atom. 

For ko < 0 we have the opposite situation: the intensity of the nonlocal wave 
packet moving away from the atom is large while the nonlocal wave packet moving 
towards the atom is small. 

As we will see in the next section, the two nonlocal wave packets give very 
different behavior of the 7-t functions. 

7 7-t functions of the nonlocal wave packets 

The 7-t functions associated with the two nonlocal wave packets It+) and I<-) are 
given by 

(7-t*@)) = (E*I7-t(t)Kf) = l~&l~-zHt l~*~12.  

(&le-iHtlt*) = A:(t) + A f ( t ) ,  

(35) 

Inserting a complete set of unperturbed states we write the amplitude as 

(36) 

where 

A:( t )  = (&ll)(lle- iHt IE f ), A f ( t )  = C(&lk)(kle-iHtlt*).  (37) 
k 

Restricting our interest to the weak coupling case X << 1, we keep only the lowest 
order terms in X. In the limit L -+ cm, with the relation between &and Ekf given 
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by Eq. (33) we have (note that &k # <$) 

where 

Similarly we have (using Eqs. (15) and (20)) 

where 

For the “pole” contributions we evaluate the integrals by closing the integration 
path in the upper or lower infinite semicircle of complex k ,  respectively. The choice 
depends on the sign of the coefficient C in the exponential exp(iCk) in the in- 
tegrand: upper for C > 0 and lower for C < 0 (see Eq. (29)). Neglecting any 
singularities of v(k), the pole contribution is then given by the residue at the poles 
k = z 1  and k = ko f i q  if these are enclosed by the integration contour. Taking 
into account the explicit form of <k in Eq. (29) we get 

~ ; , ~ ~ ~ ~ ( t )  = axz;(wl)e-i21tf(Z1)(B[t2 - t ] e i t z ( z l - k o )  - e 
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where 

Inserting this in Eq. (35) we obtain the 'H functions of the nonlocal wave packets. 
Now suppose that we start with the component I[-) alone. In this case the 

excitation of the state is caused by off-resonance photons, since it involves the 
%ut" term, containing no pole contributions. Then, we have 

('H-(t)) = I 4 t L t  l 2  (50) 
One can show that as a function of the initial distance 50, this decreases as an 
inverse power law of 20 for large Izol. On the other hand, it decays exponentially 
as a function of time. This is due to the excitation of the atom by the tails of the 
wave packets and the subsequent decay of the excited atom. 

If we start with the component It+) alone, we have 

We again have a cut contribution due to  the tails of the wave packet. But in 
addition we have the much larger pole contribution coming from resonant photons. 
This grows exponentially with the distances 2 1  and 2 2  as t j  = Ixjl. For 1x01 >> y-' 
we may neglect the cut contribution. Approximating x1 - 2 2  - xo we have 

( ~ + ( t ) )  c( e2T(lzOl--t) (52) 
This shows that for larger distances 1x01 from the atom we have larger values of 
('H+(t)) that come from the nonlocal wave packet I[+) moving towards the atom. 
In order to have a resonance scattering process the wave packet has to be targeted 
towards the atom. In other words, there exists a long range "precollisional" cor- 
relation between the wave packet and the targeted atom. The increase of ('H+(t)) 
with the distance 1x01 implies that there is a stronger precollisional correlation for 
larger 1x01. 

8 

We focus our attention on the scattering of the I<+) wave packet. During the time 
the wave packet overlaps with the atom, the atom is excited. For a large enough 
wave packet one can keep the atom in a steady excited state. One may consider this 
as a nonequilibrium steady state, since it decays after the wave packet dissociates 
from the atom. This indicates that there is an entropy flow from the field to the 
atom. The 'H function associated with the atom must increase during the excitation 
process in spite of the fact that the total 7-l function decreases. 

Entropy production and entropy flow 
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38 1 

To see this in more detail, let us write our 'H function as 

where 

('H+ (t))ff = C(E+ (t)lk) (Wlk')(~'JF+ (t>). (54) 
k,k' 

The H+ function is expressed as a superposition of the atom component ('H+) 11, the 
atom-field correlation component (W) 1f and the field-field correlation component 
( X + ) f f .  Using the results obtained in the previous section we have 

('H+(t))ll IAt,pole(t)12, 

('H+(t))lf % A~pole( t ) [A~pole( t ) Ic .c .  + c.c.7 

( 'H+( t ) ) f f  IA;pole(t)12. (55) 
In Figs. 4 we plot the total 7-1 function as well as the individual correlation compo- 
nents. For easier visualization we have chosen here a smaller decay rate y = 0.005 
than in the previous figures. We discuss now the behavior of the different correlation 
components during the three stages of the scattering process. 
1) Before the collision 

For t < t l  = 20 (i.e., before the moment when the wave packet touches the atom 
for the first time), all the decrease of the 'H function is due to the decrease of the 
field-field component ('H+ ( t ) )  ff. During this period the precollisional correlation 
is destroyed. 
2) During the collision 

For t l  < t < t 2  = 120, all the components contribute to the 'H function. This is 
the period during which the atom is excited. As we have expected, the atom compo- 
nent ('H+(t))ll increases monotonically due to the entropy flow from the field. The 
field-field component decreases as the wave packet dissociates during the collision. 
The atom-field correlation component (X+(t))ll first increases and then decreases. 
This is due to the competition between the increase of the atom component and 
the decrease of the field component. As a whole the total 'H function maintains 
its monotonic decrease, because the increase in ('H)11 and ('H)lf components are 
compensated by the decrease due to the field-field component. 
5') After the collision 

For t > t 2  the contribution to the 'H function comes, essentially, only from 
the atom component. The decrease of H is associated with the decay process of 
the atom. Note that the emitted photons move away from the atom and hence 
they only give a small contribution to the 7-l function. They play the same role as 
the It-) wave packet moving away from the atom. The scattered field has a long 
range "postcollisional" correlation. The existence of this long range correlation is 
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I0 
t 

Figure 4. Total X + ( t )  function, field component X T f ( t ) ,  atom-field component 3.1Tf(t), and atom 
component litl(t) in units of C = I.rXw(wl)f(z1)12. Time t is in units of w;’. Parameters are 
ti = 20, t 2  = 120, y = 0.005, ko = 61. 

obvious, since if at t = t 3  > tzw e perform a momentum inversion of the scattered 
wave packet that dissociates from the atom, we should find the atom again in the 
ground state at a time t = 2t3 - t l .  Some details of the momentum inversion will 
be discussed in the next section. 

Let us now define more precisely the microscopic entropy production and en- 
tropy flow in this scattering process. In thermodynamic systems, the entropy 
contains two components l8 

dS = diS + deS. (56) 

The term diS is the total internal entropy production, while d,S is the entropy 
flow, coming from the interaction with the environment. 

The second law of thermodynamics takes the form 

diS 2 0. (57) 

The entropy flow deS can be either negative or positive. 

flow is zero. We define the microscopic internal entropy production as 
If we view the the atom-field system as a single isolated system, then the entropy 
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The total entropy production is a sum of the entropy productions coming from the 
field-field, the atom and the atom-field components, 

(59) d i S ( t )  d S ( t )  d S ( t )  d S ( t )  
- dt  = [TI ff + [TI 11 + [TI If’  

Neglecting the small correction coming from It-), we have 

As mentioned before, for the wave packet moving towards the atom the last two 
terms in Eq. (59) may be negative during the excitation period. During this pe- 
riod the atom is going further away from the ground state that corresponds to 
“equilibrium” in thermodynamic systems. But as a whole the total entropy pro- 
duction remains positive, because of the strong entropy production by the field-field 
component. 

We can also view the atom as a subsystem interacting with its environment (the 
field). We have 

where 

The first term in the r.h.s. is again the positive entropy production of the global 
scattering-absorption-emission process. The second term is the entropy flow due to 
the interaction of the atom with the field. This can be either positive or negative. 
As a whole the entropy change of the atom can be either negative or positive. In 
nonequilibrium thermodynamics, entropy flow can lead to self organization and 
the appearance of nonequilibrium structures (or dissipative structures) 19,20. Our 
result shows that the excited state of the atom may be considered as an example 
of a nonequilibrium structure obtained from microscopic dynamics. 

9 Momentum inversion 

As far as the system is governed by dynamics, the ‘H function should decrease 
monotonically in time. However, this is not the case when we perform some non- 
dynamical operation to the system. For example, if we perform a momentum 
inversion of the system at a given time t ,  the ‘H function may jump to a higher or 
lower value. As we now show, the direction of the jump depends on the moment 
when we perform the momentum inversion. To some extent, we may say that the 
momentum inversion gives a positive or negative “injection” of correlations 5,6,2.  

Momentum inversion is achieved by the antilinear time inversion operator TI. 
Suppose that at  time t 3  we perform a momentum inversion. Then the states I<*(t3)) 

change as 

1<*(t3)) = epiHt31<*) (63) 
~ ~ ~ - i H t s  f - + i H t ~  T - 7 - 1‘5 ) - e IE ) - IE ( t 3 ) )  
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The ratio of the ‘H function after the inversion to  the one before the inversion is 
given by 

Suppose that at t = 0 we start with the component [<+)alone. The wave packet 
moves to the right. We perform momentum inversion at a time when the wave 
packet has excited the atom and the atom is emitting the decay products, as in 
Fig. 3. The momentum inversion (point A in Fig. 5 )  causes the ‘H function to  jump 
up, as the decay products start to move towards the atom (we have an increase of 
“order” due to  the injection of the correlations from outside ’). After the inversion, 
we have a “backwards” evolution and we follow the inverse sequence, from Fig. 
3 to 1. The decay products move towards the atom, which subsequently absorbs 
them. Eventually the field collects itself back into the initial wave packet, which 
then moves away from the atom. We may interpret the continued decrease of ‘H 
(solid line in Fig. 5 )  as due to the disappearance of the “anomalous” correlations 
that were injected t o  the system at point A t o  ensure that all the emitted field is 
re-absorbed by the atom. The ‘H function continues to decrease as the wave packet 
moves away and the atom decays to  the ground state. 

Note that the larger t3 is in Eq. (64) the higher is the entropy jump. There 
is an “entropy barrier.” The more we wait, the more “difficult” it is t o  bring the 
system back to  its initial state after momentum inversion. For t + 00 we have an 
infinite entropy barrier. 

A different situation occurs if we perform the momentum inversion earlier, at a 
time when the wave packet is still far from the atom. The wave packet then changes 
to I<-) and moves to the left. At the moment of inversion (point B in Fig. 5 )  we 
have [cf. Eq. (52)] j r ( t )  0: exp(-Zy(z31). The Ft function jumps down, due to  the 
change of the direction of motion (dotted line in Fig. 5 ) .  The momentum reversal 
turns the precollisional correlations into postcollisional correlations. 

If we start at t = 0 with the component I<-) alone and perform a momentum 
inversion some time later, then the ‘H function jumps up, because the wave packet, 
which was moving away from the atom, now moves towards the atom. After the 
inversion the ‘H function decreases in time as described previously (see Fig. 6). 

10 Concluding remarks 

We have described resonance scattering in terms of entropy production and entropy 
flow. During the collision there is an entropy flow from the field to the atom. 
As a result, we can interpret the excited state as a nonequilibrium structure in 
our microscopic dynamical system. To ensure the resonance scattering occurs, 
we have to target the wave packet t o  the atom at the initial time. This gives a 
large value of the 7-t function given by a precollisional correlation. In contrast, we 
have a small value of the ‘H function for wave packets moving away from the atom, 
given by a postcollisional correlation. The momentum inversion turns precollisional 
correlations into postcollisional correlations or vice versa, making the 7-l function 
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Figure 5. Schematic plot of the Lyapounov function (N+(t ) ) / (N+(O)) .  The time inversion at A 
(after the wave packet collides with the atom) creates correlations; at B (before the wave packet 
collides with the atom) it destroys correlations. In this figure and in Fig. 6 time t is measured in 
units of the inverse frequency u;’ = 1 of the unstable state. 

jump in a positive or negative direction depending on the moment of the momentum 
inversion. 

The absorption and emission processes are part of a global process going from 
an “ordered” situation (the distribution of the field being not symmetric, a s  the 
field is concentrated on one side of the atom) to a “disordered” situation (the field 
distributed more symmetrically on both sides of the atom, due to the emission 
process). This is analogous to the increase of the entropy in statistical mechanics, 
associated with the approach to equilibrium. Here “equilibrium” means the atom 
in the ground state and the field emitted away to infinity. The ‘H function gives an 
indication of how far the system is to its final asymptotic state ’. A large class of 
initial conditions, including ones giving rise to a temporary ‘‘backwards” evolution 
(e.g. after a momentum inversion) eventually end up with the atom relaxing to the 
ground state and all the field moving away from the atom to infinity.‘ 

The relation between the value of the ‘H function and the direction of the wave 
packet (on target or off target) is more interesting when we consider systems in 

*An exception is given by initial conditions where a wave packet is at an infinite distance from the 
atom, and is directed towards the atom. Such states take an infinite amount of time to reach the 
“equilibrium” asymptotic state. This corresponds to  the existence of an infinite entropy barrier 
mentioned before. 
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Figure 6. Schematic plot of the Lyapounov function ( R - ( t ) ) / ( W + ( O ) ) .  The time inversion at A 
creates correlations and causes 7-l- to jump up. 

more that one-dimensional space. We will present the detailed description of three- 
dimensional scattering elsewhere 21. 

Many elements found in the microscopic 7-l function can be included on the 
macroscopic level. Our example supports the view that the second law of thermo- 
dynamics can be formulated on a dynamical basis, avoiding additional probabilistic 
arguments ‘. The origin of irreversible behavior is rooted in the microscopic level. 
Here instability in dynamics coming from resonances plays a central role. 
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Appendix 

A 

We introduce the superoperator M = AtA (see 533), where A is a ‘Lstar-unitary” 
transformation that puts dynamics in a “kinetic representation.” A is an extension 
(to nonintegrable systems) of unitary transformations diagonalizing the Hamilto- 
nian in integrable systems. It maps bare particles to dressed unstable particles or 
quasiparticles ll. A-transformed density operators obey Markovian kinetic equa- 
tions, that to lowest order agree with the usual kinetic equations, e.g., the Pauli 
master equation. 

M is similar to a Gibbs entropy with the replacement of unitary transformations 
U by A [for unitary transformations the Gibbs entropy is an invariant of motion, 
while with A the entropy evolves monotonically]. 

To connect the operator M with our present H function, we note that for systems 
with many particles or field modes we may introduce a reduced Lyapounov operator 

3.1 function in the Liouville space 

M ,  = A ~ I ~ ~ ~ ) ) ( ( ~ , I A ,  (65) 

where A, is a one-particle observable corresponding to the bare particle Q and 
AtlA,)) is the transformed observable associated with particle CY dressed by the 
interactions (quasiparticle). In Eq. (65) we use the notation IA)) and ((BI for kets 
and bras in the Liouville space, where A and B are ordinary quantum mechanical 
operators. The inner product is defined as 

= R ( A t B )  (66) 

l.;b)) = I.)(bl, b ; b l  = lb)(.I (67) 

We use as well the notation 

for dyadic operators. 
The Lyapounov function is the expectation value ((M,(t))) =_ ( (p ( t ) [M , lp ( t ) ) ) ,  

where Ip(t)))  = exp(-ilHt)lp)), and LH = [ H ,  ] is the Liouville operator. For 
N-particle systems, ((M,(t))) is a generalized Boltzmann H function 7. We will 
present more details elsewhere. Here we restrict ourselves to  the Friedrichs model. 
As shown in 3,  for states with no diagonal singularity in momentum representation, 
there is a simple relation between this Lyapounov function Ma and the H operator 
in Eq. (21). For example, if p is a pure state p = It)(<[ normalized as T r ( p )  = 1, 
we have for 1A1)) = 11; I)), 

( W l  (t)))  = ( (P( t )  18)) ( ( G M m .  (68) 

where 

IZ)) = AtP; 1)) (69) 

In Eq. (68) the state ((p(t)l plays the role of a test function with no diagonal 
singularity. This allows us to write ((p(t)lijy)) = ((p(t)l&;&)) 3.  Thus we obtain 

((Ml(t))) = ( ( m I 6 1 ;  6 1 M 6 1 ;  dlIP(t))). (70) 
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or 

where ( N ( t ) )  = ((I'H(t)/<). This shows the relation between M and the 'H function 
considered in this paper. 

For states with diagonal singularities the Mlop erator is no longer factorizable 
in terms of Gamow states. States with diagonal singularities occur naturally in 
systems in the thermodynamic limit, e.g., for a particle coupled t o  a heat bath. 
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NONLOCALITY AND CAUSALITY IN QUANTUM 
ELECTRODYNAMICS 

G. COMPAGNO', G.M. PALMA', R. PASSANTE1''A ND F. S. PERSIC0'*2 
' Istituto Nazionale di Fisica della Materia and 
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Universitci degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo, Italy 

Istituto per le Applicazioni Interdisciplinari della Fisica, 
Consiglio Nazionale delle Ricerche, Via  Ugo La Malfa 153, I-90147 Palermo, Italy 

The problem of relativistic causality in atom-radiation interacting systems is in- 
vestigated. The excitation transfer in the Fermi problem is considered and it is 
shown that, independently from the initial state of the two atoms, it is causal, as 
well as the propagation of the electromagnetic field emitted by an excited atom. 
Nonlocal interatomic correlations and nonlocal spatial field correlations however 
appear in the evolution of the systems considered. These nonlocal correlations are 
shown to be compatible with relativistic causality. Our results are discussed with 
reference to questions recently raised in the literature about possible violations of 
relativistic causality. 

1 Introduction 

The problem of relativistic causality in quantum field theory has received much at- 
tention since the beginning of quantum electrodynamics in connection with the so- 
called Fermi problem, that is the excitation transfer between two atoms 1,2,334,5,637,8.  

This and related problems have been investigated until very recently g910911. In the 
Fermi problem there are two atoms separated by a distance r;  one of them (atom 
A) is initially in an excited state and the other (atom B) in its ground state. Rel- 
ativistic causality requires that the excitation probability of atom B must vanish 
before the causality time t = r/c. Recently, a series of papers by Hegerfeldt have 
questioned, on the basis of very general arguments, about a possible violation of 
the relativistic causality in this system 3,12,13. Hegerfeldt ' s  considerations are based 
on a general theorem stating that any quantum system described by a Hamilto- 
nian with a spectrum bounded from below, instantaneously develops tails of the 
wavefunction spreading all over the space . Apparently, this may yield an instanta- 
neous nonvanishing excitation probability of atom B, and thus a possible violation 
of relativistic causality. Also, it is known that the field emitted by a field source 
usually has nonlocal spatial correlations l4 and that instantaneous interatomic cor- 
relations may appear in matter-radiation interacting systems 15. On the other 
hand, the energy density of the electromagnetic field emitted by an excited atom 
propagates causally 16,17,18 and specific calculations have proved causality for the 
excitation transfer in the Fermi problem, within the approximations used 5,9.  Thus, 
the causality problem is still controversial and the relation between causality and 
the emergence of nonlocal correlations seems worth deeper investigation. 

In this paper we consider the problem of causality in quantum electrodynam- 
ics and its relation with the appearance of nonlocal atomic and field correlations. 
We consider two two-level atoms (A and B) in vacuo, separated by a distance T 

and interacting with the electromagnetic radiation field in the multipolar coupling 
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scheme and within dipole approximation. By solving the Heisenberg equations of 
motion for the atomic operators, we show that, independently from the initial state 
of the two atoms, the evolution of single-atom operators is not affected by the 
presence of the other atom until the “causality time” r/c, even if instantaneous 
interatomic correlations develop. We also show that the energy density of the field 
emitted by an excited two-level atom propagates causally, but nonlocal spatial cor- 
relations of the emitted field appear. Finally, we give some arguments indicating 
that our results, which show a strict causal behaviour of “local” quantities such as 
single-atom operators or field energy densities, are not in contradiction with the 
Hegerfeldt theorem. 

2 Atomic and field dynamics 

The Hamiltonian describing two identical two-level atoms A and B, localized at 
points 0 and r, respectively, interacting with the electromagnetic radiation field in 
the multipolar coupling scheme and in the dipole approximation, is l9 

- EkjaLj (sy’ + e- ik.rsJD))  - +,.aki (3’“) + e i k . r s i B ) ) }  (1) 

where S,, S+, S- are the atomic pseudospin operators, wo is the transition frequency 
of the atoms, and the coupling constant Ekj is given by 

(eki are real polarization vectors, pzl is the real matrix element of the transition 
dipole moment and V the quantization volume). 

The Heisenberg equation for the atomic operator SLA’ in the second Born ap- 
proximation can be put in the form 

z (3) ’ A )  - S ( A A )  + S ( A B )  s! - z 

where S,“” is the same term which would be obtained in the absence of the atom B 
and Sf” is the contribution of atom B to  the evolution of atom A. Because we are 
interested in causality issues, the first contribution is not relevant for our purposes. 
The second contribution can be evaluated and the result is 

i ( A )  (B) eiwo(r/c-t) 
li zd, (m), eiwotDLn { ((s,  S- ) t=O 

S!AB) = -- ( p  

where we have defined the differential operator 
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39 1 

A similar result is obtained for Sy) = Sy’ + SyB), and the contribution of 
atom B to the time evolution of Sy) is 

The presence of the Heaviside function O(ct - r )  in equations (4 ,6)  ensures a 
causal behaviour of the atomic operators. There is no influence of atom B on the 
evolution of the operators of atom A before the causality time t = T / C .  Because 
(4 ,6 )  are operator equations, this is valid independently of the initial state. We 
expect that the evolution of any combination of operators of only one atom (i.e. 
excluding quantities containing products of operators relative to  different atoms 
such as interatomic correlations) behaves similarly. 

The situation changes when products of operators pertaining to  different atoms 
are considered, as in the case of atomic correlations. Let consider the specific case 
of an initial state of two uncorrelated atoms, in the vacuum state of the field, of 
the form l5 

At t = 0, we have (S!A)S!B)) t=~ = 0. At time t ,  the average value of the correlation 
between the operators S!”)S!”’ is given by (for T >> ct) 

(8) 

1 8~ (/.~21), ( ~ 2 1 ) ~  

T b O  

1 - cos wot 1 - cos 2wot - ( wo 4w0 
(S!A)S!B))t = - 

1 
T4 

x - (hmn - 2i,Fn) 

Thus, instantaneous interatomic correlations develop in the system, in spite of the 
fact that the dynamics of local quantities, i.e. quantities pertaining to  a single 
atom, is causal. 

A similar situation occurs when field observables are considered. For example, 
if we evaluate the electric energy density of the field emitted by an initially excited 
two-level atom located at r = 0 in the vacuum state of the field and described by 
the multipolar Hamiltonian, we find l7 

where X(r, t )  is the electric field energy density operator and the space- and time- 
uniform zero-point energy density has been subtracted. The presence of the Q 
function ensures causality in the propagation of the electric energy density. It 
should be noted that the energy density of the total electric field (transverse plus 
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longitudinal) appears in eq. (9). However, similarly to  the atomic operators case, 
a nonlocal behaviour is found when the average value of the spatial correlation 
of equal time field operators is evaluated. For example, the following equal-time 
correlation function of the (total) electric field emitted by an atom located at R = 0 
during spontaneous emission 

is different from zero even if lr - r’ I> ct, provided r > ct and r’ > ct ‘ O .  

Thus the examples discussed above show that the propagation of local field 
observables such as the field energy density (that is, observables expressed in terms 
of field operators at the same point of space) is causal, while expectation values 
of quantities containing field operators at  different points of space show a nonlocal 
behaviour. 

3 Conclusions 

In this paper we have investigated some specific examples of atom-radiation inter- 
acting systems, and shown that: i) the evolution of single-atom observables, as well 
as of local field observables such as the field energy density, is strictly causal; ii) 
nonlocal interatomic correlations and nonlocal spatial field correlations emerge in 
the evolution of matter-radiation systems. These two statements on the evolution 
of the interacting system may appear incompatible, but this is not the case. The 
point is that, in order to  evaluate the correlation between atomic or field observ- 
ables at two points 1 and 2, separated by a distance r, two local measures are 
necessary. The two observers must then communicate to  each other the result of 
their measures. This requires at least a time equal to the “causality” time t = r/c. 
Therefore the existence of nonlocal correlations does not imply a violation of rela- 
tivistic causality. Naturally, in principle we cannot exclude that one could envisage 
some other procedure for using the correlations’ nonlocal behaviour to  transmit 
some kind of information at  superluminal velocity. This, however, would appear 
to  violate relativistic causality. We can only say that the nonlocality we find is 
compatible with relativistic causality. 

Finally, we wish to  stress that the causal result for the Fermi problem we ob- 
tained in eqs. (4,6) is not necessarily inconsistent with Hegerfeldt theorem, as 
Hegerfeldt himself suggested ’. This theorem states that any quantum system 
described by a Hamiltonian with a spectrum bounded from below instantaneously 
develops infinite tails of the wavefunction. In quantum field theory, the definition of 
a Hamiltonian with interactions and bounded from below implies renormalization. 
The eigenstates of a renormalized Hamiltonian are dressed states, in our case a 
superposition of atomic and photon states. These states are not localized in space, 
due to their photon part. In the case of the Fermi problem, this means that the two 
“dressed” atoms have some overlap since the beginning. In other words, a part of 
dressed atom A is already present at t = 0 at the position of bare atom B. In view 
of this fact, the nonvanishing excitation probability found by Hegerfeldt for t < r / c  
is not surprising, and it is not due to an instantaneous influence of one atom on the 
other, but only to the instantaneous effect of one (delocalized) dressed atom on the 
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393 

other dressed atom. Thus it does not yield a violation of causality. Our method 
based on the partition (3) of the (bare) atomic operators allows an unambiguous 
identification of which contribution t o  the evolution of one atom comes from the 
other (bare) atom, and indeed our results show a strict causality for the excitation 
transfer between the two atoms. 

The authors acknowledge partial financial support by the European Commission 
under Contract No. HPHA-CT-2001-40002, by Comitato Regionale di Ricerche Nu- 
cleari e di Struttura della Materia and by Minister0 dell’Universit8 e della Ricerca 
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DISCUSSION 
Chairman: 0. Kocharovskaya 

G. Pronko: You said that in the two atoms problem the interaction be- 
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tween two atoms spreads with the velocity of light and there is no contradiction to  
Hegerfeldt’s theorem because of renormalizat ion. Correct? 

R. Passante: In the time evolution of one atom, there is no influence of the 
other atom before the causality time. This is the result of our calculations. Now, 
my question is how this is related to Hegerfeldt’s theorem, which apparently says 
that we should have an instantaneous effect on the other atom. The point is that 
Hegerfeldt’s theorem can be applied only to  renormalized Hamiltonians, because it 
requires an Hamiltonian bounded from below. Both atoms are therefore dressed 
because we perform a renormalization, and the renormalization procedure includes 
some part of the dressing into the physical object. All atoms are now extended 
objects and there is some component of atom 1 in all space. For example, there is a 
photon cloud of atom 1 also in the place where atom 2 is located. But this photon 
cloud is already there when we prepare the initial state. Thus, the evolution of 
atom 2 is not due to  an instantaneous propagation from atom 1 to atom 2, but to  
the photon cloud of atom 1 which was already present at  the position of atom 2, 
because we are considering a dressed atom. So, if we look carefully at the problem, 
there is no contradiction at all with Hegerfeldt ’s theorem. 

G. Hegerfeldt: What I have shown is that if one atom is in the ground state 
here and another atom is excited over there then the transition probability of the 
ground state atom to excited state will be immediately non zero under some spectral 
conditions. Nothing more. The question is how does this excitation arise on the 
second atom? I completely agree with you that the excitation arises spontaneously. 
What he has done, he has separated the influence of this spontaneous part from 
the influence of the second atom which is causal and I completely agree with it. 

E. C .  G. Sudarshan: There is a distinction between the whole field being 
equal to  zero or non-zero and the positive frequency part of the field. When you 
talk about an atom emitting a photon you want to create a photon of positive 
energy, which is the creation part of the field, and that leads to  quantities, which 
are not related to  what we look. This is one part. The other part of the thing is 
that whenever you have an interacting system, an interacting field, the interacting 
field is never local with regard to  the asymptotic field. If it is local then according 
to  the theorem it is trivial. In both these cases when we talk about this locality 
and non-locality one has to  be careful about this. I think, Dr. Passante was very 
careful. 
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SUPERLUMINAL LIGHT PULSE PROPAGATION IN ACTIVE 
NONLINEAR MEDIA 

V.S. LETOKHOV 
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 1421 90, 

Russia 

"Only darkness propagates faster than the light" 
(from Greek mythology) 

The advent of lasers and novel experimental techniques have made it possible 
to conduct experiments on the already solved but; ever "intriguing" problem of 
the "superluminal velocity of light pulses" in various experimental situations 
(see review '): anomalous dispersion near an absorption line ', linear gain spectral 
lines 5-11, and tunneling barriers ''>13. In essence, these experiments have only 
confirmed the usefulness of the five different kinds of wave velocity, namely, the 
phase  velocity, the group velocity, the energy velocity, the " signa!' velocity, and 
the "fr0nr velocity, introduced by L. Brillouin for absorptive dispersion media. 
In this connection, I would like to return to the discussion of this problem for the 
interesting case of propagation of a short laser pulse in a nonl inear  (saturable) 
amplifying medium in the wider context of propagation of instability autowaves in 
an active nonlinear medium. 

1 Early Works 

In 1964-65, at the laboratory headed by N.G. Basov (P.N. Lebedev Physical In- 
stitute), who had just received, together with A.M. Prokhorov and C.H. Townes, 
a Nobel Prize in physics, there were conducted very advanced, at the time, inves- 
tigations into the enhancement of the power of nanosecond pulses generated by a 
Q-switched ruby laser by means of a chain of ruby crystal amplifiers. In the course 
of these experiments, performed by R.V. Ambartzumian, P.G. Kryukov, and V.S. 
Zuev, it was planned to raise the pulse energy to  a few tens of joules and reduce 
the pulse duration from a few tens of nanoseconds down to sub-nanosecond val- 
ues. They aimed at achieving a power density of a few hundreds of gigawatts per 
square centimeter, a record-high value at the time. Such pulse powers and energies 
were believed to  be necessary for the observation of laser-induced thermonuclear 
fusion. In the course of these experiments, the experimenters met with difficulties 
typical of multiplestage laser amplifiers: (1) damage caused to laser crystals and 
optical elements by a strong light field and (2) unwanted lasing, i.e., the transfor- 
mation of laser amplifiers into laser oscillators as a result of any scattered light 
reflection. When studying this phenomenon, they developed incoherent scattering 
feedback lasers and also observed a new effect - the running of the pulse peak being 
amplified far ahead of the leading edge 14,15. 

In the experiments, a Q-switched laser pulse was passed through a laser amplifier 
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Figure 1. Effect of laser pulse reshaping in saturable laser amplifier with observable superluminal 
velocity of pulse propagation. Shape of initial pulse of Q-switched laser with exponential leading 
edge expanding to the time of Q-switching is shown on left side. The ordinate scale is highly 
compressed (Isat/Isp = 10l2 - 1015). 

with a length of L and arrived at the registering oscillator ahead of time, the advance 
being equal to AT (Fig. 1). This corresponded to the pulse propagation through 
the amplifier with a velocity of v 2 9c, where c is the velocity of light in the 
medium (crystal) free from active particles (ions). I took part in these experiments 
as a graduate student-theoretician. The observed superluminal propagation of the 
laser pulse was at once interpreted l 4 7 l 5  as being the result its nonlinear reshaping 
in the laser amplifier due to  the preferential amplification of its exponentially rising 
leading edge. The point is that the leading edge of the input Q-switched laser pulse 
stretches, by virtue of the dynamics of such lasers, far ahead of the pulse maximum 
and has a nonzero, though negligible, intensity. This exponentially small leading 
edge is of principal importance in the subsequent superluminal reshaping of the 
pulse in the nonlinear amplifier, which was analyzed in detail in 16-18. 

2 Theoretical consideration 

I described the amplifying medium by the Boltzmann equation for the density 
matrix p with longitudinal and transverse relaxation, and the field E by Maxwell's 
equation in a medium having also a linear nonresonant radiation losses: 

d2E d E  a 2  - + c2rotrotE + yc-= - 47~Ni--Sp(pjj), 
a t 2  at a t 2  

where y is the coefficient of nonresonant linear radiation losses per unit length 
in the medium, N, is the particle density, HO is the unperturbed Hamiltonian of 
the particle, and p is the operator the electric dipole moment of the transition. 
The term rp describes phenomenologically the relaxation of the elements of the 
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density matrix: the diagonal elements (l?p)nn = (pnn - &) /TI, describing the 
level population, relax within the longitudinal relaxation time TI, and the non- 
diagonal elements (I'p)mn = pmn/Te (m, n=lr2), which describe the high-frequency 
dipole moment, relax within the transverse relaxation time Tz. 

In the representation in which HO is diagonal, the equation for the density matrix 
can lead to equations for the polarization P = NiTr(p l j )  and for the inverted- 
population density N = Ni (p22 - ~11) :  

where No=Ni (p& - p?,) is the density of the inverted population in the absence 
of a field, WO = w21, and small terms have been omitted under the assumption that 
wo >> l/Tz. 

The field equations (1) and the material equations (3) and (4), together with 
the initial conditions, describe completely the propagation of a light pulse in a 
resonantly amplifying medium. In luminescent crystals and practically in all other 
amplifying media, the variation of the light-wave parameters over distance on the 
order of the light wavelength and within times on the order of the light period is 
very small. We can therefore go over to "slow" variables &, P, cp, and $. 

( 5 )  
E = I &  (t,  x) exp {i ['p (t ,  x) + wt - kx]} + C.C. i! P = ,P (t,  x) exp {i [$ (t ,  x) + wt - k z ] }  + C.C. 

where a light pulse is in the form of a linear polarized plane wave, moving in the 
positive direction of the x axis. Then the equation for the field and the material 
equation reduced to  the following system of equations: 

a& a& y 
- +c- + -c& = 2 ~ w P s i n ( $  - cp), at ax 2 

- + c- = - 2 T W P C O S  ( 7 j J  - cp) , (Z  ;:> 
ap 1 p2 -+-P= -NEsin($-cp), at Tz f i  

aN 1 1 
- + - ( N - N o )  =--P&sin($-cp). dt Ti f i  

(7)  

(9) 

In the envelope approximation, Eqs. (6-9) are exact, and take into account the 
effects of coherent interaction of the pulse with the medium. They become much 
simpler, however, in the case of incoherent interaction. 

Incoherence of the interaction can arise either as a result of the incoherent state 
of the medium during the pulse time, or as a result of an incoherent state of the field. 
The condition for incoherent interaction between a coherent pulse and a medium is 
of the form 

rP >> T2. (10) 
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However, even if rp - T2, the interaction can be incoherent if the coherence time 
of the field tcoh is much shorter than T2: 

T2 >> Tccoh. (11) 
If the interaction is incoherent as a result of the incoherent state of the medium 

( T ~  >> T2) then, as follows from the equation of (7) ,  the polarization "follows" the 
field amplitude to  quasistatically: 

(12) 
P2 P = -T2NE sin ($ - 'p) . 
A 

Taking this into account and changing over to the radiation flux density 

1 c  2 I = --&2[photons/cm sec] 
hwo an 

we can reduce (6-8) to the following three equations: 

- + c c b ' = c ( u N - $ 1 ,  { &  B5 + (N - No) = - 2 u I N ,  

d'p a'p T2 + C G  = (wo - w )  -CON, 
2 

where u = u ( w )  is the cross section of the radiative transition at the frequency w ,  
defined by the expression 

The first two equations are the usual transport equations that follow from the 
energy conservation law. The third phase equation describes the effect of variation 
of the phase velocity as a result of the anomalous dispersion within the limits of 
the negative-absorption line. 

3 Nonlinear Reshaping of a Laser Pulse During Propagation in an 
Amplifying medium 

Stationary pulse propagation in nonlinear (saturable) media occurs with both 
modes of interaction (coherent and incoherent) between laser pulses and ampli- 
fying media: (1) in the propagation of an ultrashort laser pulse with a duration 
of T~ << T2, where T2 is the transverse relaxation time (phase memory relaxation 
time in the amplifier medium), that interacts with the amplifying medium in a 
coherent fashion and ( 2 )  in the propagation of a short laser pulse with a duration 
of rp >> T2 that interacts with the amplifying medium in an incoherent fashion. In 
both cases, account should be taken of the linear, nonsaturable absorption y that 
is inevitably present in any chain of amplifiers. This loss is much smaller than the 
linear amplification, but once saturation is reached, it becomes substantial for the 
tailing part of the pulse and thus limits its maximum energy. 

Under coherent interaction conditions, the propagating ultrashort pulse is trans- 
formed into a stationary "n-pulse" of specified shape and duration that pushes all 
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the excited particles down to the lower level, i.e., extracts all the energy stored in the 
amplifying medium 19. The propagation velocity of such a pulse does not differ from 
the velocity of light, c.  This propagation mode is difficult to realize experimentally 
in luminescent crystals, because the energy the ultrashort pulse (rp << T2110-12s) 
must have for its nonlinear amplification to  take place, i.e., the saturation energy 
flux ESat~hw/ao  (for the ruby crystal, ao110-20cm2 ), corresponds to its intensity 
of I1ESat/rp = 1012-1013 W/cm2, which is above the damage threshold of the ruby 
crystal. 

The evolution of the nanosecond pulse propagating under incoherent interaction 
conditions is described by simple rate equations (14) and (15). The character of 
this deformation depends substantially on the shape of the leading edge of the laser 
pulse at the entrance to the amplifying medium 17. 

The effect of preferential amplification of the leading edge of the pulse leads to a 
gradual ”shift” of the pulse maximum over the leading front, and the magnitude of 
the shift is determined essentially by the character of the leading front of the initial 
pulse. If the magnitude of the shift is characterized by the relation W = dr/dx, 
where dr is the shift of the pulse over the leading front on passing through a layer 
of medium with thickness dx, then the following expression holds ”: 

where 7- = t-(x/c), and t ,  is the point of the leading front of the pulse corresponding 
to a definite (say, 10%) level of gain saturation. 

The shift of the maximum of the pulse prevents its compression. Therefore, in 
nonlinear amplification, only the pulses for which W = 0 (pulses with a step-wise 
leading front) or W -+ 0 are shortened as the pulse is shifted over the leading front. 
The condition 

is satisfied, for example, by the leading front of a pulse of Gaussian shape 10 (7) - 
exp (-r2/rt). In spite of the infinite length of the leading front, a Gaussian pulse is 
shortened when propagating in a nonlinearly amplifying medium. Figure 2a shows 
the results of a computer solution of Eqs. (14, 15) for a Gaussian initial pulse. 

Pulses for which W = const or W + const as the pulse propagates, i.e., 

tend to a stationary shape I [t - (x/u)] without a decrease in duration. In partic- 
ular, this condition is satisfied by pulses with an exponential growth of the leading 
front, I0 ( r )  - exp (r/ro). Numerical solutions of the equation (14,15) for a pulse 
with an exponential leading edge are shown in Fig. 2b, where the approach of the 
stationary state can be seen. 
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Figure 2. Reshaping of light pulse in nonlinear laser amplifier: (a) Gaussian pulse; (b) light pulse 
with exponential wings; (c )  light pulse with a leading edge having a power-law growth. 10 is the 
length of the amplifier (from 17). 
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Finally, pulses satisfying the condition (WI + M, i.e. 

experience an infinite lengthening of duration. Since the total energy of the pulse, 
regardless of its form, is limited, the intensity of such pulses tends to zero. Including 
among the "broadening" pulses are initial pulses with power-law growth of the 
leading front, 10 (7)  N 1~0/71", n > 1. Figure 2c shows the results of a numerical 
integration of Eq. (14-15) for an initial pulse with a leading front of the type )70/71~. 

4 Superluminal Stationary (Autowave) Pulse Propagation 

Most interesting is the stationary propagation of a pulse with an exponential leading 
edge, which is practically realized in the amplifying medium due to  stimulated 
emission. This is a rather general principle: the evolution of spontaneous emission in 
the amplifying medium of a laser oscillator or amplifier always obeys an exponential 
law. 

The input Q-switched laser pulse in the experiments 1 4 7 1 5  has the shape shown in 
Fig. 1. The shape of the pulse is determined by the operating principle of this laser. 
The development of generation begins with the level of spontaneous noise in the 
oscillation modes Isp  at the instant of Q switching (t = t o ) .  The exponential growth 
of the power Isp exp (t/.ro) continues for a relatively long time 7d (50 - 500nsec), 
called the delay time until the power reaches the level Isat (I,,, M lOl5ISp), sufficient 
to start saturation of the gain of the active medium. After this period, the energy 
stored in the laser is emitted, and this emission lasts for a short time, T,, = 5 - 50 
nsec, which is smaller by approximately one order of magnitude than the delay time. 
During that time, the giant radiation pulse proper is emitted. It is clear that the 
leading front of such a pulse satisfies the condition (20). Therefore the pulse of the 
Q-switched laser should not be shortened but tend to a certain stationary shape. 
However, a similar displacement of the pulse over the leading front continues until 
the maximum of the pulse reaches the start of the pulse (t = 0). Fig. 2b illustrates 
the numerical solution of equations (14,15) for the initial pulse with experimental 
rise of the leading front. 

The shift of the maximum of the pulse over the leading front can lead to a 
motion of the pulse in the medium with a velocity exceeding the velocity of light. 
Indeed, the velocity of a point on the leading front ts(x) with definite saturation 
level is determined by the relation 

u =  p 1 - l ;  

and the connection between the velocity u and the displacement of the pulse over the 
leading front W is determined by differentiating the relation T~ (x) = t ,  (z) - (x/c). 
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As a result, the velocity of the pulse u is satisfies the relation 

For pulses with an exponential leading front exp(-r/To), expression (23) takes 
the form 

1 1  _ _ _ -  - -XoT01 u c  
where xo =  NO - y) is the initial gain of the medium per unit length. It is easy 
to see that when X O T O  < 1 the velocity of propagation of the maximum pulse u > c, 
and when CXOTO > 1, the velocity is negative (u < 0) 18. 

The condition for the existence of the stationary state then takes the form 

XoToC < 1. (25) 
Physically condition (25) is due to the exponential spatial growth of the intensity 
of the leading front in the amplifying medium. This is illustrated in Fig. 3, which 
shows the instantaneous distribution of the intensity of the pulse inside and outside 
a layer of an amplifying medium, for three values of the parameter XOTOC. From 
Figs. 3b and 3c it follows that intensity at infinity (as r -+ -m) is not satisfied when 
XOTOC 2 1 in an unbounded medium. It follows from Fig. 3c that when XOTOC > 1 
the saturation of the gain begins at the output boundary of the layer, and then 
moves towards the input boundary in a direction opposite to the propagation of 
the light (u < 0). In this case there is not stationary state of the pulse in an infinite 
medium, but if we consider a medium of finite length, then the expression (24) for 
the velocity u is meaningful in this case, too. 

The pulse stationary form Is t ( t ) ,  i.e., pulses that do not change their form as 
they propagate through a nonlinear amplifying medium, after passing through a 
layer of amplifying medium of thickness L,  is given by 

where TO is the slope of the exponential leading front of the given stationary pulse. 
Actually this effect of movement of the maximum of the pulse toward the lead- 
ing edge was observed experimentally 14,15, and the theoretical magnitude of the 
movement AT = TOXOL agrees with the experimental data. Measurements of the 
magnitude of the movement AT versus the length of the nonlinear amplifier lead 
to  a linear dependence in agreement with the theory. 

In accordance with expression (24), at XOTOC > 1 the propagation velocity of the 
maximum of the pulse becomes negative because of the reshaping of its exponential 
leading edge. The meaning of this conclusion can be understood from Fig. 4 
illustrating the deformation of a stationary pulse in the course of its passage through 
an amplifying medium of a finite length T .  The change of the coordinate of the 
pulse maximum 5 ,  in the course of time is shown for three values of the parameter 
XOTOC . The regions z < zo and z > 20 + L are occupied by a transparent medium 
where the velocity of propagation of the maximum is u. When XOTOC < 1, the pulse 
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Figure 3. Spatial distribution of the intensity of a light pulse passing through a saturable amplifier 
for different parameter XOTOC (from la). 

maximum in the medium is propagated with a velocity exceeding that of light 
(u > c). When XOTOC = 1, the velocity u increases without limit. When XOTOC > 1, 
the change in the position of the maximum is highly singular. At the instant of 
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Figure 4. The position of maximum of a light pulse during passage through a layer of the ampli- 
fying medium of the thickness L, for different values of the parameter xoroc (from "). 

time t' when the pulse maximum has not yet reached the entrance boundary of 
the medium (xm < xo), the leading edge of the pulse is already causing saturation 
of the amplifier at,the exit boundary of the medium. As a result, the intensity 
at the exit boundary reaches a maximum, but then this maximum begins to move 
along with the saturation boundary toward the entrance boundary of the medium 
with the velocity u. Simultaneously, the maximum "breaks away" from the exit 
boundary and moves in the region x > xo + L with the velocity c. During the 
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interval of time t' < t < t", there exist simultaneously three peaks of the pulse 
at various points in space. This deformation of the pulse is possible because of 
the transfer of excitation energy from the particles of the medium to  the pulse. In 
describing the deformation of a pulse with the three peaks, it has no meaning to 
speak of the velocity of propagation of the pulse as a whole. 

There are two experiments on nonlinear amplification of the light of a Q- 
switched laser 14,'0. In the experiments of 14J5 the steepness of the leading edge 
TO N 4 .  10-gsec, and the amplification of the medium xo - 0.12cm-l. In this 
case the parameter xO7oc N 8 (the velocity of light in ruby, c = 1.7 . lolo cm/sec) 
and, as stated, it is impossible to speak of the velocity of propagation of the pulse 
maximum in the medium. However, in the order experiment 'O, the pulse had a 
duration of 2.10-' sec, and the steepness of the leading edge was TO N 4.10-10sec in 
the last stage of the amplifier. The energy density of the pulse, equal to 7 J/cm2, 
was sufficient for saturation of the amplification in the ruby. For such a pulse, 
XOTOC = 0.7 (xo N O.lcm-l) and, consequently, it is possible to  speak of a velocity 
exceeding the speed of light for propagation of the pulse maximum in the medium. 
With the conditions of the experiment in 2o the velocity of propagation of the pulse 
maximum in the final stage is u P 3c. For observation of effects arising because of 
the propagation of the pulse maximum with velocity exceeding that of light a still 
shorter pulse with energy exceeding the energy for saturation of the amplification 
of the medium is required. 

The theoretical results obtained in 17,18 and the interpretation of the superlumi- 
nal velocity effect 1 4 3 1 5  were confirmed in independent calculations performed in ", 
where the modeling of the nonlinear amplification of a laser pulse was extended to  
the case of inhomogeneous Doppler broadening of an amplification spectral line. 

To study nonlinear amplification in extended media became possible with the 
advent of fiber laser amplifiers. The elegant experiments were performed in '' at 
XOTOC << 1, when u was only slightly over c. 

5 Prospects 

So, the effect of superluminal velocity of a laser pulse in a nonlinear amplifying 
medium due to its being reshaped to have an elongated exponential leading edge 
does not violate the relativity principle '. The physics of this effect differs entirely 
from that of the superluminal group velocity in linear media with an anomalous 
dispersion ', both two-level 4-9 and three-level ones. Though the history of 
this effect is long, but with the present-day experimental possibilities being what 
they are, it is, in my opinion, of undoubted interest, at least in two respects. 

First, the strong field region also moves with a superluminal velocity, and so 
there must occur new effects, some of which attracted special attention in the early 
work published in 23. 

1) Electromagnetic radiation by a light pulse. The motion of a space-limited light 
pulse is accompanied by the displacement of a bunch of an averaged polarization 
of the medium moving with the same velocity and generated by a gradient force 
acting on the electrons in the medium. If the velocity polarization buch exceeds the 
phase velocity of electromagnetic waves in the medium a Cherenkov radiation can 
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occur. As the light pulse propagates in a nonlinear amplifying medium the velocity 
of the pulse peak may be higher then the velocity of light in a vacuum, so that the 
above condition is met. If the pulse peak generates a breakdown, the motion of an 
ionization front with a velocity higher than that of light also may cause intensive 
Cherenkov radiation. The light pulse may also radiate during accelerated motion of 
the average polarization bunch or breakdown front, for example, in motion along a 
circular trajectory. Ring amplifiers of fiberglass can be used conveniently for exper- 
iments of this type. The generated radiation will be analogous to the synchrotron 
radiation by an electron bunch. An attempt at analyzing this effect was made in 24, 

but it should also be considered for the case of nonlinear propagation. 
2) Relativistic "mirrors". The leading edge of an intensive light pulse generates 

a gradient of dielectric permittivity caused by a discontinuity in population inver- 
sion, light field intensity and ionization breakdown by strong field. The moving 
discontinuity in dielectric permittivity can serve as a relativistic "mirror" for elec- 
tromagnetic waves whose wavelength exceeds the dimensions of the discontinuity 
of dielectric permittivity. Experiments carried out to observed the Doppler effect 
of such mirrors can make use of media whose refraction index coefficient changes 
in strong light field. This avenue of inquiry is associated with the "photon acceler- 
ation" problem 25. 

Secondly, this effect can be treated as a manifestation of an autowave propagat- 
ing pulsed instability in any active medium with amplification due to  stimulated 
emission. It corresponds to the superluminal-velocity propagation of the very trans- 
formation region (and not of the photon!) of the energy stored in the amplifying 
medium into radiation on account of stimulated emission, as illustrated in Fig. 5 .  
At first glance this seems a fairly "artificial laboratory effect". In actual fact, this 
can give rise to the "superluminal" effects observed, for example, under astrophysi- 
cal conditions. The interstellar space is filled with radiation occupying an extremely 
broad spectral range. If nonequilibrium conditions with an inverted population are 
produced in some region of space, the boundary of transformation of the energy 
stored in the inverted medium into stimulated emission can propagate with a su- 
perluminal velocity in the form of inverted population "spills of' autowaves. On 
the Earth this can be observed from the side, because of the scattering of radiation 
(optical, microwave), as a superluminal "propagation" process. In my opinion, this 
effect can be considered in addition to the well-known "kinematic" effect of superlu- 
minal objects in the form of relativistic jets in astrophysics 26, when the relativistic 
jet model is inapplicable, for example, in the case of perpendicular propagation with 
a superluminal velocity. 
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Figure 5. Superluminal propagation of conversion border of stored energy in amplifying medium 
t o  light pulse due to stimulated emission: N ( z )  is the spatial distribution of population inversion, 
x - y is net gain and I is intensity of light pulse. 
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DISCUSSION a 
Chairman: 0. Kocharovskaya 

W. Schleich: It i a fascinating idea, employing nanotubes. How are you going 
to do mirrors for this laser? 

V. Letokhov: No, there is no feedback there is only spontaneous emission. We 
don't discuss the stimulated emission, which is possible. In case of a high intensity, 
we can come to the range of stimulated emission and saturation. It will be one 
pass saturable amplifier and one Frennel zone for X-ray or gamma ray. It is a very 
interesting question because when we are talking about spontaneous emission for 
very short wave lengths, we have in mind the Rayleigh-Jezus formula for the density 
of modes. However, we should consider the relativistic compression, which changes 
the density of modes. That is why the relativistic particles are very promising for 
X-rays and even for y-rays. It seems to me the real future for the shortwave length 
laser based on relativistic particles. 

R. Chiao: I would like to ask about Larmor time. They are very fascinating, 
the experiments that you did measuring the tunnelling time for the electron using 
the field emission from the point. Are you aware of the work of Buttiker, who 
modified the Larmor time? When you are talking about Larmor time, are you 
talking about the Buttiker-Larmor time or about the original Baz-Rybachenko? 

V. Letokhov: Yes, our consideration is based on all early theoretical works. 
R. Chiao: Is it a tunnelling through an opaque barrier? 
V. Letokhov: Yes, for the classical electron. 
G .  Nimtz: I would like to make a comment about the tunnelling time between 

one and zero in optical and macro experiments. According to  my calculations, 
which I did not have time to present in my talk this afternoon, the result was that 
the tunnelling time in the first order of approximation is reciprocal to the frequency 
of the particle or photon. Exactly the same time we get for electronic tunnelling, 

"The oral presentation covered the number of subjects including the measurement of femtosecond 
tunneling time of electron through the electric field barrier (published separately by S.K. Sekatskii 
and V.S. Letokhov, Phys. Rev. B64, 233311 (2001)) and the possibility of x - y- ray production 
by relativistic electrons or positrons moving in the carbone nanotube (see V.V. Klimov and V.S. 
Letokhov, Phys. Lett. A226, 244 (1997); Physica Scripta 56, 480 (1997)). Some part of the 
discussions concerns these subjects which are not presented in this paper. 
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a couple of femtoseconds. It is in agreement with Hartman and Wigner concept of 
the phase time approximation for the tunnelling. I am happy with this result. 

V. Letokhov: With the current state of the femtosecond technology it is rela- 
tively easy to study this effect because we can measure the time of excitation and 
detection so precisely as 0.1 femtosecond. 

M. Raizen: Could you comment on the proposal from Technion, who proposed 
that one could do higher harmonic generation with carbon nanotubes. He argues 
by very simple arguments, which seem to be very different from yours, because he 
could cancel out everything except highest order harmonics. 

V. Letokhov: Yes, I know this work. In our case, I do not consider to  use X -  
rays for nonlinear effects. I consider to use relativistic electron in order to produce 
y-rays. What you have mentioned is an alternative possibility to the one where 
people use a capillary filled by noble gas to produce higher harmonics. Instead of 
the capillary with noble gas in the proposal you mentioned the carbon nanotube is 
used. This is an interesting possibility. 

L. Stodolsky: I have a comment for people interested in measuring tunnelling 
times. I do not know if it is known. It is an old method from nuclear physics. 
It was an idea, which was used in the fifties of the bremsstrallung of the reaction 
to determine the lifetime of the nuclear level. A proton goes in, makes nuclear 
level, hangs around for a while, and leaves again. And now, you can show that 
the bremsstrallung from this reaction reflects the time that the proton spent in the 
nucleus. I know one reference on this effect. This is a way of measuring delay times. 

A. Steinberg: I am also really struck by these marvellous experiments and I 
have a few questions about them. I am curious whether you are able to measure 
the dependence of that spreading the Larmor time on the distance of the tip to the 
surface which should saturate to  a constant value according to the Baz-Rybachenko 
predictions. And Buttiker’s modifications, basically the second component to the 
Larmor time, was also mentioned earlier. It seems to me that the physical meaning 
of this component would be that in addition to the spreading of the wave packet, 
the tunnelling should preferentially select out certain momentum components, so 
we should be able to observe the change in the transverse momentum spread. If it 
is feasible to measure such things? 

V. Letokhov: Yes. I think that in the case of deviation from the spherical 
symmetry of the electric field near tip it will be some contribution to  the transver- 
sal momentum and it is secondly measurable, no doubt, because at present, it is 
possible to prepare nanotips of various configurations, not only spherical. Actu- 
ally we introduced a parameter correction to the spherical field because it is not a 
sphere. Our parameter correction is y = 1.5. The shape of the nanotip is controlled 
very well by the electron transmission microscopy in our experiment. 

R. Chiao: Did you see the Hartman effect? The Hartman effect is that if you 
increase the tunnel barrier width, the tunnelling time saturates. 

V. S. Letokhov: No, not in our case. We have a tip with radius about 
fifty nanometres. Actually, CaNan material has anomalous transmission escaping 
depth for low energy electrons. For CaNaz, the escaping depth is more than fifty 
nanometres. It is about hundred to  two hundred nanometres. In principle, yes, in 
the case of another material the saturation can be observed. 
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GENERATION AND DETECTION OF PHOTON NUMBER STATES 
ON DEMAND” 

HERBERT WALTHER 
Max-Planck-Institut fiir Quantenoptik and 
Sektion Physik der Universitat Munchen, 

85748 Garching, Germany 
fax: +49/89-92905-710; e-mail: herbert.walther@mpq.mpg.de 

The widely discussed applications in quantum information and quantum cryptography 
require radiation sources capable of producing a fixed number of photons. This paper 
reviews the work performed in our laboratory to produce these fields on demand. Two 
different methods are discussed. The first is based on the one-atom maser or the micro- 
maser operating under the conditions of the so-called trapping states. In this situation 
the micromaser stabilises to a photon number state. The second device uses a single ion 
in an optical cavity. The latter setup was recently realised in our laboratory. 

1 Introduction 

Single photon sources are a necessary requirement for secure quantum commu- 
nication 1,2,3, for quantum cryptography and in special cases also for quantum 
computing5. Photon fields with fixed photon numbers are also interesting from the 
point of view of fundamental physics since they represent the ultimate non-classical 
limit of radiation. When the photon number state is produced by strong coupling 
of excited-state atoms, a corresponding number of ground-state atoms is simultane- 
ously populated. Such a system therefore produces a fixed number of atoms in the 
lower state as well. This type of atom source is a long sought after gedanken device 
as well 6 .  Single photons have been generated by several processes such as single- 
atom fluorescence (see also Refs. 28,29), single-molecule fluorescence 8, two-photon 
down-conversion ’, and Coulomb blockade of electrons lo, and one- and two-photon 
Fock states have been generated in the micromaser l1 (see also 12).  As these sources 
do not produce the photons on demand, they are better described as “heralded” 
photon sources, because they are stochastic either in the emission direction or in 
the time of creation. A source of single photons or, more generally, of Fock states 
generated on demand has not yet been demonstrated. Cavity quantum electrody- 
namics (QED) provides us with the possibility of generating a photon both at  a 
particular time and with a predetermined direction. To this end there have been 
several proposals making use of high-Q cavities, which are basically capable of serv- 
ing as sources of single photons 3913*14,15. The current paper reviews the work on a 
microwave source capable of producing a preset number of photons and lower state 
atoms. The principle of the source and the first experimental demonstration will be 
described. I t  is based on the One-Atom Maser or micromaser and allows generation 
of a specified photon Fock state (n  2 1) on demand,  without need of conditional 
measurements, thus making it independent of detector efficiencies. 

The second part of the paper describes the work towards a new single-photon 
source in the visible spectral range. This source uses a single trapped ion placed in 

Oin collaboration with S. Brattke, G.R. Guthohrlein, M. Keller, W. Lange and B. Varcoe 
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a cavity. The realization of this source will be reported. 
Steady-state operation of the One-Atom Maser has been extensively studied 

both theoretically l6 and experimentally, and has already been used to demonstrate 
many quantum phenomena of the radiation field such as sub-Poissonian statistics 17, 

collapse and revival of Rabi oscillations18, and entanglement between the atoms and 
cavity field 19. More recently, two experiments demonstrated that Fock states (i.e. 
states with a fixed photon number) can be readily created in the normal operation 
of the maser, by means of either state reduction l1 or steady-state operation of 
the micromaser in a trapping state 12. The trapping states in the micromaser are 
the quantum states of the radiation field produced in the maser cavity. They are 
described in detail below. State reduction is possible owing to the entanglement 
between the state of the outgoing atoms and the cavity field; detection of a lower 
state atom means that a field originally in an n-photon Fock state is projected onto 
the n + 1 state2'. As a source of single photons, such a source can be compared to 
two-photon down-conversion, in which an idler beam is used to prove the creation 
of a photon in the signal beam. Both are subject to the same limitation in that the 
creation of the Fock state is unpredictable, and imperfect detectors further reduce 
the probability of a state, once created, also being detected. In contrast, it is shown 
here that the micromaser can be used to prepare on demand Fock states with small 
photon numbers in the cavity, this having the great advantage of making the process 
independent of detection efficiencies. Simultaneously, an equal number of ground 
state atoms are produced with an efficiency of up to 98%. 

Trapping states are a feature of 1ow.temperature-operation of the micromaser, 
for which the steady-state photon distribution closely approximates a Fock state 
under certain conditions. They are typical of strongly coupled systems. They occur 
when atoms perform an integer number, k ,  of Rabi cycles under the influence of a 
fixed photon number n: 

d F f g t i n t  = ( 1 )  
where g is the effective atom-field coupling constant and tint is the interaction time. 
Trapping states are characterized by the number of photons n and the number of 
Rabi cycles k .  The trapping state (n, k ) = ( l ,  1) therefore refers to the one-photon, 
one-Rabi-oscillation trapped field state. In other words, trapping states occur when 
the interaction time is chosen such that the emission probability becomes zero for 
certain operating parameters of the maser. When the trapping state is reached 
in steady-state operation, the micromaser field will therefore enter a Fock state 
and become stabilised. The particular Fock state is known and is determined by 
the interaction time between the atom and cavity as given by the trapping state 
formula (Eq. 1). The Fock state, once prepared, is preserved owing to the trapping 
condition with a minimum probability of photon emission. Following preparation of 
the state, the beam of pump atoms can be turned off and the Fock state remains in 
the cavity for the duration of the cavity decay time. For simplicity, we concentrate 
in the following on preparation of a one-photon Fock state, but the method can also 
be generalised to generation of fields of higher photon numbers. 

The micromaser setup used for the experiments is shown in Fig. 1 and is op- 
erated in the same way as described in 12. Briefly, a 3He-4He dilution refrigerator 
houses the closed superconducting microwave cavity. A rubidium oven provides two 
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field ionisation of 

Figure 1: The atoms leaving the rubidium oven are excited into the 63P3/2 Rydberg state by means 
of a UV laser at  an angle of 11O. After the cavity the atoms are detected by stateselective field 
ionisation. The cavity is tuned with two piezo translators. An auxiliary atomic beam (not shown) 
is used to stabilise the laser frequency. The laser is locked to  a Stark-shifted atomic resonance of 
the auxiliary beam, thus allowing the velocity subgroup selected by excitation to be continuously 
changed within the range of the velocity distribution of the atoms. 

collimated atomic beams: the main beam passing directly into the cryostat and the 
second being used t o  stabilise the laser frequency 12. (This second beam is for sim- 
plicity not shown in Fig. 1). A frequency-doubled dye laser (A = 297 nm) was used 
to  excite rubidium (s5Rb) atoms to the Rydberg 63P3/2 state from the 5&/2(F = 
3) state. The cavity is tuned to  the 21.456 GHz transition from the 63P3p state to  
the 6lO5l2 state, which is the lower or ground state of the maser transition. For 
this experiment a cavity with a Q-value of 4 x lo1' was used, this corresponding to  
a field decay time of 0.6 s or a photon lifetime of 0.3 s. This Q-value is the largest 
ever achieved in this type of experiments and the photon lifetime is more than .two 
orders of magnitude higher than that of related setups 21. This cavity is used to  
study micromaser operation in great detail. To realise the Fock state, it is neces- 
sary to switch the excitation of the Rydberg atoms on and off in a predefined pulse 
sequence; this was achieved by means of an intensity-modulating electro-optical 
modulator triggered by control software. The pulse duration and pulse separation 
can both be tailored to  the conditions required for the particular experiment. 

To demonstrate the principle of this source, Fig. 2 shows a sequence of twenty 
successive pulses obtained by Monte Carlo simulation22 of the micromaser operating 
in the (1, 1) trapping state. In each pulse there is a single emission event, producing 
a single lower state atom and leaving a single photon in the cavity. In the case of 
loss of a photon by dissipation, one of the next incoming excited state atoms will 
restore the single-photon Fock state. This condition was observed in l2 when sub- 
Poissonian atom statistics was measured with the maser operating in a trapping 
state. The influence of thermal photons and variations in interaction time or cavity 
tuning further complicates this picture, resulting in reduced visibility of steady- 
state Fock states 12. Pulsed excitation as discussed here, however, reduces these 
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Figure 2: Simulation of a subset of twenty successive atom bunches after the cavity and the asso- 
ciated probability distribution for photons or lower-state atom production (solid circles represent 
lower-state atoms and open circles represent excited-state atoms). The start and finish of each 
pulse are indicated by the vertical dotted lines marked 0 and ' ~ ~ ~ l ~ ~ ~  respectively. The operating 
conditions are the (1,l) trapping state (Stint = 2.2) conditions. The size of the atoms in this 
figure is exaggerated for clarity. With the real atomic separation, there is 0.06 atom in the cavity 
on average (i.e. the system operates in the one-atom regime). The other parameters are -rpulse = 
9,92 x rcaur n t h  = and N, = 7 (see also Refs. 23 and 24). 
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Figure 3: The probability of finding (a) no lower-state atom per pulse, do), (b) exactly one lower- 
state atom per pulse P ( l ) ,  and (c) a second lower-state atom, if one has already been detected, 
P('';'). The parameters are ~~~l~~ = 0.02 rcavr N,= 7 atoms and nth = The maximum 
value of P ( l )  is 98% for the (1, 1) trapping state. 

perturbations present in the case of a continuous operation of the atomic beam and 
the Fock state maintains a high probability 24.  

Figure 3 shows three curves again obtained from a computer simulation that 
illustrate the behaviour of the maser under pulsed excitation as a function of the 
interaction time for more ideal (but achievable) experimental parameters. The 
simulations show the probability of finding no ground-state atom per pulse (P(O)) 
and exactly one ground-state atom per pulse (P( l ) ) ;  and the conditional probability 
of finding a second ground-state atom in a pulse, if one has already been detected 
(P(";')). It is shown below that the latter plot of the conditional probability, 
P(>';'), has the advantage of being especially suitable for comparing theory and 
experiment since it is relatively insensitive to the detection probability for atoms in 
the upper and lower maser levels. 

From the simulations it follows that with an interaction time corresponding to  
the (1, 1) trapping state, both one photon in the cavity and a single atom in the lower 
state are produced with a 98% probability. In order to  maintain an experimentally 
verifiable quantity, most of the simulations presented relate to  the production of 
lower-state atoms rather than to  the Fock state left in the cavity. Pulse lengths, on 
the other hand, are rather short ( 0 . 0 1 ~ ~ ~ ~  5 ~~~l~~ 5 O . ~ T = ~ ~ ) ,  and so there is little 
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dissipation and the one photon state in the cavity following the pulse is very close 
to the probability of finding an atom in the lower state. Note that at no time in 
this process is a detector event required to project the field; the field evolves to the 
trapping state as a function of time when the suitable interaction time has been 
chosen. 

The variation of the time when an emission event occurs during an atom pulse 
in Fig. 2 is due to the variable time spacing between the atoms as a consequence of 
Poissonian statistics and the stochasticity of the quantum process. The atomic rate 
therefore has to be high enough to ensure a sufficient number of excited atoms per 
laser pulse, so as to maintain the 98% probability of an atom emitting. To guarantee 
single-atom single-photon operation, the duration of the preparation pulses must be 
short in relation to the cavity decay time. For practical purposes, the pulse duration 
should be smaller than 0 . 1 ~ ~ ~ ~  for dissipative losses to be less than 10%. Apart from 
reducing the fidelity of the Fock state produced, losses increase the likelihood of a 
second emission event leading to a larger number of lower-state atoms than photons 
in the field; the 1: l  correspondence between the two would thereby be lost. Shorter 
atom pulses reduce the dissipative loss, but the number of atoms per cavity decay 
time (usually labelled Nex)  must be larger than ten times the threshold value of 
the atomic flux to realise the Fock source with significant fidelity. Since a minimum 
atom number is required to produce the desired state, care must also be taken to 
avoid atom beam densities violating the one-atom-at-a-time condition. 

For a large range of operating conditions, the production of Fock states of 
the field and single lower-state atoms is remarkably robust against the influence of 
thermal photons, variations of the velocity of atoms and other influences such as 
mechanical vibrations of the cavity; much more so than the steady-state trapping 
states, for which highly stable conditions with low thermal photon numbers are 
required 12,23. 

An obvious side-effect of the production of a single photon in the mode is, as 
already mentioned, that a single atom in the lower state is produced. This atom is 
in a different state when it leaves the cavity, and is therefore distinguishable from 
the pump atoms. Under these operating conditions, the micromaser thus also serves 
as a source of single atoms in a particular state, a requirement for many experiments 
proposed 6 ,25 .  

Although the distribution of lower-state atoms leaving the cavity will be max- 
imally sub-Poissonian, the arrival time of an atom within the pumping pulse still 
shows a small uncertainty, the upper limit of which is determined by the pump pulse 
duration in the range of 0.01 - 0 . 1 ~ ~ ~ ~  for the parameters used in this paper. The 
separation of the pulses is 1 3-r,,,,leadin g to a small relative variation in the arrival 
times. If the pump rate were to be increased still further, the pulse lengths could 
be further reduced and the arrival of an atom would become even more predictable. 

The present micromaser setup was specifically designed for steady-state oper- 
ation and is therefore not ideal for the parameter range presented here. However, 
the current setup does permit comparison between theory and experiment in a rel- 
atively small parameter range. The experimental test relies on measurement of an 
absolute number of atoms and although the operation of the Fock source is inde- 
pendent of detector efficiencies, the experimental test is blurred by the fact that 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



417 

the state-selective field ionisation detectors for the Rydberg atoms do not reach an 
efficiency of 100%. Atoms in a particular state will therefore be missed, leading to 
wrong or misleading results. In order to circumvent this disadvantage, it is useful 
to measure population correlations between successive atoms instead. Owing to  the 
strong coupling between the atoms and cavity, the cavity field and the state of the 
pumping atom are entangled following the interaction. A subsequent pumping atom 
will thereby also become entangled with any previous one, and thus the population 
correlations between successive atoms are determined by the particular dynamics of 
the atom-cavity interaction. The connection between population correlations and 
the micromaser dynamics has been studied in detail in previous papers 19926. It is 
important to  note that even in the presence of lost counts the correlations between 
successively detected atoms are maintained. Conditioning the experimentally mea- 
sured parameter to the detection of atom pairs that contain at least one lower-state 
atom provides a value both appropriate to the existent correlation and - at the same 
time - directly related to  the total probability of finding one atom per pulse. 

By means of an extremely high cavity Q factor (4 x 10") an N,, of approxi- 
mately 60 was accessible for a short range of interaction times around the maximum 
in the Maxwell-Boltzmann velocity distribution, which happens to  correspond to 
the interaction time for the (1, 1) trapping state. A pulse length of ~~~l~~ = 0.066 
T~,,, leading to  an average of 4 atoms per pulse was chosen as a compromise between 
the effects of dissipation and external influences, while still providing a pump rate 
above the threshold for single-photon Fock state production. Figure 4 shows the 
results of a comparison of theory and experiment for a scan over the (1, 1) trapping 
state. Plotted here is the ratio of two-atom events to  the total number of two-atom 
events detected that contain at least one lower state. That is, 

where, for example, Neg is the probability of detecting a two-atom event containing 
first an upper-state atom (e) and then a lower-state atom (9) in any given pulse. 
The number of three-atom events detected is negligible and can be ignored as a 
contributing factor. Constructing the parameter in this way ensures that there is 
a one-to-one correspondence between the correlation parameter and the maximum 
probability of finding exactly one atom per pulse. That is, to a good approxima- 
tion for pump rates and pulse durations employed in this experiment, the difference 
between the upper bound Pmax and the measured correlation P(>';l) gives the prob- 
ability of finding exactly one atom per pulse (P( ' ) ) .  P(>';') in Eq. 2 is independent 
of the absolute detector efficiency and depends only on the relative detector effi- 
ciencies and the miscount probability (the probability that a given atomic level is 
detected in the wrong detector), each of which has been measured experimentally. 
The theoretical curves of Fig. 4 represent an evaluation of the probability of finding 
exactly one atom per pulse and the conditional probability introduced in Fig. 3. 
The curves are evaluated both for the ideal situation of no detector miscounts and 
for the measured detector miscounts of 7% in the lower-state detector and 2% in the 
excited-state detector. When the miscounts are incorporated into the data, there 
is an excellent match between the experimental points and the theoretical curve. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



418 

0.8 

5 0.6 
n 

-n 
.!? 0.4 

- 
- - 

v) 

* ._ - .- 
a 
(TI 

2 n 
0.2 

0.0 
40 

p(>l:l) , miscounts 
p(>l:l) 

P"), no miscounts 
, no miscounts 

- 

50 60 70 
Interaction time (ps) 

Figure 4: Comparison between theory and experiment. Investigated here are the probabilities 
also shown in Fig. 3. The experimental data are evaluated according to Eq. 2. This ratio is 
independent of the absolute detector efficiency and is dependent only on the relative detector 
efficiencies of the upper and lower state detectors and on the miscount probability, which can be 
measured experimentally. The relative detector efficiencies can be considered to be approximately 
equal to one. On the other hand, a calculation of the probability of finding one lower-state atom per 
pulse is highly dependent on the absolute detector efficiency. The two theoretical curves presented 
for P(>l;l)  are a theoretical prediction of Fock state creation and a theoretical result which takes 
into account the experimentally measured miscounts of 7% in the lower-state detector and 2% in 
the excited-state detector. Given the extreme conditions for operation of the apparatus, there is 
excellent agreement between theory and experiment. The singleatom probability is evaluated to  
be 83.2%. The parameters for the experiment were, rcau = 300 ms, rppulse = 0.066rCau, pulse 
spacing of 1 s, nth = 0.03, N ,  = 4. 

As the present apparatus was designed for operating the micromaser under 
steady-state conditions, the current results were obtained with non-ideal operat- 
ing parameters of the apparatus. In order to  overcome this disadvantage, future 
developments will incorporate two improvements to increase the atomic flux and 
introduce a second pulse of atoms with variable velocity to act as a field probe. 
With these changes it will be easier to  arrive at the optimum conditions for the 
Fock source and, in addition, will allow direct measurement of the cavity photon 
number by means of Rabi oscillations of the probe atom l1 and further studies of 
quantised field effects. 

In relation to  our previous method of Fock state creation 11, the source presented 
here has the significant advantage of being unconditional and therefore significantly 
faster in preparing a target quantum state. Previously, the state was prepared by 
the dynamics of the interaction of excited state atoms with the cavity field. State 
reduction occurred on detection of a lower-state atom, indicating preparation of the 
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desired cavity field. In the current experiment, however, the cavity field is correctly 
prepared in 83.2% of the pulses, independently of state reduction and hence atomic 
detection efficiency. Simply detecting the lower-state atom as it emerges from the 
cavity increases the fidelity of the one-photon Fock state to  2 95% at the moment 
of detection (incorporating both dissipative losses and detector miscounts). As- 
suming 40% detector efficiency, detection of a lower-state atom within any given 
preparation pulse will occur with a 36.8% probability. This should be compared 
with the 95% fidelity of the measured Fock state in 11, in which there was a 5 1% 
probability of detecting the correctly prepared state. Along with the first observa- 
tion of the operation of a single-photon Fock state source on demand, we thus also 
have an order-of -magnitude improvement of Fock state creation over our previous 
experiment. 

The second part of this paper reports on the progress of our work on ions in 
optical cavities. The interaction of a single atom with a single field mode of a 
high-finesse cavity has been the subject of a number of experiments in the field of 
cavity QED (see, e.g. Ref. 15). However, most of these investigations suffer from 
a lack of control over the position of the atom, which results in non-deterministic 
fluctuations of the coupling between atoms and the field. In this context, the strong 
localisation and position control available when an ion trap is combined with an 
optical cavity would be a big step forward and would become a key technology 
for future progress in cavity QED in the optical range. We are now implementing 
two experiments exploiting localisation of an ion in a cavity. By pulsed excitation 
of a maximally coupled ion, single-photon wave packets may be emitted from the 
cavity on demand 14,15,27 (single-photon gun). Under conditions of strong coupling, 
a single calcium ion in the cavity provides sufficient gain to build up a laser field 13. 
Like a single ion in free space, which was previously shown to  be an excellent source 
of antibunched light 28,29, radiation from a single-ion laser has nonclassical photon 
statistics and correlations. 

An equally attractive goal in the area of cavity QED is the simultaneous inter- 
action of two or more ions with a single-cavity mode. Due t o  the linear geometry 
of our trap several ions can be stored within the mode volume. As a first test, we 
placed an array of two ions in the cavity field and observed the total fluorescence. 
We succeeded in matching the ion crystal to  the two maxima of the TEMol mode 
of the cavity. In such a configuration the cavity field may be used to entangle the 
two ions 30,31. This is a promising alternative to schemes involving the ions’ mo- 
tional degrees of freedom, since there is no need for cooling the vibrational modes 
of the string below the Doppler temperature. Using a cavity to  perform quantum 
operations on adjacent pairs of ions in a long string is a viable route to a scalable 
quantum computer. 

In the following, we now give a progress report of our experiment. (For details 
see also Ref. 32.) We are using a linear trap with Ca ions (see Fig. 5 ) .  As an initial 
test of the setup for the above-mentioned cavity QED experiments, we used the 
trapped Ca ions to probe the optical field in the cavity. The Ca ion is sensitive to 
radiation close to  the resonance line 42&f2-42P1f2 at a wavelength of X = 397 nm. 
The fluorescent light emitted by the ion is collected with a lens (numerical aperture 
= 0.17) and detected with a photomultiplier tube (overall detection efficiency q N 
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Figure 5: Experimental arrangement of trap electrodes and cavity mirrors. The ion is loaded a t  
the rear end of the trap and shuttled to the mirror region. Fluorescence is observed from the side 
of the cavity. For scans in the direction of the trap axis, the ion is moved with DC electrodes. In 
all other directions, the cavity is translated relative to the ion's position, as indicated by arrows. 

lop4).  The observed fluorescence rate R is proportional to  the local intensity of 
the optical field at the position r'of the ion, i.e. R 0: I ( 3 ,  provided there is no 
saturation of the atomic transition. By scanning the position of the ion in the 
field and detecting the fluorescence rate at each point, a high-resolution map of the 
optical intensity distribution is obtaine!. I t  should be noted that a single ion can 
also probe the amplitude distribution E ( 3  of the light field and hence measure its 
phase. To this end, heterodyne detection of the fluorescent light must be used, with 
the exciting laser as a local oscillator 7129. 

With the single ion as a probe, we investigated the eigenmodes of a Fabry-Perot 
resonator formed by two mirrors (radius of curvature = 10 mm) at  a distance of 
L = 6 mm (Fig. 5). The transverse mode pattern is described by Hermite-Gauss 
functions with a beam waist wo cz 24pm, while in the direction of the cavity axis 
a standing wave builds up. In the experiment, a particular cavity mode is excited 
by a laser beam with a power of a few hundred nanowatts at 397 nm. The length 
of the cavity is actively stabilised to this mode. 

An ion is loaded in the trap after electron-impact ionisation of calcium atoms. 
Since the electron beam and the calcium beam would degrade the optical mirrors 
and make stable trapping difficult, we use a linear trap and load it in a region 
spatially separated from the observation zone, as shown in Fig. 5. Subsequently, 
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-2 -1 0 1 2 -2 -1 0 1 2 

Transverse ion position (in units of wo) 

Figure 6: Transverse profiles of the Hermite-Gauss modes of the cavity, obtained by monitoring 
the ion's fluorescence while scanning over a range of 120 pm. The solid line is a fit including 
saturation of the transition. The inset shows the calculated intensity distribution of the mode and 
indicates the scan path. The modes are a) TEMoo, b) TEMol, c)TEMoa, d) TEMo3. 

DC electrodes along the axis are employed to  shuttle the ion over a distance of 25 
mm to  the uncontaminated end of the trap, where the cavity is located, oriented 
at right angles to the trap axis. Residual DC fields in the radial direction must be 
carefully compensated with correctional DC voltages to place the ion precisely on 
the nodal line of the RF field (coinciding with the trap axis), so as to prevent the 
trapping field from exciting the micromotion of the ion. 

In the direction of the trap axis, the ion is confined in a DC potential well 
which is approximately harmonic with an oscillation frequency of w, x 300 kHz. 
By applying asymmetric voltages, the minimum of the potential well and thus the 
equilibrium position of the ion is moved along the trap axis. By simultaneously 
monitoring the fluorescence, we sampled one-dimensional cross-sections of the cavity 
mode. The width of the ion's wave function in the axial potential well is a few 
hundred nanometres, which provides sufficient resolution to  map the transverse 
mode pattern with an intensity distribution varying on a scale given by the cavity 
waist wo. 

Figure 6 shows scans of the first four TEMo,, modes of the cavity obtained 
in this way. The fluorescence data are not entirely symmetric because of a small 
displacement and rotation of the cavity eigenmodes with respect to the trap axis. 
In each plot, an inset indicates the path along which the ion is scanned. The solid 
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1.5 
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h = 397 nm 

0 1 2 3 4 

Longitudinal cavity position (in units of A) 

Figure 7: Singleion mapping of the longitudinal structure of the cavity field. 
is determined by the residual thermal motion of the Doppler-cooled ion. 
resolution of 60 nm. The localisation of the ion’s wave packet in this measurement is 16 nm. 

The visibility 
It corresponds to  a 

curves in Fig. 6 are obtained from a fit using Hermite-Gauss functions and take into 
account saturation of the ion’s transition. The influence of saturation is apparent in 
Fig. 6c, where a slightly higher intensity was injected into the cavity. In all cases, 
the correspondence with the measured fluorescence is excellent. 

The ion’s motion must be restrained to the trap axis, since off the axis the 
radiefrequency field of the trap would lead to micromotion. To scan other dimen- 
sions of the field, the sample must be moved. In our experiment this is done by 
piezoelectrically translating the entire cavity assembly perpendicularly to  the trap 
axis. In this way complete three-dimensional mapping of the mode field can be 
obtained 32. 

RF confinement of the ion perpendicular t o  the trap axis is also harmonic, but 
the corresponding oscillation frequency w, FZ 1.1 MHz is larger than the axial fre- 
quency so that field structures in the radial direction of the trap are better resolved. 
The resolution achieved by our method may be determined most accurately by prob- 
ing the standing-wave field created between the cavity mirrors, which varies on a 
scale of X/2. To this end, the cavity was moved parallel to  its axis while keeping the 
ion stationary and monitoring its fluorescence. Figure 7 shows the mapping of the 
cavity field obtained in this way. A pronounced standing-wave pattern is observed 
with a visibility of 40 %. For details see also Ref. 32. 

Taking advantage of the excellent localisation in ion traps, we performed the 
hitherto most precise measurement of a three-dimensional spatial structure of an 
optical field over a range of up to  100 pm. As a demonstration, we scanned modes 
of a low-loss optical cavity. The precise positioning we achieve implies deterministic 
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control of the coupling between the ion and field. At the same time, the field and 
the internal states of the ion are not affected by the trapping potential. What we 
have realised, therefore, is an ideal system for cavity QED with a single particle. 

2 Conclusion 

This paper reviews our work on the generation of photon number states on demand 
using the micromaser. In addition, it describes first experiments using a single 
trapped ion in conjunction with an optical cavity. The system described in the 
second part of the paper shows a great promise and will open a series of new 
interesting applications. 
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DISCUSSION 
Chairman: W. Schleich 

L. Stodolsky: In the mapping of the position of the ion there will be oscilla- 
tions. But the oscillations, which we are seeing, are they due to the electromagnetic 
modes or due to de Broglie wave packets? 

H. Walther: So far we do not yet see the de Broglie wave. We have achieved 
this limit in other experiments, however, not yet in the one I described. But you 
can reach that, of course, if you really go down to  the quantum ground state of 
the trapped ion then one can probe the overlap between the electromagnetic wave 
and the probability function of the trapped ion in a harmonic potential. We have a 
standing electromagnetic mode and the laser exciting this mode is stabilized to  the 
cavity, so that we know the mode which we are exciting. The uncertainty in the 
field probing by means of the ion is determined by the rest motion of the ion due 
to  its temperature. 

S. Pascazio: I think this idea of combining the ion trap with an optical cavity 
is a very nice idea. I was wondering what are the future prospects you have in mind 
and, in particular, can you look at quantum jumps of a single particle? 

H. Walther: Quantum jumps have already been seen without cavity. But you 
can, of course, also look for them in combination with a cavity. You can do cavity 
QED experiments on the basis of quantum jumps. This possibility opens up as 
soon as you have a single particle in a high Q-cavity. There is also an application to 
quantum computing, which I did not mention here. If you can combine an ion with 
a cavity you can use the optical field as a control parameter for the Qbit. Instead 
of using the ion’s vibration, you can use the optical radiation as a control bit. This 
gives you the advantage that the ion has not to  be cooled down to  the vibrational 
ground state. Klaus Molmer has proposed a method which uses vibrational excita- 
tion without the requirement of low temperatures for the trapped ions. This is an 
alternative way to the use of optical interaction. In the optical coupling, of course, 
you have to  think about methods to  bring more than one ion into the cavity and 
how you combine them, but there are ideas around on how to realize that. 

G .  Leuchs: With regard to the total number of photons on demand, you were 
explaining this self-stabilization. Where are the limits? 

H. Walther:  There is a problem if the photon number gets too high then 
the dynamics of photon exchange in the cavity gets very complicated so that the 
feedback mechanism in a trapping state does not work any more. This limits the 
process described. Low photon numbers are fine. However, as soon as you go to  very 
high photon numbers, the method does not work any more. You are relying on the 
Jaynes-Cummings dynamics. The Jaynes-Cummings dynamics and the condition 
that you have to have a single atom in the cavity. 

Y .  Ne’eman: I will not comment on this beautiful work, just tell this story, 
which was prompted by Rydberg’s name. In 1964 I published a paper about SU(3). 
And I got a letter from Stockholm, not from the Nobel Foundation. The letter 
came from Rydberg’s daughter. She compared the excitement of the formula that 
her father had worked out with the ones that are in particle physics now. 

L. Accardi: You are speaking about number states. What do you precisely 
mean? How do you recognize that your number state is a pure state and not a 
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mixture? Do you measure statistical parameters? 
H. Walther: The field is probed by Rydberg atoms. The dynamics is deter- 

mined by the Rabi-flopping frequency depending on the photon number. Analysing 
the Rabi cycle gives the accurate composition of the field. 

L. Stodolsky: You see that an excited atom comes in and a deexcited atom 
comes out. So you know you will have a single photon. 

H. Walther:  This is what we measure in the experiment producing the number 
state. Afterwards the photon is stored in the cavity and by a subsequent atom the 
field is probed. From this probing you get another proof, so we do a double check 
of the outcome of the experiment. 

W. Schleich: How do you really measure the wave function, not just a photon 
statistics? 

H. Walther: This is a different topic. This you can do also. Both our group 
and the Paris group are doing experiments in this direction. We are preparing 
experiments to measure the Wigner function of the one photon state. 

W. Schleich: Then you would really know it is one photon state and not a 
mixture. 

L. Wang: Do you measure the phase properties of the number state? 
H. Walther: At the moment we have not yet measured the phase. However, 

this is the experiment one would like to  do. This is a more difficult experiment since 
you have to measure the photon number and the phase as well. We know how to  do 
that and we have published the method. The measurement will give the connection 
between phase and amplitude of the field and leads to  the Wigner function of the 
field. 

S. Lloyd: It is a really nice design for a quantum computer, just to  have a line 
of atoms or ions, which are brought sequentially into a cavity. And if you can store 
a photon in there and bring it from one ion to  the next then than you can actually 
build a universal quantum computer in this way. I was wondering how the cavity 
lifetime for this setup compares with the time taken to move one ion, take it out of 
this cavity. 

H. Walther:  In the moment the cavity lifetime is still much shorter than the 
time you need to  shift the ions. In the moment we can only entangle ions which 
interact with the same mode. 

L. Stodolsky: I want to  comment on this beautiful result. You have this 
very long dissipation time that we are getting to  the region where you might see 
weak interaction effects due to  the Rabi oscillations. We could not see the weak 
interaction effects twenty-thirty years ago, because we got no more than one second. 
Now it is possible. 

G .  Leuchs: My question is a follow up of the third question. When you bring 
your ion to the cavity, can you bring an ion that is in a superposition of these states 
without disturbing this state, which is in the centre of the cavity? The process of 
bringing it into the cavity, will that introduce phase randomisation? 

H. Walther:  You have to study the interaction inside the cavity. It means 
that you must have the ions there from the beginning and study their interaction 
with a common mode. 
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QUANTUM PROPERTIES OF SOLITONS IN OPTICAL FIBERS 
FOR OPTICAL COMMUNICATION 

N. KOROLKOVA, F. KONIG, s. LORENZ, M. MEISSNER, CH. SILBERHORN, 
G. LEUCHS 

Zentrum fur  Moderne Optik, Universitat Erlangen-Nurnberg, Staudtstr. 7 / Bd, 
0-91058 Erlangen, Germany 

Coherent quantum solitons show a characteristic evolution when propagating through 
an optical fiber, unlike their classical counterparts which are stable solutions to the non- 
linear Schriidinger equation. The dynamical ,properties of quantum solitons as well as 
their use in quantum interferometry and in high-bit rate, long distance and secure optical 
communication are discussed. 

In the last decade, quantum noise engineering of light fields has definitely ex- 
perienced the change from purely fundamental research to  applications in optical 
communication, information processing and measurements at  the quantum limit. 
Specifically, the present contribution shows the latest achievements and prospects 
in optical techniques using stable intense short optical pulses, fiber solitons for these 
purposes. 

The vision of quantum-assisted high-bit rate, long-distance and/or secure in- 
formation exchange is gradually turning into reality. In the present paper, we are 
dealing with intense light beams, thus being in the domain of optical communica- 
tion using continuous variables '. Conventional concerns in the field of continuous 
variable quantum information are the achievable degree of quantum entanglement 
and always only finite quantum noise reduction which are limited as a matter of 
principle. However, it is important to keep in mind the ultimate goal of the proto- 
col under consideration while discussing the particular tasks arising in this context. 
Most of the protocols relevant for optical communication actually start and end 
with classical data. The quantum-mechanical properties in between allow to  gener- 
ate certain types of correlations between such classical data (like using quantum key 
distribution for secure communication) or to reach high precision in data transmis- 
sion or acquisition not achievable with pure classical means (e.g. high bit rate long 
distance fiber-optical communication, back action evading quantum measurements, 
quantum interferometry). We would like to  emphasize, that what counts at the very 
end is the quality of classical data. Thus quantum-assisted optical communication 
can beat its purely classical counterpart also with non-perfect quantum resources. 
The particular advantage of such quantum-assisted classical protocols is the fact 
that they can be fitted into existing, classical communication network structures '. 

Quantum subroutines of the complete classical protocols mentioned above are 
protocols contributing within the quantum mechanical domain, accepting quantum 
mechanical input and delivering quantum mechanical output, such as e.g. quantum 
teleportation or entanglement swapping protocols. We are implementing these sub- 
routines using optical continuous variable techniques, conventional tools in quantum 
optics taking advantage of efficient quantum sources and efficient and fast detection 
techniques. 

In this paper we address classical quantum-assisted protocols which exploit 
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the quantum properties of fiber solitons. These are in the first line the methods 
for noise reduction and bit rate enhancement in modern telecommunication sys- 
tems 3,4 and secure communication using quantum distributed secret key 5,6.  As 
useful quantum subroutines for different communication and measurement appli- 
cations using intense optical soliton one can name quantum non-demolition and 
back-action evading measurements 7,8, quantum noise reduction (squeezing of the 
quantum uncertainty) 3,  generation of quantum entanglement and various quan- 
tum communication protocols based on it lo,ll. Our main tools to implement all 
these tasks are signal processing using linear optical elements and quantum noise 
engineering using non-linear interferometers and the multi-mode quantum structure 
of soliton pulses. Some of these techniques can be easily extended to any kind of 
optical signals, continuous-wave (CW) or pulsed. The application of fiber solitons 
to  implement such schemes is motivated by the fact that short pulses are taking full 
advantage of the optical non-linearity in a fiber to generate non-classical light and 
by the stability of a soliton during the propagation which allows one to  achieve high 
visibility in interferometric measurements. Other schemes, which hinges directly 
to  the complex internal quantum structure of optical pulses l 2 p 7 ,  rely explicitly on 
quantum properties of fiber solitons. 

Long distance telecommunication lines are affected by different pulse distortions 
and noise processes. For example, the amplifiers used to compensate for the signal 
depletion by losses inevitably introduce intensity noise, thus reducing the signal to  
noise ratio by typically 5 dB the quantum limit being 3 dB. Such effects give rise 
to  inter-symbol interference and to  fluctuations in the signal level at a receiving 
station and hence limit bit rates. Moreover, the high bit rate telecommunication 
systems are approaching gradually the border line to the quantum regime where 
the quantum noise of the transmitted light comes into play. 

To circumvent this problem, we have investigated a highly asymmetric Sagnac 
interferometer 3,13, a nonlinear optical fiber-loop mirror with a beam splitting ratio 
of around 90:10, to reduce the amplifier noise. The Sagnac interferometer has a 
nonlinear input-output characteristic with regions of slope larger and smaller than 
one. Using the regions of slope smaller than one, in an ideal case of slope zero, the 
amplitude noise can be reduced. First experimental results were now achieved using 
an erbium-glass laser, emitting 738 fs pulses at about telecommunication wavelength 
of 1535nm with a repetition rate of 130MHz. The laser beam is attenuated to 3pW 
of average power before it is directed into the amplifier, which is used as a noise 
source. The gain of the amplifier is about 400 for the power of the “1” bit. The 
used Sagnac interferometer consists of 250m of polarization-maintaining FS-PM7811 
fiber (manufacturer: 3M) and a variable-ratio fiber-coupler. The experimental setup 
is depicted in Figure 1. 

In this experiment the variance of the intensity probability-distribution was 
measured using a single AC-Detector and a spectrum analyzer. The noise power, 
proportional to the intensity variance, was measured directly at the amplifier-output 
and at the output port of the Sagnac interferometer. Multiple measurements were 
done varying the coupling-ratio of the fiber-loop. A maximum noise-reduction of 
-5,45dB on the “1” bit below the amplifier output level was achieved. The noise 
suppression on the “0” bit is still good enough for pedestal suppression 14. With this 
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Figure I: The experimental setup for the measurements of amplifier noise reduction. 

setup bit error rate measurements have already been done and show an improve- 
ment of approximately 3 dB in terms of receiver ~ensit ivity’~. The asymmetric fiber 
Sagnac interferometer has exhibited simultaneously noise reduction and pulse shape 
stabilization representing a new emerging technology for fiber optical telecommuni- 
cation. 

The asymmetric fiber Sagnac interferometer can operate in the regime of both 
classical and quantum noise reduction 16,13,9. The photon number noise reduction 
can be achieved due to  the fiber Kerr nonlinearity, squeezing the quantum uncer- 
tainty of the light beam 17, and linear interference of the strong and weak pulses 
at the output of the Sagnac interferometer, realigning the minimum uncertainty 
along the amplitude direction 3,18. The theoretically predicted limit of measured 
squeezing reaches -11 f 1dB ’’ without taking into account the Raman effect. The 
best observed values are -5.1 f 0.3dB 2o and -5.7 f O.ldB 21 with the asymmetric 
interferometer and recently -6.1 fO.2dBZ2 with the symmetric interferometer. This 
system does not resolve the internal quantum structure of the soliton pulse and can 
be explained qualitatively in a single mode picture. This complex internal structure 
is nevertheless of significant importance to  understand and use the optical pulses, 
particularly in quantum communication. 

If one considers the evolution of different spectral components of a travelling 
pulse, there is a mixing between various components during propagation due to 
nonlinear refractive index and chromatic dispersion. This mixing leads to corre- 
lations between different spectral components of the pulse. Such correlations also 
exist if quantum mechanical aspects are taken into account 1 2 i 1 1 .  By filtering out 
certain spectral components of the pulse, these quantum correlations can be used to  
produce noise reduced or noise enhanced pulses 23,24,25,26 and to perform quantum 
non-demolition measurement of photon number ’. 
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Both schemes for generation of non-classical pulsed beams, spectral filtering and 
fiber Sagnac interferometer, can be implemented using a novel fiber type, the mi- 
crostructured fiberz6, which allows for the control of the zero dispersion wavelength. 
It was demonstrated to deliver a quantum source at 800 nm which is advantageous 
for free space communication in the low absorption window of the atmosphere 26. 

The microstructured fibre evolved from experiments with photonic band gap mate- 
rials. It consists of pure silica, with a bulk core and a cladding which has a pattern 
of holes, oriented in longitudinal direction. Due to  these holes, the cladding has a 
lower effective refractive index than the pure silica core. The guiding effect is the 
same as in standard silica fibres. By adjusting the air-hole/silica geometry, fibres 
with anomalous dispersion in the near infrared can be produced. The soliton in 
such a holey fiber can exist in a wide wavelength range between 0.8 and 1.5 fim and 
the nonlinear effects are much stronger even at very low pulse powers. Thus the 
internal quantum structure of the soliton can be studied with high accuracy. 

As mentioned above, the internal structure of the soliton can be used to  real- 
ize a quantum nondemolition measurement scheme. Since quantum nondemolition 
(QND) interactions couple two quantum systems in a specific and deterministic 
way, they can be exploited in the context of quantum information processing. 

In our scheme for QND measurement based on the multimode correlation struc- 
ture of solitons lz,ll, a soliton collision is used to  couple a signal soliton to a second 
soliton, which is labeled ‘probe’. The QND observable is the photon number of the 
signal soliton. It transiently couples to  the frequency of the collision partner such 
that spectral components of the two solitons are mutually quantum correlated dur- 
ing the soliton interaction (Fig. 2). This results in a novel scheme: the signal soliton 
undergoes half a collision with a probe soliton such that the transient spectral cor- 
relations are established. Then the solitons are separated and the probe soliton is 
spectrally filtered and directly measured. This new QND technique provides several 
advantages. It is immune to phase noise, a problem in previous experiments. The 
scheme requires merely two pulses since no phase reference pulse is needed. Since 
the photon numbers are correlated, only direct detection is required. The idea of 
coupling to  a completely different degree of freedom in the probe, neither conjugate 
nor identical to  the corresponding QND observable, may also be utilized to improve 
other back-action evading or quantum nondemolition measurements in x ( ~ )  and x(’) 
systems. 

Among possible applications are noiseless optical tapping, entanglement cre- 
ation, entanglement purification, and quantum state control. Using the optical fiber 
as x ( ~ )  nonlinear medium is perfectly compatible with subsequent quantum trans- 
port and communication purposes. In optical communication using wavelength- 
division multiplexing the investigation of quantum properties of soliton collisions 
explores ultimate bounds of channel crosstalk. 

Many quantum communication protocols which were initially proposed for sin- 
gle photons, can be extended from discrete to  continuous variable systems, for 
example to intense fiber soliton pulses. The implementation of continuous variable 
communication schemes with bright light fields has the advantage of a highly effi- 
cient, experimentally easy to handle entanglement generation, which does not rely 
on any spontaneous, and therefore probabilistic process. Continuous variable en- 
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Figure 2: Quantum spectral intensity correlations of two solitons before (a), during (b) and after 
a collision (c) (compare to 12). The correlation matrices in the bottom left and top right corners 
of each figure represent the intraipulse spectral correlation structure within an individual probe or 
signal soliton. The correlation matrices in top left and bottom right show the transient inter-pulse 
quantum correlation between the colliding solitons. The grey scale encodes the degree of correlation 
between two given spectral intervals: dark grey marks the regions of positive correlation and light 
grey to  white - those of negative correlation. For more details and explanations on formalism of 
correlation matrices see 7,8112. 
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tanglement is characterized by the quantum correlations of two conjugate variables, 
like the amplitude X and phase Y quadratures of optical fields and can be gener- 
ated via superimposing two amplitude squeezed beams on a 50:50 beam splitter ’. 
In our experiments, the squeezed light is generated in a double fiber Sagnac inter- 
feromet er 13,’ delivering two amplitude squeezed beams of orthogonal polarization 
simultaneously. 

Along with quantum-quantum subroutines of complete protocols with fiber op- 
tical solitons mentioned above, like QND measurements, squeezing and entangle- 
ment generation, quantum teleportation, etc l1J0, it is possible to  perform complete 
protocols such as quantum-assisted secret key distribution. Quantum key distribu- 
tion (QKD) allows two communicating parties Alice and Bob to  generate a shared 
secret bit string for secure information transfer. Several protocols for QKD with 
continuous variables have been published recently 27. 

In our approach we exploit the quantum correlations in two conjugate quadra- 
tures X and Y of a pair of entangled Gaussian beams, for example entangled optical 
solitons ‘. The binary bits are encoded by the independent and completely random 
choice of Alice and Bob to  detect either the quadrature X or Y for prearranged time 
slots At. This choice will later determine to  the bit value, e. g. X --+ 0 and Y + 1. 
Therefore both Alice and Bob never have to  publish the type of measurements they 
do. Instead Alice discloses the results of the measurement of X or Y to  Bob by 
ways of a classical channel. Thus by taking Alice’s information into account Bob 
can estimate Alice’s choice by testing correlations of his and Alice’s measurement 
results and derive her encoded bit value 0 or 1. He will tell Alice to keep time in- 
tervals, where he could find valid correlations and exclude eavesdropping. Figure 3 
illustrates the appropriate experimental setup. 

Currently it is thought that the use of continuous variable techniques does 
not allow quantum key distribution (QKD) beyond a loss of 3 dB. The argument 
leading to this limit is based on an optimal cloning approach for Gaussian states 
that correspond to  a symmetric beam-splitting attack on the beams. The 3 dB 
loss limit ”, which corresponds to an 50/50 beam splitter, is ascertained by the 
fidelity an eavesdropper Eve can maximally achieve for an optimal cloned signal, 
if she replaces a lossy channel by a perfect one with an adapted beam splitter to  
mimic the losses. In the case of the 3 dB loss, the mutual information of all data 
between Alice and Bob becomes smaller than the maximum amount of information 
Eve shares with either of the communicating parties. 

To analyze the security with respect to  the losses one can rephrase the QKD 
presented above as a prepare-and-measure scheme. Alice’s measurements on her 
entangled beam in one of two orthogonal quadratures X and Y yield the results Ax 
or Ay for the deviation of the mean field amplitude. By these measurements Alice 
effectively prepares squeezed conditional states from the entangled beam she sent 
to  Bob. In this view Alice’s results Ax or Ay play the role of a basis similar t o  the 
polarization basis in the BB84 protocol, whereas the measurement type encodes the 
bit value. It determines the direction of squeezing of the conditional states Alice 
prepared. 

‘For the generation of a shared key Bob tries to  figure out the direction of 
squeezing of Alice’s conditional states, and thus the encoded bit, by quadrature 
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quantum 
channel 

A A  

classical channel 

Figure 3: Setup for quantum key distribution with entangled Gaussian beams 

measurements in X or Y .  To prove the secrecy of the key one detects the correlations 
between measurement results for a subset of random selected bits. In this setting 
we studied the statistics that will occur near the apparent 3 dB limit and have 
recently shown that the secure quantum key distribution with intense fields is also 
possible in the presence of high loss '. 

In conclusion, in this paper we have highlighted the potential of quantum con- 
tinuous variables for the realization of complete communication protocols. The 
quantum properties of fiber solitons can be exploited to meet the growing require- 
ments set on bit rates, security, accuracy and efficiency of classical optical commu- 
nication systems. In the quantum domain, generation of nonclassical light beams 
and quantum measurement techniques contribute to the solution of this task. This 
pushes the quantum-assisted optical communication with intense pulses closer to 
practical applications. 

This work was supported by the Deutsche Forschungsgemeinschaft, by the EU 
grant under QIPC, project IST-1999-13071 (QUICOV) and by Bundesministerium 
fur Bildung und Forschung under VDI-AZ0155/00. 
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DISCUSSION 
Chairman: W. Schleich 

W. Schieve: How do you quantize your equation? 
G. Leuchs: This is the non-linear Schrodinger equation. The calculations 

were done using the Bethe-Ansatz and the Hartree approximation assuming that 
the nonlinearity of each photon experiences depends only on its own coordinate in 
the pulse and not on the coordinates of the other photons. 

G. Nimtz: You mentioned that you can measure in a non-demolition way the 
intensity of one soliton by the second soliton using phase shift. Could you comment 
on the mechanisms underlying this process? 

G. Leuchs: Yes. I think the best thing is to look back at this picture. Due to 
the Kerr effect, a single soliton experiences the intensity dependent phase shift. If 
we have two solitons, which are separated in terms of the spectral frequency, and 
if they overlap in time, the presence of the one will give rise to the phase shift of 
the other through the intensity dependent refractive index, i.e. through the Kerr 
effect. This shift can be of the order of the width of the soliton which consist of 
lo9 photons. The shift is sensitive enough to  make measurements in the quantum 
regime. 

H. J.  Kimble: Can I comment before I put in a question. Of course, those con- 
ditions in 1994 that have been virtually champions in the quantum optic squeezing 
were not at all sufficient and necessary. As a result several published experiments 
satisfy these conditions but are not generally regarded as QND measurements. 

G. Leuchs: That is right. I agree. 
H. J. Kimble: Now, my question. In your wild imagination, could you imagine 

making a soliton gathering one or ten photons? 
G. Leuchs: That is of course something we are thinking about. You need a 

phase shift per photon which is close to  unity. But such a high nonlinear phase 
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shift would not only be interesting for a pulse of a few photons but also for pulses 
with millions of photons. In this way one could generate macroscopic cat states. 
However, this seems to be out of reach at the moment. It is a question of the 
relation between non-linearity and losses. People have started to make fibers with 
much higher non-linearity but so far they are much more lossy and you do not get 
any advantage. This is primarily a technological problem. Standard optical fibers 
were also much more lossy twenty years ago. There will possibly be an improvement 
also for highly non-linear fibers such as photonic crystal fibers. We have started 
to  do experiments with such fibers. There you have a much stronger confinement, 
which also enhances the effective non-linearity, and maybe there are some other 
beneficial effects. At the moment, in terms of technology, I do not know whether 
it will be possible to reach the regime with the phase shift per photon of order 
of unity and with negligible losses. One could also think of using a material with 
a resonance and of working close to  resonance, e.g. by using fibers made out of 
semiconductor material. So, I think there is a lot to do on the material side, and I 
think the prospects are high. The few photon soliton will probably become real in 
the future. 
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PRACTICAL CREATION AND DETECTION OF POLARIZATION 
BELL STATES USING PARAMETRIC DOWN-CONVERSION 

K. J. RESCH, J. S. LUNDEEN, AND A. M. STEINBERG 
Department of Physics, University of Toronto 
60 St. George Street, Toronto ON M5S 1A7 

CANADA 

The generation and detection of maximally-entangled two-part icle states, ‘Bell 
states’, are crucial tasks in many quantum information protocols such as cryp 
tography, teleportation, and dense coding. Unfortunately, they require strong 
inter-particle interactions lacking in optics. For this reason, it has not previously 
been possible to perform complete Bell state determination in optical systems. In 
this work, we show how a recently developed quantum interference technique for 
enhancing optical nonlinearities can make efficient Bell state measurement possi- 
ble. We also discuss weaknesses of the scheme including why it cannot be used 
for unconditional quantum teleportation. 

1 Introduction 

The new science of quantum information builds on the recognition that entan- 
glement, an essential but long underemphasized feature of quantum mechanics, 
can be a valuable resource. Many of the headline-grabbing quantum communica- 
tion schemes (including quantum teleportation 1,2,3,  dense coding 4,5,  and quan- 
tum cryptography 697) are based on the maximally-entangled two-particle quantum 
states called Bell states. Using the polarization states of a pair of photons in 
different spatial modes, the four Bell states are written as: 

where IH) and IV) describe horizontal- and vertical-polarization states, and the 
subscripts 1 and 2 are spatial mode labels. These four states form a complete, 
orthonormal basis for the polarization states of a pair of photons. In each Bell 
state, a given photon is completely unpolarized but perfectly correlated with the 
polarization of the other photon. Photon Bell states were produced in atomic cas- 
cades for the first tests of the nonlocal predictions of quantum mechanics ’. Since 
that time, parametric down-conversion sources 9 , 1 0 , 1 1 , 1 2 9 1 3  have replaced cascade 
souces due to  their ease of use, high brightness, and the high-purity states they 
produce. However, down-conversion sources do not deterministically prepare pho- 
ton Bell states, but rather states in which the Bell state component is in a coherent 
superposition with a dominant vacuum term; coincidence detection of photon pairs 
projects out only the two-photon component of the state. 

While optical Bell state source technology has shown marked improvement, 
methods of distinguishing these states has proven a difficult challenge. Perhaps 
the most well-known example of why distinguishing Bell states is important comes 
from quantum teleportation. A general projective measurement is required for 
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unconditional teleportation; experimental teleportation was originally limited to a 
maximum efficiency of 25% since only the singlet state, I+-) , could be distinguished 
from the triplet states '. The challenge for measuring Bell states stems from the 
requirement for a strong inter-particle interaction, which is usually nonexistent for 
photons. Without such a nonlinearity, only two of the four states can be distin- 
guished 14. It was realized that a strong enough optical nonlinearity, typically x ( ~ ) ,  
could be used to mediate a photon-photon interaction. Unfortunately, even the 
nonlinearities of our best materials are far too weak. An experiment using stan- 
dard nonlinear materials to demonstrate a scheme for unconditional teleportation 
was limited to  extremely low efficiencies (on the order of 10W'O) by the tiny non- 
linearities involved 15. Proposals for extending optical nonlinearities to the quan- 
tum level include schemes based on cavity QED 16, elect romagnetically-induced 
transparency 17, photon-exchange interactions 18, and quantum interference tech- 
niques ",". Using the latter, we have recently demonstrated a conditional-phase 
switch ' O  which is similar to the controlled-phase gate in quantum computation. In 
this work, we show how to apply the conditional-phase switch to  the problem of Bell 
state detection. I t  should be noted that if recently published schemes for perform- 
ing quantum computing with linear optics '1,22 could be experimentally realized, 
then the problem of distinguishing all four Bell states could be performed without 
the need for strong optical nonlinearities. Theoretical work has also shown that if 
the Bell state is embedded appropriately in a higher-dimensional Hilbert space, all 
of the Bell states can be distinguished 23. 

Strong optical nonlinearities are desired so that one can construct a controlled- 
T ,  a specific case of the controlled-phase gate for photons. Such a gate and all 
one-qubit rotations form a universal set of gates for the more general problem of 
quantum computation - just as the NAND gate is universal for classical computa- 
tion. The controlled-.rr transformation 24 is described by: 

lo), 10)' - lo), 10)' 

lo), 1 %  - lo), 11)' 
1 %  lo), + 11)l lo), 
11)111)2 + - I1)l I % ! ,  (2) 

in which the two qubit states are I0)and 11) and the subscript is the qubit label. 
This transformation does nothing to  the input state unless both qubits have a value 
of 11) , in which case it applies a phase-shift of T .  On the surface this transformation 
appears to do nothing since an overall phase in quantum mechanics is meaningless. 
However, it is clearly nontrivial when applied to superpositions of states. 

The polarization of the photon makes an ideal two-level system for encoding a 
qubit largely due to its relative immunity to  environmental decoherence. A large 
enough x ( ~ )  nonlinearity could be used to  effect the c-T transformation on a pair 
of photons. Given a polarization-dependent x ( ~ ) ,  or through the use of polarizing 
beam-splitters, only photon pairs with, say, horizontal polarization would experi- 
ence the nonlinear interaction and pick up the additional phase shift. Such a gate 
could then be incorporated into the optical implementation of the quantum circuits 
shown in Fig. la. and 2a. (similar circuits are discussed in 14,25). The circuit 
in Fig. la. converts, through unitary transformation, a state in the rectilinear 
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product state basis (i.e. lo), lo), lo), 11), 11), lo), , and Il), \I),) to the Bell basis. 
The circuit in Fig. 2a. performs the opposite function converting a Bell state via 
unitary transformation to the rectilinear basis. In essence, these circuits allow for 
the creation and removal of entanglement between pairs of qubits. If the qubit 
states 10) and 11) are encoded into the polarization states IH) and IV) in two dif- 
ferent spatial modes 1 and 2, then an optical realization of the circuit in Fig. 2a. 
allows for the conversion of a photon pair in a Bell state to  a rectilinear basis state. 
These four rectilinear basis states are easily distinguishable using the simple optical 
setup shown in Fig. 3. Thus, after passing the photon pair in a Bell state through 
the optical realization of the circuit in Fig. 2a., the subsequent detection of the 
rectilinear state is equivalent to determination of the Bell state. 

Figure 1.  a) A quantum circuit and b) its optical analogue for the creation of Bell states from 
product states. The circuit 
uses one-qubit Hadamard gates, and a twequbit controlled-7r gate. This circuit performs a 
unitary transformation on the inputs and takes each of the four possible qubit product states to 
a different Bell state. b) The optical analogue of the quantum circuit. In the diagram, X/2 are 
half-wave plates oriented at 22.5 degrees and is a nonlinear material. The device is capable 
of converting the state of a photon pair in a product state of polarization to one of the Bell states, 
provided that the input is in the correct superposition with the vacuum. 

a) The quantum circuit acts on a pair of input modes 1 and 2. 

The conditional-phase switch we propose is related to the controlled-phase gate 
of quantum computation and is described in the theory section of this work. The 
switching effect occurs in a x(’) nonlinear material that is pumped by a strong, 
classical beam. This pump beam is capable of creating pairs of down-converted 
photon pairs into a pair of output modes. Pairs of photons, in a coherent super- 
position with the vacuum, pass through the crystal into those same output modes. 
It is the interference between the amplitudes for multiple paths leading to a pho- 
ton pair that greatly enhances the effective nonlinearity; since the down-converted 
light is only created in pairs, the interference only affects the amplitude for photon 
pairs. However, since the switching effect is based on an interference effect, it is 
intrinsically dependent on the phase and amplitude of the incoming beams. This 
has two consequences. First, the switch requires an input which is in a coherent 
superposition with the vacuum. In this way, the input has the required uncertain 
number of photons, since photon number and phase are conjugate quantities. And 
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Figure 2. a) A quantum circuit and b) its optical analogue for the conversion of Bell states to 
product states. a) This quantum circuit takes a pair of qubits in input modes 1 and 2 and 
performs a unitary transformation that will convert a Bell state to a product state. b) The 
optical analogue of the quantum circuit takes a photon pair in a Bell state to a rectilinear product 
state, provided the photon pair is in the correct superposition with the vacuum. 

second, the switch works as described only for states in the correct superposition 
with the vacuum, not a general input state. As we will show, these conditions 
do allow for one to distinguish between the four Bell states provided they are in 
the correct superposition with the vacuum. Nonetheless, the conditions are too 
stringent to allow for unconditional teleportation using this method. 

First, we describe the effective nonlinearity. Then we show how the nonlinearity 
can be used to construct optical devices analogous to the quantum computation 
circuits shown in Fig. la.  and Fig. 2a. 

2 Theory 

2.1 Effective Nonlinearity 

The general down-conversion state can be written as 

where the part of the state describing photon pairs has been written as an in- 
ner product. The amplitudes for the polarization states IH),  IH),, IH), IV),, 
IV), IH)*, and IV), IV), are &a, EP, EY, and ~ b ,  respectively. Again, the subscripts 
1 and 2 describe two different spatial modes. Throughout this theory section, we 
adopt a 4-dimensional vector representation to  describe the polarization state of 
the photon pairs. In this more compact notation, the general state is written 
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Det. 1 
IV 

Det. 3 0  
PBS 

Mode 2 H 

Figure 3. An optical device for distinguishing rectlinear basis states. This simple device can dis- 
tinguish between the product states For the polarization of a pair of photons ) H ) ,  l H ) 2 ,  I H ) ,  lV)2, 
IV), IH)2 ,  and IV), The device consists 
of a pair of polarizing beam-splitters (PBS) and 4 photon counting detectors monitoring their 
outputs. For example, the detection of a photon at detector 1 and detector 4 corresponds to the 
state IH) ,  lV)2. 

where the subscripts 1 and 2 are mode labels. 

In both cases, we have suppressed the normalization factor for clarity, and for the 
discussion here we will restrict ourselves to  the case where the probability of having 
a photon pair at  any given time is small, i.e. 1 ~ 1 ~  << 1 (as is always the case in real 
down-conversion experiments). 

Modes 1 and 2 are 
of frequency w and pass through a x ( ~ )  nonlinear crystal that is simultaneously 
pumped by a strong classical laser beam of frequency 2w in mode p. The modes 
are so chosen such that the nonlinear crystal can create degenerate horizontally- 
polarized photon pairs in spatial modes 1 and 2 via spontaneous parametric down- 
conversion, as shown in Fig. 4. The nonlinear process is mediated by the interaction 
Hamiltonian, 

The effective nonlinearity 2o can be described as follows. 

where g is the coupling constant and a!') is the field annihilation (creation) operator 
for the i th  mode, and the subscripts H and V are the polarizations of the relevant 
modes for the type-I phase-matching. The pump laser is intense enough that we 
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Figure 4. Schematic for the conditional-phase switch. A strong, classical, laser in mode p, of 
frequency 2w, pumps a x(') nonlinear material such that it can create down-conversion pairs in 
modes 1 and 2. A pair of input beams, of frequency w ,  pass through the nonlinear material into 
modes 1 and 2. Interference between the multiple paths leading to photon pairs at the output 
can be used to introduce a large phase shift on the amplitude for a photon pair. 

treat it classically by replacing its field operators with c-number amplitudes, < and 
<*: 

Due to phase-matching constraints, the nonlinear crystal can only produce 
horizontally-polarized photon pairs. In the weak coupling regime, we can use 
first-order perturbation theory to propagate our state under the interaction to, 

To first order, this Hamiltonian simply creates an amplitude for a horizontally- 
polarized pair of photons. This new down-conversion amplitude interferes with 
the preexisting amplitude for the H H  term. 

The transformation, as described here, does not appear unitary. This is due to 
a few approximations. We assume that the vacuum term in our state is unchanged, 
and neglect terms describing more that one pair of photons. These approximations 
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are only valid in the relevant limit where I E ~  << 1, where we can also suppress the 
normalization term for clarity. However, the exact propagator follows from a 
hermitian Hamiltonian and is of course unitary. 

As was shown in the “railcross experiment” 26 and in our subsequent work with 
photon pairs from coherent state inputs 19, interference between the amplitudes for 
existing pairs and for down-conversion can modulate the rate of pair production. 
Given the phase-matching scheme presented here, only the amplitude for H H  pairs 
is affected. Accompanying this modulation of the photon pair production rate 
is a shift in the phase of the horizontally-polarized photon pair term. The down- 
conversion crystal impresses a 7r phase-shift on the H H  term if the down-conversion 
amplitude, - i tgC/h  to be - 2 m .  To implement a tranformation analogous to  the c- 
T (Eq. 2) in the coincidence basis, this is the only condition that must be enforced; 
the values for the coefficients a ,  p, and y are free. This condition takes the place 
of the more usual normalization condition on a,  p, y, and 6 to  describe our state 
space. I t  can be enforced experimentally by controlling the amplitude and phase 
of the pump laser and/or the overall pair amplitude E .  Unfortunately, this means 
that the gate cannot be utilized on arbitrary inputs without some prior information. 
Under these conditions, the crystal implements 

If horizontal polarization is used to represent a logical ‘O’ ,  this performs a transfor- 
mation analogous to a c-T within the state space defined by our constraint on a. 
We do not use the conventional c-7r so that we can use the common convention for 
the Hadamard gate later on without the need for additional quantum gates. We 
will now describe how this operation can be used to  perform Bell state creation 
under certain conditions. 

2.2 Bell state creation 

The circuit in Fig. la. is capable of converting each rectilinear basis state to a 
different Bell state. To give a concrete example, we begin with the qubit pair in 
the state lo), lo), represented as the 4-vector 

I+) = (;) I 

where the rows now contain the amplitudes for the states lo), lo),, lo), 11)2r 11), lo),, 
and Il), 11),. The circuit contains one-qubit Hadamard transformations which are 
defined by the 2 x 2 matrix, 
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and the two-qubit c-T gate whose operation has already been discussed. The circuit 
then takes the input state, I@), to the output state I@’) given by 

I@’) = (Hl@ 1 2 )  ( C - T )  (Hl @ H2) I@) 
1 0  1 0 1 0 0  0 

1 0 1  0 1 0 1 0  0 
= - [ o l  2 J z  1 0 - 1  0 -L] 0 [ o o o - l  0 0 1  0 

1 1  1 1  

L1!L;] 1-1-1 1 (;) (14) 

This final state is the Bell state I@+). Each different rectilinear state input will 
produce a different Bell state output through this circuit. 

The conditional-phase operation can be incorporated into the optical device 
schematically represented in Fig. l b  that can perform a very similar transformation. 
Instead of using a state describing a pure photon pair as input, this device requires 
the input pair to be in a coherent superposition with the vacuum. As discussed 
previously, this is merely the output from a parametric down-conversion source 
(Eq. 3). Here we assume the coefficients are normalized according to (a[’ + IPl2 + 
IyI2 + (612 = 1, such that ( ~ 1 ~  is the probability of a photon pair of any polarization 
being present. The photons have been created into spatial modes 1 and 2 by an 
initial down-conversion crystal (not shown) to serve as input to the optical device 
in Fig. Ib. Hadamard operations are accomplished via half-wave plates at 22.5 
degrees, and the c-T has been replaced by the conditional-phase switch. The initial 
state will evolve as follows through the device. The pair of Hadamard gates changes 
the general state, I$1) ,  to 1@2), 

This state passes through the conditional-phase shift, which is phase-matched to 
contribute an amplitude of --E for horizontally-polarized photon pairs. It will 
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evolve to / $ a ) ,  

a + P + y + 6 - 2  
a - P + y - 6  

a - P - y + G  

=lo)+;  ( a + p - y - 6  ) .  

The final Hadamard gate acts only on mode 1, and converts 
state I$'), 

to  the output 

E 0 1 0  1 
= 10) + - I 2 J z  1 0 - 1  0 

1 0 1  0 -1 

a + P - l  
0 - P  = l o ) + - (  & y - 6  ) 

Jz y + b - 1  . 

If, for example, the input state to this device had only an amplitude for a 
horizontally-polarized photon pair (i.e. a = 1 and P,y,6 = 0), then the output 
state would be, 

The other 3 possible rectilinear basis inputs would each evolve to a different Bell 
state in a coherent superposition with the vacuum state. The resulting transfor- 
mations on four possible rectilinear input states are 
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2.3 Bell state detection 

The method just described for creating polarization Bell states is much more experi- 
mentally difficult than the elegant methods of doing so in a cleverly-oriented crystal 
or crystal pair 11,12. What is unique about this method is that this device performs 
a one-to-one transformation between rectilinear basis states and Bell basis states. 
This device for creating the Bell states can, in fact, be run in reverse to distinguish 
between the four Bell states provided, again, that they are in a superposition with 
vacuum. Fig. 2a. shows a quantum circuit for transforming Bell states to the 
rectilinear basis, that is very similar in structure to the circuit shown in Fig. la. 
To give a concrete example, we can trace the evolution of the singlet state, I4-), 
through the device. The singlet state can be written in 4-vector notation as, 

The circuit transforms the input state to the output I$’) in the following way, 

= (;). 
1 0  1 0 0 

0 1  1 0 - 1  0 .]A(;) 1 (29) 
0 1  0 -1 

The output state is the product state 11)1 llj2. 
The optical device that performs the analogous transformation is shown in 

Fig. 2b. The device, again, uses half-wave plates to implement the Hadamard 
transformations, and the conditional-phase switch which is set to contribute an 
amplitude of +E for a horizontally-polarized photon pair. The input state to this 
device, I$1), is again described by the general down-conversion state, 

This state passes through the polarization rotator in mode 1 and will evolve to  the 
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= l o ) + i [ o l  1 0  O 1 0 1 1  (;) 
- - l o ) + + ; ) .  a - 7  

fi 1 0 - 1  0 
0 1  0 -1 

a f 7  

(32) 

(33) 

(34) 

This state is subsequently passed through the conditional-phase switch where the 
pump laser is set to  the appropriate amplitude and phase to add an amplitude of 
+E for a vertically-polarized photon pair. The state evolves to where 

Finally, this state passes through a pair of half-wave plates. The final state, I$'), 
is 

If, for example our input state has (Y = 6 = -1/fi and p = y = 0 (i.e. the input 
is 10) - E I++)- one of the outputs of the previous device), then the output state 
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would be, 

That is, the output contains only an amplitude for a photon pair in the product 
state IV), lV)2. The results for all of the input states are simply stated: 

10) - E I+-) - 10) + E Iff), Iff), 
10) - E I$+) - 10) + E I f f ) ,  IV), 
10) - E 16) - 10) + E IV), I W 2  

10) - E I4+) - 10) + E IV), IV), I (41) 
and are the inverse of the transformation the previous device performed. 

In order to complete the measurement of the Bell state, the output of this device 
is passed through an optical device like the one in Fig. 3. The detection of a photon 
pair constitutes a successful measurement and will occur with probability 1 . ~ 1 ’  - the 
probability of having a Bell state in our input state. This probability ignores issues 
of detector and path efficiency. 

3 Discussion 

We have proposed a way of implementing a transformation capable of converting 
the polarization state of a pair of photons from the rectilinear basis to the Bell state 
basis and vice versa provided the photon pairs are in a known coherent superposi- 
tion with the vacuum. This transformation relies on a recently reported effective 
nonlinearity at the single-photon level ,’. Requiring the photon pair to be in a 
superposition with the vacuum seems unusual, but this type of superposition exists 
in all down-conversion sources of entangled photons. It is only upon performing a 
photon-count ing coincidence measurement that the maximally-entangled behaviour 
is projected out. While these down-conversion sources of Bell states exist and are 
practical in the lab, the creation mechanism does not suggest how one might try to 
measure those Bell states. In the device discussed here, the Bell state creator and 
Bell state analyzer look very similar. The creator can essentially be run in reverse 
to make the analyzer. 

This device cannot be used for performing unconditional quantum teleportation. 
The device is only capable of distinguishing the four Bell states; it is not capable of 
performing a general projective measurement in the Bell basis. This is due to the 
conditional-phase shifter’s dependence on the magnitude and phase of the amplitude 
for the Bell state component in the input state; the gate does not operate properly 
on arbitrary superpositions of Bell states. Nevertheless, the device discussed herein 
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constitutes a novel way of manipulating the degree of entanglement between a pair 
of photons, and may find a use in other quantum optics applications, such as dense 
coding 4,5.  The ability to entangle and disentangle photon pairs is a crucial step 
toward building scalable all-optical quantum computers. 

We would like to  thank Andrew White and Ray Laflamme for valuable discus- 
sions. We are grateful for the financial support of Photonics Research Ontario, 
NSERC, and the US Air Force Office of Scientific Research (F49620-01-1-0468). 
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DISCUSSION 
Chairman: W.  Schleich 

L. Stodolsky: Why did you say the photons are entangled in your down con- 
version experiment? 

A. Steinberg: Because the total energy of the output is equal to the total 
energy in the input. If I have one photon “in” at 2w then I either get an “out” 
photon at 2w or two photons at w and nothing at  2w. The different field modes are 
entangled. I cannot describe the state of the w field independently of the state of 
the 2w field, because there is no way that I can find a pair at w each and a photon 
left at 2w if I have a single photon at 2w coming “in”. 

L. Wang: An alternative explanation of what we saw could be that the input 
classical signal as a local oscillator is producing stimulated emission, which interferes 
with the local oscillator in that. Is there any evidence to hear this oscillator? 

A. Steinberg: That is exactly correct. There is an alternate classical picture 
that, as usual, explains the singles rates. It cannot explain the coincidence rates. 
We have a paper coming out in the Journal of Modern Optics that goes through 
the theory in detail connecting the classical and quantum pictures. The idea is that 
certainly the strong classical beam and a weak quantum beam will generate some 
difference frequency, which will then beat against the other mode. One percent 
modulation in intensity, the classical theory would predict. However, the fact that 
we can see 60% visibility in coincidence is a purely quantum effect. 

L. Stodolsky: You have explained in the introduction that in the parametric 
down conversion the energy and momentum are conserved. Do I make any mistake 
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by thinking that in quantum mechanics this is as the decay of a particle into two 
photons like 7r'deca y? 

A. Steinberg: Yes; I mean the constraints are due to the fact that momentum 
and energy need to be conserved. In a crystal with a particular dispersion relation, 
it is by playing tricks with choosing the polarisations that you are able to create 
these conditions, but at the end the conservation laws are the same. Obviously, 
there are small corrections due to the fact that the crystal can actually recoil, so 
the conservation laws are approximate. The frequency sum you can treat as exact. 

G. Pronko: What kind of crystal do you use to split the photon? If we literally 
understand this process this is forbidden by the charge-parity conservation. 

A. Steinberg: We use P-Barium Borate, in particular, but the general prop- 
erty is that in order to have this non-linearity the crystals have to lack inversion 
symmetry, because by turning one photon into two you are not conserving the 
parity quantum number. 

G. Pronko: So, it means you are using some anisotropic crystal. 
A. Steinberg: Yes, it is an anisotropic crystal. 
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TIME-REVERSED EPR A N D  THE C H O I C E  OF HISTORIES IN 
Q U A N T U M  M E C H A N I C S  

AVSHALOM C. ELITZUR SHAHAR DOLEV ’ 
Unit for Interdisciplinary Studies, Bar-Ilan University, 52900 Ramat-Gun, Israel. 

ANTON ZEILINGER 
Institut fur Experimentalphysik, Uniuersitiit Wien, Boltzmanngasse 5, 1090 Wien, 

Austria. 

When a single photon is split by a beam splitter, its two “halves” can entangle 
two distant atoms into an EPR pair. We discuss a timereversed analogue of this 
experiment where two distant sources cooperate so as t o  emit a single photon. The 
two “half photons,” having interacted with two atoms, can entangle these atoms 
into an EPR pair once they are detected as a single photon. Entanglement occurs 
by creating indistinguishabilility between the two mutually exclusive histories of 
the photon. This indistinguishabilility can be created either at the end of the two 
histories (by “erasing” the single photon’s path) or a t  their beginning (by “erasing” 
the two atoms’ positions). 

1 In t roduct ion  

As peculiar as quantum measurement is known to  be, its strangeness is even greater 
when one tries to determine not merely the state of a system, but its entire history. 
Past events are supposed to  be unchangeable, and as such the most essential aspect 
of reality. And yet, when a quantum measurement traces a certain history, it seems 
to take an active part in the very formation of that history. 

So far, however, this assertion has been merely philosophical. The most notable 
experiment supporting it, namely, the Einstein-Wheeler “delayed choice” experi- 
ment (see Sec. 2), is equally open to  other, less radical interpretations. Could there 
be a more straightforward experiment, showing that the history observed is retroac- 
tively affected by observations carried out much later? In this article we propose a 
few experiments of this type and discuss their implications. 

2 The Delayed Choice Exper iment  

We shall begin with the “delayed choice” experiment. Discussing its limitations will 
later highlight the advantage of our proposed demonstration of “choosing history.” 

Let a Mach-Zehnder Interferometer (MZI) be large enough such that it takes 
light a long time to  traverse it (Fig. 1). Due to  interference, every single photon 
traversing this MZI must hit detector C. Suppose, however, that, at the last mo- 
ment, the experimenter decides to pull out BS2. In this case the photon hits either 
C or D with equal probability. 

What concerned Einstein about this experiment was that the two options given 
to  the experimenter’s choice seem to  entail two mutually exclusive histories. In the 
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Detectors 

D C 

/ Beam Splitter (BS) 
Y 

Figure 1. Mach-Zehnder Interferometer. 

former case the photon seems to  have been, all along, a wave that has traversed both 
MZI arms and then gave rise to interference. In the latter case the photon must 
have been - again, all along - a particle: if it has hit D it must have traversed only 
the right arm, and conversely for C. To make the result more impressive, Wheeler 
proposed to perform the experiment on photons coming from outer space, whereby 
the history thus ‘Lchosen” is millions-years long. 

However, the delayed choice experiment is not scientific in the full sense of the 
word, as other explanations are possible within interpretations that do not invoke 
backward causation. One could, for example, just stick to  the observed facts, refrain 
from any statement about the unobserved past and explain the experiment strictly 
in terms of wave mechanics or ‘lcollapse.” 

Can there be an experiment that indicates more strongly that past events are 
susceptible to the effect of future observation? 

3 Interference between Independent Sources 

Even more striking than the delayed-choice experiment is an effect that was still 
unknown to Einstein, namely, the interference of light coming from different sources. 
It was first discovered by Hanbury-Brown and Twiss 2,3, and later demonstrated at  
the single-photon level 4,5 (Fig. 2). I t  is odd that, although this experiment offends 
classical notions more than most other experiments known today, it has not yet 
received appropriate attention. When the radiation involved is of sufficiently low 
intensity, then even a single particle seems to “have originated” from two distant 
sources. 

We shall first point out two variations of this experiment that highlight its 
peculiar nature. First, it can have a delayed-choice variant: If the experimenter 
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Laser sources Detector 

Figure 2. A schematic description of Pfleegor-Mandel experiment for interference between two 
distinct sources. 

“Silent” Detector 

Figure 3. A variation of Pfleegor-Mandel experiment, implementing Interaction-Free Measure- 
ment. 

chooses at the last moment to pull out the BS, a click at detector C will indicate 
that a single photon has emerged from only one source, namely, the one facing 
the detector that clicked. If, on the other hand, she leaves the BS in its place, 
the interference will again indicate that the photon “has been emitted” by both 
sources. 

variant of this setting (Fig. 3). 
Assuming that the phase between the sources is fixed for the time of the experiment, 
it can be arranged that all the photons will reach detector C. Now, if an object is 
placed next to one of the sources, it will occasionally absorb the photon. Therefore, 
when a photon eventually hits the detector, it is obvious that it has been emitted 
only from the other, unblocked source. But then, in 50% of the cases, that photon 
will emerge from the BS towards the “dark” detector D, thereby indicating that, 
although it could have originated from only one source, it has somehow sensed the 
object blocking the other source! 

How can two distant sources emit together a single photon? It is instructive 
to study this effect as a time-reversed version of the familiar case where a single 
photon is split by a BS and then goes to  two distant detectors. In that case, there 
is an uncertainty as to which detector will absorb the photon. Similarly, in our 
case, there is an uncertainty as to which source has emitted the photon. 

This time-symmetry suggests constructing a new experiment. Consider first 
the familiar, V-shaped case (one source, two detectors). Such a split photon can 
entangle two unrelated particles so as to  create an EPR pair. For example, two 
atoms positioned across its two possible paths will become entangled due to the 
correlation between their ground and excited states. Can the more peculiar, h- 

Next consider an Interaction-Free Measurement 
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IU I 

Figure 4. Hardy's experiment. 

shaped case (two sources, one detector) be similarly used to  create an inverse EPR? 

4 Hardy's Hybrid Experiment 

Before we show how to do that, let us study an experiment due to  Hardy ', in which 
he has elegantly integrated the peculiarities of the EPR experiment, single-particle 
interference and the interaction-free measurement - all in one simple setting (Fig. 4). 

Let a single photon traverse a MZI. Let two spin $ atoms be prepared in the 
following way: Each atom is first prepared in an up spin-x state (z+) and then split 
by a non-uniform magnetic field M into its spin-z components. The two components 
are then carefully put into two boxes z+ and 2- while keeping their superposition 
state: 

1 .  1 .  * = 17) . -(22,' + 2 ; ) .  -(2.,' + 22). Jz fi 
The boxes are transparent for the photon but opaque for the atoms. Atom 1's 
(2's) 21' (22) box is positioned across the photon's v (u) path in such a way that 
the photon can pass through the box and interact with the atom inside in a 100% 
efficiency. Now let the photon be transmitted by BSI :  

tJ)) . (iz,' + 2;)  . (iz,' + .<). (2) 
1 * = p 4  + I 

After the photon was allowed to interact with the atoms, we discard the cases in 
which absorption occurred (50%), to get: 

P = &( Jz -ilu)rl+z,' - Iu)z;z,' (3) 
+ilv)2;2,' + Iv)z;Z;). 

Now, let photon parts u and v pass through BS,, following the evolution: 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



456 

Figure 5. Entangling two atoms. 

giving: 

3 = a( Id)z;z,+ + Id)z;z, (4) 
+ilc)z;z; - ilc)z,+zz+ - 2lc)z;zz+). 

If we now post-select only the experiments in which the photon was surely disrupted 
along its way, thereby hitting detector D ,  we get: 

1 
3 = -Id)(zfzf 4 1- + .;z;). (5) 

Consequently, the atoms, which have never met in the past, become entangled 
in an EPR-like relation. Unlike the ordinary EPR, where the two particles have 
interacted earlier, here the only common event in the past is the single photon that 
has “visited” both of them. 

In the next section we shall show how to achieve this result even without any 
common past. Then, the measurement’s effect on past evolution will become even 
more striking. 

5 Inverse EPR (“RPE”) 

Let two coherent photon beams be emitted from two distant sources as in Fig. 5. 
Let the sources be of sufficiently low intensity such that, on average, one photon 
is emitted during a given time interval. Let the beams be directed towards an 
equidistant BS. Two detectors are positioned next to the BS: 
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where 11) denotes a photon state (with probability p’), 10) denotes a state of no 
photon (with probability q’), p << 1, and p2  + q’ = 1. 

Since the two sources’ radiation is with equal wavelength, a static interference 
pattern will be manifested by different detection probabilities in each detector. Ad- 
justing the lengths of the photons’ paths u and u will modify these probabilities, 
allowing a state where one detector, D,  is always silent due to  destructive inter- 
ference, while all the clicks occur at the other detector, C, due to constructive 
interference. 

Notice that each single photon obeys these detection probabilities only if both 
paths u and w, coming from the two distant sources, are open. We shall also 
presume that the time during which the two sources remain coherent is long enough 
compared to  the experiment’s duration, hence we can assume the above phase 
relation to  be fixed. 

Next, let two spin-; atoms be prepared as in Hardy’s experiment (Sec. 4 above) 
and let each “half atom” be placed in one of the possible paths. After the photon 
was allowed to  interact with the atoms, we discard the cases in which absorption 
occurred (50%), to  get: 

+ilv)z;z2+ + 1V)z;z;). 

If we now post-select only the cases in which a single photon reached detector 
D,  which means that one of its paths was surely disrupted, we get: 

1 
4 

3 = -Id)(z,+z$ + z;z;), 

which entangles the two atoms into a full-blown EPR state: 

z1’z; f z;z;. 

In other words, tests of Bell’s inequality performed on the two atoms will show 
the same violations observed in the EPR case, indicating that the spin value of 
each atom depends on the choice of spin direction measured on the other atom, no 
matter how distant. 

The two photon sources, though unrelated, must still be coherent in order to 
demonstrate interference. Dropping the coherency requirement would make the 
EPR inversion even more prominent. This has been accomplished by Cabrillo et. 
al. in a different setup, devised for generating pairs of entangled atoms. Their 
setup involves atoms with three energy levels: two, mutually close “ground” states, 
10) and Il), and one excited state 12). Two distant such atoms in 10) state are shone 
by a weak laser beam tuned to the 10) + 12) transition energy. If a detector then 
detects a single photon of the 12) + 11) energy, the entangled state 11)12) + 12)11) 
ensues. 

Here, in the absence of coherency, one cannot talk about interference. Still, since 
only one photon is detected, the uncertainty about the photon’s origin suffices to  
make the two atoms entangled, leading eventually t o  an EPR state. 

Unlike the ordinary EPR generation, where the two particles have interacted 
earlier, here the only common event lies in the particles’ future. These two versions, 
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one involving coherent light and the other with incoherent light, highlight different 
peculiarities of the inverse EPR, henceforth termed “RPE.” We shall discuss their 
implications below. 

6 Histories for Choice 

The “RPE’ experiment offers several options for studying the way in which mea- 
surement determines a history. Consider, first, its delayed-choice aspect, which can 
be best demonstrated in the incoherent setup of Cabrillio et. al.: 

*If the experimenter chooses at the last moment to pull out the BS, then the 
photon’s two possible histories, i.e., “it originated from the right atom” and 
“it originated from the left atom,” become distinguishable. Consequently, the 
photon’s “footprints” become distinguishable too and no entanglement between 
the atoms will be observed. 

*Con versely, inserting the BS will entangle the two atoms, even though their 
interaction with the photon has taken place earlier. In other words, what seems 
to  be the generation of uncertainty only in the observer’s mind, gives rise to 
a testable entanglement in reality. Unlike the delayed-choice experiment, here 
the history “chosen” leaves observable footprints. 

But, in addition to creating uncertainty at the end of the evolution, the coherent 
version (Fig. 5 ) gives us the freedom to create uncertainty - or to dissolve it - also 
at the beginning of that evolution. For even after the photon was detected at  D, 
we can perform two kinds of measurements on the atoms, measurements that will 
yield conflicting results: 

OW e can measure the position of each atom in one out of the two boxes. In 
this case, one atom must always be found in the intersecting box, while the 
other must always reside in the non-intersecting box. Consequently, there is 
only one possible history for the photon now: I t  must have taken the path 
that was not blocked by the atom, never the other, blocked path. As a result, 
Bell inequality violations would never be demonstrated by the atoms after this 
measurement (recall that Bell-inequality statistics cannot be demonstrated on 
a series of same-spin measurements). Hence, the atoms do not demonstrate 
non-local correlation. 

*On the other hand, we can unite the two boxes of each atom using an inverse 
magnetic field - M ,  and measure the photon’s spin along the z axis. Here, 
we give up the “which path” information about the photon. Consequently, 
Bell-inequality violations would be demonstrated in this case, proving that the 
photon’s two possible histories cooperated so as to entangle the two distant 
atoms. 

All these variants are, in essence, erasure experiments. When we insert the BS 
in the “incoherent RPE” or reunite the atoms in the coherent version, we actually 
erase the still available information about the photon’s two possible histories. No- 
tice, however, that the present erasure experiments (e.g. ’) demonstrate only the 
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negative result of this information loss, i.e., the disappearance of the interference 
pattern. The RPE, in contrast, enables erasure to  give rise to  a positive result, 
namely, the entanglement of two distant atoms. 

“Nam et zpsa scientia potestas est (for knowledge itself is power)” was an old 
maxim of the ancient Romans, but quantum mechanics rewards one for cases in 
which ignorance is generated. 

7 

The timesymmetry of quantum theory’s formalism is well known lo and has more- 
over become the cornerstone of some modern interpretations that render “affecting 
the past” the main characteristic of quantum interaction 11,12. As early as in 1983, 
Costa de Beauregard l3 gave a CPT-invariant formulation of the EPR setting that 
allows a time-reversed EPR. Can we apply such a formulation in our case and as- 
sert that the late entangling event, i.e., the detection of the photon, really affects 
backwards the two histories? 

One might argue that our experiment does not really time-reverse the EPR 
setting because, in order to  be sure that Bell’s inequality will be violated, the 
atoms must be measured only after the detection of the entangling photon. Hence, 
the entangling event still remains in the past of the two correlated atoms. The EPR 
V shape, so goes the counter-argument, is thus merely flattened rather than turned 
upside down into a A shape. 

Notice, however, that the entangling event can lie outside the past light cones 
of the two atoms’ measurements. Here, the argument against backward causation 
must take the following form: “The two atoms begin to violate Bell-inequality only 
at the moment the photon was detected at D.” This statement is relativistically 
meaningless. By bringing the entangling event itself into spacelike separation with 
the entangled particles, we actually render both the normal and inverse EPRs 
equally possible. 

But what does “affecting the past” teach us about the nature of time? This 
question involves a deeper unresolved issue, that of time’s apparent “passage.” 
Adherents of the “Block Universe” model 14, argue that time’s passage is only an 
illusion. Consequently, all quantum mechanical experiments that seem to involve 
a last minute decision involve no free choice at all. For example, in the EPR, the 
experimenter’s last-moment decision which spin direction to  measure, or, in the 
“delayed choice” experiment, the last-moment decision whether to  insert the BS 
or not, are “already” determined in the four-dimensional spacetime. Within this 
framework, RPE is just as possible as EPR. 

The second alternative is that time has an objective “flow” 15. Then, the retroac- 
tive entangling effect would occur in some higher time once the “NOW” has reached 
the entangling event. 

Both views lie at present outside scientific investigation as both can be neither 
proved nor disproved ”. Hence, a third and a much easier answer to the problem 
would be dismissing the entire issue by avoiding any reference to  objective reality 

Admit Backward Causation or Abandon Realism? 

aHowever, we have shown elsewhere that Hawking’s information erasure conjecture is more con- 
sistent with an objective time “passage.” See ’‘ 
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altogether, as in the Copenhagen Interpretation. 
While two of us (AE and SD) tend t o  the second interpretation and one (AZ) 

favors the third, we prefer to conclude by pointing out that each side can rely on 
one of the two giants who have so hotly debated during the first Solvay conferences. 
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DISCUSSION 
Chairman: G. Casati 

W. Schleich: Concerning the Elitzur-Vaidman “interaction-free measure- 
ment”, in 1955, Renninger was trying to  publish a paper exactly with the same 
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46 1 

picture of interaction-free measurement. There is a footnote there, which tells how 
the paper was initially rejected and later published due to  the influence of Einstein 
and Born, in ”Zeitschrift fur Physik” . 

A. Elitzur: Renninger’s idea was quite different. It is better termed “the 
negative result experiment”. There is an extensive review by Vaidman titled “Are 
interaction-free measurements interaction free?” (quant-ph/0006077). He discusses 
in details the difference between our work and the earlier ones. 

L. Vaidman: Avshalom rightly says that the unique thing about interaction- 
free measurement is the exchange of roles. Rather than a macroscopic object mea- 
suring a microscopic particle, here it is the microscopic particle that measures the 
larger object, which is the source of the peculiar results. 

A. Elitzur: Right. And in this series of works, Hardy and us have completed 
the circle: both the measuring and the measured objects are quantum-mechanical. 
The results are even more surprising! 

L. Stodolsky: When you say “experiments” do you mean proposals or actual 
experiments? 

A. Elitzur: The interaction-free measurement has long ago been turned from 
a gedanken experiment into a real experiment by various groups, the most bril- 
liant experiment being performed by Zeilinger and co-workers. The more advanced 
experiments described in this talk are still gedanken. 

L. Stodolsky: I am going to remark on the Hardy experiment. It looks very 
much t o  me like the Weizmann experiment with QPC looking at  two arms of the 
interferometer. In this Weizmann experiment it is something about the 2D electron 
gas. They have the so-called QPC which is a device which measures with varying 
degrees of sensitivity which path the electron took. You can tune it at different 
strengths, and you can see interference visibility increasing or decreasing, depending 
on how strong you have tuned it. I analysed this. 

A. Elitzur: The Weizmann experiment (Nature 391:871-874 1998) involved a 
macroscopic detector (the QPC) to measure the electron path. Hardy’s aim was 
different, as well as his method. He used a single particle to  perform an interaction- 
free measurement on the particle traversing an MZI. Again, I find this method 
extremely fruitful. Measure a quantum object not by a macroscopic device but by 
another quantum object! 

R. Chiao: Would you say that experiments of the kind you’ve described indi- 
cate that the uncertainty principle and relativistic locality are somehow connected? 

A. C. Elitzur: I have proposed this in a 1992 article (“Locality and inde- 
terminism preserve the second law,” Phys. Lett. A167 335) which discussed i) 
the relativistic prohibition on velocities greater than light, ii) quantum-mechanical 
indeterminacy, and iii) the thermodynamic prohibition on spontaneous entropy de- 
crease. It turns out that if you violate one prohibition, you end up violating the 
other two as well. The affinity between the three principles seems to be very, very 
profound. 
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PHOTON INDUCED CHAOTIC SCATTERING 

L.E. REICHL, AGAPI EMMANOUILIDOU 
Center for Studies in Statistical Mechanics and Complex Systems 

The University of Texas at Austzn 
Austin, Texas 78712 

We develop a Floquet scattering matrix to describe quantum mechanical behavior of 
an electron which scatters from an atomic core in the presence of an intense laser field. 
As the laser intensity is increased, the underlying classical scattering process becomes 
chaotic. This underlying chaos appears to manifest itself in an interesting form of level 
repulsion among the eigenphases of the Floquet scattering matrix. 

1 Introduction 

It is now known that when atomic electrons interact with both the atomic core 
and with the time-periodic electric field from ultra-high intensity lasers, chaotic 
structures can be formed in the phase space of the electron 1 , 2 3 3 .  These chaotic 
structures can occupy regions of space much larger than the original atomic system, 
and can stabilize new quasibound states of the electron. While the chaotic structures 
appear to form a platform to  stabilize new states of matter, they can also cause a 
loss of information about the state of the electron in a scattering process. It is this 
latter effect that we focus on here. 

The fact that chaos in a bounded classical system induces information loss in the 
corresponding bounded quantum system is now a well known phenomenon (see4 for 
a review). Bounded quantum systems which are classically chaotic have an energy 
level spectrum with the same statistical properties as that of random matrices 
which are chosen to minimize information. This random matrix type behavior in 
the quantum spectrum is the result of level repulsion between eigenvalues induced 
by the underlying chaos and the associated loss of good quantum numbers. 

Similar effects occur in scattering problems, although the focus until now has 
been on the statistical properties of the spacings between partial delay times 5 , 6 .  

These are generally due to Fano resonances which are the result of scattering be- 
tween quanta of a weak applied field and the internal states of an atom, nucleus, 
or waveguide. These internal states are already exhibiting the effects of underlying 
chaos, and the scattering process is a means to  measure this. 

In this paper, we will show a different effect, first observed in3. We find that 
when a very high intensity laser field interacts with an atomic electron, the elec- 
tron’s interaction with the atomic core and laser field induces chaos in the classical 
electron dynamics. This, in turn, manifests itself in the form of level repulsion be- 
tween eigenphases of the Floquet scattering matrix for this system. Level repulsion 
between eigenphases of a random unitary matrix was discussed by Dyson 7, and was 
later shown to be the result of underlying chaos. Dyson’s “circular” random matrix 
ensembles are based on the assumption that the matrix elements of the unitary ma- 
trix are random and uniformly distributed. This is accomplished by assuming that 
the probability distribution of independent matrix elements, {Si,j}, of the unitary 
matrix satisfy the condition, P({Si , j})  = constant. This distribution minimizes the 
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Shannon information ' 

where dp(S) denotes the invariant measure of the unitary matrixg. We believe that 
the level repulsion we are observing is due to the underlying classical chaos induced 
by the external field and leads to loss of information concerning the state of the 
electron during and after the scattering process. 

Much of the theory involved in the derivation of the Floquet scattering matrix 
can be found in3. In the sections below we describe the dynamical system considered 
here and outline the procedure for deriving a Floquet scattering matrix. We then 
show the effect of chaos in the scattering process on the eigenphases of the Floquet 
scattering matrix. 

2 Dynamics 

We wish to  study the dynamics of an electron as it scatters from an attractive 
short range atomic potential in the presence of a monochromatic electromagnetic 
radiation field. We assume that the electric field is directed along the x-axis and we 
consider motion only along the x-axis. The dynamics is governed by the Schrodinger 
equation which, in atomic units, is given by 

i A  t ,  = - (-2; - A( t ) )2  @(x, t )  + V(Z)@(X, t ) ,  
at 

where '(x, t )  is the state of the electron at point 5 and time t ,  V(x) is the atomic 
potential, 

V(.) = -vo,-("/6)2, (3) 
A(t )  is the vector potential associated with the radiation field and is given by 

(4) 
EO A ( t )  = - cos(Wt). 

The electric field is E ( t )  = -dA(t)/Bt = Eosin(wt). The potential, V(x), falls off 
exponentially outside a region of width, -26 < x < 26. 

We can transform to  the Kramers-Henneberger (K-H) frame "-", which is a 
reference frame which moves with the electron in the absence of the potential, V(x). 
In the K-H frame, the asymptotic regions involve free electron states and, in the 
reaction region, the atomic potential oscillates back and forth along the x-axis with 
frequency W. The electron wave function, @(el t ) ,  in the K-H frame can be obtained 
from '(z, t ) ,  via the unitary transformation, U K H ,  

W 

@(XI  t )  = U K H Q ( 2 ,  t ) ,  ( 5 )  

where 

U ~ ~ = e x p [ $ / '  --m dt'(  
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In the K-H frame, the wave function satisfies the Schrodinger equation 

where a( t )  = aosin(wt) with a0 = 9. Note that although the atomic potential 
oscillates back and forth along the x-axis, it is still well localized. However, its 
region of influence now extends over the larger interval, -26 - a0 < 3: < 26 + 00.  

The Schrodinger equation has time periodic coefficients and thus satisfies the 
Floquet theorem. It has solutions of the form 

(P&(z, t )  = epiEt4E(z, t ) ,  (8) 

where & is the Floquet energy, & E [0, w ) ,  and &(z, t )  is a periodic function of time, 
+&(z, t )  = C$&(z, t + 2'). It is useful to expand C$E(Z, t )  in a Fourier series to obtain, 

where &(z)  denote the probability to find the particle in the nth Floquet channel. 
The Floquet channels are defined as follows. We divide the range of incident en- 
ergies, E (OSElm), into intervals of width w (in atomic units Planck's constant, 
h = 1) which we call the Floquet channels. Any given incident energy can then be 
written E = &+nu if the energy lies in the nth channel. 

We can now divide the system into three spatial regions: the asymptotic regions 
I and I11 with z E [zo, m) and z E (--00, -q], respectively, where the potential can 
be assumed to be zero; and the reaction region 11, z E [-TO, 501, where the potential 
V ( z + a ( t ) )  is not zero. The choice of z o  depends on the value of the parameter a,,. 

3 

In the asymptotic regions I and I11 the potential V(z+a( t ) )  is zero and our Floquet 
solutions consist of a superposition of incoming and outgoing free electron waves. 
Thus, in regions I and 111, we can write 

Floquet solution in the asymptot ic  regions, I and 111. 

W 

a:(., t )  = C 4L(z)e-i'te--inwt 
n=-w 

and 
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respectively. Here b:, a? (b:":"", a:":"") are the probability amplitudes for the incom- 
ing (outgoing) electron waves in the nth Floquet channel. The factors, l/G, in 
the wavefunctions in Eqs.(lO) and (11) ensure that the Floquet scattering matrix 
is unitary. 

It is important to note that some of these electron waves are propagating 
and some are evanescent. Propagating Floquet channels have n = 0, ..., +00 and 
wavevectors k, = d m .  Evanescent Floquet channels have n = -00, ..., - 1 
and imaginary wavevectors k, = id-. The current density for the evanes- 
cent channels is zero. In the asymptotic regions, the Floquet channels are not 
coupled. 

4 

The Floquet solutions in the reaction region, 11, is much more complicated. The first 
step is to obtain an equation for &(z). If we substitute Eq.(9) into Eq.(7). This 
yields an infinite set of coupled second order differential equations for the Floquet 
amplitudes, 4, (z), 

Floquet solution in the reaction region, 11. 

where 
27r 

V,(ao; z) = & 1 V(z + a(t))einwtd(wt)  

Next, we truncate to a finite number of Floquet channels and take n, and np 
to be the lower and upper limit of the Floquet channels considered. Thus, n = 
-n,, ..., 0, ..., np and the total number of Floquet channels (propagating and evanes- 
cent) is given by Ntot = n, + np + 1. The criterion for choosing n,and np is based 
on the behavior of the Floquet scattering matrix and will be discussed below. 

Eq. (12) can be written in the following matrix form, 

where I is the unit N:"",, x Ntot matrix, &I(.) is the Ntot x 1 matrix with matrix 
elements {&(z)}, and M ( z )  is an Ntot x Ntot matrix with elements 

M , J ( ~ )  = 2(Vn-l(ao; z) - &n,t(& + m)), (15) 

where 6 , ~  is the Kronecker delta and n, 1 = -n,, ..., 0, ..., np. 
The general solution of the Ntot coupled second order differential equations, 

Eq.( 14), can be written as a linear combination of 2Ntot linearly independent Ntot x 1 
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column matrices, xj(z), with j= 1, ..., 2Ntot. The matrix elements, { X ~ , ~ ( Z ) } ,  of 
these column matrices satisfy Eq.(14), so 

where n = -n,, ..., 0, ..., np and j = 1, ..., 2N. It then follows that every channel 
function &(z) can be written as a linear combination of 2N functions x n , j ( x )  and 
thus, the wavefunction in the scattering region I1 is given by 

np 2N 
z , t )  = C C cjxn,j(z) e-iE*e--inwt. (17) 

n=-n, j = 1  

In general, the functions, xn,j(z) ,  can be obtained numerically using methods de- 
scribed in 3,12. 

5 Floquet scattering matrix. 

The Floquet scattering matrix (S-matrix) connects the amplitudes, {aEut, bzui}, of 
the outgoing propagating modes with the amplitudes, {a:, b:}, of the incoming 
propagating modes, and therefore it connects Floquet channels with energies that 
can differ by an integer multiples of w.  The Floquet S-matrix is straightforward to 
derive although there is a considerable amount of algebra involved. We will only 
describe it here and refer the reader to3 where it is discussed in great detail. We first 
note that the wavefunction and its first spatial derivative must be continuous at the 
boundaries, +zo (-zo), between the asymptotic regions I (111), and the reaction 
region, 11. Also, the probability amplitudes a: and b? of the evanescent modes 
(for n < 0) are zero because of the unbounded character of the exponentials they 
multiply in the asymptotic regions I and 111. 

We next introduce the (np + 1) x 1 matrices AoUt, Bout, Ain, and Bin, whose 
matrix elements, {aEut}, {bEut}, {a:}, and {b:}, respectively, are the probability 
amplitudes in the propagating Floquet channels. After considerable algebra, we find 
the Floquet S-matrix, that connects the probability amplitudes of the outgoing 
propagating channels to the probability amplitudes of the incoming propagating 
channels. We obtain 

(;I::) 3 ( R’ T’ .). T (;:::) = s. (g) 9 

where the (n, -t 1) x (np + 1) matrices R’, R, T’ and T connect propagating modes 
to propagating modes, but also contain, folded in, contributions from the evanescent 
modes. 

The element /Rnt,n/z (lTnf,n12) is the reflection (transmission) probability, for 
an electron wave that is incident in the propagating channel n from the right, and 
reflected (transmitted) into the propagating channel n’. Similarly, the elements 
lIlk,,n12 and ITA,,n12 are the reflection and transmission probabilities, respectively, 
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for an electron wave incident from the left in the propagating channel n. 
Floquet S-matrix is unitary, so the following condition is satisfied 

The 

for every incident propagating mode n = 0, ..., np. The above condition is a state- 
ment of conservation of probability. 

The criterion we have used for choosing the truncation value, np, is that an 
electron wave incident on the Floquet channel n = npnot be affected by the scat- 
tering potential. That is, the transmission coefficient ITnp,np 1’ = 1 for all values of 
the incident energy E = & + npw.  

In all the results discussed here, we choose VO = 0.27035 a.u. and 6 = 2 a.u. 
For these parameters the potential, V ( x ) ,  supports only one bound state of energy 
Eb = -0.1327 a.u. in the field-free case. These values of V ,  and 6 describe the 
behavior of a one-dimensional model negative chlorine ion, C1-, in the presence of 
a laser field, and are the same as considered in 13914915. 

When the time periodic field, A ( t ) ,  is turned on, the bound state is no longer 
stable. An electron can always escape the bound state by exchanging photons with 
the applied field. The bound state becomes a long-lived quasi-bound state, and 
shows up as a pole of the Floquet scattering matrix in the complex quasi-energy 
plane3. I t  has been shown in39l3,l4 that at external field amplitude, cy0x1.0, a sec- 
ond quasi-bound state forms and shows up as a second complex pole of the scattering 
matrix. This new quasibound state appears to be a consequence of the nonlinear 
atom-field interaction as we will show below. In all subsequent calculations, the 
frequency of the time periodic field is taken to  be w = 0.236 a.u. 

6 Classical Dynamics 

The Hamiltonian which describes the classical dynamics of the scattering process 
(in atomic units) is given by 

1 
H = - ( p  2 - A(t))’ + V ( Z ) ,  (20) 

and the equations of motion for the particle can be obtained from Hamilton’s equa- 
tions, 3 = -m ax and = g. Using strobe plots, it is possible to  study the struc- 
ture of the classical phase space encountered by the particle as it scatters from the 
potential, V ( x ) ,  in the presence of the external field. In Figures (1.a)-(l.d), we show 
asequence of strobe plots for external field amplitudes a0 = 0.1, 0.7, 3.25, and 5.25, 
respectively. All the strobe plots are drawn in the Lab frame, but they look exactly 
the same when they are drawn in the K-H frame except that in the K-H frame the 
structures are shifted in position by an amount, ao. 

The strobe plots show the position and momentum of a set of trajectories, each 
with a different initial condition, at time intervals (tn = 27r(m+1/2)/w, m = 1,2, ...) 
equal to the period of the external field. Figures (1.a) and (1.b) show a mixture 
of regular and chaotic dynamics at low incident particle energies. In Figures (1.c) 
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P I.".) 

0 

I I 

I I 
-40 -20 0 20 40 

x (..U.) 

I I 
-40 -20 0 20 40 

X (a.u.) 

1.51 
d) 

1.5 

0 

-1.5 

Figure 1: Strobe plots of the classical phase space. The solid lines of trajectories lie at  the center 
of the various channels. (a) a0 = 0.1. (b) a0 = 0.7. (c) ao = 3.25. (d) a0 = 5.25. 

and (l.d), which correspond to stronger driving fields, the dynamics appears to  
be totally chaotic for low incident energies. In each figure, the various solid lines 
correspond to different incident Floquet channels. They differ in energy by w (in 
atomic units) and show the progress of a series trajectories whose initial energies 
are chosen to lie at the center of the various channels. As a0 is increased more and 
more channels get pulled into the chaotic tangles. 

It is important to note that the strobe plots are drawn for values of the position 
and momentum in atomic units. Since in atomic units the value of Planck's constant, 
h, = 1, regions of the strobe plots with unit area can, in principle, support a single 
quantum state. Figure (1.a) shows the phase space structure for a0 = 0.1. The 
large regular island in the center of the plot represents the region of phase space 
dominated by the potential well, V ( x ) .  Note that it occupies a unit area of phase 
space, and this is consistent with the fact that the potential well can support one 
bound state. However, the regular island is also surrounded by a small degree of 
chaos. As the field strength increases, the regular region is slowly destroyed and 
replaced by a wide region of chaotic tangles which spread over increasingly large 
areas of the phase space. It is apparently these chaotic tangles that dominate 
the underlying classical phase space when the second quasibound state appears for 
a0 > 1.0. 
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7 Quantum signatures of chaos 

The Floquet scattering matrix is a 2(np+l)x2(n,+1) unitary matrix with 2(nP+1) 
complex eigenvalues, eiej, ( j  = 1 , 2 ,  . . .nP) which lie on the unit circle. Each eigen- 
value has associated with it an eigenphase, -7rsOisn, which is defined modulus 
2n. In the limit when Vo-+O, the matrix elements of the reflection matrices, R, all 
go to  zero, and the transmission matrices, T. become equal to unit matrices. In 
this limit, the S-matrix has (n, + 1) eigenvalues, +1 and (nP + 1) eigenvalues, -1. 
It therefore has (n, + 1) eigenphases, 0, and (n, + 1) eigenphases, 7r. 

In Figures (2.a)-(2.d), we plot the eigenphases of the S-matrix for the same 
parameter values as in the respective figures, (1.a)-(1.d). In Fig. (2.a), a. = 0.1 
and n, = 6. While there is a shift away from zero, we see clearly the clustering of 
eigenphases a distance n apart. Most of the eigenphases are approximately constant 
as a function of the quasienergy. however, one eigenphase undergoes an abrupt 
change in value of approximately 27r at a quasienergy, E-Eb + w%O.lO. This is 
an indication that the electron is delayed significantly while traversing the reaction 
region, because the slopes of the eigenphases are partial delay times, rj = 2. 
Negative slopes indicate that the particle speeds up in traversing the reaction region, 
and positive slopes indicate that the particle is delayed. Note also that a very rapid 
change in the eigenphase is an indication that a long lived quasibound state exists 
at that quasienergy. 

4 

4 01 
0, 

2 

2 

0 
0 

-2 -2 

0 0 0.1 0.2 
&(a,".) &(a,".) 

4 

@i 
0 i  

2 
2 

0 0 

2 -2 

0 0 0.1 0.2 
&(a,") E (a.u.) 

0.1 

4 

@i 
0 i  

2 
2 

0 0 

2 -2 

0 0 0.1 0.2 
&(a,") E (a.u.) 

0.1 

Figure 2: Eigenphases of the Floquet scattering matrix. (a) a0 = 0.1 and np = 6. (b) a0 = 0.7 
and np = 7. (c) a0 = 3.25 and np = 11. (d) a0 = 5.25 and np = 19. 
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In Figure (2.b) where the external field strength has increased to a0 = 0.7, an 
interesting phenomenon occurs. There are now three eigenphases involved in the 
same rapid increase in value of eigenphase, and they appear to share it via a level 
repulsion. This we believe is a signature of the underlying chaos that can be seen in 
Figure (2.b). I t  also indicates that at least three channels have now been affected 
by the chaos. 

For values of the external field strength, aozl.O, we expect to  see two regions 
of rapid change in the eigenphase due to the existence of two quasibound states at 
those field values. In Figures (2.c) and (2.d), we do indeed see those two regions. We 
now see level repulsion in both of these regions. Also, a larger number of channels 
appear to  be pulled into the chaotic tangles and this is consistent with what is seen 
in Figures (1.c) and (1.d). 

8 Conclusions 

Although we have only a few eigenphases undergoing level repulsion, this appears 
to  be the beginning of a process of information loss in the sense of Dyson. The 
appearance of level repulsion is an indication that good quantum numbers are de- 
stroyed locally in the scattering process, and that the scattering process has become 
a truly random event. Information about the final channels into which the particle 
is scattered decreases as underlying chaos begins to  dominate the scattering process. 
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DISCUSSION 
Chairman: G. Casati 

S. Lloyd: Your use of the term quantum information is different from what we 
normally use. So it seems to me that your discussion of loss of quantum information 
is different from loss of information due to decoherence. 

L. Reichl: Yes, I would say so but how can I answer this? First of all, I am 
dealing with an open system so there are no stable quantum eigenstates in the sense 
you are used to. In a bounded system, when a transition to chaos occurs, you can 
still have energy eigenstates but you can lose all other quantum numbers which 
identify the state of the system. Here, the only conserved quantity is the Floquet 
energy. Any quantum numbers that characterized the state in a asymptotic regime 
are wiped out in the scattering process. So in that sense you lose all information 
for the system except for that one conserved quantity, the quasienergy. 

G. Casati: Basically what you want to say is that in such a situation the 
exact state is a combination of the exponentially large number of basis states, of 
computational basis states. 

S. Lloyd: Are these states quasistates or the states for the atom? 
L. Reichl: No, they are in the neighborhood of the atom but they can have 

spatial extent much greater than the atomic radius due to  interaction with photons 
from the laser field. 

L. Stodolsky: I was just wondering if this is a way of understanding, or is it in 
some way similar to the mechanism where you create traps with oscillating fields? 

L. Reichl: Traps form bounded systems although you can get similar behavior. 
G. Casati: If you take an atom which you excite with some periodic field, 

as you increase the field you increase the ionization, but at  some point if you still 
increase the field you stabilize the system. The ionization probability decreases. 
This phenomenon can be explained on the classical basis, and it is also true for the 
quantum basis. 

E. C. G. Sudarshan: I don’t want to make an elaborate comment but the 
statement about the rigged Hilbert space is completely unnecessary, unwanted and 
irrelevant. It is true that you get complex eigenvalues when you go into the complex 
plane and they have left eigenstates and right eigenstates which are different. There 
is no rigging necessary. 

L. Reichl: The only problem is if you want to  understand how the probability 
of those states is distributed in real space. You have to  use some trick because their 
continuum part blows up very fast, almost exponentially as a function of the spatial 
coordinates. That’s all: it is unbounded. 
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SOME PROPERTIES OF THREE-PARTY ENTANGLED STATES 
AND THEIR APPLICATION IN QUANTUM COMMUNICATION 
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Department of Microelectronics and Information Technology, 
Royal Institute of Technology ( K T H ) ,  Electrum 229, 164 40 Kista, Sweden 

Max-Planck-Institut fur Quantenoptik Hans-Kopfermann-Str. 1 0-85748 Garching, 
Germany 

Department of Physics, Laboratory of Statistical Physics and Quantum Mechanics, 
University of Bucharest, PO Box MG-11, R-76900, Bucharest-MCgurele, Romania 

We give a brief overview of work on extending present two-party quantum commu- 
nication protocols to three-party and multi-party protocols. In particular we discuss 
the case of three-party protocols and entanglement-assisted transformations between in- 
equivalent classes of three-particle entangled states (GHZ-states and W-states) which 
are non-interchangeable under local transformations. We furthermore review possible 
applications of three-party entangled states. 

1 Introduction 

Entanglement is the key physical resource in most quantum information processes, 
e.g. quantum teleportation ', two- or multiparty quantum cryptography 2,3 ,  and 
quantum computation 4,5. Moving onwards from two-particle entangled states, 
much interest has been devoted to  three-particle entangled states, notably the 
Greenberger-Horne-Zeilinger (GHZ) states 

I G H Z )  = l / h ( I O O O )  + 1111))  (1) 

and their role in generalizations of Bell inequalities, as well as an enabling resource 
for quantum c o m p u t a t i ~ n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .  Whereas for two-particle states, the possibil- 
ities and restrictions of local manipulation of entanglement is known, see e.g. 12,13,14, 
for three or multipartite entanglement, there still remain unresolved issues concern- 
ing both entanglement transformations as well as possible applications in quantum 
information processing. 

Recently, there has been some interest devoted to  so called W-states 15, an 
example being the state 

1 
I W )  = - ( l O O l )  + 1010) + 1100)). v5 

An interesting property of this state is that if, say, particle one is traced out, 
there remains a large degree of entanglement in particle two and three, or if the 
state of the first particle is measured in the (0, l} basis, then either the state of 
particle two and three is maximally entangled, or in a product state. 

Some interesting questions now arise: How can we generate these three-party 
entangled states, for simplicity thinking only of optics? Secondly, how can we use 
these states in quantum communication? 

aCorresponding author: andkar@ele.kth.se, Fax:+46 8 752 12 40 
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Our paper is organized as follows: In section 11, we introduce the two gen- 
eral classes of three-particle entangled states inequivalent under so called SLOCC 
(stochastic local quantum operations and classical communication between the par- 
ties), briefly describe how these states can be generated by optical means, and 
finish by reviewing single-copy bipartite entanglement optimal manipulation as well 
as discuss some protocols for conversion of a certain family of the W-states and an 
EPR-pair (i.e a maximally entangled two-party state) into the state GHZ. In sec- 
tion I11 we address some possible applications of these states. Finally in section IV 
we conclude. 

2 From two-party to three-party quantum states: the GHZ and W 
classes 

For two-party entanglement, basically one needs only to be concerned with single- 
particle properties as well as the correlations and entanglement properties between 
the two parties. However, for multi-party situations it is obviously not that easy. 
For instance, we may be interested only in the entanglement shared by Alice and 
Bob, or that of Bob and Charlie, that of Alice and Charlie (the names referring 
to  the three parties or locations), or perhaps in genuine three-party entanglement 
between Alice, Bob and Charlie. 

For genuine three-party entanglement it was shown l5 that states of the GHZ- 
type and of the W-type are inequivalent in the following sense: if we allow only 
Stochastic Local quantum Operations and Classical Communications abbrevi- 
ated SLOCC, then one cannot succeed in transforming states from the GHZ-class 
to  the W-class and vice-versa with a non-zero probability of success. We note that 
in  ref^!^,^^ the optimal distillation of the state GHZ from one copy of an arbitrary 
tripartite entangled state has been presented. 

2.1 

As has been shown, notably by the Zeilinger group in Vienna and former associates, 
in optics higher order entanglement can be produced conditionally by suitably mix- 
ing EPR-pairs on a beamsplitter 19,20. By conditional is meant that in some cases 
the photons do not exit in the desired ports, for instance, two photons may exit 
in the same port, while we want the photons in different ports. For the sake of 
comparison let us here illustrate with a conceptually simpler scheme according to 
Rarity et al. 'l, see Fig. 1. Let us use the computational notation and denote 
horizontally H and vertically V polarized photons as I H )  = 10) and I V ) = 1 1 ) 
respectively. Now, suppose a single photon in state I $J) = (I 0 )  + I 1 ) ) /A  and an 
EPR-state of the following form I E P R )  = (I 00) + I  11))/fi on a polarizing beam- 
splitter (PBS). As pointed out by Pittman et al. 22 a PBS works as a parity check. 
If two photons of different polarization are incident on the ports, they will both 
exit in the same port, but if the polarization is the same, they will exit in different 
ports. Thus, with the state above incident on the PBS, we have the following states 
before the PBS (I 000) + I111 ))/2, giving the desired GHZ state correlations, and 
(I 100) + I011 ))/2,  which will give two photons in the same port. 

Optical generation of GHZ and W states 
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Figure 1: Schematic of GHZ-state generation by optical means. The polarizing beamsplitter 
(denoted by PBS) transmits one polarization and reflects the other, in the computational basis 
acting as parity gate. This means that only if the polarizations of the three photons are the same 
does one get one photon out in each of the exit beams, thereby conditionally (half of the times) 
giving a GHZ-state.) 

In order to generate a W-state, one can use a scheme proposed by W e i n f ~ r t e r
see Fig. 2, which is based on a polarization dependent transmission in one arm. In 
this case one starts with a single photon 1 $J)= 1 V ) =  1 1) and an EPR-state of 
the following form I E P R )  = ( I  01 ) + I lo))/&. Going through the setup one finds 
that the cases with useful three photons at the upper three output are: If photon 
2 initially is 10) is f l ( I  011) + I101 ))/2, and when photon 2 initially is 11) is 
m l 1 1 0 ) .  Choosing T, = ~ T H ,  and adding these two outcomes in superposition 
renders the useful output state ( l o l l )  + 1101) + I l l O ) ) / a .  

As an alternative to direct generation of entangled states, one may consider 
also using quantum gates 24. For instance, two quantum CNOT gates can be used 
to create a GHZ-state. However, as is well-known by anyone in the field, it is very 
difficult to create efficient quantum gates due to the large non-linearity (optical) 
that is required. As a side comment, since a quantum CNOT gate also can be used 
to implement a perfect quantum non-demolition (QND) measurement, the level of 
difficulty in doing a perfect QND measurement with a signal and a probe both at 
the single quanta level, and a quantum gate should in many cases (if not always) 
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Figure 2: Schematic of conditional W-state generation by optical means. Only when there is 
one photon in each of the uppermost arms, does one get a useful output. In the first (leftmost) 
beamsplitter one selects cases when there are two photons going t o  the next beamsplitter. The 
rightmost beamsplitter has a polarization dependent transmittance and is used to put equal weights 
on the terms in the W-state. 

be judged as equal. Realizing this, recently several authors have considered using 
linear optics to do probabilistic quantum gates, c.f. 22.  In many ways this is a very 
clever and interesting path to explore further. 

However, it should be stressed that for many practical schemes just by brute 
force replacing CNOTs by linear quantum gates, may not be a good idea since the 
overhead in using EPR-pairs to construct general quantum gates is too big com- 
pared to using the more simple schemes presented above. This suggests that linear 
optical quantum gates, when assembled for a specific task should be “compiled” 
and reduced to a more simpler set of elementary “building blocks”, rather than to 
use the full gates by themselves. 

Finally, it can be noted that if one uses “entanglement with the vacuum” 25, 

exploring the zero and one Fock states of the photon field, then W-state correlations 
are easily produced by having a 2/3 transmittance beamsplitter followed by 1/2 
transmittance beamsplitter. A W-state is then simply a single photon leaving in 
either of the three exit beamsplitter ports with equal probability. 
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2.2 Inter-conversion the GHZ and W classes 

Let us now move on to discuss the following question: Suppose we have generated 
one of the above states, then what is the possibility of converting this state into 
the other type? Of some interest in entanglement transformations has been entan- 
glement catalysis processes 26. The questions we address here are: Can we perform 
the transformation between the two inequivalent classes using a "catalysis" state, 
such as shared Einstein-Podolsky-Rosen (EPR) pairs, quantum states of the form: 

I Q+ ) = (I 00 ) + I 11 ))/4 (3) 

and which is the probability of success to transform W-states into GHZ-states and 
vice-versa by using SLOCC in presence of additional entanglement resources? 

Let us then first show, as an illustration, a simple way to convert the state 
W of Eq.(2) into the state GHZ of Eq.(l) using a single EPR-pair. Suppose the 
three parties involved, Alice, Bob, and Charlie, share three-particle entanglement 
of the type W, and at the same time, Alice and Bob share one EPR-pair. To 
transform the state, first Alice makes a measurement in the computational basis 
{O, l} .  From Eq.(2) we see that with probability p = 2/3, she projects out a 
two-particle maximally entangled state between Bob and Charlie, and when that 
happens she also knows it with certainty. Now we have two EPR-pairs, one pair for 
Alice-Bob and another one for Bob-Charlie. Secondly, Bob can prepare locally the 
state GHZ, then he teleports the state of one particle to Alice and another one to 
Charlie by using the shared Alice-Bob and Bob-Charlie EPR-pairs, respectively 

Moving onwards to the more general case, let us define the two classes of three- 
particle entangled states 15, first the GHZ-class: 

I $ G H Z  ) = J7?(c6I 0)lO)lo ) + s6ei'l 'PA ) I  'PB ) I  'PC ) ) I  (4) 

where I ' P A  ) = G I  0 )  + sal 1 ), I 'PB ) = ~ 0 1 0 )  + s p l l ) ,  I cpc) = crlO) + sy l  1) and K 
is the normalization factor. 

Secondly, the W-class is: 

I $ w ) ( a , b , c , d )  = ~ ~ l O O ) + ~ ~ O l O ) + ~ ~ O O l ) + ~ ~ O O O ) ,  ( 5 )  

where a,  b, c > 0,  d >_ 0, and a+b+c+d = 1. The state W of Eq. (2) is characterized 
by: d = 0, a = b = c = 1/3. It has been shown that there is not a local operator 
(invertible or non-invertible) A @I B 8 C (where A,  B and C are the local operators 
of Alice, Bob, and Charlie, respectively) such that: 

l $ W )  = A @I B@I C ( $ " C H Z ) ,  (6) 

where I $GHZ ) and I $W ) belong to the GHZ-class and W-class, respectively 15. 
Suppose now that two observers, Alice and Bob, share one copy of a pure 

bipartite entangled state QAB and that they would like to convert it into another 
pure bipartite entangled state @ A B .  The greatest probability of success, if the two 
parties are allowed only to act by LOCC, is '*: 
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where C Y ~  and p i  are the Schmidt coefficients of Q and Q, defined as, 
n n 

i=  1 i = l  
n n 

i = l  i = i  

where I i A )  and I i B )  are the bases for the quantum system A and B. 
In Ref?6, the catalysis transformation between two bipartite states I $1 ), ) 

is defined as follows: Supp0s.e Alice and Bob share an entangled state 1$1) ,  that 
cannot be converted into I $2 ) by LOCC. A preparator can ‘lend’ them an entangled 
state I 4) .  If the transformation 

is 
or 
it 

possible, then this protocol is called entanglement-assisted local transformation 
’ catalysis transformation 2 6 ,  since the state I 4 )  is not consumed. In 27 ,  however, 
was shown that such true catalysis transformations between GHZ- and W-states 

is not possible. 
Let us instead show how one can make a transformation using the assistance 

by an EPR-state, where the entanglement is swapped. Suppose Alice, Bob, and 
Charlie share a copy of the following W-state (5) : 

I lctw )123(a ,  a, 1 - 2a, 0)  = (44 100) + &I 010) + -I 001 ))123, (10) 

where a E [i, [. Here, in order to  more clearly see later how the entanglement is 
transferred, we have introduced indices, such that the three particles are denoted 
by “l”, “2”, and “3”. Consider that a preparator, Daniel, can send to  two of them 
an EPR-pair, indexed by “4” and “5”. They want to transform this state into the 
state GHZ (1) with the help of the EPR-pair “45”(see Fig. 3): 

I $W )123(ar a,  1 - 2a, 0) €9 I E P R ) 4 5  +. I G H Z ) 1 2 5  €4 100 )34. (11) 

Then the highest probability is equal to ‘2a’ and is obtained when the prepara- 
tor sends the EPR-pair “45” to Alice and Charlie, or to  Bob and Charlie. The 
optimal protocol for achieving the transformation consists in three steps: 
(a) Charlie measures his particle “3” in the computational basis. After this mea- 
surement, he has to send the outcome to Alice and Bob. 
Let us consider that Bob and Charlie share the EPR-pair. 
(b) Bob applies a CNOT operation onto his particles, where the particle “2” repre- 
sents the source, while particle “4” is the target. 
(c) Bob measures particle “4” in the computational basis. 

To prove this, let the initial state be written as follows: 

t 4 i  ) = I $W )123 €9 I EPR)45 = (&I 100) + J;II 010) 
1 +-I 001 ))123 El -(I 00) + 1 1 1 ) ) 4 5 ;  Jz 
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Alice 

4 L 5  

Bob PPRi Charlie 

Figure 3: Schematic of the transformation from I $IW ) ( a ,  a ,  1 - 2a, 0) into the state GHZ using 
one EPR-pair (the wavy lines represent the entanglement). The EPR-pair is used to  as a mean to 
transfer the entanglement. 

Now, let US compute the probability given by the above protocol: 
Step (a): After the measurement, Charlie will obtain the state I 0 ) 3  with the 

probability 2a, and the state of the whole system will be projected onto: 

1 I +a ) = 5 (I 1 )1 I 00 ) 2 4 l o  )5 + I 1 )1 I 01 ) 2 4 1 1 ) 5 )  + 
+7 j  (I 0 )1 I 10 )24 I 0 )5 + I 0 )1 I 11 )2411 )5) . (13) 

1 

Step (b): The CNOT-gate performed by Bob will lead to the following state: 

1 1 $b ) = 2 ( 1  1 ) 1 /  0 ) 2 1 0  )5 -k 1 0 )11 1 ) 2 1 1 ) 5 )  1 0 ) 4  + 
(14) 

1 
f7 j  (I 1 )lI 0 ) 2 l 1 ) 5  + I 0 ) l l 1 ) 2 1 0 ) 5 )  I 1  )4.  

Step (c): Regardless of Bob’s outcome measurement of particle “4”, the final 
state is local unitary equivalent to the state GHZ. We have obtained the final state 
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with the total probability P = 2a. In27,2s it was proved that the above local protocol 
is optimal. 

Let us discuss how we can apply the above procedure backwards t o  go from the 
GHZ-class to the W-class. Suppose that Alice, Bob, and Charlie share a GHZ-state, 
and at the same time Alice and Bob share an EPR-pair. One can obtain an EPR- 
pair shared by Bob and Charlie from the GHZ-state” with probability one if Alice 
performs a measurement in x-basis (z+) = (10) + Il))/&, lz-) = (10) - ll))/fi: 

Bob can prepare locally an arbitrary three-particle entangled state, and by using 
the two EPR-pairs, the three observers will share the three-particle state. Thus, 
we have shown in this section how stochastic local operations followed by classical 
communications assisted by additional entanglement can be used to perform trans- 
formations between two states of the two inequivalent classes. How useful these 
transformations are in practice remains to be seen, and it can be noted that they 
use CNOTs at some stages, else they have to be realized with a smaller probability 
of success. 

3 

Having now discussed some properties of three-party correlated states, let us move 
on to  discuss possible applications. Let us first note that some of the original 
interest in GHZ-states stemmed from the possibility to  obtain a stronger violation 
of Bell inequalities ‘. Recently, this was studied by Cabello also in conjunction to 
W-states 30 where proof of Bell’s theorem without inequalities valid for both GHZ 
and W was described. Here we will briefly just review some simple examples of how 
entanglement can be used for simple multi-party communication and computational 
tasks. 

Applications of three-party quantum entanglement 

3.1 Quantum secret sharing 

Let us first discuss how three-particle entanglement can be used for secret sharing, 
as was first shown by Hillary et al. ’. Secret sharing, a real-life application in 
classical cryptography, is a process whereby a secret is not entrusted by a single 
party, but is split between multiple parties who must collaborate to retrieve the 
secret. 

Suppose, Trent, Alice and Bob share one particle each from a three-particle 
entangled Greenberger-Horne-Zeilinger (GHZ) state 

1 I ~ J G H Z )  = - ( IOOO)TAB + 11 1  TAB), (16) fi 
where the first particle is that of Trent, the second that of Alice and the third that 
of Bob (in3, and the discussion above the parties (Trent, Alice, Bob) were denoted 
(Alice, Bob, Charlie), but we stick here to the common notation from classical 
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cryptography of denoting the sender in secret sharing by Trent). Now, they then 
make random measurement, either in the x-direction (defined earlier), or in the 
y-direction, the y eigenstates defined as 

1 1 IY+) = -(lo) +ill)) ,  Iy-) = -(lo) - ill)). Jz Jz 
Now, by re-expressing the GHZ-state in the x and y- eigenstates, as was shown 

in3, Alice and Bob can construct a lock-up table that allows them to jointly, but 
only jointly, determine which was the measurement outcome of Trent. In3’ a similar 
quantum secret sharing scheme was shown by using a complementary set of two- 
particle Bell states. This scheme has also been demonstrated in a very elegant 
experiment by Tittel et al. 32. 

3.2 Quantum information splitting with GHZ-states 

In classical secret key sharing by quantum methods was also extended to the 
splitting of quantum information (qubits), which we also have studied in the context 
of teleportation to two parties 35. The basic idea is as follows: Trent has a qubit 
IQ) = (al0) + b l l ) ) ,  which he wants to send to either Alice or Bob (both cannot 
generally have it as that would violate the “no-cloning-theorem”). This may be 
done using a teleportation procedure, whereby Trent, Alice and Bob initially share 
a GHZ-state. Next, Trent makes a joint Bell-state measurement on the state IQ) and 
his particle of the GHZ-state. By communicating the outcome (2 bits) to Alice and 
Bob, their joint state can be rotated to the split state ( Q ) s 2  = a100) + b ( l l ) ,  where 
the notation is that of Alice having the first particle and Bob the second particle. 
From this state, Alice may for instance retrieve IQ) if Bob does a so called quantum 
erasure measurement in the z basis, and communicates ( 1  bit) which outcome (x+ 
or x-) he obtained. It should be emphasized that the teleportation method is not 
the only way to achieve the quantum information splitting. By using quantum 
controlled-NOT gates 24, the quantum information in a qubit can also trivially be 
split to several parties, e.g. for instance to three parties ]Q)s3 = a1000) + b l l l l )  by 
the successive operation of two quantum controlled-NOT gates. 

A more general theory of quantum secret sharing (of both classical information 
and of quantum states) was developed by Cleve et al. 33, and G ~ t t e s m a n ~ ~ ,  who also 
very elegantly showed the connection between quantum secret sharing and quantum 
error correction. Expressed simply, quantum error correction coding protects quan- 
tum information from decoherence by the environment because the environment 
does not learn anything about it. Then, for secret sharing replacing the environ- 
ment with the external parties, a quantum secret can also be kept unknown to the 
outsider using coding. 

It should furthermore be noted, that the concept of using GHZ-states for quan- 
tum gate constructions was very elegantly used by Gottesman and Chuangg in 
showing that quantum gates could be constructed using Bell measurements to- 
gether with entanglement as a resource. Also, the concept of gate teleportation 36 

by Nielsen and Chuang, who showed how stochastically teleport a quantum gate 
from one location to another, has been extremely fruitful for the further devel- 
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4-particle 
Entangled 

Alice Charlie 

Bob 

Figure 4: Schematics of 1-2 telecloning. The state to be remotely cloned (telecloned) is subject to 
a Bell measurement together with the particle P (preparator). If the ancilla particle A is not used, 
the state is telecloned. By sending along the ancilla, the full quantum state can be recovered at 
one of the two locations by a joint operation. 

opment of linear quantum logic, and generally for the understanding of quantum 
operat ions. 

3.3 

Quantum information splitting, of course, is very much related to  quantum infor- 
mation cloning 37. In a much more general context than 35, Murao et al. 38 showed 
how optimal quantum cloning (approximate copying) could be implemented using 
teleportation and a specially prepared cloning state. It is interesting to  note here 
that parts of the telecloning state used in a one to two-party cloning is exactly a 
W-state. Looking in even more detail on the cloning state, such as that to  be used 
in Fig. 4, one finds that this state can be written as: 

Multi-party quantum teleportation and quantum cloning 

As shown by Weinfurter and Zukowski3', this particular state can be generated 
in optics in a double-pair emission from type-I1 parametric down-conversion. Quan- 
tum telecloning therefore is open for experimental implementations. However, with 
respect to the implementation of quantum cloning, it should be noted that in many 
cases there is a direct connection between quantum cloning and amplification, and 
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it is well known 40 that linear amplifiers (such as those already used in optical net- 
works) can operate at the fundamental quantum limit. Recently, quantum cloning 
on the single-photon level was shown experimentally by parametric amplification 41 

and in an Erbium doped optical amplifier 42. 

4 Conclusions 

In this paper we have given a brief overview of some (but of course not all) properties 
and applications of three-party entangled quantum states. It is very clear that if 
quantum communication in particular, should go beyond point-to-point protocols 
towards quantum networking, it is crucial that we learn to  generate and understand 
the properties of such multi-party quantum states. We believe a central point for 
further studies is to  find effective schemes in the use of entanglement resources, 
practical setups for the generation and detection of the states, as well further studies 
of linear quantum logic. 
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DISCUSSION 
Chairman: I. cirac 

L. Stodolsky: What are some physical realizations of these high-dimensions 
states? 

A. Karlsson: In the European project I mentioned, QuComm, we talked about 
it sometimes and I think there is ongoing work, notably by the Geneva group of 
Gisin on that. The problem experimentally with this is that you have to stabilize all 
the optics, notably the interferometers. The time-bin entangled states are realized 
following from a pulse coming in to  a beam-splitter where it chooses to go along 
one of several paths of different propagation lenghts, after which they are again 
recombined, hence creating a superposition. And then one can apply phases to, or 
choosing the splitting ratio for the various paths in order to create various entangled 
states. 
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ATOMIC AND NUCLEAR INTERFERENCE EFFECTS FOR 
QUANTUM INFORMATION PROCESSING 

OLGA KOCHAROVSKAYA, ALEXEI A. BELYANIN, IGOR MARIYENKO, AND 
YURI V. ROSTOVTSEV 

Department of Physics and Institute for Quantum Studies, Texas A&M University, 
College Station, TX 77843-4242, USA 

Recent experimental and theoretical results demonstrate that both populations 
and coherence in a system of nuclear spins in solids can be controlled by a laser 
field with high efficiency. Nearly 100% nuclear polarization can be achieved on a 
submicrosecond time scale. Both a high speed of the optical excitation of nuclear 
polarization and long storage times can be achieved simultaneously. The most 
promising candidates are rareearth and possibly transition-metal impurities with 
a large constant of hyperfine interaction. 

The purpose of this paper is to demonstrate the potential for nuclear spins in 
solids as a system of choice for implementation of quantum information processing 
and quantum computation '. 

Although the current trend in the search for a suitable material system for 
quantum information technologies is shifted towards single atoms in traps or in the 
cavity quantum electrodynamics settings, there is little doubt that solid-state based 
systems will ultimately win this race. This is because only solids can satisfy the 
demands of scalability, compactness, high density of the information carriers, and 
compatibility with existing micro- and nanoelectronics technology. 

There have been quite a few proposals of solid state systems, most of them 
dealing with electron spins '. Most prominent and frequently mentioned candi- 
dates include spins of free carriers and excitons in semiconductors (both in bulk 
materials and in the nanostructures), electron spins in rare-earth ion impurities 
and in nitrogen vacancy centers in diamond. The reason why they are so popular is 
that electron spins can be easily manipulated with lasers and coupled to  each other 
through a variety of interactions existing in solids. Spin states and spin coherence 
can be efficiently controlled by an optical pumping or by a bichromatic field. The 
possibility of such a control has been successfully demonstrated in many experi- 
ments, from the optical hole burning to electromagnetically induced transparency 
and slow group velocity of light. 

However, the openness to environment is simultaneously a weak point. The 
lifetime of electron spins and especially the decoherence time are rather short. 
For semiconductors it is usually shorter than nanosecond, and even for relatively 
well isolated electron shells in the impurity ions the decoherence time is in the 
microsecond range. 

The system that performs much better in this respect is nuclear spins in solids. 
They are much stronger shielded from the environment than electron spins, and 
their lifetime and decoherence time can reach many seconds or minutes. However, 
so far they received very little attention its candidates for the quantum information 
processing. There are two reasons for this lack of interest. 

First, it is commonly believed that manipulation of nuclear spins with laser 
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light is very inefficient. There are no nuclear transitions in the optical range, while 
electronic and nuclear subsystems interact very weakly. 

Second, the times needed to induce or change orientation of nuclear spins in 
solids are notoriously long ’. In experiments on the optical orientation in semicon- 
ductors, optically detected NMR and NQR, the orientation times of many minutes 
were reported. 

The above problems seem to be an inevitable consequence of a good isolation of 
nuclear spins from the environment. However, in our work it has been demonstrated 
that both obstacles can be actually overcome, and fast and efficient manipulation of 
nuclear spins by laser light is possible. Below we outline the general ideas behind the 
coherent laser control of nuclear spins and illustrate them with specific examples. 

As we have already mentioned, the direct driving of nuclear transitions by optical 
fields seems to be impossible simply because there are no suitable transitions in the 
optical range. A natural idea is to drive electronic optical transitions and to use 
various kinds of interactions between electronic and nuclear degrees of freedom in 
order to affect nuclei. Optical pumping of the nuclear spin polarization have been 
studied extensively in semiconductors for almost twenty years, see e.g. ’ for the 
review. Unfortunately, the process is rather slow and inefficient since it involves 
creation of a nonequilibrium population of polarized electrons in the conduction 
band, their subsequent capture on shallow impurity centers, the transfer of electron 
spin polarization to the impurity nuclei, and diffusion of nuclear spin polarization in 
the lattice. Similar ideas for rare-earth and transition-metal impurities in crystals 
have been developed even earlier ‘. However, the degree of the nuclear polarization 
reached in these experiments was of the order of lo%, and laser exposition time 
was of the order of minutes. 

In a recent series of papers we have demonstrated the possibility to manipulate 
gamma-ray Mossbauer transitions in solids and also to achieve nearly 100% nuclear 
polarization by means of optical laser pumping 5,6,7,8. The idea is to employ hyper- 
fine interaction between electrons and a nucleus. Although the coupling between 
electron and nuclear subsystems is rather weak in energy scale (of order 1 peV) as 
compared to the energies of optical electron transitions and especially gamma-ray 
nuclear transitions, it can lead to a large effect on the nuclei if the electrons are 
driven resonantly (cf. the analogy with weakly coupled oscillators). Optical orien- 
tation of nuclear spins can lead to drastic modification of gamma-ray Mossbauer 
spectra. This can be seen from the simplest model of a compound electron-nucleus 
system that involves at least four energy levels (Fig. 1): 11) = (G,g) ,  12) = IG,e), 
(3) = (E ,g) ,  14) = IE,e). Here JG} and JE) stand for the ground and excited states 
of a nucleus and accordingly 19) and Ie) stand for the ground and excited states 
of an electron. In the absence of coupling between nuclear and electronic degrees 
of freedom, two pairs of transitions 1-2 and 3-4 as well as 1-3 and 2-4 are exactly 
degenerate (Fig. l a )  since electronic transitions are the same both for the ground 
and excited nuclear states, If the electron and nuclear systems are not coupled 
to each other, driving of electronic transitions 1-2 and 3-4 in this fully symmetric 
degenerate four-level system does not produce any physical effect on y-ray nuclear 
transition. 

The hyperfine interaction leads to the appearance of the hyperfine structure: 
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Figure 1. Four-level energy level scheme of the compound nuclear-electron system. In the case of 
the absence of hyperfine interaction (a), the shift (b) and the splitting (c) of an energy level due 
to  the hyperfine interaction. 

a shift and/or a splitting of the electron-nuclear levels (Fig. lb,c). Below we con- 
centrate on a scheme with a hyperfine splitting of the ground state. In this case, 
as shown in 11, a frequency-selective or polarization-selective optical driving leads 
to the redistribution of populations between nuclear spin sublevels. This results in 
the disappearance of some gamma-ray absorption lines, see Figs. 2. An even more 
exciting possibility is to employ not only optical pumping of populations of the spin 
sublevels, but also a spin coherence. This could lead to observation of quantum 
interference effects on the gamma-ray nuclear transitions, i.e., the effects similar to 
the electromagnetically induced transparency (EIT), slow group velocity of light, 
and even lasing without inversion that were intensively studied for the last decade 
on the atomic transitions ',lo. As we have recently shown 12, EIT in gamma-rays 
has been observed for the first time in Mossbauer absorption experiments with 
FeCO3 l 3 9 l 4 ,  in which, however, the coherence was created by a magnetic field. 

Coming back to the nuclear orientation by means of a resonant driving of elec- 
tronic transitions, the main problem with solids is that inhomogeneous (and in some 
cases homogeneous) linewidth typically overlaps the hyperfine structure. Therefore, 
polarization-selective optical pumping is an imperative. Unfortunately, polarization 
selection rules in solids are usually not well defined due to the fact that the crystal 
field of a lattice can essentially influence both the energy levels and the wave func- 
tions of the electronic states. However, well-defined polarization rules are possible 
for paramagnetic-ion doped dielectrics which may result in an almost 100% efficient 
nuclear orientation via optical pumping and hyperfine interaction 15. This provides, 
on the one hand, efficient nuclear-electron entanglement and, on the other hand, 
transfer of the quantum electronic state to the nuclear state with 100% fidelity. 
The estimates for 231Pa : Cs2ZrCZ~ show that resonant laser driving of the electric 
dipole-allowed optical transition with the wavelength 411 nm with remarkably low 
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Figure 2. Vanishing of absorption at  one of two Mossbauer transitions via optical pumping. 

intensity of the order of 100 pW/cm2 should lead to the depletion of some of the 
magnetic states up to the level of 0.1% of total population which corresponds to 
the suppression of resonant absorption up to the level of off-resonant losses. 

An alternative to the polarization-selective optical pumping is to use spin co- 
herence and create coherent population trapping by means of, e.g., bichromatic 
laser field. As was shown in our works 5,6,7, the bichromatic driving of 1-2 and 
1’-2 optical transitions in a simple degenerate double-lambda scheme based on the 
level scheme of Fig. l c  can lead to disappearance of both 1-3 and 1-3’ gamma-ray 
absorption lines even when both optical and gamma-ray lines overlap the hyperfine 
structure (Fig. 3). This gives us a unique possibility of controllable electron-nuclear 
entanglement for this case. The first experimental demonstration of a strong spin 
coherence and coherent population trapping of nuclear spins in solids has been 
made by Hemmer et al. l6 in Pr+3-doped crystals and N-V centers in diamond. 
He has obtained almost 100% EIT in the optical absorption by means of a strong 
bichromatic driving. 

Let us now discuss how fast we can redistribute a nuclear spin population and 
build up spin coherence by means of a resonant laser radiation. 

To estimate the relaxation time scale of nuclear orientation via optical pumping, 
let us consider a simple scheme, as shown in Fig. 4. For simplicity, we choose two 
electron levels having electron moments 51 and 5 2  correspondingly, and nuclear 
spin I. To get a readable analytic result, we assume the simplest configuration in 
which the optical pumping is still possible, namely, J1 = Jz = I = 1/2. 
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Figure 3. Modification of the Mossbauer absorption spectra for the scheme involving level splitting 
with increase of the  intensity of the driving field a) R = 0; b) R = 1Wo. 

We choose the direct product of electron and nuclear wavefunctions to be the 
basis for electron-nuclear states: 

IJl,ml,I,m) = IJ1,md @ II,m). 

k = k(3 f k h f  f P f k b a t h .  

(1) 

(2) 

Then, Hamiltonian can be written as follows: 

The Ho is the diagonal part that is related to the energy of electronic and nuclear 
states without hyperfine interaction between them, 

ko = C E r n l r n a r n  I Ji, mi, I, m) (51, ml,  I, mI. (3) 
Jlmlm 

The interaction part of the Hamiltonian includes the hyperfine coupling between 
electronic and nuclear subsystems, 

where A is the constant of hyperfine interaction, and also a part with the external 
electromagnetic fields, 

P = ti C Rmlm21Ji,mi,I,m)(Jz,mn,I,mI +CG (5) 
mlmzm 

- where R,,,, - pmlmzEl/h is the Rabi frequency for transition Jlml H Jzmz, 
pmlm2 is the dipole moment of the transition, El is the laser field applied to the 
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Figure 4. A simple model t o  demonstrate nuclear orientation via optical pumping. (a) All elec- 
tronic nuclear levels. (b,c) Simplified systems. 

system. To describe different relaxation processes, we take into account coupling 
with radiation modes and surrounding electrons and nuclei, 

where 

ri, = f i  C gk~rnlrnzIJlrmllI,m)(J2rm2,I,ml +c.c. (7) 
mimzm 

is the part of Hamiltonian that is responsible for spontaneous relaxation from the 
electron excited state; 

e e  = f i  C ge~mlm*IJlrml,IIm)(Jllm2,I,ml +c.c. 

Qn = f i  C gn~rnlmlJl,ml,I,m’)(Ji,ml,I,ml +CC.  

(8) 
mlmzm 

and 

(9) 
mimam 

are the parts of Hamiltonian that are responsible for electronic and nuclear re- 
laxation, respectively. As is easily seen the state basis allows us to consider the 
relaxation of nuclei independently from the electron relaxation. 

Thus, as is seen in Fig. 4a, the optical pump driving the electron transition 
causes the polarization of the electrons via optical relaxation to the states that are 
not coupled with the laser field. Consider the most common situation when the 
relaxation rate on the optical transition, yo, is much larger than the electronic and 
nuclear spin relaxation rates between the components of hyperfine structure, ye 
and yn. In this case we can treat an optical drive as a one-directional pump with 
effective rate yo as shown in Fig. 4b. 

Furthermore, the state 11/2,1/2) is practically empty because of yo >> ye,yn. 
Therefore, the simplified system shown in Fig. 4c can be analyzed. Under such 
conditions, the set of density matrix equations has a form 

ni = -7nni + iA(0iz - ~ Z I )  + ynn3 (10) 
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where nl, n2, n g  are the diagonal elements of the density matrix corresponding 
to the populations of corresponding levels Il), 12), and 13); 0 1 2  is the nondiagonal 
element of the density matrix corresponding to the coherence between the levels 
11) and 12); r12 = 70/2 + y + and 021 = (al2)*. The relaxation rates of such a 
system can be then found by solving the characteristic equation corresponding to 
the above set of equations. The resulting set of relaxation constants can be written 
as follows: 

When the hyperfine interaction is relatively weak, 27  + 70 - 27, >> 4A, the 
slowest rate corresponding to the relaxation rate of the nuclear polarization is given 
by 

4A2 
7 0  

yp = -27, - -. 

In the opposite case of a strong hyperfine interaction, 2 7  + yo - 27, << 4A, all 
relaxation rates are of the order of yo, and the hyperfine interaction results in the 
resolved splitting of levels. 

Using these general expressions, let us estimate the relaxation times for the 
material systems that are of main interest for us. 

It is immediately seen that the situation in popular semiconductors of 111-V 
group is very unfavorable for a fast nuclear orientation. Indeed, for the optically 
excited electrons in the conduction band the optical relaxation rate is very high, 
YO N lolo - 10l2 s-l, while the constant of hyperfine interaction is relatively small 
(actually, it is dependent on the electron density and probability of electron local- 
ization on the donor centers; see, e.g., the review by Dyakonov and Perel in 3). The 
resulting nuclear spin relaxation rate, according to Eq. (17) and 3 ,  is many minutes 
for free electrons and about 0.1-1 s for the electrons localized at donor centers. 

For the rare-earth impurities in crystals, the situation depends on whether we 
use a dipole-allowed or forbidden transition for the optical pumping. Let us consider 
two specific examples. Prgi : YZSiOs has a dipole-forbidden optical transition, 
and the relaxation rates are 70 = lo4 s-l, yn = lop3 s-l, and ye = lo3 s-'. The 
intensity of hyperfine interaction is about 10 MHz, so we can conclude that the 
nuclear polarization can be built up on the time scale of the order of -yo1 = 0.1 
ms. E d +  : CaS, CaF2 has a dipole-allowed optical transition, and the relevant 
relaxation rates are yo = lo7 s-l and ye = lo3 s-'. The intensity of hyperfine 
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interaction is not known exactly; it is somewhere between 100 MHz and 1 GHz. 
Since A 2 70, the nuclear polarization can be obtained on the time scale of the 
order of 7;' = 100 ns. 

In conclusion, recent experimental and theoretical results demonstrate that both 
populations and coherence in a system of nuclear spins in solids can be controlled by 
a laser field with high efficiency. Nearly 100% nuclear polarization can be achieved 
on a submicrosecond time scale. It is crucial for various quantum information 
applications that we can achieve both a high speed of the optical excitation of 
nuclear polarization and long storage times simultaneously, in the same material 
system. The most promising candidates are rare-earth and possibly transition- 
metal impurities with a large constant of hyperfine interaction. It is quite possible, 
however, that there are other candidates with a large ratio of A2/70, according to 
Eq. (17). 

The authors are grateful to Rufus Cone, Zameer Hasan, Philip Hemmer, Roman 
Kolesov, and Suhail Zubairy for valuable discussions. This work was supported 
by the AFOSR, the DARPA, the Office of Naval Research, the Texas Advanced 
Technology and Research Programs. 
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DISCUSSION 
Chairman: I. Cirac 

L. Accardi: On your last transparency, you had explicit form of interaction 
Hamiltonian. Can you very quickly comment on various pieces? 

0. Kocharovskaya: It involves quadrupole interaction and it produces this 
splitting, and it involves the interaction with the component which is parallel to the 
direction of the gradient of electric field and to the direction of propagation of our 
photons in our experiment, and component of magnetic field which is orthogonal 
to this, and interaction with (O,O,l), basically. 

L. Accardi: Axis Y, what is it in your case, electromagnetic field or not? 
0. Kocharovskaya: Electromagnetic field. 
L. Accardi: So, how is it related to the bi-parallel and bi-orthogonal thing? 
0. Kocharovskaya: What is important for us here is that the component of 

magnetic field which is orthogonal to the gradient of the electric field produces 
the coupling between these two anti-crossing levels so, in fact you see, we increase 
magnetic field and at some point we have this coupling, and everybody was using 
this level-crossing technique to restore this hyperfine splitting. So we know at which 
magnetic field it occurs, we know this dependence, we can restore this splitting, but 
how did they detect it? They detected it by the change of polarization. So this is 
a typical Mossbauer experiment: we have source, which moves, and it breaks our 
absorber. So under specific magnetic field, there is a change of polarization, and 
what one would expect is that if we look for the intensity of the absorbed radiation 
then we should simply add the intensities from this and from these transitions. 
They should be added together because we have a crossing of two levels at some 
point. But it turns out actually that this is not the case. This is what one would 
have by simply adding these intensities (this point) but it turns out that it is 
essentially smaller. And why it comes to be smaller? It’s because of interference 
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phenomena which originate from the coupling between these two anticrossing levels 
via the orthogonal component of the magnetic field. And so, we did the theoretical 
fit which seems to be very good for this experiment. So we believe it’s the first 
observation of electromagnetically induced transparency in gamma rays. 
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T R O J A N  H O R S E  ATTACKING S T R A T E G Y  ON Q U A N T U M  
C R Y P T O G R A P H Y  

GUIHUA ZENG * 
Modern information processing laboratory (MIPL), Department of Electronic 

Engineering, Shanghai Jiaotong University, Shanghai 200030, China 
Theoretische Quantendynamik, Fakultat fur Physik, Universitat Freiburg, 

H.-Herder-Strasse 3, 0-791 04 Freiburg, Germany 

Trojan horse attacking strategy on quantum cryptography is investigated, three as- 
pects are involved. First, the mechanism for the Trojan horse attacking strategy on 
quantum cryptography as well as classic cryptography is studied. Then the fragility 
of the quantum cryptographic algorithm employing E P R  pairs as key against the 
Trojan horse attacking strategy is analyzed. To prevent the Trojan horse attack- 
ing strategy, an improvement scheme which makes use of non-orthogonal entangled 
states is proposed, results show the improvement scheme is robust to the Trojan 
horse attacking strategy without reducing the security on other kinds of attacking 
strategies. 

1 In t roduct ion  

In private communication and data security attackers (e.g., adversary and/or rag- 
ger) will try to  break the employed confidential system for their benefits. To prevent 
effectively the attacks from obtaining the legitimate information, cryptography has 
arisen and is employed to  prevent the attacks. Cryptography is a subject which 
is employed for rendering the message secret and creating a cipher by making use 
of algorithms and protocols so that the attackers can not or can not easily acquire 
the private information. It plays a very important role in the modern information 
protection. However, as virtue rises one foot, vice rises ten feet. To break the al- 
gorithms and protocols provided in the cryptography, a concomitant subject called 
cryptoanalysis has also arisen ’. 

The so called cryptoanalysis is a science and study of methods of breaking ci- 
phers. Many attacking strategies for converting encrypted messages into plaintext 
without initial knowledge of the key employed in the encryption have been investi- 
gated and used in practice. But, any successes of these strategies completely depend 
on the drawbacks of the cryptographic system, i.e., cryptosystem. These drawbacks 
arose from two major causes, i.e., the inappropriate fundamentals, which are em- 
ployed as a foundation for the scheme, and the imperfection of the cryptosystem’s 
construction. Actually, any improper design will create drawbacks in the cryptosys- 
tern and subsequently the attacker can break in principle the scheme by means of 
these drawbacks. Of course, an absolutely perfect cryptosystem is not possible and 
not necessary in practice, since such kind of system leads to a huge cost. 

Trojan horse attacking strategy (THAS) arose from the drawbacks of construc- 
tion of the system (e.g., device, computer program, algorithm or protocol et d.). 
When a Trojan horse can be hidden without easy detection in a system, an attacker 
can make use of this kind of strategy to  break the system and then obtain useful 
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information. Unfortunately, this strategy is not only available in classic cryptog- 
raphy but also in the recently proposed quantum cryptography 2,3,4,5,6,8,7,9. This 
strategy on the quantum key distribution has been analyzed in 10,6)11, and a scheme 
for preventing this strategy was proposed in l l .  

In this paper we consider the THAS on the quantum cryptographic algorithm, 
which employs EPR pairs as the symmetrical key. Three aspects will be investi- 
gated in this work, including the mechanism, the attacking way on the quantum 
cryptographic algorithm, and the preventing approach for this attacking strategy. 
Especially the improvement scheme will be investigated in detail. 

This paper is arranged as follows. In Sec. 2, the mechanism for the THAS will 
be analyzed first. Then in Sec. 3 we will investigate the THAS on the quantum 
cryptographic algorithm which employs EPR pairs as the key. An improvement 
scheme for preventing the THAS will be presented in Sec. 4. After these a simple 
remark will be presented in Sec. 5. Finally a conclusion will be drawn in Sec. 6. 

2 

Let us firstly investigate the mechanism for the THAS on cryptography in this sec- 
tion. In essential, all attacking approaches proposed in cryptoanalysis (including 
classic cryptoanalysis and quantum cryptoanalysis) can be categorized mainly as 
three kinds of attacking strategies, i.e., the strategy based on fundamentals draw- 
backs (SFD), the strategy based on obtained information (SOI), and the strategy 
based on assistant systems (SAS). In the SFD the attacker makes use of fundamen- 
tals drawbacks to break the cipher and obtain useful information. As an example, 
the classic cryptosystem is based on the complexity assumption which has not been 
proven, thus usually containing a fundamentals drawback. With the development of 
the mathematics these drawbacks become a means for breaking the cryptosystem l .  

Another example is the attacking approaches presented in quantum cryptography, 
by far most attacking strategies such as the individual and collective attacks are 
based on the fundamentals, i.e., quantum laws. Fortunately all proofs are advan- 
taged to the quantum cryptography but not t o  the cryptoanalysis. While in the SO1 
the attacker makes use of the leaked information of the cryptosystem, the cipher- 
text, and/or the obtained parts of plaintext to break the cryptosystem ’. However, 
we would like to stress here the SAS, which relies on assistant systems to break the 
cryptosystem. One of the typical approaches in this situation is the THAS. 

To study the mechanism for THAS let us firstly consider what is the Trojan 
horse in the information protection, since the Trojan horse is the important base 
in the THAS. In data security the Trojan horse is defined as a small program 
inserted by an attacker in a computer system. It performs functions not described 
in the program specifications, taking advantage of rights belonging to the calling 
environment to copy, misuse or destroy data not relevant to its stated purpose. 
For example, a Trojan horse in a text editor might copy confidential information 
in a file being edited to a file accessible to another. More generally, the so-called 
Trojan horse is a ‘robot horse’ which can become a part of the legitimate users’ 
systems. Then the ‘robot horse’ can be surreptitiously exploited by the legitimate 
authorizations of operation (e.g., measurement,detection et al.) to the detriment of 

Mechanism for Trojan horse attacking strategy 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



497 

security. For example, break the system via feeding back information to  the attacker 
(e.g., the dishonest manufacturer or even the adversary) or directly destroying the 
legitimate data. To the legitimate users’ system the Trojan horse is actually an 
additional system with passive effects. Many things, such as devices and small 
programs inserted in the users’ system, probing signals entering the users’ system 
through a public channel e t  al, or even the attacker, can become a Trojan horse. 
However, we must emphasize that it is impossible for any Trojan horse to  play the 
same role as legitimate users because the Trojan horse is only a small part of the 
legitimate system. 

There are mainly two kinds of Trojan horses, i.e., the pre-lurked Trojan horse 
and the online Trojan horse. The pre-lurked Trojan horse is a ‘robot horse’ which 
is pre-inserted in the legitimate users’s system, e.g., programs, apparatuses or even 
offices. At an appropriate condition the lurked Trojan horse is activated automat- 
ically by the legitimate system, and then it feeds back the available information 
to  the attackers, even destroying the users’ system. The online Trojan horse is 
actually a probing signal which may enter the legitimate system without awareness 
and then back-reflect to the attacker. Both kinds of Trojan horses may be classic 
as well as quantum. In addition, the Trojan horse may also be a combination of 
the ‘quantum horse’ and ‘classic horse’. 

If a Trojan horse can be inserted successfully in the users’ system, the attacker 
can break the employed cryptosystem and obtain available information by means 
of the feedback information of the ‘robot horse’. This attacking strategy is called 
THAS. Corresponding to  the kinds of the Trojan horses there are two kinds of 
THASs, i.e., the strategy relying on a pre-lurked Trojan horse and the strategy de- 
pending on the probing signal. While the attacking ways may be classic approaches 
or quantum approaches determined by the features of the employed Trojan horses. 
For example, if employing a pointer state of the legitimate system as the Trojan 
horse, or a pre-inserted tiny device as a Trojan hose, which is exploited to  detect 
the quantum state of the qubits as the key, the attacker can obtain useful messages 
by analyzing the feedback information of the Trojan horses. If sending light pulses 
(probing signal) into the fiber entering legitimate users’s apparatuses, then the at- 
tacker can analyze the backreflected light ’’. Of course, without the Trojan horse 
this strategy can do nothing since the feedback information of the Trojan horse is 
very important in this attacking strategy. Obviously this strategy is completely 
different from the strategies which are always involved in the quantum cryptogra- 
phy, e.g., the intercept/resend attack and the entanglement attack 3,5,8,7, where the 
attacker can directly obtain the information for attacking. 

3 Trojan horse a t tacking  s t ra tegy  on quantum cryptographic 
a lgor i thm 

In this section we consider the THAS on the quantum cryptographic algorithm 
which employs EPR pairs as the key. Recently, two interesting quantum vernam 
algorithms based on EPR pairs have been proposed. These algorithms employ EPR 
pair(s) as the symmetrical keys of the algorithm. In l2 the message is encrypted by 
means of a quantum controlled-NOT with employment of a symmetrical key which 
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consisted of one EPR pair and one bilateral rotation. In l3 the message is encrypted 
with a key which consisted of two EPR pairs. A common feature of the above 
quantum vernam algorithms is that EPR pairs are applied as a sharing key between 
the two legitimate users called Alice and Bob. These algorithms are provably 
secure for the SFD and the SOI. However, they can not circumvent the THAS. 
In the following we investigate the fragility of these algorithms against the THAS 
which employs pre-lurked Trojan horse (in this section and the following section we 
suppose the Trojan horse is a tiny device pre-inserted in Alice's or Bob's apparatus). 

To show the fragility of the quantum cryptographic algorithm employing EPR 
pair(s) as the key against the THAS, we first give a simple description for this 
kind of algorithm. In general, this kind of algorithm can be summarized gen- 
erally as follows. Suppose Alice and Bob sharing n EPR pairs as the key 
K = { I k l ) ,  lkz ) ,  . . . , I&)). Each EPR pair can be expressed as, 

(1)  
1 I@?) = - (loho;) + Ilbl$)) = Iki), Jz 

where subscripts a,  b denote Alice's particles Pa and Bob's P b  of each EPR pair, lki )  
denotes the ith key element, and i = 1,2, .  . . , n. Denote the plaintext (message) by 

I$,) = al0) + PIl), (2) 

the corresponding particle is expressed as P,, where laI2 + IPl2 = 1. Suppose Alice 
is the sender, then Alice encrypts the qubit I$") by making use of the quantum 
controlled-NOT operations on both her EPR particle Pa (key particle) and the 
message particle P,. After that, Alice obtains the ciphertext I"'), which can be 
denoted as, 

I*') = c ~ , I k n ) { C ~ ~ l l k n - l ) { . .  . {CAklkl)l$m)))), (3) 

where Ckk denotes the ith quantum controlled-NOT gate on P,,, and Pa, the sub- 
script mk denotes the quantum gate operating on the key particle and the message 
particle. Then Alice sends the ciphertext to  Bob via a quantum channel. after re- 
ceiving the ciphertext [*') Bob decrypts the ciphertext by making use of an inverse 
process controlled under the key. Finally Bob gets the message. 

Now let us investigate THAS on the above quantum algorithm. First, we con- 
sider the situation of using only one EPR pair as the key. In this case, the key is 
just the EPR pair, i.e, IK) = I@+), which can be denoted as, 

(4) 
1 I@.+) = - (loaob) + Ilalb)). Jz 

Then ciphertext can be expressed as, 

1"') = CmaI@+)I$m) 
= l o a o b )  8 I$,) + 11a1b)  8xx,l$"). ( 5 )  

where X, denotes the quantum X-gate on the particle P,. Eq. ( 5 )  illustrates that 
when Alice's and Bob's EPR particles are in the states loaob) then the message 
particle is in the state I$"), otherwise, the state of the message particle is in 
XTTll$Jrn). 
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Obviously, if Alice's and Bob's EPR particles can not be disturbed by the at- 
tacker, the above algorithm is secure. However, if the attacker can pre-lurk a Trojan 
horse in Alice's or Bob's apparatus, the legitimate communicators Alice and Bob 
will not be lucky since the attacker can obtain their useful information through the 
THAS. This can be done very easily. Suppose the attacker puts successfully a Tro- 
jan hose, T, e.g., a set of tiny devices which can distinguish the eigenstates states 
I0)and Il)( for example a device can recognize the 'bright' and 'dark' pulse) and 
send feedback information, in Alice's apparatus (this is available since in practice 
the users are not experts so that they can not easily find the 'robot horse' which 
is pre-lurked ulteriorly by the dishonest manufacturers), then the key can be writ- 
ten as l@+(T)). Subsequently Alice's encrypting transformation by making use of 
controlled-NOT yields a ciphertext state, which can be written as, 

I*:) = IOa(hu)Ob) '8 I@") + Ila(hl)lb) '8 xml@m), (6 )  

where h,, and h l  are the feedback information of the Trojan horse. After Alice 
has encrypted her message I@") using the EPR pair, the Trojan horse is activated 
automatically. For example, if the attacker pre-lurks measurement bases for the 
eigenstates states (0) and Il), the Trojan horse only needs to  measure Alice's EPR 
particle. Now the 'horse' feeds back the result h,, when the measurement result is 
lo), otherwise the 'horse' feeds back the result h l .  Then, what the attacker needs to 
do is to  wait for Alice's ciphertext I*') and the feedback information of the Trojan 
horse. If the attacker can successfully intercept the ciphertext particle P, which is 
sent to  Bob, then the attacker can obtain completely the qubit I@,) by making use 
of the feedback information h,, and h l ,  and the intercepted particle P,. For exam- 
ple, if the feedback information shows that Bob's key bit is lo), attacker gets I$"). 
If the feedback information shows that Bob's key bit is Il), attacker gets X,l@"). 
With this knowledge, the attacker can completely obtain the plaintext (message). 

In the above we have analyzed the Trojan horse attacking strategy for the 
situation which makes 
use of two EPR pairs 
attacking strategy can 

use of only one EPR pair as a key. For the case of making 
I@:) and I@;) as the key (see Ref. 13), the Trojan horse 
also be successful. In this case the key can be denoted as, 

1 
Ikd = I@?) = - (l0:O;) + Iltl;)), (7) Jz 

and 

(8) 
1 

lk2) = I@;) = - (1o:o;) + I@;)). Jz 
Suppose the attacker pre-lurks successfully two 'horse' TI and T2 into Alice's or 
Bob's devices using the similar ways described above. After Alice's encryption 
using controlled-)(. and controlled-Z gates on the key particle and message particle, 
the ciphertext state can be written as, 

1%) = c~,{(c~"( l~~(~l)) l@m))) l@;(~~))} 
= :IDEO~(~!)) { I O % O E ( ~ ; ) )  '8 I+") + 11:1~(h:)) '8 zmI$m)) 

+ :11:1i(hi)) {10:0~(h;)) @xml@") + 11:1;(hi)) @ x m z m l $ m ) }  (9) 
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where the superscripts '1' and '2' refer to the particles in the pairs I@:) and I@$), 
hi and h i  are feedback information of the Trojan horse "1, hi and h: are feedback 
information of the Trojan horse T2. "1 and "2 are associated with Bob's particles. 
It is clear that the attacker can get the message by the similar way of employing 
one EPR pair as the key. Therefore, the quantum cryptographic algorithms based 
on the EPR pairs as keys are fragile against the THAS, although they are provably 
secure against the other attacking strategies. 

Actually, if the possible states of Alice's key particles Pa (or Bob's key particle 
P b )  are orthogonal states, any quantum cryptographic algorithm which employs 
directly such kind of key is not robust to the THAS. Because in such a situation 
the successful Trojan horse can recognize the possible states of the key particle. For 
example, while Alice and Bob employ the EPR pair as the key then Alice's or Bob's 
key particle takes the state 1O)or 11). Then a proper Trojan horse, e.g., a device 
which can distinguish the eigenstates 10) and [ I ) ,  can recognize exactly the state of 
the key particle as described above. Thus the available feedback information can 
be obtained by the attacker. Therefore, to prevent the THAS one should use the 
non-orthogonal states as a sharing key in the symmetrical quantum cryptographic 
algorithm. 

4 

In this section we will show that the above THAS can be prevented by making use 
of the non-orthogonal entanglement state as the key. The process is as follows. The 
legitimate users Alice and Bob create a set of EPR pairs, each pair can be denoted as 

Prevent Trojan horse attacking strategy 

where 141) = &(lo) + 11)). Then Alice or Bob randomly choose a operator from 
{Z, H} to apply on her (his) EPR particles until all EPR pairs have been operated, 
where Z and H are respectively the unit operation and the Hadamard gate. This 
operation yields, 

1$1) =TI@+) = I @ + ) ,  

($2) = 'HI@+). 

and 

In bases lo), 11) and I+), I-), I$2) can be expressed as, 

1 
= -(I +a 16) + I -a Ob)) .  (13) Jz 

After these operations, Alice and Bob obtain a random sequence which consists of 
{[$I), I$2)}. Finally Alice and Bob take this sequence as the key. Since [($I l 2  # 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



501 

0 which means that the states 1$J1) and 1112) are non-orthogonal, any quantum 
attacking strategies can not be available 14. This point is guaranteed by the no- 
cloning theorem 15. In the following we will show these properties can also be 
employed to prevent the Trojan horse attacking strategy. 

To the attacker the key IK) is a superposition of I$Jl) and I&!), i.e., 

IW = C l l + l >  + CZl+Z). (14) 

Then the ciphertext state can be written as, 

lQ3 = ~amIK) I$J " )  

= ( 6 ; l O a o b )  $. g 1 O a - b ) )  '8 I$") 

+ ( 6 i l l a l b )  + & l l a + b ) )  '8 xml?l"), ( 1 5 )  

where 6; = c1j& & = cZ/& After the encrypting transformation, Alice obtains 
the ciphertext, i.e., Eq. ( 1 5 ) .  Then Alice sends the particle P, to Bob, 

Now let us show how t o  prevent the Trojan horse attacking strategy. Suppose 
the attacker lurks successfully a 'horse', T, in Bob's apparatus, then the ciphertext 
state takes, 

where h? and hi denote the inconclusive feedback information. Although the key 
is a superposition state (see Eq. (14)), in each encrypting operation Alice and Bob 
only choose one state from {l$J1) ,  1+2)} as the key element. Accordingly, if the at- 
tacker pre-lurks one Trojan horse, e.g., Tl (for {lo), I l ) } ) ,  in Bob's apparatus, then 
another states, i.e., { I + ) ,  I-)} can not be recognized exactly. If the attacker em- 
ploys two Trojan horses, e.g., 'robot horse' Tl and 'robot horse' Tz (for {[+), [-)}), 
the attacker can find it impossible to  get the useful feedback information. Because 
Alice and Bob's choices for the key are completely random, this makes it impossibile 
for the Trojan horses Tl and T2 to  follow completely the changes of the key ele- 
ments. In other terms, because there are two pairs random bases, i.e., {lo), 11)) and 
{I+), I-)} in Alice's and Bob's apparatuses, it is impossible for the the attacker's 
'horse' to  recognize these bases. Subsequently, the 'horses' are blind and can not 
give correct feedback information. The security is the same as the BB84 protocol '. 

5 Remark 

In the above we have analyzed the fragility of the quantum cryptographic algorithm 
against the Trojan horse strategy, where the EPR pair(s) are employed as a key. 
However, we here would like to  stress that the quantum key distribution protocols 
which are implemented by making use of the EPR pair(s) do not suffer this kind 
of drawbacks. Since in the quantum key distribution the EPR pair carries initially 
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no information. Especially the users's measurement for obtaining the final key is 
completely random. This random feature leads the Trojan horse employed in the 
above section to  be of no use '. 

6 Conclusion 

In this work, the fragility of the THAS on the quantum cryptographic algorithm 
implemented by the EPR pairs as the key has been analyzed in detail. It is found 
that any quantum cryptographic algorithm exploiting set of orthogonal states as 
the symmetrical key can not circumvent the THAS. To prevent this kind of attack- 
ing strategy we proposed a new approach which makes use of the non-orthogonal 
entangled states. The improvement scheme is robust to the THAS. In addition, 
the mechanism for the THAS on the quantum cryptography as well as the classic 
cryptography is also investigated. In any THAS the Trojan horse is very important. 
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N O T E  O N  THE EPR-CHAMELEON EXPERIMENT 
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WEB page: http://volterra. mat.uniroma2.it 

In the past 20 years quantum probability has challenged the widespread belief that 
classical macroscopic systems cannot, by local independent choices, produce sequences 
of data whose correlations violate Bell’s inequality. The possibility of such a violation is 
not a matter of interpretation, but of fact: “local independent choices” means that two 
separated and non communicating experimenters make measurements but one does not 
know what the other measures (or even if the other one measures something); correlations 
are evaluated by means of standard procedures. The present experiment shows that this 
is not the case: in no way the EPR correlations and related experiments can be considered 
as a support of the incompatibility of quantum theory with local realistic theories, in 
particular relativity. 

1 Bell’s argument 

Bell’s inequality was proved in the paper ‘. In this paper, while the thesis, i.e. the 
inequality itself, is clearly stated and correctly proved, the mathematical assump- 
tions from which the thesis follows (and without which the thesis cannot be proved) 
were not formulated. Bell insisted that his inequality was a consequence of locality, 
however he did not formulate a clear, formally stated, mathematical theorem from 
which one could deduce which mathematical property corresponded to locality. 

This opened a debate whose goal was to try and establish which these assump- 
tions effectively were. The reader interested in having an idea of the arguments used 
before quantum probability may consult the famous or or, for the connections 
with probability ’. 

The mathematical formulation, now commonly adopted, of the Bell inequality 
was first given in ’. The main result of this paper consists in having realized that 
the mathematical assumptions on which the validity of the inequality depends are 
only the following two ones: 

(i) that the random variables take values in the interval [-1,1] (originally Bell 
considered only the set {-1,l) but shortly after he extended his result to  the 
full interval) 

(ii) that all the random variables are defined on a single probability space. 

More precisely: 
Lemma (1) 
space (0, F, P )  and with values in the interval [-1,1]. Denote 

Let A,  B, C be random variables defined on the same probability 

(AB)  := 1 A(w)B(w)P(dw) 
R 
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the correlations (mean zero can be assumed without loss of generality). Then the 
following inequality holds: 

I(AB) - (CB)I 5 1 - (AC) (1) 

The following corollary of (1) (which is equivalence for hl-valued observables), 
due to Clauser, Horne, Shimony, Holt (CHSH). 
Corollary (2) Let A,  B, A’, B’ be random variables defined on the same probability 
space (0,3, P )  and with values in the interval [-1,1]. Then the following inequality 
holds: 

[ (AB)  - (A’B) + (AB’) + (A’B‘)I 5 2 (2) 

Proof. With the replacements B ---f B’, C + -C, (1) becomes 

I(AB’) + (CB’)I = 1 + (AC) 

Adding (1) t o  (3) and replacing C by A‘ we get 

( ( A B )  - (A’B)I + [ (AB’)  + (A’B’)I 5 2 

(3) 

which implies (2). 

ity and the predictions of quantum mechanics (cf. 
proofs). 
Theorem (4). There cannot exist a stochastic process 

The following Theorem is used to  establish a connection between Bell’s inequal- 
for a comparison of the various 

Sp) , Sf) a, b E [ 0 , 2 ~ ]  

defined on a probability space (0 ,7,  P )  and with values in the set { f l } ,  whose 
correlations are given by: 

($)Sf)) = - cos(a - b) ; a,  b E [ 0 , 2 ~ ]  (4) 

Remark. According to quantum theory the expression in the right-hand side of (4) 
is the correlation of two spin or polarization observables, along directions a, b, of 
two quantum particles in singlet state. These correlations have been experimentally 
confirmed by many experiments since the early days of quantum mechanics and this 
confirmation has been interpreted by several people as experimental evidence that 
quantum theory is incompatible with any local realistic classical theory. 

The thesis of the present paper 

While nobody doubts that the validity of the correlations (4) is a well established 
experimental fact according to  the quantum probabilistic interpretation, the claim 
that the experimental validity of the correlation (4) is incompatible with a local 
realistic interpretation of quantum mechanics, is definitively unwarranted both for 
theoretical (cf. sections 2, 3, 4) and for experimental (cf. Sec. 5 and Appendix) 
reasons. 
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Let us briefly comment the experimental aspects of the above mentioned thesis. 
Bell’s main claim in is that: “In a theory in which parameters are added to 
quantum mechanics, to  determine the results of individual measurements, without 
changing the statistical predictions, there must be a mechanism whereby the setting 
of one measuring device can influence the reading of another instrument, however 
remote. Moreover, the signal involved must propagate instantaneously, so that 
such a theory could not be Lorents invariant (cf. Sec. VI of ‘).” The proof he gave 
of this statement was recalled above: the EPR correlations (quantum mechanics) 
violate Bell’s inequality, but if the result of the measurements are pre-determined by 
additional parameters and if the theory is local (i.e. it does not involve instantaneous 
propagation of signals), then it is impossible to  violate these inequalities. 

It follows that, if one wants to  falsify experimentally Bell’s statement one must 
produce a classical macroscopic system which fulfilled the above listed requirements 
of Bell, i.e. 

(i) pre-determination of the results of individual measurements by means of addi- 
tional parameters (which respect to quantum theory) 

(ii) no instantaneous signals 

(iii) reproduction of the EPR correlations (the statistical prediction of quantum 
mechanics) 

Our experiment produces such a classical macroscopic system and therefore it fal- 
sifies Bell’s statement experimentally. 

Let us describe in more detail our experiment to show that it exactly parallels 
what happens in the usual EPR type experiments with photons. Just like the start 
of any EPR type experiment, we start from 3 spatially separated objects: 

(i) a central computer C, which plays the role of the source of entangled pairs 

(i i)  two additional computers A and B which play the role of the two experimental 
apparata which measure the polarizations of the individual photons. 

The central computer C sends randomly pairs of signals. Corresponding to  the fact 
that the source emits randomly pairs of entangled photons. The source of course 
does not know where the measuring apparata are; it even does not know if there are 
any apparata at all. Thus the photons are emitted a priori in all possible directions 
with a probability distribution that the theory can predict. Independently of each 
other the computers A and B choose one space direction, say a and b respectively, 
for each received photon and compute the values of two binary function, i.e. with 
values f l ,  say S:’), SF’. These values depend only on the signal emitted by the 
source, hence they are pre-determined in the sense of EPR and Bell. Since, by 
Heisenberg’s principle, we cannot follow the trajectory of a photon (or of any other 
microscopic particle) without altering it, the only way to  be sure that two photons 
come from the same entangled pair is to check time coincidences: if the photons 
arrive simultaneously, we conclude that they come from the same entangled pair. 
In fact the probability that two spurious photons are detected simultaneously by 
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two spatially separated apparata is negligible. In experiments with photons the 
term “simultaneous” has to be meant in the sense of a very narrow time window. 
But our experiment can also reproduce the ideal situation in which all apparata 
involved are 100% efficient. Exactly as in the experiment for photons the statistics 
is conditioned on coincidences (these topics are further discussed in Sec. 5 ) .  We do 
not know the mechanism of coincidences for individual photons because quantum 
mechanics does not predict the space-time trajectories of microscopic particles. In 
our model this mechanism is: 

(i) deterministic, i.e. uniquely pre-determined by the hidden parameters 
(ii) entirely local. 

This is achieved by exploiting the chameleon effect, described in Sec. 2 below. After 
many iterations of the described procedure the two local computers A, B send back 
to C the registered values. The correlations are computed exactly as in the case 
of photons. The classical, deterministic, local dynamical system underlying the 
computer program has been built in such a way that the correlations are precisely 
the EPR ones (cf. Sec. 4 below). The computers involved are classical deterministic 
objects. All the choices are local. No hidden or superluminal signal is involved. 
All the results are uniquely determined by “additional parameters”. Thus all the 
requirements listed in Bell’s paper are fulfilled. The EPR correlations are faithfully 
reproduced hence Bell’s inequality is violated. 

In conclusion: our experiment proves in a conclusive way that the appeal to 
Bell’s inequalities to support the claim that quantum theory is incompatible with 
any local realistic theory is unjustified not only theoretically but also experimentally. 

2 Critiques to Bell’s analysis 

The quantum probabilistic approach offers to the physicists a way out from the 
“quantum muddle” by criticizing Bell’s analysis and proving that: 

i) the contradiction, pointed out by Bell, arises only from his implicit postulate 
that 3 statistical correlations, coming from 3 mutually incompatible experiments, 
can be described within a single classical probabilistic model 

ii) that this implicit postulate is by no means a consequence of locality and 
reality. 

If the implicit postulate (i) is not assumed, then Bell’s proof is at fault already 
in its first step because in the proof of (1) (and the same is true for (2) one must 
use the apparently obvious identity 

(AB) - (CB) = (AB - CB) ( 5 )  

However, by explicitly writing this identity: 

one immediately recognizes that the left hand side is experimentally observable while 
the right hand side is not. In fact while the pair joint probabilities Pa,b, Pc,b, ... 
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are experimentally observable, there is no reason to  postulate, as Bell implicitly 
does when using formula ( 5 ) ,  that the experimentally unobservable, triple joint 
probabilities exist. 

It is well known from classical probability that there are constraints, i.e. the 
Kolmogorov compatibility conditions, which relate the pair with the triple joint 
probabilities and which are necessary conditions for the existence of the latter ones. 
Since the pair correlations are deduced from the pair probabilities and since, when 
using ( 5 ) ,  Bell is postulating a priori the existence of these (experimentally unob- 
servable) triple joint probabilities, the only rational conclusion he can draw from 
his argument is that the inequality (1) (Bell’s inequality) is one of these necessary 
conditions. Consequently, the experimental violation of this inequality is simply 
an experimental proof of the fact that the triplet joint probabilities for 3 singlet 
correlations cannot exist. 

This was the critique that, starting from 1981 I, quantum probability opposed 
to Bell’s argument. 

The chameleon effect 

One might try to counter this critique by arguing that the existence of the triple 
probabilities is a consequence of the “realism” assumption. 

For example suppose that in a box there are many pairs of balls whose color can 
be either green or brown. Moreover each ball is either made of glass or of wood and 
it weights either 10 or 20 grams. The rules of the game are such that you can only 
measure one observable at the time on each ball (color, weight, material). Thus on 
each pair we can simultaneously measure at most two observables and we can make 
an experimental analysis of the joint statistics of all possible pairs of observables 
(“color-material” , “color-weight’’ , ...). 

Because of the rules of the game the triple joint probabilities “color-material- 
weight” are not accessible to  experiment. 

However the “realism assumption” tells us that any one of the possible triple 
combinations (color, material, weight) has a definite relative frequency in the box 
and therefore the pair statistics we observe, is a consequence of this triple statistics 
which, although unobservable “exists”. Consequently, the claim of many authors to 
postulate the existence of the triple probabilities for the singlet correlations simply 
amounts to  postulating the objective existence of physical properties independently 
of the observer. This is a realism postulate. Hence, if we exclude superluminal 
communications (locality) the experimental proof of the non existence of the triple 
probabilities is equivalent to the experimental invalidation of the realism postulate. 

Arguments of this kind are quite reasonable: for example they are at the basis of 
classical statistical mechanics and it is probable that Einstein had in mind something 
of this kind when speaking of “objective reality”. 

According to  quantum probability there is a more subtle notion of “objective 
reality” which gives a better intuition of the behavior of quantum systems (but it 
is by no means restricted to them). We call the corresponding realism “chameleon 
realism” as opposed to  the “ballot box realism” of classical statistical mechanics. 

Suppose that, in the above example, you leave the rules of the game unaltered, 
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but you replace the pairs of balls by pairs of chameleons and the observables (color, 
material, weight) by (color on the leaf, color on the wood, weight). 

Is it still reasonable to believe that the pair statistics you observe, is a conse- 
quence of some (unobservable) triple statistics? 

A little thought shows that the answer is: No! 
According to quantum probability, quantum systems are much more similar to 

chameleons (adaptive: we measure the response to an interaction) than to balls 
(passive: we read what was in the box). 

3 Mathematical formulation of the chameleon effect 

The attempt to translate in a precise mathematical and physical language the in- 
tuitive difference between “ballot boxes” and “chameleons” leads to a natural gen- 
eralization of von Neumann’s measurement theory. 

The generalization consists in introducing, in this theory, the notions of locality 
and causality. 

It is widely accepted, since von Neumann’s original analysis, that a qualitative 
analysis of the measurement process should start from the joint (unitary) evolution 
US,A (system, apparatus): for simplicity we consider discrete time. Thus, if y!J0 is 
the initial state of the system, its state at the time of measurement is 

y!J := ‘$0 0 US,A (7) 

Now suppose that we want t o  measure the observable S, of the system (say: 
spin in direction u) .  Then the apparatus M must be prepared to measure Sa (say: 
by orienting a magnetic field in direction u) .  Therefore the interaction Hamiltonian 
between system and apparatus, hence also the joint dynamics, will depend on a: 

US,A := US,A(a)  := U a  

In other words: the dynamics of a system depends on the observable we want to 
measure: this is the chameleon effect. As anybody can see, it is a simple corollary 
of the standard ideas on measurement theory. 

Now suppose that the system, hence the apparatus, is made up of two spatially 
separated parts: (1, M I ,  2, M2) and that we measure independently 

(8) 

on particle 1 (resp. particle 2). Then, according to the chameleon effect, we will 
have 

US,A := Ua-b (9) 
and, according to quantum (or classical) mechanics, the pair correlations will be 

This shows that the pair joint probability P a , b ,  corresponding to these correla- 
tions, depends on a, b, hence the application of Bell’s inequality is impossible. This 
dependence is called “conceptuality” . 
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However, by considering the mean value of a single particle observable, say Sp): 

we see that, for a general dynamics, the mean value of an observable of particle 
1 will depend on the measurement we do on particle 2: this means that the EPR 
locality condition is not satisfied. Thus conceptuality is not enough to  guarantee 
locality. 

If we want it to  be satisfied, we have to  restrict the class of allowed dynamics 
and also the class of allowed initial states. 

The physical arguments which allow defining such restrictions have been dis- 
cussed in previous papers of the authors (cf. for bibliography). Here we will just 
state the results. 

The EPR locality condition is mathematically expressed by the fact that the 
local dynamics of each particle is independent of the local dynamics of the other 
one, in formulae 

ua,b := 21, ‘8 u b  

and the causality condition by the fact that the initial state of the particle is in- 
dependent of the initial state of the apparatus (because the particles cannot know 
which measurement will be made on them). In formulae: 

( 12) 

‘$0 := $1,2 ‘8 $Al ‘8 ‘$Az (13) 

However both $ J J I A ~ ,  $A* may depend on the state of the system 1 (resp. 2) because 
the local interaction of particle 1 (resp. 2) with the apparatus may depend on the 
state of the particle at the moment of interaction. With these restrictions one easily 
computes that the EPR locality condition is satisfied. However (12) and (10) show 
that the pair joint probabilities, corresponding to pair correlations, still depend on 
a, b, hence the application of Bell’s inequality is still impossible. 

This extension of the standard quantum theory of measurement was first pro- 
posed in ’. The experiment discussed in the present conference is a concrete real- 
ization of this abstract scheme. 

4 

In the present section we construct a dynamical system which simulates locally the 
EPR correlation (4). 

In the idealized dynamical system considered in our experiment we consider only 
two time instants 0 (initial) and 1 (final) so, in our case, a “trajectory” consists of 
a single jump. We do not describe the space-time details of the trajectory because 
we are only interested in distinguishing 2 cases: 

- at time 1 the particle is in the apparatus (and in this case it is detected with 

Description of the dynamical model 

certainty) 

- at time 1 the particle is not in the apparatus (and in this case it makes no sense 
to  speak of detection) 
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Thus our “configuration space” for the single particle will be made of 3 points: s 
(source), 1 (inside apparatus), 0 (outside apparatus). Since at time 0 the “position” 
of both particles is always s, because of the chameleon effect, the position qj,l of 
particle j = (1 ,2)  at time 1 will depend on the polarization a j ,  on the initial state 
u and on the state X j  of the apparatus M j ( j  = 1,2): 

The local, deterministic dynamical law of this dependence is described as followed. 

1. The state space of the composite system (particles, apparatus) is 

{position space} x {inner state space} x {apparatus space) 

= {s, 0,1} x [O, 2x12 x [O, 112 

2. The initial state is always of the form 

i.e. the initial position of both particles is always s. 

3. To speak of correlations only makes sense if the deterministic trajectories of 
both particles end up in the detectors (predetermination). This means that 
the statistics is conditioned to the subset 

{1}2 x [O, 2x12 x [O, 112 (14) 

of the state space. 

4. Just by changing the order of the factors the state space can be realized as 

Therefore a local deterministic dynamics is uniquely determined by the as- 
signment of two functions  TI,^, T2,b: 

=: (ql,a, Sl ,a ,  m1,a;  q2,bl %,b, m2.6) 

where (qi,=, Sl,a,  mi,,) (resp. (q2,b, s 2 , b ,  m2,6)> depends only on ( ~ 1 ,  ~ 1 ,  X I )  
(resp. (sziu2,X2)). Moreover it is convenient to  identify the endpoints of 
both intervals [0,2x] and [0,1], i.e. to identify these intervals to  circles so that 
the functions qj,z,  ~ j , ~ , m j , ~ ( j  = 1 , 2 , 2  = a ,b ) ,  as functions of the variables 
u,X can be extended by periodicity to  the whole real line (period 2a in u, 
period 1 in A). This allows giving a meaning to  formula (17) of in full 
generality, i.e. without appealing to  special choice (11) of the cited paper. 
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5. With these conventions, for every a,  b 6 [0,27r], we uniquely specify a deter- 
ministic dynamics as follows 

( S 1 1 ~ 1 r A l ; S 2 ~ ~ 2 ~ A Z )  ( ~ l , a ( ~ l r ~ l ~ ~ l ) t ~ l i ~ l ~ ~ 2 , b ( ~ 2 r ~ 2 i ~ 2 ) ~ ~ 2 , ~ 2 )  (15) 

i.e. the inner state of the particle and of the apparatus do not vary under the 
evolution, but the position varies according to the law: 

ql,a(s,‘li Al) = x[O,p1.,(0~)](~1) ; qZ,b(S, u2r = X[O,pzt,(v~)](Al) 

(16) 

(~(z) = 1 if z E I ,  I =  0 if z $ I )  
Remember that the initial position of both particles is always s. Therefore it 
is sufficient to define the dynamics only in this case. 

6. For every setting (a, b) E ( 0 , 2 7 ~ ] ~  of the apparata, the initial probability dis- 
tribution Pa$ of our deterministic dynamical system is given by: 

1 
27r 6s,sl6s,sz-fi(ul - UZ)b(ml,a(ul, Al) - ma)6(m2,b(UZ7 A,) - mb)dClduZdAldA2 

(17) 
where mar mb are fixed numbers in (0,1] and 

Finally the random variables S c ) ,  Sf) : 

{s}2 x [O, 27ry x [O, 112 -+ {f l}  

are defined by 

It is now a matter if simple calculations (cf. section (2) of 5 ,  to  verify that the 
correlations 

(w = (s, u1, A,; s, up, A,)) are precisely the EPR correlations. 
Finally notice that the dynamics (15) is slightly simplified with respect to the 

one described in5. However, due to  the choice (11) of5 this simplification does not 
change the calculations in the specific case under consideration. For more general 
classes of models the simplification (15) is convenient because with this choice the 
state space is mapped into itself by the dynamics and no additional identifications 
are required. 

There is no conceptual difficulty to include in our model the consideration of 
the space-time trajectory of the particle. This surely would improve the present 
model, however the main conclusion of our experiment, i.e. the reproducibility of 
the EPR correlations by a classical, deterministic, local dynamical system, will not 
change. 
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5 Comments on the experiment 

The realization of the computer simulation of the local dynamical system con- 
structed in the previous section has been qualitatively described in the introduction 
above and will be discussed in detail in the appendix. 

Our goal in this section is to briefly illustrate the conceptual meaning of this 
implement ation. 

Recall the basic idea of the chameleon effect: the local dynamics influences the 
statistics and since the factorization of the dynamics (12), i.e. ((1, M I ) ,  (2, &I*)), 
is  different f r o m  the factorization of the state (13), i.e. ((1, 2), ( M I ,  Mz) ) ,  the re- 
sult of the local interaction is  a global dependence of the final state o n  the whole 
measurement setting, i.e. ( a ,  b).  

Now, in any dynamical system, the statistics is determined by the number of 
trajectories that fall into a preassigned region of the state space. 

Therefore, by definition, to say that the dynamics influences the statistics, 
means that the dynamics changes the trajectories of the single particles. 

As explained above this change will be local because of the form (12) of the 
dynamics, but the influence on the statistics will be global because of the form (13) 
of the initial state. 

Here the word “change” has to be interpreted with respect to the trajectories 
that the particles would have in absence of interaction with the apparatus. 

Another important point is that, in all the EPR-type experiments, the two 
apparata must be spatially separated: if the two apparata were contiguous there 
might exist communications between them without violating the locality principle. 

This obvious fact has an important conceptual consequence, namely that: in all 
EPR-type experiments, the statistics is conditioned o n  those trajectories that lead 
both particles t o  interact with the apparatus. 

Now let us forget, for the moment, the quantum mechanical situation and let 
us concentrate our attention on a classical dynamical system composed, as in our 
experiment, of two particles and two apparata. 

The state space of the particles will consist, as in our experiment, of their space 
position and of inner degrees of freedom. 

The condition that the two apparata are spatially separated implies on a priori 
selection of the trajectories and this selection is the physical counterpart of the 
probabilistic operation of conditioning. 

Combining this remark with what said before on the local deformation of the 
trajectories due to interaction with the apparatus, we see that this local deformation 
can manifest itself only in two ways: 

(i) by altering the space trajectories 

(i i)  by altering the “trajectories” of the inner degrees of freedom. 

They are both local effects and they can alter the statistics 

(j) by changing the number of pairs of trajectories which end in the influence region 
of the apparatus 
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(jj) by altering the response of a single particle t o  the interaction with the appa- 
ratus. 

Now, if we want to respect the singlet law, the response of each particle to  
the apparatus must be predetermined. Therefore the simplest way to  construct a 
dynamical system which respects the singlet law and realizes the chameleon effect 
(i.e. the alteration of statistics due to  local interactions with the apparatus) is to 
construct the deterministic dynamics in such a way that the space dynamics of the 
particles is influenced by the local interaction, while its inner degree of freedom is 
not. 

This is what we have realized with the dynamics (15). 
Such a deformation is perfectly compatible with the assumption of an 100 per 

cent (ideal) efficiency of the detectors. In fact the efficiency is measured by the 
ratio of the number of detected particles over the number of particles which have 
interacted with the apparatus. 

It would be totally meaningless to take into account, in the determination of 
the efficiency, also those particles whose space trajectory has brought them so far 
from the apparatus that no physical interaction between them is conceivable. 

Moreover, and this is a possible difference between the classical and the quantum 
case, the very notion of “total number of pairs emitted by the source” is a totally 
platonic and in principle unobservable quantity in the quantum case (under the 
assumption of a neat space separation between the two apparata). 

In some, but not all, classical situations this number might be observable, but 
in a quantum context, where you cannot follow the trajectory of single particles 
without altering it, this number is quite unobservable. 

Appendix -Description of the simulation- 

The program and the instruction to run it are available from the web site 
” http://volterra.mat .uniroma2.it”. 

1. Let N 5 NtOt be natural integers and let 

{“j : j = l , . , . , N }  

be the sequence of numbers either deterministically or pseudo-randomly dis- 
tributed in [0,27~] with good equidistribution properties. (cf. the option D 
(deterministic) or R (random) that has been inserted in the program of the 
experiment.) Let N ( a j )  (j = 1 , .  . . , N )  denote a sequence of natural integers 
such that 

N c N(“j) = Ntot 
j = 1  

Remark. NtOt represents the (physically unobservable) “total number” of 
entangled pairs emitted by the source. N ( o j )  is the number of times that the 
input uj is produced in the sequence (21). 
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2. For each j from 1 to N ,  repeat the following 3 operations (a), (b), (c), N ( a j )  
times 

(a) The central computer sends aj to the computers 1 and 2. 
(b) Computer 1 computes the position of particle 1 using the deterministic 

dynamics and sends back Sil)(aj) (= 1 or -1) if the particle is inside 
the apparatus. It sends back nothing if the particle is outside the appa- 
ratus. Computer 2 does the same thing. The deterministic dynamics is 
such that Sp)(a j )  is sent back with probability pl , , (aj)  and S:’)(crj) is 
sent back with probability p Z , b ( g j )  where PI,,, p 2 , b  are sufficiently regu- 
lar probability densities (say piecewise smooth with a finite number of 
discontinuities in [0,27r]. 
Remark. This corresponds in the real experiments, t o  labeling the 
local detection time of the photon. When both computers send back a 
value f l ,  then we say that a coincidence occurs. The emergence of this 
probability in a deterministic context is due to the fact that the dynamics 
has strong chaotic properties. 

(c) Only an case of a coincidence, i.e. when the central computer receives 
the value f l  from both computers, the central computer computes the 
“correlation product” Sp’ (aj)Sf’ (aj). 

3. The central computer computes the correlation as 

(22) 
Sum of all correlation products 

The total number of coincidences ’ 

Remark. This is what is done in all experiments and a corresponds to the 
statement of the problem because, up to now, the EPR correlations have 
always been interpreted as equal time correlations. 

Introducing 

the expected number of coincidences Ncoincidences and the sum of all correlation 
products Scorrelations become respectively 

N 

Mcorrelations = h , a  ( a ~ ) p 2 , b ( a j ) S ~ a ) ( f f j ) S ~ )  ( a j )  

j=1  j = 1  
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with the choice in (16) and (19). Thus the correlation defined by (22) is 

Scorrelations = - cos(a - b)  
Ncoincidences 

which is exactly the EPR correlation. We underline that, as shown by (24), even if 
the mechanism of coincidences depends on the setting of the apparatus, the expected 
number of coincidences (24) is independent of it, in agreement with lo. 
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QUANTUM NETWORKS FOR DISTRIBUTED COMPUTATION 
AND COMMUNICATION 

H .  J. KIMBLE 
Norman Bridge Laboratory of Physics 12-33 

Calzfomia Institute of Technology 
Pasadena, California 91 125 

USA 

Although formal discussions of quantum computation and communication involve 
abstract unitary transformations in Hilbert space, implementations of quantum 
logic require attention to the dynamical processes of particular physical systems. 
In the Quantum Optics Group at Caltech, we are attempting to lay the foundations 
for quantum information science by way of advance on several fronts in optical 
physics, including cavity quantum electrodynamics. 

Cavity quantum electrodynamics (QED) offers powerful possibilities for the de- 
terministic control of atom-photon interactions quantum by quantum'. Indeed, 
modern experiments in cavity QED have achieved the exceptional circumstance of 
strong coupling, for which single quanta can profoundly impact the dynamics of 
the atom-cavity system. The diverse accomplishments of this field set the stage 
for advances into yet broader frontiers in quantum information science for which 
cavity QED offers unique advantages, including the creation of quantum networks 
to implement fundamental quantum communication protocols and for distributed 
quantum computation2. 

The primary technical challenge on the road toward such scientific goals is the 
need to trap and localize atoms within a cavity in a setting suitable for strong 
coupling. Beginning with the work of Mabuchi et al. in our laboratory in 1996 3, 
several groups have been pursuing the integration of the techniques of laser cooling 
and trapping with those of cavity quantum electrodynamics Two separate 
experiments in our group have achieved significant milestones in this quest, namely 
the real-time trapping and tracking of single atoms in cavity QED5>6p7. Indeed, 
Refs. 5,6 represent the first realizations of trapped atoms within a setting of strong 
coupling in cavity QED. 

In both these experiments, the arrival of a single atom into the cavity mode 
can be monitored with high signal-to-noise ratio in real time by a near resonant 
field with mean intracavity photon number fi < 1. In one experiment, an atom's 
arrival triggers ON an auxiliary field that functions as a far-detuned dipole-force 
trap (FORT)', thereby trapping the atom within the cavity mode with a lifetime 
T M looms, which should be compared to the nanosecond time scale for internal 
dynamics of the atom-cavity system. We have spent considerable effort to under- 
stand the mechanisms that limit the trap lifetime and which heat atomic motion 
within the FORT', with some rather interesting surprises. For example, thermal 
excitation of the elastic modes of the glass cylinders that form the mirrors of the 
cavity contributes to parametric heating of axial motion of a trapped atom. Here, 
kBT of energy per elastic mode leads to displacement noise for the positions of the 
two mirror surfaces with spectra density for the length variations N 1 0 - 1 7 m / 6  
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51 7 

Figure 1. Reconstructed orbit for a single atom bound in orbit by single photons. The orbit is in 
the y - z plane perpendicular to the cavity axis, with motion along the z-direction of the standing 
wave estimated to be less than about 60nm. Animated versions of atomic trajectories can be 
viewed at http://unuw.its.caltech. edu/-qoptics/atomorbats/, and more information found in Refs. 

and lo. 

around 1MHz. We have as well extended the usual free-space theory of laser cooling 
and trapping to  the setting of strong coupling in cavity QED'. 

In a second experiment, we rely upon light forces at the single-photon level to 
trap a single atom within the cavity Because an atom moving within 
the resonator generates large variations in the transmission of a weak probe laser, 
we have been able to develop an inversion algorithm to reconstruct the trajectories 
of individual atoms from the cavity transmission, thereby realizing a new form of 
microscopy. As illustrated in Figure 1, these reconstructions reveal single atoms 
bound in orbit by the mechanical forces associated with single photons. Over the 
duration of the observation, the sensitivity is near the standard quantum limit for 
sensing the motion of a Cesium atom1'. 

Beyond quantum information processing with internal atomic states and pho- 
tons serving as qubits, we are also investigating algorithms for continuous quantum 
 variable^^^^^^^'^, including our realization of quantum teleportation for the quadra- 
ture amplitudes of a beam of light15J6v17. This experiment utilizes squeezed-state 
entanglement t o  achieve unconditional quantum teleportation. Together with our 
capabilities for strong coupling in cavity QED, we are striving t o  realize diverse 
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new capabilities in quantum information science, including protocols for the tele- 
portation of the wave function of a massive pa r t i~ l e '~ .  

This work is supported by the National Science Foundation, by the Caltech 
MURI for Quantum Networks administered by the Army Research Office, and by 
the Office of Naval Research. 
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DISCUSSION 
Chairman: P. Zoller 

L. Wang: What is the resolution in the experiment? 
H. 3. Kimble: For the actual measurements, the achieved resolution is about 
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2Onm/&, with this result applying to  atomic motion in the plane transverse to  
the cavity axis. The atom’s motion along the axial direction is tightly confined 
around one particular antinode to within about f60nm. Because of the much 
greater field gradients in the axial direction, the inferred sensitivity for observation 
of motion along the cavity axis is about lo2 higher, or 0.2nm/&, which we 
intend to investigate in future experiments. As pointed out in our Science article, 
the current measurements bring us close the standard quantum limit for position 
measurement. 

R. Chiao: Could you summarize what are the relative advantages and disad- 
vantages of using ions and neutral atoms for doing quantum information processing? 

H. J. Kimble: In my view, there are two essential features that make trapped 
ions very attractive for quantum information processing. The first is that the 
trapping mechanism is essentially independent of the internal atomic state. The 
second is the remarkable capability t o  store ions for extremely long times with 
extraordinarily low heating rates (essentially “forever” on the time scales of the 
internal dynamics). The achievements by the ion trapping community (e.g., D. 
Wineland’s group at NIST, R. Blatt’s group in Innsbruck, and H. Walther’s group 
in Garching) represent spectacular advances, and are the “proof of the pudding” 
regarding the potential of trapped ions in quantum information science. 

On the other hand, there are disadvantages, including that a single atomic 
charge couples to  stray external fields in troublesome ways. With respect to  the 
combination of trapped ions and cavity QED, it is difficult to achieve very small 
mode volumes (and hence very strong coupling) with the current generation of 
LLmacroscopic’’ ion traps, although this will certainly change with micro-fabricated 
structures being pursued by various groups. In a similar fashion, the “clock” rates 
are limited in current structures to about 106/sec for schemes based upon the 
vibrational motion of the ion chain, but might be much larger in smaller structures. 

As for neutral atoms, the trapping and state manipulation capabilities for small 
atomic samples ( N  = 1,2,  ...) are not as well developed as for ions, but there is 
rapid progress. For example, my group is pursuing a trapping scheme in a far-off 
resonance trap (FORT) that makes the trapping potential very nearly independent 
of the relevant internal atomic states for quantum information processing (see also 
the work by H. Katori et al.). The absence of Coulombic repulsion between neutral 
atoms leads to a whole set of new possibilities for quantum information processing, 
as for example, have been investigated by I. Cirac, P. Zoller, and colleagues, by I. 
Deutsch and P. Jessen, and others. 

M. Raizen: Two questions. One: could you say something more about the 
thermal fluctuations in mirror substrate and what we could do with that? You 
mentioned some possible manipulations. The other question is: at some point in 
the future the length of cavity will become capable or less than the thickness of 
your substrate, mirrors etc. Where does one go technologically from there? 

H. J. Kimble: First question first, which relates to the thermal motion of 
the mirror substrates that form the cavity in our experiments. If one solves for the 
elastic modes of a cylinder (as was done in the lgth century by Lord Rayleigh), then 
equipartition of energy demands that in thermal equilibrium, each of these modes 
contains kgT of energy. This energy in turn is a source of stochastic excitation for 
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each particular normal-mode of the cylinder. In our case, this thermally excited 
“Brownian” motion leads to motion of the mirror faces, which translates in turn 
to a noise source for the intracavity field that is employed to trap the atom. This 
qualitative discussion can be made quantitative, and leads to the noise spectra 
shown in my presentation, with the theory and experiment matching quite nicely. 
So, we clearly observe the thermal excitation of the elastic modes of the mirror 
substrates, and are able to do so with very low probe powers (e.g., the graph shown 
had about 3pW of transmitted power). 

This is all “bad news” for our efforts to trap single atoms in cavity QED, and 
demands some ways to circumvent the noise that I have discussed, and which we 
are implementing in the laboratory. The “good news” is that the measurements 
also suggest some possible new research directions related to the motion of the 
mirrors themselves, never mind cavity QED for the moment. In this regard, we 
take our lead from the pioneering work of V. Braginsky, K. Thorne, and colleagues 
to ask whether it might be possible to access quantum aspects of the motion of the 
mirrors, including sensing at and beyond the standard quantum limit, exploiting the 
mirror motion from radiation pressure as a nonlinear mechanism, and implementing 
feedback control of a macroscopic quantum object. In this regard, we note the 
beautiful work already performed by A. Heidmann and colleagues (Paris) and S. 
Schiller et al. (Konstanz), including feedback to cool the motion of a selected elastic 
mode. 

As for your second question, let me reply in two ways. The first is to ask for 
extrapolations of current technologies to their ultimate limits for advancing the 
cause of strong coupling. C. Hood, J. Ye, and I have investigated this point in 
detail for Fabry-Perot cavities in a recent paper in the Physical Review [Phys. 
Rev. A 64, 033804 (2001)]; a forthcoming paper with J. Buck addresses this issue 
for the whispering gallery modes of microspheres. In qualitative terms, the limit 
for the critical photon number no is of order lop5 - lop6 photons. The second 
reply is to seek out completely new technical avenues for resonators suitable for 
cavity QED with single atoms. An example of this approach is the pioneering work 
of H. Mabuchi and A. Scherer at  Caltech who are investigating nano-fabricated 
resonators made from photonic bandgap materials. 

L. Vaidman: I just want one more clarification about the experiment you 
showed in the movie. What is an indirect test of what you showed on screen is 
correct. So what do you know for sure in some independent test that this is exactly 
the trajectory? The slide you just showed you said inherent sensitivity whatever 
was 0.2. 

H. J .  Kimble: This is a good question, but a couple of things might be 
confused. First, let me make clear the distinction between our actual measurements 
related to the radial motion and possible future observations related to the axial 
motion. This is the point that I addressed in my reply to Professor Chiao, and may 
relate to the factor of 100 that you mention. 

However, the point that I think that you are raising is whether or not there is 
an independent check that our “atom-cavity microscope” (ACM) is really reliable. 
That is, can we actually believe that the motion illustrated in the movies that I 
have shown faithfully mirrors the actual atomic motion? Well, there is in fact no 
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independent “microscope” with the sensitivity to  make such a confirmation. The 
important thing about our measurements via the cavity field is that they represent 
an in principle enhancement in our ability to  extract real-time information about 
atomic motion beyond that which would otherwise be possible (e.g., via fluorescence 
imaging). 

However, you should be skeptical (as are we) of such an answer, and that is 
why we are pursuing another avenue to  confirm the validity of the measurements 
made by our ACM. The basic idea is to  perform quantum feedback based upon our 
inference of the atomic motion. If we are faithfully tracking the motion (including 
the effect of quantum back action), then we should be able to “control” efficiently 
the atomic motion, including to remove energy and angular momentum and to  
“watch” as the orbit circularizes and spirals inward. If we have an incomplete or 
wrong algorithm (e.g., omit the mechanical effects of measurement back action), 
then we won’t be able to  control the motion with feedback. 

L. Vaidman: This is done or this is in the future? 
H. J. Kimble: The results that I have shown related to  quantum feedback 

and orbits that spiral to  the origin in the transverse plane are from numerical 
simulations, with “real” results from the laboratory hopefully coming for the next 
Solvay conference. But again to  your important question of an independent way to  
confirm our measurements of atomic motion, and again the answer is “no”. We are 
attempting to learn the rules and regulations for optimal state estimation of open 
quantum systems. How do we confirm that all this fancy stuff that we know about 
quantum measurement and back action is correct for single, continuously observed 
quantum systems? Perhaps the only available option is via quantum feedback with 
various control algorithms. 

E. Polzik: You mentioned the possibilities for efficient quantum state exchange 
by employing single trapped atoms in cavity QED. Do you have vision of how to get 
there? Do you have a short statement about the same kind of vision for continuous 
variables? 

H. J. Kimble: On a technical front, we have to  learn to manipulate the ex- 
ternal degrees of freedom for single trapped atoms in the same way that the ion 
trapping and the lattice communities have demonstrated so spectacularly over the 
past decade. We must do this with single (or few) atoms within the setting of cavity 
QED which brings a difficult set of scientific and technical problems. In qualita- 
tive terms, our task is coherent control of atomic wave packets, but here we must 
accomplish this control in the presence of strong coupling for both internal and 
external degrees of freedom. S. Parkins and I, as well as by now other groups, have 
investigated several theoretical avenues, and have identified some promising direc- 
tions to  achieve marvellous quantum state manipulations for atomic wave-packet 
states within the cavity, and thence to and from the external world by way of the 
cavity mirrors. 
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GEOMETRIC CONSTRUCTION OF MULTI-BIT QUANTUM 
GATES 

KLAUS MBLMER, ANDERS SBRENSEN and XIAOGUANG WANG" 
QUANTOP - Danish Quantum Optics Center 

Institute of Physics and Astronomy 
University of Aarhus 

DK-8000 Arhus C, Denmark 

In the ion trap quantum computer the internal states of trapped ions serve as quantum 
bits and laser induced collective vibrations of the ions serve to couple the ions and to 
perform gate operations. We have developed a method to perform gates on different ions 
by illuminating the ions with bichromatic light. Here, we display a geometric representa- 
tion of this operation which enables us to extend the method to implement trigonometric 
functions of operators on the quantum register and to produce gates which may involve 
a large number of bits in a single operation. 

1 Introduction 

Starting with the ion trap proposal by Cirac and Zoller ', a number of proposals for 
quantum computing exists where gates involving pairs of qubits are implemented 
by use of the coupling to a harmonic oscillator degree of freedom. In the ion trap, 
the internal electronic or hyperfine states of the ions are coupled to the collective 
vibrational degree of freedom due to  the recoil during absorption of laser light. In 
the present paper, we shall use the terminology of the ion trap, but we wish to  point 
out that the ideas and the formalism will also be applicable to other systems such 
as atoms', ions3 or quantum dots4 which are localized in an optical cavity and 
which communicate via a single mode of the optical field, and it will apply to  an 
array of Josephson-junction qubits which are coupled by an LC-oscillator mode in 
an electrical circuit 5. 

The outline of the paper is as follows. In Sec. 2, we recall our original bichro- 
matic proposal for two-bit gates, which works even if the vibrational motion of the 
ions is not kept in its ground state6. In Sec. 3, we present a method for faster gate 
operation, deduced from a geometric interpretation that links the gate operation to 
the area in the oscillator phase space encircled by laser light induced displacements 
of the ions. In Sec. 4, we present operations that turn the geometric area into a 
gate with products of more than two qubit operators, and in Sec. 5 we present 
examples of applications of the resulting multi-bit gates. 

2 Slow two-colour gate 

We illuminate two ions with bichromatic light detuned by the same amount above 
and below atomic resonance, wj = weg f 6, j = 1,2 .  This laser setting provides the 

"Present address: Institute for Scientific Interchange, 1-10133 Torino, Italy 
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Figure 1: Energy level diagram for two ions with quantized vibrational motion illuminated with 
bichromatic light. The only resonant transitions are from Iggn) to leen) and from legn) to Igen). 
Various transition paths involving intermediate states with vibrational number n f  1 are identified. 

interaction Hamiltonian (ti = 1) 

R,j is the Rabi frequency of the interaction between ion i and laser field j .  Due to  
the Coulomb repulsion the ions are coupled, and by selecting the appropriate laser 
frequencies we may induce the interaction (1) with either the center-of-mass mode 
or the stretch vibrational mode, represented by the ladder operators a and at .  71 
is the Lamb-Dicke parameter, which enters because we want the photonic recoil to 
excite the atomic motion, and u+, is the spin raising operator describing excitation 
of ion i. 

Hint couples the states 1ggn) * {legn f k ) ,  Igen f k ) }  * leen), where the first 
(second) letter denotes the internal state e or g of the first (second) ion and n, n f k  
is the quantum number for the vibrational mode of the ions in the trap, see Fig. 1. 
The only energy conserving transitions are between the states Iggn) and leen) and 
between legn) and Igen). We choose laser frequencies away from resonances so that 
no intermediate states legn f k )  and lgen f k )  are populated in the process. 

The Rabi frequency d for the transition between Iggn) and leen) ,  via interme- 
diate states m, can be determined by second order perturbation theory, 

I). (2) 
(:)' = (eenlHintIm)(mlHint1ggn) 

Eggn + w j  - Em 

where the laser energy w j  is the energy of the laser exciting the intermediate state 
Im). If the laser detuning 6is not too far from the frequency vof the collective 
vibration in the trap we may restrict the sum to Im) = legn f 1) and lgen f l), and 
we get 

where R = R;j is assumed to  be the same for both ions and for both laser fields. 
Eq. (3) contains no dependence on the vibrational quantum number n. This 

is due to  interference between the paths indicated in Fig. 1. If we take a path 
involving In + l), we have a factor of n + 1 appearing in the numerator (m 
from raising and from lowering the vibrational quantum number). In paths 
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involving In - 1) we obtain a factor of n. Due to the opposite detunings, the 
denominators in Eq. (2) have opposite signs and the n dependence disappears when 
the two terms are subtracted. The coherent evolution of the internal atomic state is 
thus insensitive to the vibrational quantum numbers, and it may be observed with 
ions in any superposition or mixture of vibrational states. The vibrational state 
may even change due to heating during the gate as confirmed by Monte Carlo wave 
function simulations in Ref6. 

No particularly demanding assumptions are required for the experimental pa- 
rameters. With a vibrational frequency v / 2 ~  = 200 kHz, and Rabi frequencies 
R / ~ T  of modest 20 kHz, a coherent evolution from 1gg) to lee) is accomplished in 
few ms. Due to our use of off-resonant interactions instead of resonant couplings, 
however, this time scale is much longer than the time scale possible in the original 
ion trap proposal ’. 

3 Fast two-color gate: an operator “multiplication engine” 

In the Lamb-Dicke approximation our bichromatic interaction Hamiltonian has a 
simple harmonic time dependence in the interaction picture with respect to the 
atomic and vibrational Hamiltonian 

where we have introduced the dimensionless position and momentum operators for 
the centre-of-mass vibrational mode z = L ( a  + a t )  and p = ‘ Z ( a t  - a ) ,  and where 
we have introduced the collective internal state observable Jy = $(ny,i + oy,j) in 
terms of Pauli spin matrices for the two ions illuminated. 

The exact propagator for the Hamiltonian (4) can be represented by the ansatz 

4 

1 (5) 
~ ( t )  = ,-iA(t)J;,-iF(t)J z - i C ( t ) J , p  

where the Schrodinger equation i $ U ( t )  = H U ( t )  leads to the expressions F ( t )  = 
- d v R  Ji cos((v - b)t’)dt‘, G(t)  = -dr$l$ sin((v - b)t’)dt‘, and A ( t )  = &?qfi 

If F ( t )  and G ( t )  both vanish after a period 7, at this instant the propagator 
reduces to U(T)  = e-iA(r)J;, Le., the vibrational motion is returned to  its original 
state, be it the ground state or any vibrationally excited state, and we are left with 
an internal state evolution which is independent  of the external vibrational state. 
Note that ( D , ) ~  = 1 implies that J,” = $(2+2gy,ioy,j), yielding an interaction that 
couples Igg) and lee).  The timing so that G(T) and F ( T )  vanish allows faster gate 
operation than in Section 2, because we tolerate that the internal state is strongly 
entangled with the vibrational motion in the course of the gate. 

The interpretation of this rather miraculous phenomenon follows a proposal by 
Milburn lo: Adjusting the phases of laser fields resonant with side band transitions, 
one may couple internal state operators to different quadrature components, so as 
to produce effective Hamiltonians H I  = AIJyx and H2 = X2Jyp. By alternating 

F(t’) sin((v - 6)t’)dt’. 
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square pulse application of the Hamiltonians H I  and Hz we obtain by use of the 
Baker-Hausdorff relation the propagator 

because the commutator of the oscillator position and momentum is a constant. 
Since HI and H z  are proportional t o  the generators for displacements of momentum 
and position, respectively, the equation (6) shows that after operator valued phase 
space translations of fXiJ , . r ,  the oscillator returns to  its original state, but an 
effective Hamiltonian has been synthesized which is the operator product of the 
internal state parts of HI and Hz.  A round trip in the oscillator phase space 
provides a “multiplication engine” for qubit Hamiltonians. 

P 

t 

X 

Figure 2: The paths traversed in phase space and a geometric representation of the function A ( t )  
in case of pulsed (rectangular path) and harmonic (circular path) interaction. 

The bichromatic and the square pulse operations are both sketched in Fig.(2), 
where the geometric interpretation of the resulting operation as an area is clearly 
displayed. The actual spatial displacements are entangled with the internal states, 
and it is easiest to understand the Figure by considering eigenstates of the relevant 
internal state operators. All internal states follow similar curves but scaled accord- 
ing to  the magnitude of the eigenvalues, hence the encircled area becomes internal 
operator valued, as in Eqs.(4,5). The shared oscillator degree of freedom thus pro- 
vides a phase space for geometric excursions, in strong analogy with proposals for 
quantum gate operation using geometric (Berry) phases related to excursion in spin 
degrees of freedom ’. The oscillator offers the special feature, that the phase area 
does not depend on its initial state, the paths in the Figure do not need to begin 
and end at the origin in phase space. 

In Fig. 3 (a) we show results of the slow gate evolution, which is also described 
by Eq. ( 5 ) ,  but where F ( t )  and G(t)  are always small, so that the internal state 
is always disentagled from the harmonic oscillator. (The non-zero values of F ( t )  
and G(t)  are responsible for the small fast oscillations in the figure). The slow gate 
may be stopped when A( t )  M At has acquired the desired value, irrespective of the 
current value of F ( t )  and G(t) .  In Fig. 3 (b), we show the fast gate operation, 
where (v - b)t  = 2 . 2 7 ~  at the time vt M 250, where the maximally entangled state 
h ( 1 g g )  - i lee))  is created. 
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In comparison with the slow gate, the fast gate is not as tolerant to  heating of 
the ionic motion. For a detailed analysis of error mechanisms and their influence 
on gate fidelities, see '. 

Incidentally, it turns outg that by application of the collective spin operator J," 
to a whole string of ions, we may generate a maximally entangled state 

for any number of ions, by simply illuminating all ions with the bichromatic light. 
By use of the fast bichromatic gate this has been demonstrated for 4 ions l l .  

4 Trigonometric and multi-bit gates 

H1 and H2 do not have to  involve the same internal state operator Jy. For any 
commuting operators a and B it is the product of these operators that appears 
in place of J," in Eq. (6). A and B may for example be operators acting on two 
different qubits so thet a two-qubit gat: is produced. A C-NOT gate, for example 
is obtained by using A = (uz,l + 1)/2, B = u+and X1X2r2 = n/2.  

In combination with single particle qubit operations, the C-NOT gate suffices 
to produce any unitary operation acting on all the bits 12. The C2-NOT or Toffoli 
gate described in Ref. l2 thus involves 4 one-bit gates and 3 two-bit gates. Exper- 
imentally, each gate corresponds t o  turning on a given Hamiltonian for a certain 
duration and each gate adds an experimental complication and/or possibility of er- 
ror. We will now show that one may extend the trick in Sec. 3. to  produce higher 
order gates directly. 

According to  our geometric interpretation, two operators act as the sides of a 
rectangle, whose area becomes the product of the two. To produce terms which 
are products of more than two operators it would thus seem necessary to  consider 
a volume in an even larger phase space, but there is, in fact, no reason that a 2- 
dimensional area should not be expressible as a product of three terms or more. 
In Fig. 4, we indicate a trajectory in phase space which follows the outline of a 

0.6 
0.4 
0.2 

0 

0.6 
0.4 
0.2 

0 

0 1000 2000 3000 4000 0 200 400 600 
V t  V t  

Figure 3: Time evolution of density matrix elements calculated using (5). (a) Pertubative regime 
(b) Fast gate. The first curve (counting from above at vt Y 1000 in (a) and vt Y 130 in (b)) 
represents pgg,gg, the second is the imaginary part of pgg,ee, the third is pee,==, and the last curve 
is the real part of pgg,==. In (a) the physical parameters are 6 = 0.9v, 9 = 0.1, and R = 0 . 1 ~ .  In 
(b) the physical parameters are 6 = 0.95v, 7 = 0.1, and R = 0.177~. The parameters in (b) are 
chosen such that a maximally entangled state '(199) - ilee)) is formed at the time vt Y 250. Jz 
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Figure 4: Translations in zpphase space of the oscillator during gate operation: By application of 
an interaction proportional to Cn, the displacement along the pdirection in Fig.2 is rotated into 
another direction given by the angle OC, and the phase spacf: displacements follow the outline of 
a parallelogram whose enclosed area becomes A1 AzAB cos(OC). 

parallelogram, whose area is the product of the lengths and of the cosine function 
of the angle indicated in the figure. In our case, we want this angle to contain an 
internal state operator, and we hence impose a Hamiltonian H = w C n  to the system, 
where ? is the number operator fqr the oscillator. This yields, after a time t = O/w, 
exp(iOCn)xexp(-iOCn) = cos(OC)z + sin(OC)p, so that a displacement along the 
p-axis at this stage is equivalent to a displacement along a direction making the 
angle 0 6  with the paxis (in the t = 0 Heisenberg picture). Successkv? applications 
of XlAx, X z B p  and w C n ,  thus produces the geometric area XlXzABcos(OC), i.e. 
an operator involving a product of three internal state operators. 

We now consider the outcome of applying an interaction which may be described 
by 

H ( t )  = u(t)Az + v ( t )Bp  + s(t)Cn, (8) 

where A, 8 and C are commuting operators acting on the internal states of the 
atoms, and u, v, and s are arbitrary functions of time. With this Hamiltonian the 
time dependent Schrodinger equation for the propagator i d U ( t ) / d t  = H ( t ) U ( t )  has 
the solution 

7 (9) j-J = e-iw(t)e-in3(t) e - iz ir( t )  e -ipP(t) 

with 

S( t )  = c 1‘ s(t’)dt’ 

In the xp-phase space the net action of the propagator is to perfoTm translations 
( z , p )  + (z + i ’ ( t ) , p  - U ( t ) )  followed by a rotation by an angle S(t )  around the 
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origin. Since the functions U ,  p, and S involve the internal state operators A, B, 
and C, the translation and rotation is entangled with the internal states of the bits. 
We now generalize the trick applied in the previous section to ensure that U ,  9,  and 

vanish after a certain time r ,  such that the harmonic oscillator is returned to its 
initial state and we are left with an internal state evolution operator exp(-&'(r)). 
As expected from our geometrical analysis, the expression for W ( r )  in (10) contains 
products of A, B and trigonometric functions of d .  

For a single qubit operator, expressed in terms of Pauli spin matrices, we have 
sin(0a) = sin(@, and we can thus produce three-bit gates directly. Consider three 
bits which are subject to the time independent Hamiltonian 

where M is an integer. After a duration r = M27r/R the propagator (9) reduces 
to exp(-in[(a,l + 0,2 + 1)2 - l]ax3/16) = exp(-i7r(uzl + 1)(oZ2 + 1)0,3/8), which 
is exactly the Toffoli gate. In the ion trap quantum computer this gate can be 
achieved by applying a single pulse of suitably directed and detuned fields to the 
ions. 

5 Applications of cos(0C) 

Rather than the product of three operators, we have in the general case the product 
of two operators and a trigonometric function of the third one. This raises the 
question of applicability of such a product. It is rather cool to have so easy access to 
such a complicated operation, and one may imagine direct applications of periodic 
operator functions for the manipulation of enlarged codewords for qubits which 
encode 10) and 11) onto states with, e.g., 0, 6, 12 and 18 excitations and with 3, 9, 
15 and 21 excitations, respectively 13. 

Here, we shall outline some ideas making explicit use of the trigonometric func- 
tion for quantum computing. Our basic idea is that access to trigonometric func- 
tions of a bounded operator implies access to any function of the operator by Fourier 
transformation. 

The projection operator on the space where all bits are in the 11) state can be 
expressed as product of single particle projection operators fly=, (q2 +1)/2. We now 
observe that if and only if all qubits are in the 11) state, the product fly:, is 
equal to unity, but also the sum j, - J = ~~~1 (u3i-1) only vanishes in that state. 

We now use the Fourier transform xrzl cos(27rkN) = mb(N mod m) which 
can also be applied to operators so that: 

We can thus implement the projection operator on the state where all qubits are 
in the 11) state. More interestingly, we can apply NOT-operations to a selected 
subset of qubits before and after the projection operator, which will then produce 
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the projection operator on any desired state of the register, and we can choose to 
apply such a projection to  only a subset of the qubits. We still have room to choose 
operators A and B, and implement for example a NOT operation on one qubit 
controlled by a specific state of the other qubits. 

exp(--ipAcos(eC)), where A and d are internal state operators, we follow the 
construction of the parallelogram in Fig.4. First, we apply a Hamiltonian propor- 
tional to A p  which performs a translation along the z-axis. Then a Hamiltonian 
H N Cn makes a rotation by an angle 8, and we perform a translation along the 
paxis. By using the operator identity (12) we can devise a Cnc-NOT gate by fol- 
lowing the outline of n, + 1 such parallelograms, one after the other. By rotating 
each parallelogram, so that the first linear displacement is precisely opposite of the 
last displacement of the previous parallelogram, we can save half of the operations, 
as indicated in Fig.4. Note that the sum over 1 implicit in the j, term in Eq. (12) 
just amounts to illuminating several qubits instead of a single qubit at a time. 

In 1997, Grover presented a search algorithm l4 that identifies the single value 
zot hat fulfills f(zo) = 1 for a function f(z) provided, e.g., by an oracle (all other 
arguments lead to vanishing values of the function). If z is an integer on the range 
between 0 and N - 1 = 2n - 1, the search algorithm is able to  find zoaft er on the 
order of fi evaluations of the function. Grover’s algorithm has been demonstrated 
on NMR few qubit systems 1 5 .  In the following we show how our proposal can be 
used to implement the search algorithm. 

The quantum algorithm first prepares an initial trial state vector populating 
all basis states with equal probability. For demonstration purposes, the function 
f(i) can be encoded by letting the state of the register undergo a transformation 
where the amplitude of the zo component changes sign and all other amplitudes 
are left unchanged. This step can be implemented by writing zo in binary form, 
boblbz ... b n - l ,  bi = 0 or 1, and by applying the unitary operator 

To implement the unitary operator which can be written on the form 

The crucial step in Grover’s algorithm is the ‘inversion about the mean’, where 
the amplitude with the sign changed will grow in comparison with the other ampli- 
tudes. The inversion about the mean is given by the unitary matrix l 4  

n 

where I is the N x N identity matrix, and M is the N x N matrix with unit elements 
in all positions. 

In the standard binary basis, the matrix A4 couples all states to  any other 
state, and it can be written as the tensor product rIyLi(c~i~ + l), where the single 
qubit operators uiz + 1 are 2 x 2 matrices with unit elements in all positions. A 
straightforward calculation shows l6  that exp((ir/N)M) = I - $ M ,  which apart 
from an irrelevant global phase yields precisely the inversion about the mean. The 
inversion about the mean is therefore produced directly by the action of the following 
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multi-particle operator 

where we used N = 2”. 
Both Uf and UG can be implemented effectively using (12). To implement the 

function (13), it is easiest to first invert all the bits, which have the value zero in 
20, so that Uf on that state should encode only unit bit values, i.e., precisely the 
operator described in (12). After application of this simple Uf, the qubits encoding 
the value zero should be flipped back again. All qubits should then have their 
uzcomp onents rotated into the z-direction, to use again the operation in (12) to 
implement UG, which is the same operator, defined for the 2-components of the 
spins. 

Further examples of specific gate construction and of the use of trigonometric 
gates are presented in 17 .  

6 Conclusion 

In summary, we have presented a technique to produce multi-bit gates in quantum 
computers where all qubits are coupled to a joint harmonic oscillator degree of 
freedom. We have derived general expressions, and we have exemplified the method 
by suggestions for the generation of C”-NOT gates and a complete Grover search 
algorithm. It is known how to make C2-NOT and C3-NOT gates by means of 
one- and two-bit gates, but it is difficult to make a theoretical comparison of these 
implementations with our proposal, since we build up the desired one-, two- and 
multi-bit interactions continuously in time. 

The essential operation in the Grover search (15) is implemented without indi- 
vidual access to the qubits and, e.g., in the ion trap it is much easier to implement 
the Hamiltonian H = Ci(uiz - l)n than just a single term H = (uiz - 1)n in that 
sum. In addition, it is an experimental advantage to apply as few control Hamil- 
tonians as possible, since imprecision in timing accumulates if many operations are 
needed. 

A recent preprint l8 has addressed the achievements of so-called ‘concurrent 
quantum computing’, in which access to multi-bit interaction Hamiltonians of the 
form IIiul,i is assumed, where the number of terms in the product can be chosen 
at  will. That paper presents ideas for Grover’s and Shor’s algorithm, without sug- 
gesting a practical means to implement the interaction. We believe that our paper 
provides a proposal for such implementation. 

A feature of our proposal worth mentioning is that all operations are expressed 
as unitary gates acting on the qubit degrees of freedom. The oscillator is certainly 
important, but at the end of the gates the qubits actually decouple from the oscil- 
lator. One consequence is that the initial state of the oscillator does not even have 
to be specified. It can be in the ground state, an excited state, or even in an inco- 
herent mixture of states, possibly entangled with environmental degrees of freedom, 
as long as this entanglement does not evolve during gate operation. In this way 
our proposal differs significantly from the recent proposal of hybrid computing 19, 
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where the oscillator degrees of freedom take active part in the calculation. The 
commutator relations for the oscillator operators were crucial for our argument: as 
shown in ’, a finite dimensional ‘data-bus’ cannot provide operators having a non- 
vanishing c-number commutator as x and p or a and at .  If, however, the qubits 
interact with a finite dimensional system, which is in a known initial state, this 
may be used just the same way (e.g., in an eigenstate of the angular momentum 
operator Jz, the commutator of J ,  and J,is a c-number). 

References 

1. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995). 
2. X. Maitre et al., Phys. Rev. Lett. 79, 769 (1997); P. W. H. Pinkse, et al., 

3. G. R. Guthorlein et al, Nature 414, 49 (2001); J. Pachos and H. Walther, 

4. A. Imamoglu, et al., Phys. Rev. Lett 83, 4204 (1999). 
5. Yu. Makhlin et al, Nature 386, 305 (1999). 
6. A. S~rensen and K. M~lmer ,  Phys. Rev. Lett. 82, 1971 (1999). 
7. J. Jones et al, Nature 403, 869 (2000); G. Falci et al, Nature 407, 355 (2000); 

8. A. S~rensen and K. Mpllmer, Phys. Rev. A 62, 022311, (2000). 
9. K. M~lmer  and A. S~rensen, Phys. Rev. Lett. 82, 1835 (1999). 

Nature 404, 365 (2000); C. J. Hood et al., Science 287, 1447 (2000). 

quant-ph/Olll088. 

L.-M. Duan et al, Science 292, 1695 (2001). 

10. G. Milburn, quant-ph/9908037. 
11. C. A. Sackett, et al., Nature 404, 256 (2000). 
12. A. Barenco et al, Phys. Rev. A 52, 3457 (1995). 
13. D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001). 
14. L.K. Grover, Phys. Rev. Lett. 79, 325 (1997). 
15. I. L. Chuang et al, Phys. Rev. Lett. 80, 3408 (1998); J. A. Jones e t  al, Nature 

16. X. Wang, A. S~rensen and K. M~lmer,  Phys. Rev. Lett. 86, 3907 (2001). 
17. X. Wang and P. Zanardi, Phys. Rev. A 65, 032327 (2002). 
18. F.Yamaguchi et al, quant-ph/0005128. 
19. S. Lloyd, quant-ph/0008057. 

393, 344 (1998). 

DISCUSSION 
Chairman: P. Zoller 

L. Stodolsky: I think I understood that you essentially use what is mathe- 
matically SU(2) and then sort of higher spins on SU(2) for this geometric phase 
arguments. 

K. Molmer: I actually use the harmonic oscillator phase space and the asso- 
ciated mathematical group of translations, not rotations as SU(2). 

L. Stodolsky: But, you are using the result, I think, that the geometric phase 
does not depend on any particular representation of SU(2), something, we actu- 
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ally showed a long time ago. I want to make a remark that people in this field 
might be interested in the fact, that you can use, let’s say, SU(3).  If you use a 
three-dimensional phase space you can have more information than in the spin 1 
representation of SU(2)  and the geometric phase will be different. 

K. Mqilmer: I am not sure if I fully understand your proposal. Let me make 
a remark about an important property of the harmonic oscillator phase space in 
contrast to the rotation groups which have only finite representations: the trick 
that we are using really needs the commutator of my operators, z and p ,  to be a 
c-number. And this can only happen for operators acting on an infinite-dimensional 
Hilbert space! If you use the rotation group, any finite representation of that will 
not give you this particular commutator. That’s not t o  say that we cannot use 
finite-dimensional quantum degrees of freedom as ‘data-bus’ to communicate the 
interaction between qubits. It just means that in this case you have to start with a 
well-known state of your ‘bus system’, if you are in an eigenstate of the commutator 
in question, it is effectively a c-number. In the oscillator case, in contrast, I can 
start in any point in phase space and I automatically return to the same point at 
the end of the gate. 

L. Stodolsky: Still I think my remark may be relevant, maybe not for your 
talk if you are using qubits, but for generalizations to some representation of SU(2) .  

K. Molmer: I agree that you can invoke geometrical pictures also for finite 
dimensional representations. In fact this is what we do if we use intenvining qubits 
to communicate between spatially remote qubits. So I don’t disagree with what you 
say. 

S. Lloyd: The oscillators from most applications we can use are in a thermal 
state. Could you comment on how realistic is this in terms of say ion traps, if you 
can do that? 

K. Mdmer: We cannot allow the trap to be in just any thermal state, because 
when we are writing our Hamiltonian, we use an approximation that relies on the 
excursions of the particles being smaller than the wavelength of the radiation. You 
have to cool your ions by laser cooling or other means to have an average excitation 
n t h  which is small enough, for example 10 if your trap is tight enough. Our proposal 
also works for cavity QED experiments where the vibrational motion is replaced by 
the cavity field, which also has to be restricted to not too large numbers. The 
group of Dave Wineland uses these methods in ion traps. We have made complete 
calculations, that I did not show in my talk, of the reduction in gate fidelity when 
you take finite temperatures and heating into account. Due to the increase in the 
number of vibrational modes in the trap, this admittedly becomes a more and more 
serious problem, the more particles you have in the trap. 

L. Accardi: I understand mathematically your commutation trick, but this 
coupling of aywit h x on the one side, and the p on the other side, can you deduce 
that from some physically fundamental interaction? Because otherwise there is a 
realisability problem. Can you implement? 

K. Mdmer: I know I was going a little bit fast during the talk. Using radiation 
we can excite the atomic state and this is represented by the uz operator which 
couples the ground and excited state. If the radiation has a frequency which is higher 
than the atomic transition frequency by exactly the trap frequency, then you will at 
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the same time resonantly excite the center-of-mass motion in the trap, so therefore 
YOU have both the atomic excitation and the at acting on the motional state. The 
corresponding de-excitation process introduces a,  and x and p appear as suitable 
combinations of these two terms. Of course, you need a spatially dependent coupling 
to  actually couple different motional states, but the laser field has a wavelength, 
and hence such a dependence. In fact, the laser wavelength is related to the photon 
momentum, and this offers the picture of the atom being excited and spatially 
kicked by the photon recoil at the same time. Hamiltonians of the kind that I have 
discussed have indeed been made in the experimental ion trapping groups. 
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BELL’S INEQUALITIES 

KARL GUSTAFSON’ 
Department of Mathematics, University of Colorado, 

Boulder, GO 80309-0395 USA 

Much of the Bell Theory for quantum mechanics may be placed within a general 
operator trigonometry which I developed independently about 35 years ago. From 
that mathematical viewpoint, certain issues in the Bell theory are seen as “just 
geometry”. 

1 Introduction and Conclusions 

Many issues combine for consideration when speaking of Bell’s Inequalities: non- 
locality, realism, hidden variables, incompatible measures, wave function collapse, 
other. Each of these issues then may be viewed from several viewpoints: historical, 
theoretical, physical, experimental, statistical, communicational, cryptographical, 
and mathematical. Here I will stress the latter viewpoint. In particular, I will show 
that much of the Bell theory for quantum spin probabilities may be placed within a 
general operator trigonometry which I developed independently about 35 years ago. 
From that mathematical viewpoint, much of the Bell theory is “just geometry”. 

In Section 2 I will provide some background for the issues and the viewpoints 
surrounding Bell’s Inequalities. Much has been written/published on these matters 
so here I will just present a few key facts and some bibliography for the interested 
reader. In Section 3 I will quickly expose the key aspects of my operator trigonom- 
etry which enable one to embed much of the Bell theory within it. In Section 4 I 
further explore the improved geometrical understandings of the Bell theory from 
the trigonometric and mathematical viewpoint. Sections 5 and 6 present very brief 
coments on probabilistic and physical understandings. Section 7 contains additional 
remarks prompted by a referee. 

As in my presentation at the 22nd Solvay Conference on Physics (Delphi, Greece, 
24-29 November, ZOOI),  I will state the principal conclusions now. First, from the 
operator trigonometry we have the following key geometrical fact: 
Theorem 1.1 Let x , y , z  be any 3 nonzero vectors in a real OT complex Hilbert 
space of any dimension. We take (Ix(I = I(y(( = (Iz(I = 1 for convenience. From 
( z , Y )  = a1 + i h ,  ( Y , z )  = a2 + ibz, ( z , ~ )  = a3 + ib3, define angles 4xy, 4yrr4xz 
in [ O , T ]  by C O S ~ , ~  = a l ,  cosy= = a2, C O S ~ , ,  = a3. Then there holds the general 
triangle inequality 

4zz s 4 x y  + 4 y z  (1.1) 

The following conclusions follow from the Theorem and related considerations 
to  be discussed in the rest of this paper. 
Corollary 1.1 Much of the Bell (1965), Wigner (1970), Accardi (1982), Gudder- 
Zanghi (1984), Herbert-Peres (1993), Williams-Clearwater (1998), Khrennikov 

*ALSO AT INTERNATIONAL SOLVAY INSTITUTES FOR PHYSICS AND CHEMISTRY, 
1050 BRUSSELS, BELGIUM 
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(2UUU), others, considerations are contained in the above Theorem. 
Corollary 1.2 The Bell-Wigner inequality is a necessary condition for a Kol- 
mogorovian probability model to apply to  those situations. The Accardi-Gustafson 
inequality is a necessary condition for  a quantum mechanical probability model to 
apply to those situations 
Corollary 1.3 From the mathematical viewpoint of this paper, one cannot argue 
“nonlocality” on the basis of violation of Bell’s Inequality. 

2 Bell Theory 

One can take the Bell Theory back to  the early days of quantum mechanics and its 
interpretations. Although quantum mechanics “works”, some of its fundamental 
theoretical underpinnings are not fully understood to this day. Bell’s inequalities 
attempted to remove some of this confusion by providing “tests” of the validity of 
certain assumptions of quantum mechanics. However, it seems that Bell’s inequal- 
ities also added to the confusion in some ways. Following is just a sketch of some 
of the related developments in this story. The reader may find a huge literature on 
these matters elsewhere. 

The 1935 paper ’ of Albert Einstein, Boris Podolsky and Nathan Rosen was a 
gedankenexperiment which purported to demonstrate that quantum mechanics can- 
not provide a complete description of reality. According to the extensive account 

was written by Podolsky, 
the origins of this paper go back to  1930 when Niels Bohr ‘defeated’ Einstein’s 
earlier gedankenexperiment presented at the Sixth Solvay Congress in Brussels in 
1930, an important episode in in the famous ongoing debate between the two which 
had begun already ten years earlier in 1920. To better present his view, Einstein 
then, along with Richard Tolman and Podolsky, wrote a paper with another 
gedankenexperiment which argued that if one accepted quantum mechanic’s uncer- 
tainty principle, then one could not even predict the past, let alone the future. Also 
Einstein sharpened his arguments by shifting attention away from direct attacks 
on the uncertainty principle itself but instead with more focus on logical paradoxes 
which would follow from it ‘. Moreover Einstein modified his photon box gedanken- 
experiments with their paradoxical consequences to  the more clear-cut two particle 
gedankenexperiment which appears in the 1935 EPR paper ’. Erwin Schrodinger 
immediately agreed with the EPR argument, reformulated it, and came up with 
his own gedankenexperiment now known as his half-dead half-alive cat 5 .  

The conclusion of the groundbreaking paper’ was: “While we have thus shown 
that the wave function does not provide a complete description of the physical re- 
ality, we left open the question of whether or not such a description exists. We 
believe, however, that such a theory is possible.” Thus the emphasis in [l] was on 
inadequacies of a theory in which all information is in the wave function. In 1951 
David Bohm responded by reformulating the EPR argument to one expressed 
more simply in terms of spin functions, and presented an argument that “no theory 
of mechanically determined hidden variables can lead to all of the results of the 
quantum theory.” Nonetheless Bohm then introduced his version of such a hidden 
variable theory. This was like earlier semiclassical hydrodynamical or pilot wave 

of Jammer, although much of the actual EPR paper 
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quantum models, except for two new features. First, the existence of a quantum 
mechanical potential, shall we say among all of the particles in a considered ensem- 
ble $, was assumed. Second, each particle trajectory will be well-posed if you know 
its initial condition. But because the initial position could not be experimentally 
measured, it is a hidden variable. 

In 1964 Bell presented his famous inequality and exhibited certain quantum 
spin measurement configurations whose quantum expectation values could not sat- 
isfy his inequality. Bell’s analysis assumes that physical systems, e.g. two measuring 
apparatuses, can be regarded a s  physically totally separated, in the sense of being 
free of any effects one from the other. Thus his inequality could provide a ‘test’ 
which could be failed by measurements performed on correlated quantum systems. 
In particular it was argued in [7] that local realistic hidden variable theories could 
not hold. However, the exact nature of hidden variables as viewed by Bell is unclear 
from [7]. 

demonstrated 
that beyond any reasonable doubt the Bell inequalities are violated by certain quan- 
tum systems, and papers continue to  appear with further demonstrated violations. 

In a 1970 paper 9, Wigner simplified and clarified in several ways the argument 
of Bell. Wigner assumed that all possible measurements are predetermined, even 
if they involve incompatible observables, and moreover any measurement on one 
of two apparatuses does not change the preset outcomes of measurements on the 
other apparatus. Thus the meanings of locality and realism are made more clear 
and both assumptions are present in the model setup. It is helpful to imagine, 
for example, that the ‘hidden variable’ is just the directional orientation of each of 
the two apparatuses, each of which can be thought of as just a three-dimensional 
possibly skew coordinate system, for example. Then two spin 1/2 particles are 
sent to the apparatuses, each to  one, both coming from a common atomic source, 
with perfect anticorrelation and singlet properties. Nine measurements are then 
needed to  simultaneously measure the direction vectors w1, wg, w3 of the two spins. 
Each spin has two possible values 1/2 = +, -1/2 = -, so each measurement can 
permit four relative results: ++, --, +-, -+. Therefore there are 4’ possible 
outcomes. Wigner then assumes that the spins are not affected by the orientation of 
the particular measuring apparatus. This reduces the outcomes to 26 possibilities. 
For example, if the hidden variables are in the possibility domain (+, -, -,; -+-), 
then the measurement of the spin component of the first particle in the w1 direction 
will yield value spin = +, no matter what direction the spin of the second particle 
is measured. 

Although Wigner [9] doesn’t state any theorems, I would now like to formalize 
his argument into theorem form here because it will be helpful later on in this 
paper. I will, however, use Wigner’s notation. 
Theorem 2.1 In the above setup, let 642,&3,831 be the angles between the three 
directions w1, w2, w3. T h e n  the probability that the spin component of particle 1 in 
the wi direction and the spin component of particle 2 an the Wk direction both mea- 
sure + or both measure - is  3 sin2 (9). Otherwise the probability of measurements 
+- or-+ i s ~ c o s 2 ( + ) .  
Proof: The singlet state is assumed to  be spherically symmetric so that the total 

As is well known the 1982 physical experiments of Aspect et al. 
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probability of the first particle’s spin being in the opposite direction is also 1 /2 .  
The probability that the measurement of the spin component of the first particle in 
the wi direction and the measurement of the spin component of the second particle 
in the wk direction are both of the same sign is a sin2(Oik/2) because otherwise the 
probability is f cos2(Oik/2) and these two conditional probabilities must be equal 
and add to 1. The fact that such quantum spin probabilities are given trigonometri- 
cally as I($(wi),  +(wk))I2 = cos2(8ik/2) in terms of the angle Oik between directions 
wi and wk is a special property of spin systems and for example the Eulerian angle 

Wigner [9] states that one can obtain these conditional quantum probability ex- 
pressions “by direct calculation” but does not provide it and instead offers roughly 
the above argument, but with no mention as to  the origin of his particular trigono- 
metric expressions. Of course we all know that quantum probabilities within a 
Hilbert space model become inner products which for normalized state vectors 
become cosines, but I want to  emphasize here the particular nature of these par- 
ticular spin models which give such particular trigonometric expressions, because 
those will tie directly my earlier general operator trigonometry to  those quantum 
spin probabilities. 

Bell’s inequality [7] gave a necessary condition for the existence of a classi- 
cal, e.g. Kolmogorovian, probability model for a given set of correlation func- 
tions. This inequality was not satisfied by all of the possible quantum mechan- 
ical correlations of two-spin systems in a singlet state. Wigner [9] corrected the 
posing of Bell’s question, to place the issues squarely within a quantum mechan- 
ical Hilbert space, and with the issues directed at appropriate quantum mechan- 
ical conditional probabilities. In 1982 Accardi and Fedullo l 1  went further. Let 
A,  B,  C, . . . denote observable entities with possible real values a,, bp, cyr . . . re- 
spectively. Let P ( A  = a ,  ( B  = bp) denote the conditional probability that observ- 
able A has value a ,  given that observable B has value bp, likewise for the other 
observables. It is assumed that all of these conditional probabilities are symmet- 
ric, e.g. P ( A  = a ,  I B = b p )  = P ( B  = bp I A = a,). Restrict attention to  
the case of three observables and two possible obtainable values each. Then the 
conditional probabilities P ( A  I B) ,  P(B I C),  P(C I A )  are said to satisfy a two- 
dimensional Hilbert space model (real or complex) if for each observable A,  B, C 
there exists an orthonormal basis {&}, { $ p } ,  {x,}  within the Hilbert space such 
that the conditional probabilities are given (e.g., in quantum mechanical sense) by 
P ( A  IB ) = I ( & , $ p ) I 2 ,  likewise the others. Let p , q , r  be any three (potential con- 
ditional probabilities) numbers in the interval (0 ’1 ) :  we comment that it is easier 
not to  have to  consider the degenerate cases at  the ends of that interval, and let 
I (qhr$1)12  = p ,  1(+1,x1)I2 = q, I ( X 1 , & ) l 2  = r. Then Accardi and Fedullo l 1  proved 
the following result. 
Theorem 2.2 I n  the above setup, p ,  q, r admit a complex Hilbert space model i f  and 
o n l y i f I p + q + r - l (  s + 2 ( p q r ) 1 / 2 ,  andarea lHi lber t spacemode l i f l p+q+r-1  = 

Proof: See the details in l l .  I have chosen to state the theorem in the way it is 
expressed in Gudder and Zanghi l2  where a simpler proof is given. In [12] it is 
noted that their approach allows to  consider also the case of four or more events. 

representation for S U ( 2 ) ,  see, e.g. ( [ lo ] ,  p. 225). 

f 2 (pqr )1 /2 .  
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I will return to the Bell Theory in later sections of this paper. There are many 
aspects I will not discuss at  all. But the next step in the logical development 
from my perspective is to connect some of the above considerations to my operator 
trigonometry. 

3 Trigonometric Theory 

Here I want to place the Bell-Wigner-Accardi et al. theory of quantum probabilities 
for spin systems into what I regard to be its natural and more general setting: 
that of my operator trigonometry [13,14,15,16,17]. The key link to this connection 
between the abstract operator trigonometry and the quantum probability theory 
comes by noting that Accardi and Fedullo’s ([ll], Proposition 3, Eq. (19)), namely 

(3.1) 
< 

COS2 a + cosz p + C O 2  y - 1 = 2 cos a cosp cosy 

a necessary and sufficient condition for the angles a, p, y of a quantum spin model in 
a 2-dimensional complex Hilbert space, is precisely the same as (see, e.g., Gustafson 
and Rao 14, Lemma 3.3-1, equation (3.3-3)) the operator trigonometry relation 

for the real cosines alra2,a3 of the angles between arbitrary unit vectors in any 
complex Hilbert space. The angles of inequality (3.1) are related to transition 
probability matrices P ( A  1 B ) ,  P ( B  1 C ) ,  P(C 1 A) for three observables A, B,  C 
which may take two values. The angles of (3.2) are related to a triangle inequality 
for general operator angles within the general operator trigonometry. Moreover, 
Wigner’s version, ([9], Eq. (3)) of Bell’s inequality, namely 

1 .  1 > 1  1 
2 2 2  $831 (3.3) 

1 2 1  5 sin -823 + - sm2 -el2 = - sinZ 

is also a special instance of the general operator trigonometry. By this I mean, 
as will be shown below, that Wigner’s expression (3.3) may be inserted into my 
operator trigonometry in such a way as to transparently violate (3.1) for certain 
angles. 

There are many parts of the operator trigonometry (see 13, 14, 15, 16, l7 and 
citations to the earlier work therein) that are interesting in other scientific do- 
mains but are not needed here. So I will skip them all. The principal entities of 
the operator trigonometry are the angle @ ( A )  which measures the maximal turn- 
ing capability of an operator A, the associated entities cos 4 ( A )  and sin 4 ( A ) ,  and 
the antieigenvectors q which are most turned by A. In some sense the opera- 
tor trigonometry can be viewed as extending the Rayleigh-Ritz theory of operator 
eigenvectors and eigenvalues to a larger theory also including operator antieigen- 
vectors and antieigenvalues. However, important for our purposes here is a very 
small piece of the operator trigonometry, the following ‘micro’ triangle inequality 
(Gustafson and Rao, 1971, see [14]) for arbitrary unit vectors z,y,z in a Hilbert 
space. Let (z,y) = a1 + ibl, (y,z) = a2 + ibz, ( z , z )  = a3 + ib3,  and define the 
angles ~ z y , ~ y r , g 5 z t  in [O,w] by C O S + , ~  = a ~ , c o s ~ , ,  = a2,cos4,, = a3. For the 
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(3.4) 

A Gram matrix is positive semidefinite in any number of dimensions, and definite 
iff the given vectors are linearly independent. 
Theorem 3.1 For arbitrary unit vectors x ,  y ,  z in a real or complex Hilbert space, 
one has 

< 452 = 4 2 y  + 4y2. 

Proof: It suffices to  show 

(3.5) 

which by the sum formula for cosines is equivalent to 

(3.7) 

The desired result (3.5) follows trivially when the right side of (3.7) is negative. In 
the other case we need 

( 1  - aT)(1-  a;) 2 (a1a2 - a3) , (3.8) 
2 

which is equivalent to (3.2). But for unit vectors the determinant of the Gram 
matrix (3.4) becomes 

I a3 a2 1 I 
which gives (3.2), hence (3.6), hence (3.5). W 

Now we may give 18,19,20,21 an explicit connection between the operator 
trigonometry and the quantum probabilities. 
Theorem 3.2 The Accardi-Fedullo quantum probability inequality (3.1) and The- 
orem 2.2 above are special instances of the operator trigonometry. The Wigner 
quantum probability inequality (3.3) and his other spin probability configurations 
(see below) are special violations of the operator trigonometry. In this sense the 
operator trigonometry provides a natural quantum trigonometry. 
Proof: Clearly (3.1) is a special instance of (3.2) and hence of the operator 
trigonometry. In the same way all of the quantum spin inequalities in the Accardi- 
Fedullo theory [l l]  may be seen within the operator trigonometry. We admit to  
being vague about the details (as Wigner was in [9])  so we don’t try to examine ev- 
ery detail of this statement here. Stated another way, the point we contend is: these 
inequalities are a direct mathematical consequence of the Hilbert space structure, 
without any additional physical ideas involved. 
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To continue the proof of Theorem 3.2, let us turn next to Wigner’s inequalities. 
It is useful to explicitly follow their order of appearance and his analysis of them 
in his paper [9]. As we outlined in the previous section, Wigner reformulates Bell’s 
set up and reduces the outcomes to 26p ossibilities, e.g., the instance in which the 
hidden variables are in the domain (+, -, -; -, +, -) that we mentioned above. 
Then he shows that these 64 possibilities can be grouped by sixteens, with most 
terms cancelling, e.g., see his argument to obtain the expression [9, Eq. (2)]. In 
the first of the four resulting spin measurement possibilities, i.e., that of ++ for 
first particle in direction w1 and second particle w3, he then arrives (assuming 
joint probability factorization (191, Eq. (l)), an assumption Bell also made) at the 
conclusion that the “hidden parameters can reproduce the quantum mechanical 
probabilities only if the three directions w l ,  wz,w3 in which the spins are measured 
are so situated that 4 sin2 $6’23 + sin2 $42 2 $ sin2 ;6’31”, inequality (3.3) above. 
Then to make the point very clear, he specializes to  the case in which the three 
directions w l ,  w2, w3 in 3 space are coplanar and with w2 bisecting the angle between 
wland w3. Then 012 = 6’23 = &1/2 and inequality (3.3) becomes 

> from which cos2($?12) 5 1/2 and hence 6’31 = 26’12 = 7r .  Thus the condition (3.3) 
necessary for appropriate quantum mechanical spin probabilities for the hidden 
variable theories is violated for all 6’31 < n. Wigner then asserts (without giving 
the details) that the same conclusion may be drawn for all coplanar directions. 

Let us now look at this conclusion and its extension to  all coplanar directions 
from the operator trigonometric perspective. The Gram determinant G (3.4) van- 
ishes if and only if the three directions are coplanar, no matter what their frame of 
reference. Then we may write the equality in (3.9) as follows 

(1 - U:) + (1 - U;) - (1 - a:) = 2U3(U3 - U l U 2 )  (3.11) 

or in the terminology of (3.3) 

sin2 (;el,) + sin2 ( $6’2,) - sin2 ( ;el3) 
(3.12) 

Nonquantum probability violation (3.3) in the coplanar case is equivalent to the 
right side of (3.12) being nonnegative. Since all half-angles do not exceed n/2, 
except for the trivial case when ;813 = 7r/2, the nonnegativity of (3.12) means that 
of its second factors. By choosing the direction w2 to be the “one in between” among 
the half-angles, we can without loss of generality assume that i812 + 46’23 = i6’13. 

the required nonnegativity of (3.12) then reduces by the elementary cosine sum 
formula to 

= 2 cos ( ;el,) [cos (;el,) - cos (;el,) C O ~  ( ;e23)] . 

i.e., cos((Q12 + 6’23)/2) 2 cos((6’lg - 6’23)/2), which is false for positive 6’23. This 
completes Wigner’s omitted argument and is the meaning of coplanar quantum 
probability violation. 
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Wigner considers two other configurations for quantum nonprobability violation, 
namely ([9], Eqs. (6) and (7), respectively) 

1 
2 2 

+ sin2 -023 + sin2 

and 

(3.14) 

(3.15) 

As Wigner notes, (3.15) gives (3.3), and moreover, the positivity of the three cycli- 
cally interchanged versions of (3.15), plus that of (3.14), is a necessary and sufficient 
condition for the possibility to  interpret the spin measurements in the wi directions 
on a singlet state in terms of hidden variables. 

How do these look from the operator trigonometric perspective, using only the 
Gram matrix and cosine sums? Using from (3.9) the general Grammian expression 

[GI= (1 - a:) + (1 - a;) + (1 - a:) + 2(alUza3 - 1) (3.16) 

immediately (3.14) and (3.15) become, respectively 

(3.17) 1 >  
2 

alaza3 - -1GI = 0 

and 

(3.18) 

We note that (3.16) brings us more quickly to  (3.18) which is the same as (3.12) 
and (3.15) but now for arbitrary directions. Also (3.16) expresses the positivity of 
(3.14) in a more delicate manner (3.17) which includes the degree of linear inde- 
pendence of the wi directions. Thus the operator trigonometry perspective makes 
more precise both qualitatively and quantitatively the arguments of Wigner and 
more importantly, when his angles violate Theorem 3.1. 

This was an important paper which 
not only advanced Wigner’s treatment [9] of the Bell theory but also clarified the 
statistical meaning of the complex numbers in quantum mechanics, a longstanding 
question. In addition l1 stressed the notion of statistical invariants to  determine 
whether probability models were Kolmogorovian or not. As we did with Wigner 9, 

we wish to  look closely at some details in [ll] while ignoring some larger picture 
considerations. 

Accardi and Fedullo [ 111 emphasize conditional probabilities, also called transi- 
tion probabilities, in contrast t o  Bell’s [7] arguments with correlations and Wigner’s 
[9] arguments with configuration combinatorics. Conditional probabilities 

> 2U3(alaz - a3) = 0. 

We return to Accardi and Fedullo l l .  

P ( A  = a ,  I B 2 bp), P(B = bp I C = cY), P(C = c7 I A = a,) (3.19) 

are assumed to  satisfy symmetry conditions 

P ( A  = a, IB = bp) = P ( B  = bp I A = a a ) ,  etc. (3.20) 
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and are said to admit a Kolmogorovian probability model if there exists a prob- 
ability space (R,O,p) and for each observable A,  B,C a measurable partition 
A,, Bp,  C,, of R such that for each observable outcome a, p, y 

(3.21) 

The transition probabilities (3.19) are said to satisfy a complex Hilbert space prob- 
ability model if there exists a complex Hilbert space 'H such that for each observable 
A, B, C there exists an orthonormal basis (&), (Qs), (x,) such that for each a, p, y 

P ( A  = a ,  IB = b g )  = I(da,?l0)l2. (3.22) 

Real Hilbert space versions are also defined the same way. We refer the reader to 
l1 for more details. 

Limiting discussion to three observables taking only two values, the conditional 
probabilities (3.19) may be represented by the following transition probability ma- 
trices 

[ p 
1 - p ]  = [ c0s2(a/2) sin2(a/2) 

1 - P P  sin2(a/2) c0s2(a/2) P = P ( A  IB ) = 

As in [ll] we assume for simplicity 0 < p ,  q, T < 1, 0 < Q, p, y < 7r. Some reasonable 
probability completeness and positivity assumptions are made and then it is shown 
(111 that P, Q, R of (3.23) admit a Kolmogorovian probability model if and only if 
the inequality 

(3.24) < <  I p + q -  11 = T = 1 - Ip-ql 

holds. We will not pursue the classical probability issues here. 

space model existing, the Pauli matrices 
For conditions for a quantum mechanical spin system to have a complex Hilbert 

0 1 =  [;;I,  0 2 =  [pJ,  u3= [ l o  0 -1 ] (3.25) 

and spin operators u a = alal+ ma2 + 03a3 for a = ( a l ,  a2, a3) a real 3 vector of 
norm 1 are considered. A spin model for the transition probabilities (3.23) is said to 
exist if there exist three normalized 3 vectors a,  b, c such that the the orthonormal 
bases $,(a), $p(b),  Q,(c) realize the matrices P, Q, R of (3.23) in the sense of (3.22). 
In this way the question of the existence of a Hilbert space probability model is 
reduced to the question of the existence of three norm-1 vectors a,  b, c such that 

(3.26) 
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where cosa = cosOabr cosp = cos6bc, cosy = COS~, ,  link the angles of (3.23) to 
the angles O between the sought-for directions a ,  b, c. The setup is the same as in 
Wigner but the setting is now framed specifically in terms of competing classical 
or nonclassical probability models. In particular, it is shown ( [ l l ] ,  Proposition 3, 
Corollary 6, Theorem 3.2) that such vectors a ,  b, c exist if and only if 

cos2 a + cos2 p + cos2 y - 1 s 2 cos CY cos p cos y. (3.27) 

Immediately we recognize that (3.27) is the condition for the nonnegativity of our 
Gram determinant. In other words, (3.27) is always satisfied for any three normal- 
ized direction vectors in a complex Hilbert space, with equality holding if and only 
if those vectors happen to  be coplanar. In other words, the operator trigonometry 
provides the natural geometrical model for the quantum probability theory. That 
is an emphasized main outcome of this paper. 

Theorem 3.3 The Accardi-Fedullo inequalities and Theorem 2.2 are properties of 
a real or complex Hilbert space independent of any additional physical or probabilis- 
tic ideas involved. Moreover the fact that equality is  the rule f o r  the real Hilbert 
space case is  just  due to  the fact that the real Hilbert space is  isomorphic to  R2 and 
all vectors in there are coplanar. 
Proof: As we have shown above, all of these inequalities may be expressed in terms 
of the Grammian matrix being a positive semidefinite Hermitian operator, with de- 
terminant given by (3.9). As shown in ( [ l l ] ,  Theorem lo),  a P,Q, R transition 
matrix real Hilbert space model can occur iff the three direction vectors w l ,  w2, w3 
are coplanar, viz., the Grammian IGI = 0. One could conclude the same by elimi- 
nating the u2 spin matrix degree of freedom from (3.25). With respect to [12] the 
meaning is that of no allowed phase a or p. 

Theorem 3.4 The  geometrical meaning of the important triangle inequality (3.5) 
of Theorem 3.1 is  that of  adjacent real angles created by adjacent vectors in a n  
arbitrary preHilbert space of any dimension. 
Proof: Given any three unit vectors x ,  y, z, they determine as above Theorem 3.1 
three real angles &y, q&, qbyr between these adjacent vectors. For the complex 
case one may reconstruct three real vectors i, 5, t from the real angles dZY, &=, q5yz 

H 

We may express the above determinations as follows. 

In the same way we may say 

defined by the real part of the complex inner product. 

4 Augmentation of Geometrical Understandings 

The next three sections of this paper extend my previous discussions and advance 
earlier understandings of what is really going on with Bell’s Inequalities. Again 
no attempt at completeness is made. In fact I will just select a few of the better 
books that treat Bell Theory, and then provide my own alternative understandings. 
Because of time limitations for this conference paper deadline I will restrict my 
treatment here to  three understandings: geometrical, probabilistic, physical. From 
these discussions will follow Corollaries 1.1, 1.2, 1.3. 

In the paper up to  this point I have stressed that much of the Bell theory, when 
it is placed into my operator trigonometry, takes on a much more geometrical nature 
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than was heretofore recognized. I plan to extend that “quantum trigonometry” in 
coming papers. In this section I will (A) note a few literature citations as to triangle 
inequalities and comment on those, (B) treat Bell’s inequalities as equalities, (C) 
comment on Bell’s original inequality from a mathematical perspective. 

(A) Triangle inequalities. A number of authors have noticed resemblances 
or analogies to triangle inequalities in Bell-type arguments. My contribution pre- 
sented in this paper may be stated: one need not resort to “analogies”. There is a 
fundamental Hilbert space triangle inequality (Theorem 1.1) which explains much 
of the Bell theory. 

For example, Wigner [9] and Accardi and Fedullo [ll] make statements “have 
the form of triangle inequalities for three sides” and “equivalent to a couple of 
inequalities which are necessary and sufficient conditions. . .to be adjacent angles of a 
tetrahedron in R3 ,” respectively. However the general Hilbert space inequality (1.1) 
was not glimpsed. Moreover as we have seen in the previous section, Wigner’s [9] 
‘triangle inequality’ is sometimes in violation of the true Hilbert space fundamental 
triangle inequality of Theorem 3.1. 

Williams and Clearwater 22 in a very useful and accessible book on quantum 
computing state ([22], p. 194), (‘or more simply 

which is Bell’s Inequality. Note the similarity to a ‘triangle inequality’ where the two 
‘sides’ are longer than the longest ‘side’. Also in analogy to this triangle inequality 
we should note that it applies to Euclidean space and that Bell’s Inequality applies 
only to worlds with local interactions.” I will come back to (4.1) later, but for now 
the point is that (4.1) is not ‘analogous’ to a triangle inequality, we know from my 
discussion in Section 3 above that (4.1) may in some instances violate my basic 
triangle inequality (1.1). To verify this, note that (4.1) is equivalent [22, p. 1951 to 
Wigner’s formulation (3.3). 

Khrennikov (23, p. 5937) states “to consider Bell’s inequality (and its gener- 
alizations) as analogues of the inequality for the sum of angles in a triangle. The 
latter inequality gives the possibility to find the right geometry to describe some 
physical phenomena.” The point I am making in this paper is that I can show 
in many instances that the ‘right geometry’ has indeed already been found: my 
operator trigonometry. Let me hasten to add here that in this paper I have not 
been attempting generality so when I say ‘Bell inequality’ I mean just one of them, 
without distinguishing whether it be Wigner, CHSH, Cirelson generalization. The 
trigonometric details for each of these will be worked out systematically elsewhere. 

(B) Bell Equalities. It is interesting to render Bell inequalities, equalities. 
Then one may express analytically exactly the “violation zones”. I earlier 21 men- 
tioned this in terms of the Grammian expressions such as (3.9). Here let me proceed 
somewhat differently. Again without a full development, I proceed via an example. 
Consider the nice treatment of Bell’s Inequalities in Bohm (24, pp. 347-354). A 
very large number of particles in the spin singlet state are considered. Let a, b, c ,  d 
be four arbitary chosen unit vector directions in the plane orthogonal t o  the two 
beams produced by the source. Let vi(a) and vi(d) be the “hidden” predetermined 
values f l  of the spin components along a and d, respectively, of particle 1 of the i th 
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pair, similarly wi(b) and wj(c) for particle 2 values along directions b and c.  Then 
the average correlation value for particle 1 spins measured along a and particle 2 
spins measured along b is 

In the same way one considers the average correlation values E(a, c ) ,  E(d, b), 
E(d,c) and adding up all pairs as i runs from 1 to N one arrives at  the Bell 
inequality 

IE(a, b) + E(a, c )  + E(d, b) - E(d, c)ls 2. (4.3) 
Demanding this estimate hold as well for quantum mechanical expectations 
E(a, b) = -a .  b, one has ([24], p. 349) 

la. b + a .  c +  d .  b - d . cI = la. (b + c) + d .  (b - cI 

2 lallb + cI + ldllb - cI 

= J2+2cosq5+J2-2cosq5 

(4.4) 

where q5 is the angle @bc (a notation I will use below) between b and c.  Then 
one observes that the last expression is maximized to  value 2 f i  when &c = 7r/2, 
and “any configuration sufficiently ‘near’ to” the directions providing this maximal 
violation of Bell’s inequality will also violate it. 

Wishing now to preserve equality in the above so that we may analytically 
express what we may call the ‘violation boundaries, violation regions’, starting 
from (4.4) we have 

la. b + a . c  + d . b - d .  cI = la. (b + c )  + d .  (b - c)I 

(4.5) 
= lllb + CII cos ea,b+c + Ilb - CII cos ed,b-cl 

= 1(2 + 2 COS 8bc)1/2 cos ea,b+c 

f ( 2  - 2cOs@b~)’/~ COSed,b-cl 

Squaring this expression and writing everything quantum trigonometrically, 

la. b + a .  C + d . b - d .  cl2 = (2 + 2c0s e b c )  COS2 ea,b+c 

+(2 - 2 cos ebc) cos2 @d,b-c) 

+2(4 - 4 cos2 8bc)1/2 cos ea,b+c cos ed,b-c 
(4.6) = 4 cos2(8bc/2) cos2 ea,b+c 

+4 sin2(obc/2) cos2 ed,b-c 
2 +4 sin cos ea,b+c COS ed,b-c. 

In the above I used two standard trigonometric halfangle formulas. Now substi- 
tuting the standard double angle formula sin& = 2sin(Obc/2) cos(&,c/2) into the 
above we arrive at 

la. b + a. C + d . b - d . CI2 = 4“Js ebc/2) COSea ,b+c  + Sin(ebc/2) COS 8d,b-cI2 (4.7) 
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and hence the quantum Bell equality 

la. b + a. C + d . b - d .  CI= 21 C0S(ebc/2) COS + Sin(ebc/2) COSed,b-cl. (4.8) 

We may also write the righthand side of (4.8) as twice the absolute value of the 
two-vector inner product 

u1 ’ u2 (cos(ebc/a), sin(ebc/2)) ’ (cos @a,b+cr cos ed,b-c) (4.9) 

to arrive at the Bell  equality 

la. b + a . c + d .  b - d . c l =  ~ ( c o s ~ B ~ , ~ + ~  +c0~2ed,b-c)1/21~~~B,,,,,I. (4.10) 

The right sides of these two Bell equalities (4.8), (4.10) isolate the “classical proba- 
bility factor” 2 from the second factor, which may achieve its maximum a. That 
the latter maximum is consistent with the third factor in (4.10) also achieving its 
maximum value 1 may be seen as follows. Fix any directions b and c. Then choose 
a relative to b + c and choose d relative to b - c so that cos2 &,b+c = 1 and 
~ o s ~ O d , b - ~  = 1, respectively. Now we may choose the free directions b and c to 
maximize the third factor to COSB,,,~, = f l .  But that means the two-vectors u1 
and uzare colinear and hence 

and thus the important angle e b c  is seen to be f a / 2 .  More to the point, the above 
Bell equality allows one to exactly trace out the “violation regions” analytically in 
terms of the trigonometric inner product condition 1 5 Iu1 . u2I 2 a. From this 
point of view, there are no Bell inequalities. Each should be replaced with a Bell 
equality. 

Let me summarize the above. One started with a classical probability correlation 
definition (4.2) and derived a Bell inequality 1 . . . 1 5 2. The “equality” version of 
this classical probability version would be in the individual terms 

On the other hand, inserting the quantum correlation definition into the left side 
of (4.3) results (4.4) in the Bell inequality I . . . I 5 2f i .  My equality version (4.10) 
of this becomes the vector trigonometric identity 

2 I COSeab  + Coda, + cosebd - COS&c( = 2(c0S2 ea,b+c + cos ed,b-c)1/2( COSezLl,uz(. 
(4.13) 

It could be useful t o  call (4.13) the quantum spin correlation identity. But it is just 
a mathematical result in vector trigonometry. 

In retrospect, one may view my expression (3.12) as a Bell equality, or perhaps 
more appropriately named, a Wigner-Gustafson identity. The left side is Wigner’s 
expression which from (3.3) he wanted to be nonnegative. The right side tells you 
when, and when not, that will be the case. What Wigner imagined to be a ‘triangle 
inequality’ is now corrected to an identity which does indeed correspond to a true 
geometric triangle inequality (3.5). 
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(C) Elementary Inequalities. Accardi 25 (with some attribution to  the 
renowned and recently deceased statistician G. Watson) makes the point that Bell’s 
original inequality follows from just an elementary Kolmogorov probability prop- 
erty inserted into a very elementary real number inequality. In this subsection I 
want to quickly look at  the latter. Remember that Bell’s original inequality was 
expressed 26 as 

IP(a, b) - P(a, c)lS 1 + P(b, c )  (4.14) 

Here I wish to consider the situation rather generally, a, b, c are to  be general vector 
directions in some Hilbert space, and P is to be some/any probabilistic, stochastic, 
statistical, correlational, expected value, entity in the real interval [-1,1]. To 
connect to  (4.14) we prepare the following elementary inequality: I don’t know its 
full history so I make no comment on that here. 
Lemma 4.1 Let a, b, c be arbitrary real numbers in [-1, I]. Then 

a b  - bc + ac 5 1 (4.15) 

Proof: A short proof which however considers several cases was given in [25]. 
Here for completeness I give an alternate proof. From b2 5 1 and c2 5 1 we have 
b2(1 - c2) 5 1 - c2 and hence b2 + c2 5 1 + b2c2. Adding 2bc to  both sides of the 
latter and multiplying by a2 5 1 we therefore have 

a2(b2 + c2 + 2bc) 5 b2 + c2 + 2bc 5 1 + b2c2 + 2bc (4.16) 

i.e., 

a(b + c ) ~  5 (1 + bc)2 (4.17) 

Taking the positive square root we have 

a(b+c) 5 lallb+cl$ 1 + b c  (4.18) 

I note that there would appear to  be some additional advantage to this proof if one 
wants to  consider extending the inequality to  complex numbers or to  other settings, 

rn 
The point to  be made now is that whenever one can express the stochastic 

entities P(.,.) in a Bell inequality (4.14) by a factored form P(a,b) = a b  with 
the real numbers a, b, c in the interval [-1,1], then the Bell Inequality is just an 
instance of the general mathematical inequality (4.15) of Lemma 4.1. To obtain his 
model Bell assumed that the joint probability of the detection of events A and B at  
two “separated” left and right measuring apparatuses was the product of separate 
conditional probabilities 

which I will not pursue here. 

It is this factorization which essentially renders Bell’s expression (4.14) into the 
elementary general inequality (4.15). 

A second instance in which reduction to  Lemma 4.1 is possible is the treatment 
by Peres 27 of the measurement process on macroscopic bodies when considering 
ensemble averages Kij = 1 - (aiaj)t aken over consecutive time intervals. Let aj  
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denote the value at time t j  of a dichomatic variable A with values f l .  Then for 
three consecutive times one has 

(a1 + a3)a2 5 1 + ala3 (4.20) 

Quoting [27, p. 4271 “This equation does not assume any specific dynamical law, 
but only the possibility of performing noninvasive measurements: the value of a3 

on the right hand side (with no measurement of a2) is the same as that on the left 
hand side (when there is a measurment of Q).” But by Lemma 4.1 we know (4.20) 
is always true, independent of any physical assumptions. 

One may also consider the ensemble averages Kij defined above. From (4.20) 
one then obtains [27] the Peres-Herbert 28 inequality 

(4.21) K13 2 Kl2 + K23 

which we may write as 

(ala2) + (a2a3) 5 1 - (ala3) (4.22) 

The point now is: depending on whether or not you can factor the ensemble cor- 
relations (aiaj), you will be able to, for example, (i) reduce to Lemma 4.1 or (ii) 
violate (4.22). 

5 Augmentation of Probabilistic Understandings 

There is a huge literature on probabilistic issues related to Bell’s inequalities and 
I will not even attempt to cite that literature. See [23,26,29-331 and many current 
papers. I will only examine one basic conceptual probabilistic issue as it seems 
relevant within the frame of this present paper. This issue could be stated as the 
question: where is the “error” in Bell’s inequality? To prosecute this point and to 
save time I will follow the treatment of ([22], pp. 190-196). I have already referred 
to this in Section 4(A), e.g., see the Bell inequality (4.1). Let us follow the derivation 
of (4.1). Let a Polarizer 1 with orthogonal axes hl and v1 (think: horizontal and 
vertical) be inclined at angle 81 to the horizontal, likewise Polarizer 2 with axes 
hz and 212 inclined at angle 02 to the horizontal, let 812 be the angle between the 
polarizers. Let Pzy denote the probability of detecting a photon along the z and y 
axes, respectively, of the two detectors. Then (as in Wigner for example, which 
[22] is to some extent following, among others) for a given wavefunction $J the 
measurement probabilities for the 4 possible outcomes are 

1 pVlv, = cos2 e12, Pvlhz = 2 sin2 e12 
Phlvz = sin2 eI2, Phlhz = $ cos2 e12 1 (5.1) 

Now add the third polarizer with axes h3 and v3 at angle 03 to the horizontal. Now 
to quote [22] “We can write down the following relationships from straightforward 
probability arguments, 

Pvlh2 = Pvlh2v3 + Pvlh~h3 
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. . .. From these relations it follows that 

from which it follows 

or more simply 

Pvlhz -/- Pvzh3 2 Pvlh3 (5.5) 

which is Bell’s Inequality”. 
For the examining of the above let us recall the Axiom of Composite Probabilities 

P ( X )  = P ( A i ) .  P ( X  J A  1 )  + P(A2) . P ( X  IA 2)  (5.6) 

which states an additivity of probabilities of disjoint events and is equivalent under 
other rather reasonable conditions to Bayes Axiom P ( A  I B )  = P ( A  n B ) / P ( B ) .  
The Axiom of Composite Amplitudes 

(5.7) 
$ ( A  = a IC = C )  = $ ( A  = a ( B  1 = b l )  . $(B, = bl IC = C )  

+$(A = u IB 2 = b2)  . +(B2 = b2 I C = C) 

states an additivity of wave function amplitudes and follows from Bayes Axiom but 
does not need Bayes Axiom for its validity. Keeping these two axioms in mind, 
let us see how “Bell’s conclusion errors” are made. The basic spin probability as- 
sumption (5.1) is essentially the fundamental quantum probability projection rule 
I discussed in Section 4(B), plus a less obvious intrinsic assumption of spherically 
equidistributed equally likely outcomes. The “straightforward probability argu- 
ments” (5.2) are the axiom of composite probabilities (5.6) above. In (5.3) we have 
assumed that probabilies are non-negative as we drop them. The last step (5.4) 
to  (5.5) again uses the axiom of composite probabilities (5.6) plus a less obvious 
switching of measuring instrument order. 

But we know that the Bell Inequality (5.5), i.e., (4.1), is the same as Wigner’s 
(3.3), which we know violates the fundamental Hilbert space triangle inequality 
(1.1) for certain angular configurations. Therefore we conclude that the axiom of 
composite probabilities is not consistent with the standard quantum probability 
(Projection) rule. 

It would be interesting therefore to  derive “Bell tests” just from the axiom of 
composite amplitudes. One could then examine the consistency of the fundamental 
projection postulate of quantum mechanics with those new Bell relations, and with 
reality. 

6 Augmentation of Physical Understandings 

There is a huge literature on the physical and metaphysical interpretations of Bell’s 
inequality and related theory and experiments. See the already cited references 
[29,30,31,32,33]. I hope to elsewhere address a number of those issues from the per- 
spective that I have developed in this paper. Here I will make only three comments. 
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The first is that since the operator trigonometry provides a new and correct 
mathematical setting for much of the Bell theory, I would assert that one cor- 
rect physical understanding of the Bell inequalities is that of basic Hilbert space 
geometry] more specifically, the geometry of Euclidean and Unitary spaces, more 
specifically, that of a classical but new vector trigonometry. 

The second comment is that the principal connection to physics in the above 
development is our belief that quantum correlations are given by the quantum prob- 
ability rule: for two normalized vectors u and v, the probability that a quantum sys- 
tem prepared in state u will successfully pass a test for state v is (u.vI2 s cos2 /&,. 
The quantum probability rule generally states that the expectation value of an ob- 
servable A which has been determined experimentally as the arithmetic mean (A)  
of a large number of trials, should correspond theoretically to TT(AW)  where W 
is the statistical operator describing the state of the system. For pure states this 
quantum probability rule becomes, operationally and loosely: the expected value 
is the projection onto the state. For the spin zero singlet state in the Bell situation 
the expected correlation value is E(a ,b )  = -a.b = -cosBab. From this ansatz 
alone and my Bell equalities above, one divides vectors a, b, c ,  d into ‘satisfaction’ 
and ‘violation’ regions in whatever Hilbert space you want to take your direction 
vectors from. 

From this viewpoint, I would prefer that the multitude of physical experiments 
over the years since [S] which have found various physical quantum mechanical 
configurations in which “Bell’s inequality” is violated, be restated as showing that 
my Bell’s Identity is achieved by those physical configurations for which the right 
hand side is between2 and 2&. But we know the latter is just vector geometry. 
So what these physical experiments really have shown is various verifications of the 
quantum probability rule. To repeat and indeed overstate my point, rather than 
seeking “Bell inequality violations”, it would be more interesting to seek “quantum 
probability rule violations”. This, because the quantum probability rule is a far- 
reaching assumption, an ansatz, which in the sense of my presentation in this paper, 
reduces much of quantum mechanics to a vector trigonometry. Thus one should 
seek some quantum physical situation which could result in physical measurements 
for which there obtains a right-hand-side greater than 2&. 

As a third comment, let me make a final assertion (Corollary 1.3) which seems 
relevant in view of the developments of this paper: one cannot argue either lo- 
cality or nonlocality on the basis of satisfaction or violation of Bell’s Inequality. 
Bell’s Inequality, notwithstanding the key and very important role it has played in 
the evolving scientific revolution of quantum mechanics, is seen in retrospect as a 
“red herring”: a diversion distracting attention away from the real issue [34]. Un- 
like political red herrings, the original intent of Bell and consequent investigators 
was genuine. However, from my viewpoint, the real issue as concerns nonlocality 
in quantum physics is the projection rule. This “probability” rule is fundamen- 
tal to Von Neumann quantum mechanics. It is also fundamental to my quantum 
trigonometry. I t  is surely true for the latter, i.e., geometrically. Is it true for the 
former? 
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7 Concluding Remarks 

I have used the terms Bell Inequalities and Bell Theory in a very general sense. 
I tried to make that very clear in the first sentence of the Introduction. There I 
also tried to  make clear that the contribution in this paper would emphasize a very 
limited viewpoint: mathematical. Nonetheless I would like to add the following 
comments. 

As I indicated at the beginning of Section 3, I discovered the link between my op- 
erator trigonometry and the quantum probability when I read the Accardi-Fedullo 
paper [11]. That is one reason why (after a few years) I decided in Corollary 1.2 
to call this inequality (3.1), (3.2) the Accardi-Gust afson inequality, to distinguish 
it from what I also referred to  in Corollary 1.2 as the Bell-Wigner inequality. It is 
pointless to  argue any historical priorities between the operator trigonometry and 
the quantum probability inequalities because the discovery contexts were entirely 
different. However it should be mentioned that the operator trigonometric version 
predates the quantum probability version by about ten years. See the historical 
account in [15]. 

In contrast, as I tried to  make clear in Section 4, Bell’s original inequality 
(4.14) and Wigner’s related inequality (3.3), (4.1) are different from the Accardi- 
Gustafson inequality. Because they were both derived from what has been seen in 
retrospect to be questionable use of physically appropriate probability theory, both 
Bell’s and Wigner’s inequalities are flawed geometrically, although in different ways. 
In Section 4 I created the term Bell Equalities to  emphasize that I can nonetheless 
embed Bell-type and Wigner-type inequalities into my operator trigonometry so 
that we may try to  determine precisely the ‘violation regions’ and their causes. 

In so doing we are then able to identify the historical errors in their physical 
derivations. This is the main point of Section 5. In that section I also very quickly 
without elaboration recall some basic axioms of probability. A referee has pointed 
out that I should not be so quick to  say which implies which (e.g., especially vis a vis 
Bayes axiom). For a more complete examination of the latter I refer the reader to  
34, where it is emphasized that “the nonvalidity of Bayes’ axiom is really universal 
for quantum theory and that all the interpretive problems of this theory arise from 
an unjustified application of this axiom.” It should be pointed out that in the same 
sense in his fundamental paper 35 Accardi opened up the important alternative 
of “quantum probability” as a way t o  resolve many of these paradoxical aspects 
of quantum theory which as we have seen are often caused by careless mixing of 
classical and nonclassical probability axioms. The paper [36] was a turning point in 
the debate on Bell’s inequalities, and shifted attention from ‘realism’ and ‘locality’, 
to the underlying assumed probabilistic models. 

One of the conclusions of Section 6 is that of serous questioning of Von Neu- 
mann’s projection rule. I am far from the first to  do so and from the book [36, p. 
1881 I quote “the projection rule is to  be considered as a purely mathematical tool 
and no physical meaning should be ascribed to  it.” 
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DISCUSSION 
Chairman: P. Zoller 

E. C .  G .  Sudarshan: I have two comments to make. One is that I completely 
agree with you that in fact it (Bell’s Inequality) is unrelated to  non-locality. It 
is very popular but quite often negligable. Second, I will ask the question in the 
following manner: can I have simultaneous quantum measurement distribution for 
all the three measurements? 

K. Gustafson: That is a question people have looked at. The answer is gen- 
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erally no. 

probability can be negative even though all measured probabilities are positive. 

related to Bell’s inequality. 

E. C. G. Sudarshan: What happens is that the non-measured but implied 

K. Gustafson: I don’t know about that but in my opinion it is certainly not 
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SYSTEMS AND SUBSYSTEMS IN QUANTUM COMMUNICATION 

V.V. BELOKUROV, O.A. KHRUSTALEV, V.A. SADOVNICHY AND O.D. 
TIMOFEEVSKAYA 

M. V. Lomonosov Moscow State Universitg 

1 Introduction 

%cent progress in quantum communications has caused a great interest in the 
problems connected with divisions of quantum systems into subsystems and reuni- 
fications of subsystems into a joint system. 

Although general theory of such processes was proposed in 1927 ’, so far, a 
subtraction of a subsystem is often described in a primitive (“visual”) manner, in 
terms of wave functions with comments a-la “reduction of wave packets”. 

It makes the explanation of quantum properties of subsystems look rather vague. 
As an example, we quote the classical paper on the photon teleportation experi- 
ment. 

The important property of an  entangled pair is  that as soon as a measurement 
o n  one particles projects it, say, onto 1 H> the state of the other one is determined 
to  be I I>, and vice versa. How could a measurement on one of the particles 
instantaneously influence the state of the other particle, which can be arbitrary fa r  
away? Einstein, among many  other distinguished physicists, could simply not accept 
this “spooky action at a distance”. But this property of entangled states has been 
demonstrated by numerous experiments. 

These problems can be solved in the framework of von Neumann’s density ma- 
trix formalism. The natural notion of “reduced density matrix” appears from the 
general definition of the density matrix. It is this operator that is the most adequate 
to associate with the notion of state of a subsystem. 

While analyzing various experiments it often appears necessary to describe the 
state of a selected subsystem when the exact value of some observable associated 
with the subsystem is additional to the first one. 

For these purposes in the next section we define the notion of conditional 
density matrix. 

Although operators with the same title were defined previously (e.g., 5 ) ,  they 
supposed the very special structure of the Gilbert space of the total system and 
their forms were absolutely different from the form of our operator. 
Our construction intimately related to von Neumann’s ideas has a more general 
nature and a more simple structure. 

2 Conditional density matrix 

Consider two systems S1 and S2. The joint system is denoted as Slz. 
The principal question that we want to answer here is how the states of the 

subsystems (or component systems) are related to the states of the joint system, 
and vice versa. 
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Let p1 and p2 be the density matrices of the systems S1 and SZ. 
If at least one of the states p1 or pz is pure (i.e. pi2 = pi )  then these states 

determine the state of the compound system Slz uniquely: 

P = P l @ P Z  

If the state of the system S1z is plz then the state of the system S1 is determined 
by the following equation: 

P1 = Trz (P12). 

Now we can define the conditional density matrix. 
If the state of the system S1z is p12 then the state of the system S1 (upon the 

condition that the system Sz is in the pure state pz, pz2 = p2) is 

P1/2 = 
Tr2 (Pz P12) 

Tr (Pz  PlZ) ’ 

Analogous operators were constructed with the help of some artificial proce- 
dures 374. 

3 Example: Orthopositronium 

As an example we consider orthopositronium - the system consisting of an electron 
and a positron. The total spin of the system is equal to zero. In this case the non- 
relativistic approximation is valid and the state vector of the system is represented 
in the form of the product 

* ( F e , a e ; F p , a p )  = @(Fee,.‘,) x ( ~ e ~ ~ p ) .  

The spinorial wave function is equal to 

Here xz(a)  and x(-z ) (a)  are the eigenvectors of the operator that projects spin 
onto the vector n’: 

(3 X?i.(U) = xz(a), 

(5.’) X ( - i i ) ( 4  = - X ( - 6 ) ( 4 .  

The spinorial density matrix of the system is determined by the operator with the 
kernel 

I ,  

~ ( 0 ;  a’) = X ( c e 7  a p )  X * ( a e ,  a p ) ,  

The spinorial density matrix of the electron is 
- 

P e ( a , a ’ )  = C x ( ~ , E )  x * ( ~ ’ , E )  - 
E 
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In this state the electron is completely unpolarized. 
If there is a polarization filter on the way of the electron the latter will pass 

through it with the probability independent of the filter orientation. The same 
fact is valid for the positron if its spinorial state is measured independently of the 
electron spinorial state. 

Now let us consider a quite different experiment. Namely, the positron passes 
through the polarization filter and the electron polarization is simultaneously mea- 
sured. The operator that projects the positron spin onto the vector 6 (determined 
by the filter) is given by the kernel 

Now the conditional density matrix of the electron equals to 

C(,,,J) XS(0) x3a’)  X(Oe, 0’) x*(& 4 
C(<,,,,I) XA(0) xf(a’) x(E, 0’) x*(E, 4 . P e / p ( f l r O  ) = 

The result of the summation is 

P e / p ( V ’ )  = X ( - & ) ( O )  X?-S)@’) .  

Thus, if the polarization of the positron is somehow determined then the electron 
appears to be polarized in the direction opposite to  that of the positron. 

4 Teleportation 

In the Innsbruck experiment on a photon state teleportation, the initial state of the 
system is the result of the unification of the pair of photons 1 and 2 being in the 
antisymmetric state ~ ( a l ,  a2) with summary angular momentum equal to zero and 
the photon 3 being in the state x ~ ( a 3 )  (that is, being polarized along the vector 
6). The joint system state is given by the density matrix 

p(a, a’) = *(a)**(a‘), 

where the wave function of the joint system is the product 

*(a) = x(a1,az) xfi(a3). 

Considering then the photon 2 only (without fixing the states of the photons 1 and 
3) we find the photon 2 to be completely unpolarized with the density matrix 

However, if the photon 2 is registered when the state of the photons 1 and 3 has 
been determined to  be x(al,a3) then the state of the photon 2 is given by the 
conditional density matrix 

Here P1,3 is the projection operator 

p1 ,3  = X(al~g3) X * ( a l r c 3 ) .  
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To evaluate the conditional density matrix it is convenient to preliminary find the 
vectors 

d'(a1) = c x L ( g 3 )  X ( a l , a 3 )  
3 

and 

O(az)  = c 4 q a 1 )  x ( m r a 2 )  

Q(az) = -5 X 6 ( 4  

1 

The vector O equals to 

1 

and the conditional density matrix of the photon 2 appears to  be equal to 

p2/{1,3} = X*(O2) x t ( a ; ) .  

Thus, if the subsystem consisting of the photons 1 and 3 is forced to  be in the 
antisymmetric state ~ ( 0 1 ,  as) (with total angular momentum equal to zero) then 
the photon 2 appears to  be polarized along the vector 6. 

5 Pairs of polarized photons 

Now consider a modification of the Innsbruck experiment. Let there be two pairs 
of photons (1, 2) and (3, 4). Suppose that each pair is in the pure antisymmetric 
state x .  The spinorial part of the density matrix of the total system is given by the 
equation 

p(0,a ' )  = Q(0) *'(a'). 

The wave function of the total system is the product of the wave functions of the 
subsystems 

@(a) = x ( a 1 , a z )  X(03 ,U4) .  

If there are polarization filters that transform states of the photons 2 and 4 into 
the states with definite polarization x s ( a 2 )  and x;(as) then the wave function of 
the system is transformed into 

@(a) = X d f l l )  X 6 ( 4  XF(03)  x z ( a 4 ) .  

Here 6, rii and F', s' are pairs of mutually orthogonal vectors. 
Now the conditional density matrix of the pair of photons 1 and 3 is 

p( l ,3) / (2 ,4) (a ,a ' )  = * ( a 1 1 a 3 )  

The (conditional) wave function of the pair is the product of wave functions of each 
photon with definite polarization 

*(cl, a 3 )  = Xit(U1) XF(a3) .  
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6 Quantum realization of Vernam communication scheme 

Modification of the character of correlation as a result of polarization of one of 
the pair of entangled photons can be used in communication schemes. We are not 
going to describe this scheme in detail. Instead we recall only the main idea of the 
Vernam communication scheme ‘. In this scheme, Alice encrypts her message (a 
string of bits denoted by the binary number ml) using a randomly generated key 
k .  She simply adds each bit of the message with the corresponding bit of the key 
to obtain the scrambled text (s = ml @ k ,  where @ denotes the binary addition 
modulo 2 without carry). It is then sent to Bob, who decrypts the message by 
subtracting the key (s 8 k = ml @ k 8 k = ml). Because the bits of the scrambled 
text are as random as those of the key, they do not contain any information. This 
cryptosystem is thus provable secure in the sense of information theory. Actually, 
today this is the only provably secure cryptosystem! 

Although perfectly secure, the problem with this security is that it is essential 
that Alice and Bob possess a common secret key, which must be at least as long as 
the message itself. They can only use the key for a single encryption. If they used 
the key more than once, Eve could record all of the scrambled messages and start to 
build up a picture of the plain texts and thus also of the key. (If Eve recorded two 
different messages encrypted with the same key, she could add the scrambled text 
toobtainthesumofthe plaintexts: s l@s2 = m l @ k @ m : ! @ k  =ml@mz@k@k = 
ml @m2, where we used the fact that @ is commutative.) Furthermore, the key has 
to be transmitted by some trusted means, such as a courier, or through a personal 
meeting between Alice and Bob. This procedure may be complex and expensive, 
and even may lead to a loophole in the system. 

With the help of pairs of polarized photons we can overcome the shortcomings of 
the classical realization of the Vernam scheme. Suppose Alice sends to Bob pairs of 
polarized photons obtained according to the rules described in the previous section. 
Note that the concrete photons’ polarizations are set up in Alice’s laboratory and 
Eve does not know them. If the polarization of the photon 1 is set up by a random 
binary number pi  and the polarization of the photon 3 is set up by a number mi@pi  
then each photon (when considered separately) does not carry any information. 
However, Bob after obtaining these photons can add corresponding binary numbers 
and get the number mi containing the information (mi @pi @pi = mi). 

In this scheme, a secret code is created during the process of sending and is 
transferred to Bob together with the information. It makes the usage of the scheme 
completely secure. 
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QUANTUM ENHANCEMENTS TO CHANNEL CAPACITY 

SETH LLOYD 
d 'Arbeloff Laboratory for Information Systems and Technology, 

Department of Mechanical Engineering, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 021 39 

Communication channels are physical systems that transfer information from one place 
to another. Like all physical systems, communication channels are governed by the 
laws of quantum mechanics. Quantum mechanics is known to bound the capacity of 
bosonic channels such as optical fibers or free-space electromagnetic communication: a 
single transverse mode of the electromagnetic field can communicate a number of bits 
per second proportional to the square root of the power invested in communication. 
This paper investigates the capacity of a variety of quantum channels, and shows that 
enhancements in channel capacity can be obtained by coupling together the information 
degrees of freedom in quantum channels. So, for example, by coupling together modes 
in a multimode optical fiber, one can in principle obtain a significant enhancement of 
the capacity of the fiber for fixed power over the same fiber with uncoupled modes. 

Inquiries into the fundamental physical limits to communication date back a 
half century at least. Because of the central importance of electromagnetic meth- 
ods for communication with the more recent emphasis on optical communication, 
with most of these efforts have focused on the bosonic channel 1-22. Communica- 
tion channels, like all physical systems, are at bottom quantum mechanical, and 
their physical limits are calculated using the laws of quantum mechanics. Quantum 
mechanics provides limitations to the rate of communication via the introduction 
of quantum noise and fluctuations. However, quantum mechanics can also provide 
opportunities for enhancement of channel capacity. A variety of results suggest that 
certain enhancements in channel capacity can be obtained by exploiting techniques 
of quantum information processing 23-26. For example, quantum systems can be 
correlated with eachother in ways that classical systems cannot, a feature known 
as entanglement. It has been speculated that entanglement might be used enhance 
the capacity of quantum communication channels 24-28. Perhaps the best known 
example of the use of entanglement to  enhance communication capacity is that of 
super-dense coding 2 5 ,  in which two parties who initially possess an entangled state 
can send two bits of classical information by sending a single quantum bit. In addi- 
tion, shared prior entanglement may enhance the transmission capacity of quantum 
channels in the presence of noise 28. In general, the amount by which entangle- 
ment can enhance communication is not known. Schumacher and Westmoreland 26 

and Kholevo 27 have shown that sending an entangled state down parallel noiseless 
quantum channels does not in general enhance their capacity. 

A recent paper by the author2g investigates the question of whether it is possi- 
ble to  enhance the capacity of communication channels by coupling together their 
information-bearing degrees of freedom in a way that induces entanglement. Com- 
munica,tion channels are physical systems, and physical systems can be coupled to- 
gether. The resulting, composite system typically exhibits different behavior from 
a collection of uncoupled systems. In contrast to 24-28, which augment commu- 
nica.tion capacity by sending entangled states down uncoupled channels, or by ex- 
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ploiting preexisting entanglement, this paper investigates the situation in which 
information-propagating degrees of freedom are coupled via a nonlinear dynamics 
to induce an entangled state in the process of transmission. Indeed, references 26-27 

suggest that such a coupling may be necessary to obtain an enhancement of noise- 
less channel capacity via entanglement. Since one possible coupling is no coupling 
at  all, if one allows the possibility of engineering entangling couplings between elec- 
tromagnetic modes or spin chains, one cannot do worse than the unentangled case. 
The question is, how much better can one do? As 29 shows, for fixed power, M 
coupled, entangled spin chains or modes of the electromagnetic field can in princi- 
ple transmit information at a rate at least times greater than M uncoupled, 
unentangled chains or modes. The couplings are nonlinear, entangling couplings, 
and are likely to prove hard to engineer. But the potential rewards in increased 
communication capacity are large. 

To understand how quantum mechanics allows enhancements of communication 
capacity, first review the case of unentangled parallel quantum channels. In partic- 
ular, it  is well established 1-22 that the broadband bosonic channel (a single trans- 
verse mode of the electromagnetic field) with power P can transmit C1, = a m  
bits per second, where cx = m ( l / l n 2 ) .  A similar result holds for propagation 
of information down spin chains. (The power P is equal to the energy E used to 
transmit the information, divided by the total time t over which the transmission 
takes place: as noted in ' ,17, this energy need not be dissipated in the course of 
transmission.) As a consequence ', if the power is spread amongst M unentangled 
broadband bosonic channels, each with power P l M ,  the rate of communication is 
C M ~  = m C l q .  This is the best known rate for power-limited communication us- 
ing M unentangled channels, though it is not proven to be the limiting rate. For 
noiseless channels, however, references imply that this rate cannot be sur- 
passed merely by entangling the states of the channels while leaving their dynamics 
unchanged. By contrast, in2' the author showed that if one couples together M 
spin chains or tranverse modes of the electromagnetic field to induce entanglement 
between the modes in the course of propagation, then using power P one can send 
information from A to B at a rate C M ~  = JP/.rr(l - 2 - M ) M m  M MC1 = 
~ % C M ~ .  That is, for a fixed power, dynamics that entangle chains or modes can 
in principle outperform by a factor of dynamics that leave the chains or modes 
unentangled. 

To analyze the effect of an entangling dynamics on information propagation, we 
use a simpler channel model than the bosonic channel- the 'qubit' channel. The 
qubit channel immediately generalizes to channels consisting of spin chains and to 
modes of the electromagnetic field. 

The qubit channel transmits a quantum bit from A to B. Suppose that A and B 
each possess a two-state quantum system, or 'qubit.' A's qubit holds the quantum 
state I$) which is to be transmitted to B, whose qubit is initially in the state 10). The 
two states 10) and 11) of the qubits are assumed to be degenerate, so that no energy 
is required to store the qubit. The qubit channel can be used either to transmit 
classical information - I$) = 10) or 11) - or to transmit quantum information - 
I$) = al0) + ,811). The dynamics of the channel should transfer the information 
from A's qubit to B's qubit. After the transfer has taken place, B's qubit is in 
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the state I$) and A’s qubit is in a standard state such as 10). The sole restriction 
placed on dynamics of the channel is that it obeys the rules of quantum mechanics: 
the time evolution of A’s qubit and B’s qubit, together with their environment and 
whatever interaction they use to transfer the information, is a unitary, Hamiltonian 
dynamics. (An arbitrary strictly positive time evolution can be embedded in such 
dynamics 30.) This requirement bounds the rate of reliable information transmission 
down the qubit channel for any possible dynamics given limited power. 

Note that we are taking a different approach here from references 24-28: rather 
than taking the dynamics of the channel as fixed, and attempting to  improve its 
capacity by encoding information cleverly in quantum states, we are looking at 
all possible quantum channels operating between A’s qubit and B’s qubit, and 
investigating restrictions over all possible dynamics that can be used to transfer 
information from A to  B. This would seem at first to  be a quite ambitious goal: 
how can we restrict all possible dynamics? But in fact, all quantum dynamics obey 
the Margolus-Levitin theorem, which implies that when B’s qubit is rotated by T ,  

the average energy of the complete system above its ground state is E 2 7rh/2At, 
where At is the time over which the transfer takes place 31. Inz9, the Margolus- 
Levitin theorem is used to show that the maximum rate at which information can 
be sent down the qubit channel is C1, = l /At  = ( 2 / & ) m .  This result holds 
for any dynamics that reliably transfers the qubit from A to B. In other words, 
the power-limited capacity of the qubit channel differs from that of the broadband 
bosonic channel by a constant of order unity. 

Note, as above, that the energy applied during transmission need not be dissi- 
pated: it is merely the energy invested in the propagation of information and can 
in principle be recovered after transmission. In fact, existing quantum logic devices 
can swap information from one place to another at rates given here, with minimal 
dissipation during the transfer process. 

The bound C1, applies to  the reliable transmission of a single bit. If one accepts 
unreliable or noisy transfer, then the transfer time can be less than At = ~ h / 4 E ,  
as one does not have to rotate the state of A and B by the full angle T to  transform 
them into an orthogonal state. This feature, together with the use of error correcting 
codes, can be used to  enhance the rate of transfer of information for a given energy. 
In addition, if one is willing to send less than a full bit of information by sending a 
0 with a higher probability, one can decrease the energy per transmission time At. 
The maximum rate of information transmission for such noisy implementations is 
currently unknown. 

is the application of a ‘swap’ operation: SJ$)AJ@)B = J@)AJ$)B for all J$),I@). 
Clearly, the swap operator performs the desired transfer, and as shown in 29, at- 
tains power/capacity limit of the qubit channel. I t  does so coherently and without 
dissipation in principle. As noted above, existing quantum logic devices can swap 
information from one place to another at rates very close to this limit 35-37. 

The proof that swap attains the desired limit C1, relies on the properties of 
the swap operator 29: S is unitary, Sz = 1, consequently S is also Hermitian, 
S = St. It is straightforward to show that eirrs12 = is. The proof that swap 
attains the desired power-limited information transfer rate for the qubit channel 

A simple example of an interaction that attains the qubit capacity limit 
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uses S as a Hamiltonian, and applies this Hamiltonian for a time necessary to  effect 
the information transfer. 

The <swap’ picture of quantum information transmission assumes a direct trans- 
fer of A’s qubit to  B over a time At >_ d(AB)/c, where d(AB) is the distance between 
A and B. To look at propagation effects, consider the case in which A’s and B’s 
qubits are coupled by an intervening chain of qubits AlBlAzB2.. . A,B,, where 
A has access to Al and B has access to  B,. Here, it can be shown” that the 
transmission of information from A to B by repeated swapping down the chain of 
qubits comes within f i  of the the power/capacity limit C1, . 

Now turn to  the case of multiple qubit channels that can be coupled to  eachother 
during the course of propagation. I t  is here that entanglement leads t o  a signifi- 
cant enhancement in power-limited transmission rate. Clearly, M uncoupled qubit 
channels can transmit information at a rate a greater than a single quantum 
channel using the same power P merely by dividing the power equally amongst the 
channels ’. Each channel now transmits at a rate ( 2 / f i ) d m  giving an overall 
rate of transmission C M ~  = ( 2 M / f i ) d m  = ( 2 / f i ) d m  = mClq. This 
rate enhancement is the best known enhancement for parallel unentangled channels 
and holds for both the bosonic channel and for the qubit channel. Because of the 
square root dependence of transmission rate on power, both the qubit and broad- 
band bosonic channel are more efficient at  a lower power. As a result, one improves 
performance by dividing up information and power among the different channels. 

The goal of the present work is to  show that one can improve on the unentangled 
transmission rate C M ~  by engineering interactions that entangle the qubit channels 
in the process of transmission. The goal of the M-channel transfer is to  enact 
the 2M-qubit analog of the swap above: 5’1 ...M = SlSz . .  . S M ,  where S1 is the 
swap operator on the first of A and B’s qubit channels, S 2  is the swap operator 
on the second, etc. The 2M qubit swap S~...M swaps A’s M qubits with B’s M 
qubits and has the same properties as the 2-qubit swap above (Hermitian, squares 
to  one, etc.). An obvious way to  perform the 2M-qubit swap is just to apply 
M two-qubit swaps. Le., one applies the Hamiltonian S1 + Sz + . . . + SM for an 
amount of time required to  perform the transfer in each of the channels. Since 
eiT(S1+S2f-+S~)/2 = iMS1S2.. . S M ,  this method clearly effects the transfer. It is 
straightforward to verify that this method attains the unentangled transfer limit 
C M ~  above. 

But the unentangled limit can be surpassed by the following method. S~. . .M is 
Hermitian and can be applied as a Hamiltonian. I t  is easy to  verify that e i r r s 1 - . M / 2  = 
i S l . . . ~ :  accordingly, applying the 2M-qubit swap operator as a Hamiltonian also 
swaps the qubits. But it does so more efficiently than swapping the qubits one 
by one. In fact, in 29 it is shown that the transmission rate for applying the 2M- 
qubit swap Hamiltonian is CM, = l /A t  = J2(1- 2-’)P/~fL. Comparing CM, 
with C M ~  we see that using the 2M-qubit swap operator as a Hamiltonian gives an 
enhancement in transmission rate of I/% over swapping the qubits one by one. 

In addition, applying the Hamiltonian Sl...M necessarily entangles the M qubit 
channels (except in some very simple cases as when the message being transmitted 
is 00.. . 0). For example, if A’s input state is l b ~ )  = Ibl . . . b ~ ) ,  then at time At12 
(halfway through the controlled flipping operation) A and B’s qubits are in the 
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state ( e ~ ~ " / ~ / f i ) ( I b l  . .  . b ~ ) ~ ~ 0 0 . . . O ) ~ + i ~ 0 0 . . . O ) ~ ~ b ~  . .  . ~ M ) B ) .  Transferring M 
bits down M uncoupled, unentangled quantum channels using the same power as a 
single qubit channel takes m times longer than transferring the information down 
coupled, entangled channels. Unentangled transfer corresponds to the application 
of M two-qubit swap operations with Hamiltonian S1 + . . . SM as opposed to the 
2M-qubit swap Hamiltonian S~. . .M = S1&. . . S M ,  and takes times the energy 
of the entangled swap. As a result, the coupled, entangled channels have a capacity 
of at least m times the capacity of the uncoupled, unentangled channels. 

Perhaps the most remarkable aspect of this result is that the use of entanglement 
allows the transfer of M bits in the same time and using the same power that it 
takes to transfer a single bit. In some sense, that it is just as easy in terms of power 
and energy to  rotate 2M bits from one state to  another as it is to  rotate 2 bits from 
one state to another should not be surprising: no two states in Hilbert space are 
more than angle of T apart. Accordingly, if one can effect arbitrary evolutions on 
the M-qubit channel Hilbert space, M bits can be transferred using the same power 
and time as one bit. Effectively, the coupling between the channels allows them to 
transmit information in the form a 'super-boson' with 2M internal states. The m 
enhancement afforded by exploiting entanglement is typical of quantum information 
processing and arises from essentially the same source as the m enhancements in 
quantum search 32 and quantum positioning 33. 

Of course, enacting the necessary Hamiltonian ,!&.M is likely to prove exper- 
imentally difficult. To attain the &f enhancement of channel capacity allowed 
by entanglement, an M-qubit entangling operation must be used. The single qubit 
channel swap operator between A and B can be written S = o ~ o f + o ~ o ~ + o ~ o ~ ,  
and the corresponding operator for swapping particles such as photons between 
A and B is aAaL + a>aB. The M-channel swap operator S ~ . . . M  is the product 
S l S z .  . . SM of the individual swap operators, and corresponds to interaction oper- 
ators of the form . . . u," for spin qubits and aAlaLl . . . aAMaLM + H.C. for 
particle modes. That is, M'th order nonlinear interactions are required to attain 
the entanglement-enhanced channel capacity presented here. Enacting the proper 
entangling coupling is likely to prove experimentally difficult, but if such coupling 
can be enacted, substantial gains in quantum channel capacity can be obtained. 
Whether or not the potential gains afforded by entanglement can be realized in 
experimentally feasible quantum optical systems acting over significant distances 
remains an open question. 
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DISCUSSION 
Chairman: M. Raizen 

N. Sourlas: Is there a simple formula for the case when you have probability 
of losing certain number of bits during transfer? 

S. Lloyd: The question is: is there a simple formula for what will happen if 
there is a probability for losing certain number of bits in transfer? This is a really 
good question and I don’t have something like that. But let me make few comments. 
One is that stuff like this is really going to  be hard to do quantum mechanically. 
It is impossible to do classically and hard to do quantum mechanically. And often 
this kind of systems is very susceptible to  noise, so decoherence will kill you. This 
kind of transmission is really messed up by noise, and indeed the fact that you have 
very entangled state in the process of transmission suggests that the enhancement 
will be disturbed by loss. 

more sensitive to  noise than classical 
transfer. That’s a typical kind of price that you have to pay for this kind of things. 
Interestingly, however, if you can use error-correcting codes there are cases in which 
noise actually enhances the communication capacity. So I can actually do better if 
I’m allowed to use error-correcting codes. 

G .  Leuchs: Quantum dense coding is also a communication scheme which uses 
entanglement. What could you say about that? 

S. Lloyd: Very good question. I’m glad that you asked. The result I dervied 
is much better than quantum dense coding in terms of the channel improvement. 
Quantum dense coding gives you a factor of 2 in the communication rate. The result 
that I derived gives an improvement of the square-root of the number of parallel 
channels. If you have a million modes, for example, you could get a thousand-fold 
improvement. Of course, I’m assuming Apollc-like power to entangle these photonic 
channels; so it is not surprising that I can do much better in terms of transmission. 
Indeed, I did not derive absolute information theoretic for the channel capacity, but 
the argument in terms of angles rotating in Hilbert spaces is a very powerful one 
and I would be very surprised if you will get more than a few bits more than this 
bound I’ve derived. 

My guess is that this transfer will be 
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SCHLEICH~ 

We discuss the average kinetic energy of N non-interacting quantum particles in its de- 
pendence on N. For a peculiar entangled state, the kinetic energy increases quadratically 
with N, in contrast to its behavior in simple thermodynamics. 

1 Introduction 

Entanglement as a resource is the common theme of quantum information, quantum 
computation and quantum cryptography. Moreover, entanglement marks one of the 
most essential differences between classical and quantum physics. In the present 
paper we draw attention to an unusual effect originating from entanglement: the 
average kinetic energy of N non-interacting but appropriately entangled particles 
depends quadratically on N .  We refer to this effect as dimensional enhancement of 
kinetic energy I. 

The quadratic behavior of the kinetic energy, rather than the linear dependence 
familiar from simple thermodynamics ’, is reminiscent of ~uper rad iance~,  where the 
intensity of light radiated from N dipoles is N 2  times the intensity of a single one, 
rather than N .  This superradiance effect is due to constructive interference between 
the individual dipoles. Similarly, we can trace the kinetic-energy enhancement back 
to interference of matter waves. 

Our paper is organized as follows: In Sec. 2 we show that the average kinetic 
energy of the multiparticle system consists of two contributions: (i) the para-radial 
kinetic energy corresponding to the square of the radial momentum operator 4 ,  

and (ii) the potential energy corresponding to the quantum fictitious force 5 .  We 
dedicate Sec. 3 to the evaluation of the average kinetic energy of a system of 
N particles in three different quantum states: (2) a product state, (ii) a simple 
entangled state, and (izz) an unusual entangled state. We conclude in Sec. 4 with a 
brief summary. 

2 Formulation of the problem 

We start our discussion by first deriving expressions for the average kinetic energy of 
N non-relativistic particles of identical mass, M ,  in three space dimensions. Here, 
we concentrate on the motional degrees of freedom, but do not take into account 
the internal structure of the particles. Hence, we deal with a D = 3N dimensional 
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569 

configuration space, and the wave function 9 = Q(x1, x 2 , .  . . , X D )  depends on D 
coordinates. 

2.1 Average k ine t ic  energy 

We recall that the kinetic-energy operator, 

is determined by the Laplacian 

in D dimensions. Here r = (xs + xz + . . .  + xg)1/2 denotes the radius in the D- 
dimensional hyperspace. The operator A2, which involves derivatives with respect 
to the D- 1 angles of hyperspace, is proportional to the angular momentum operator 
in configuration space ’. 

Hence, the average kinetic energy 

of the particles described by Q involves the Laplacian, Eq. ( 2 ) ,  and integrations 
over the hyperradius r and the solid angle OD in the D-dimensional hyperspace. 

The dimensional enhancement effect is most conspicuous for s-states, that is, 
when the wave function depends on the hyperradius r only. In this case, the wave 
function is completely symmetric under exchange of coordinates of the particles, 
corresponding to a bosonic state. 

For an s-state of wave function Q = 9 ( r )  the angular part of the Laplacian, 
that is, the operator A2/r2  does not contribute to the integral. Moreover, it is useful 
to introduce the radial wave function u via the relation 

where S o  denotes the total solid angle in D dimensions, and u ( r )  is normalized. 
When we recall the action of the Laplacian on the wave function 

the average kinetic energy defined by Eq. (3) takes the form 

Here we refer to the contribution 

T, = la dr u*(r)  [ 2L3 u(r) (7) 
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570 

as the para-radial kinetic energy 1,4. 

Furthermore, the contribution 

results from the quantum fictitious potential' 

h2 ( D  - 1 ) ( D  - 3 )  
2M 4r2 

V,(T) = - (9) 

We conclude by emphasizing that for an s-state the kinetic energy may be said to 
be purely radial in hyperspace. 

2.2 Quantum fictitious potential 

Since the potential VQ defined in Eq.(9) is proportional to the square of Planck's 
constant, it is a quantum potential with no classical analogue. Moreover, V ,  de- 
pends inversely on the square of the hyperradius. This feature reminds us of the 
classical centrifugal potential, which gives rise to the non-inertial, that is, fictitious 
centrifugal force. Indeed, for D 2 4 the potential VQ given by Eq. (9) is positive and 
thus corresponds to a repulsive force. This property suggests the name quantum 
centrifugal potential. In accordance with this, some authors combine it with the 
contribution from A*, giving rise to  the centrifugal potential. This combination, 
however, conceals the fact that it is a genuine part of the radial kinetic energy. 

We note that for D = 2, the potential VQ is negative corresponding to an attrac- 
tive force. This centripetal force is unique to two dimensions and counterintuitive 
to  the classical notion of the centrifugal force always being repulsive. To capture 
this contradiction, we have coined the phrase quantum anti-centrifugal potential for 
the potential VQ in the case of D = 2. In Refs. and lo we have focused on conse- 
quences of this attractive potential. However, in the present work we concentrate 
on the repulsive case corresponding to D 2 4. 

We recognize that one and three dimensions are also special: the potential VQ 
vanishes. 

3 Wave functions 

The dimension D of configuration space enters the quantum fictitious potential VQ 
quadratically. Hence, the total kinetic energy resulting from TV could in principle be 
quadratic in D. We recall that in the case of N particles in three space dimensions, 
we deal with a D = 3N dimensional configuration space. Consequently, for N >> 1 ,  
the strength S = (D - 1)(D - 3 )  = ( 3 N  - 1)(3N - 3 )  N 9N20f the quantum non- 
inertial potential, is quadratic in the number of particles. According to Eq. (8), the 
same argument may hold for the contribution TV t o  the kinetic energy. However, 
this feature strongly depends on the form and, in particular, on the D-dependence 
of the radial wave function u, as we show in the present section. 
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57 'I 

3.1 Product wave function 

We start our discussion with the wave function 

describing the state of a Bose-Einstein condensate of N = D / 3  non-interacting 
particles in an isotropic magnetic trap at zero temperature ll. The value of K 

is determined by the harmonic potential of the trap. The wave function 9 0  is a 
product of normalized onedimensional Gaussians 

and does therefore not show any entanglement. 
When we substitute the radial wave function uo corresponding to  Q O  into the 

expressions Eqs.(7) and (8) for the para-radial kinetic energy and the potential 
energy, and perform the integrals we arrive at 

where we have introduced the kinetic energy e = ( f i ~ ) ~ / ( 2 M ) .  
Since D = 3N, we find indeed the familiar thermodynamic result 

n 
3 

T(O) = -NE (13) 2 
with the average kinetic energy being proportional to the number of particles. This 
result holds true for quantum states describing non-interacting and non-entangled 
particles. 

3.2 Entangled wave function 

Our second N-particle wave function, Ql(r),  is constructed by retaining the wave 
function p(z) for D - 1 space directions, while taking a wave function of the 
form z2(p(z) for the last direction. Symmetrization by forming the coherent sum 
ELl z: exp( - f K 2 r 2 ) ,  and subsequent normalization gives 

Q l ( r )  = N ~ ( D ) P - + " ~ " ,  (14) 

where the normalization constant Nldep ends on D. 
In this case, the average kinetic energy 

has a more complicated dependence on the dimension D of configuration space. 
This feature is due to entanglement combined with the fact that the wave functions 
~ ( z )  and zz(p(z) are non-orthogonal. 
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We note that for D = 2, the kinetic energies of the two states 9 0  and Q1 
are identical. However, for larger values of D ,  the kinetic energy of the entangled 
wave function 91, Eq.(14), is always below that of the product state. For a large 
number of particles, that is for large values of D ,  we approach the expression Eq.(12) 
corresponding to a product wave function. 

3.3 Enhancement 

We now turn to a rather unusual wave function. It is motivated by the requirement 
that the radial wave function u should be independent of the number of dimensions. 
However, quantum mechanics drastically restricts the set of possible states. Indeed, 
we recall from Eq.(4) that the radial wave function u has to be divided by 
in order to  provide the wave function Q. Hence, all derivatives of u must vanish at 
T = 0, in order that a proper Q ( T )  may be constructed for any D. 

fulfills this requirement. Here, P and K are parameters and the normalization con- 
stant N2 can be expressed ' in terms of the modified Bessel function of first order 

Since the wave function u ~ ( T )  is independent of the dimension D, but the 
quantum fictitious potential is quadratic in D ,  the average kinetic energy must 
be quadratic in D .  Indeed, when we substitute the wave function u2 into the def- 
initions Eqs. (7) and (8) of the energies T, and Tv, and perform the integrations, 
we arrive at 

Kt2.  

and 

where K2 denotes the modified Bessel function of second order 12. 

The para-radial contribution T,'2' is independent of D. In contrast, TF) in- 
volves D ,  and hence the number N of particles quadratically. This enhancement 
results from the quantum centrifugal potential and reflects the constraint that, rn 
we squeeze more particles into the state, we do not alter the radial wave function 
u2. Indeed, u2 is independent of D ,  and thus independent of N. Forcing additional 
particles into this state leads to  a strong increase in energy. 

4 Summary 

We have analyzed the kinetic energy of N non-interacting particles in free space. 
We have found an unusual entangled quantum state for which the average kinetic 
energy increases quadratically with the number of particles. This enhancement of 
kinetic energies is due to  the wave nature of the atoms. It results from the form of 
the Laplacian in D dimensions, giving rise to the quantum fictitious potential. 
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Is this quadratic dependence on N the ultimate increase or is another asymp- 
totic behavior possible? Does the degree of entanglement determine the deviation 
from the linear dependence? How does the analytic behavior of the wave function 
determine the asymptotics? Three questions that indicate that this research topic 
is by no means exhausted. To provide detailed answers goes beyond the scope of 
this paper. Here we can only indicate hints for further studies. 

Starting with the last question, we note that the wave function u2, Eq.(16), 
is non-analytic at the origin. It cannot be expanded into a Taylor series but into 
a Laurent series. All derivatives at  the origin vanish. This feature is crucial in 
order to  ensure the appropriate behavior of the wave function 9 at the origin for 
all dimensions. We conjecture that there are many other wave functions besides 
ugt hat satisfy this criterion and in this way lead to different power laws. In order 
to  address the second question we need a meaningful measure of entanglement for 
continuous variable. This question is still in debate. Our example may provide 
some new insight into this problem. 

In conclusion, we mention that the enhancement effect can also be interpreted5 
as a consequence of the commutation relation between the operators of the radial 
unit vector and the momentum in hyperspace. Indeed, the commutation relation 
provides via the uncertainty relation a lower bound of the kinetic energy which 
under appropriate conditions is quadratic in the number of dimensions. 
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DISCUSSION 
Chairman: M. Raizen 

E. Yarevsky: You consider only s-waves. Actually it means that you have 
already introduced some special non-local interaction. If you would consider p or 
d-waves, you would have some other interaction. So it is some special kind of 
interactions that you have considered. 

W. Schleich: Fine, I agree with every statement that you have made. If you 
would have a pwave, you would see similar effects but they would not be surpris- 
ing because p corresponds to angular momentum, and that just rises the angular 
momentum of the wave by a constant. The point here is that there is no rotation 
in this wave function; there is absolutely no angular momentum. The attraction is 
only due to the wave nature of that particular wave function. And of course you can 
say, yes, I have introduced a particular interaction, but the interaction is because - 
and I agree with you - of this s-wave. But what’s wrong with that? 

E. Yarevsky: Actually the problem is that if you have these particles, you 
cannot restrict yourself only to s-waves, because a real wave function has projections 
on different components. 

W. Schleich: Here, I disagree with you because that is a matter of preparation, 
and I can prepare a wave function that is in this s = 0 state. There is absolutely 
no doubt in my mind. 

L. Stodolsky: For easier understanding: you are introducing a sort of Hamil- 
tonian. 

W. Schleich: No, there is no need to  show Hamiltonians. There are only 
two free particles, there is nothing more than that. But there are two parts to  the 
problem: one part is kinematics, and the other is dynamics. In the problem with 
the N2-dependence it is the kinematics that matters, so I don’t need to know the 
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Hamiltonians. 
L. Stodolsky: You need the Hamiltonians to do the calculations. 
W. Schleich: That’s what we did. We did the calculation and we found 

this effect. That’s not so trivial because these particles live in a space of large 
dimensions. 

L. Stodolsky: How do these high dimensions come in? 
W. Schleich: That’s exactly where the dynamics comes in. When you talk 

about two entangled particles, then you have to take the Hamiltonian into account 
in the dynamic part, and indeed, that’s just a Hamiltonian of two free particles. I 
agree, there is nothing more. 

L. Stodolsky: What’s wrong with two particles? 
W. Schleich: The point is, that if you look at any textbook, you might find 

such discussions for Gaussians. But I’m emphasizing the present wave function is 
not a Gaussian. 

L. Stodolsky: No forces, just two free particles? 
W. Schleich: That’s right. They are prepared in a very specific case. They 

are not Gaussians, these are wave packets that have a node at the origin. You 
wouldn’t see the effect if you would just take Gaussians. The attraction as well as 
the N2-effect depends crucially on that particular wave function. 

H. Kimble: Would you see the effect with a Bose-Einstein condensate? 
W. Schleich: No! A Bose-Einstein condensate in its most elementary descrip- 

tion would be a product state of Gaussians. 
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LONG DISTANCE Q U A N T U M  COMMUNICATION 

LUMING DUAN1, M. LUKIN', P. ZOLLER', AND J.  I. CIRAC3 

Technikerstrasse 25-2, A-6020 Innsbruck, Austria 
' Physics Department, University of Harvard, Cambridge, M A ,  US 

Max-Planck Institut fur  Quantenoptik, Hans-Kopfermann Str. 1, 
0-85748 Garching, Germany 

We show how one can use atomic ensembles in order to construct quantum re- 
peaters. This may allow for quantum communication over long distances. 

Institute for Theoretical Physics, University of Innsbruck 

1 Introduction 

Quantum communication is an essential element required for constructing quantum 
networks, and it also has the application for absolutely secret transfer of classical 
messages by means of quantum cryptography The central problem of quantum 
communication is to generate nearly perfect entangled states between distant sites. 
Such states can be used, for example, to implement secure quantum cryptography 
using the Ekert protocol ', and to faithfully transfer quantum states via quan- 
tum teleportation '. All the known realistic schemes for quantum communication 
are based on the use of the photonic channels. However, the degree of entangle- 
ment generated between two distant sites normally decreases exponentially with the 
length of the connecting channel due to the optical absorption and other channel 
noise. To regain a high degree of entanglement, purification schemes can be used '. 
However, entanglement purification does not fully solve the long-distance quantum 
communication problem. Due to the exponential decay of the entanglement in the 
channel, one needs an exponentially large number of partially entangled states to 
obtain one highly entangled state, which means that for a sufficiently long distance 
the task becomes nearly impossible. 

To overcome the difficulty associated with the exponential fidelity decay, the 
concept of quantum repeaters can be used '. In principle, it allows to make the 
overall communication fidelity very close to the unity, with the communication 
time growing only polynomially with the transmission distance. In analogy to a 
fault-tolerant quantum computing 5i6, the quantum repeater proposal is a cascaded 
entanglement purification protocol for communication systems. The basic idea is 
to divide the transmission channel into many segments, with the length of each 
segment comparable to the channel attenuation length. First, one generates entan- 
glement and purifies it for each segment; the purified entanglement is then extended 
to a longer length by connecting two adjacent segments through entanglement swap- 
ping 2,7.  After entanglement swapping, the overall entanglement is decreased, and 
one has to purify it again. One can continue the rounds of the entanglement swap- 
ping and purification until a nearly perfect entangled states are created between 
two distant sites. 

To implement the quantum repeater protocol, one needs to generate entangle- 
ment between distant quantum bits (qubits), store them for sufficiently long time 

576 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



577 

and perform local collective operations on several of these qubits. The require- 
ment of quantum memory is essential since all purification protocols are probabilis- 
tic. When entanglement purification is performed for each segment of the channel, 
quantum memory can be used to keep the segment state if the purification succeeds 
and to  repeat the purification for the segments only where the previous attempt 
fails. This is essentially important for polynomial scaling properties of the com- 
munication efficiency since with no available memory we have to require that the 
purifications for all the segments succeeds at the same time; the probability of such 
event decreases exponentially with the channel length. The requirement of quantum 
memory implies that we need to  store the local qubits in the atomic internal states 
instead of the photonic states since it is difficult to  store photons for a reasonably 
long time. With atoms as the local information carriers it seems to be very hard 
to implement quantum repeaters since normally one needs to  achieve the strong 
coupling between atoms and photons with high-finesse cavities for atomic entan- 
glement generation, purification, and swapping ',', which, in spite of the recent 
significant experimental advances 10,11,12, remains a very challenging technology. 

To overcome this difficulty, Ref. l3 proposes a very different scheme to realize 
quantum repeaters based on the use of atomic ensembles with the AII-level con- 
figuration. The laser manipulation of the atomic ensembles, together with some 
simple linear optics devices and moderate single-photon detectors, do the whole 
work for long-distance quantum communication. The setup is much simpler com- 
pared with the single-atom and high-Q cavity approach discussed in the previous 
chapter. To achieve this, the scheme makes significant advances in each step of en- 
tanglement generation, connection, and applications, with each step having built-in 
entanglement purification and resilient to the realistic noise. As a result, the scheme 
circumvents the realistic noise and imperfections, and at the same time keeps the 
overhead in the communication time increasing with the distance only polynomi- 
ally, as long as the atomic coherences survive the whole process. In this paper, 
we will review the realization of quantum repeaters and long-distance quantum 
communication following the approach in Ref. 13. 

2 Entanglement generation 

To realize long-distance quantum communication, first we need to entangle two 
atomic ensembles within the channel attenuation length. The entanglement gen- 
eration scheme described here is based on single-photon interference at photode 
tectors, and is fault-tolerant to realistic noise. This scheme is an extension of a 
proposal first proposed in l4>l5 to entangle single-atoms. The extension was made 
in l3 to entangle atomic ensembles with significant improvements in the communi- 
cation efficiency thanks to the collective enhancement of the signal-to-noise ratio 
for many-atom ensembles. 

The system is a sample of atoms prepared in the ground state 11) with the AII- 
level configuration (see Fig. 1). It can be shown that one can define an effective 
singlemode bosonic annihilation operator a for the cavity output signal (it is called 
the forward-scattered Stokes signal in the free space case). After the light-atom in- 
teraction, the signal mode a and the collective atomic mode s = ( l / a )  Ci ll)i (21 
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a b 1. 

Figure 1. (la) The relevant level structure of the atoms in the ensemble with /I) ,  the ground state, 
12) , the metastable state for storing a qubit, and 13) , the excited state. The transition 11) + 13) is 
coupled by the classical laser with the Rabi frequency R, and the forward scattering Stokes light 
comes from the transition 13) - 12). For convenience, we assume off-resonant coupling with a large 
detuning A. (lb) Schematic setup for generating entanglement between the two atomic ensembles 
L and R. The two ensembles are pencil shaped and illuminated by the synchronized classical 
laser pulses. The forward-scattering Stokes pulses are collected after the filters (polarization and 
frequency selective) and interfered at a 50%-50% beam splitter BS after the transmission channels, 
with the outputs detected respectively by two singlephoton detectors D1 and D2. If there is a 
click in D1 OT D2, the process is finished and we successfully generate entanglement between the 
ensembles L and R. Otherwise, we first apply a repumping pulse to the transition 12) -+ 13) on the 
ensembles L and R to set the state of the ensembles back to the ground state 10); @lo):, then the 
same classical laser pulses as the first round are applied to the transition 11) - (3) and we detect 
again the forward-scattering Stokes pulses after the beam splitter. This process is repeated until 
finally we have a click in the D1 OT D2 detector. 

are in a two-mode squeezed state with th6 squeezing parameter T,  proportional to 
the interaction time tA. If the interaction time t~ is very small, the whole state of 
the collective atomic mode and the signal mode can be written in the perturbative 
form 

where p ,  = tanh2 T,  is the small excitation probability and o (p , )  represents the 
terms with more excitations whose probabilities are equal or smaller than pz .  The 
10,) and 10,) are respectively the atomic and optical vacuum states with 10,) = 
Bi There is also a fraction of light from the transition 13) 4 12) emitted 
in other directions which contributes to spontaneous emissions. It can be shown 
that the contribution to the population in the collective atomic mode s from the 
spontaneous emissions is very small for many-atom ensembles due to the collective 
enhancement of the signal-tenoise ratio for this mode. 

Now we show how to use this setup to generate entanglement between two 
distant ensembles L and R using the configuration shown in Fig. 1. Here, two laser 
pulses excited both ensembles simultaneously, and the whole system is described by 
the state I+)L@14)R, where 14)L and Iq5)R are given by Eq. (1) with all the operators 
and states distinguished by the subscript L or R. The forward scattered Stokes signal 
from both ensembles is combined at the beam splitter and a photodetector click in 
either D1 or D2 measures the combined radiation from two samples, aia+ or a ta -  
with a+ = (UL f eiquR) /a. Here, cp denotes an unknown difference of the phase 
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shifts in the two-side channels. We can also assume that has an imaginary part 
to account for the possible asymmetry of the setup, which will also be corrected 
automatically in our scheme. But the setup asymmetry can be easily made very 
small, and for simplicity of expressions we assume that 9 is real in the following. 
Conditional on the detector click, we should apply a+ or a- to the whole state 
lq4)L @ and the projected state of the ensembles L and R is nearly maximally 
entangled with the form (neglecting the high-order terms o ( p c ) )  

The probability for getting a click is given by p ,  for each round, so we need to repeat 
the process about l/pc times for a successful entanglement preparation, and the 
average preparation time is given by TO ,-., t A / p c .  The states IQT)iR and IqT)LR 
can be easily transformed to  each other by a simple local phase shift. Without 
loss of generality, we assume in the following that we generate the entangled state 
lQT) iR’  

As will be shown below, the presence of the noise modifies the projected state 
of the ensembles to 

where the “vacuum” coefficient co is determined by the dark count rates of the 
photon detectors. It will be seen below that any state in the form of Eq. (3) 
will be purified automatically to a maximally entangled state in the entanglement- 
based communication schemes. We therefore call this state an effective maximally 
entangled (EME) state with the vacuum coefficient co determining the purification 
efficiency. 

3 Entanglement connection through swapping 

After the successful generation of the entanglement within the attenuation length, 
we want to extend the quantum communication distance. This is done through 
entanglement swapping with the configuration shown in Fig. 2. Suppose that we 
start with two pairs of the entangled ensembles described by the state P L I ~  @ P I ~ R ,  

where PLI ,  and P I ~ R  are given by Eq. (3). In the ideal case, the setup shown 
in Fig. 2 measures the quantities corresponding to  operators SlS* with S, = 

(SJ, f 5’1,) /a. If the measurement is successful (i.e., one of the detectors registers 
one photon), we will prepare the ensembles L and R into another EME state. The 
new -parameter is given by 9 1  + 9 2 ,  where 91 and 9 2  denote the old 9-parameters 
for the two segment EME states. As will be seen below, even in the presence of the 
realistic noise and imperfections, an EME state is still created after a detector click. 
The noise only influences the success probability to get a click and the new vacuum 
coefficient in the EME state. In general we can express the success probability 
p l  and the new vacuum coefficient c1 as p l  = f1 ( C O )  and c1 = f2 (cg), where the 
functions fl and f2 depend on the particular noise properties. 

The above method for connecting entanglement can be cascaded to  arbitrarily 
extend the communication distance. For the ith (i = 1 , 2 , .  . . , n) entanglement 
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Figure 2. (2a) Illustrative setup for the entanglement swapping. We have two pairs of ensembles 
L, 11 and 12, R distributed at three sites L, I and R. Each of the ensemble-pairs L, 11 and 12, R is 
prepared in an EME state in the form of Eq. (3). The excitations in the collective modes of the 
ensembles 11 and I2 are transferred simultaneously to  the optical excitations by the repumping 
pulses applied to  the atomic transition 12) - 13), and the stimulated optical excitations, after 
a 50%-50% beam splitter, are detected by the single-photon detectors D1 and D2. If either D1 
OT D2 clicks, the protocol is successful and an EME state in the form of Eq. ( 3 )  is established 
between the ensembles L and R with a doubled communication distance. Otherwise, the process 
fails, and we need to  repeat the previous entanglement generation and swapping until finally we 
have a click in D1 or D2, that is, until the  protocol finally succeeds. (2b) The two intermediated 
ensembles 11 and I2 can also be replaced by one ensemble but with two metastable states 11 and I2 
to  store the two different collective modes. The 50%-50% beam splitter operation can be simply 
realized by a a /2  pulse on the two metastable states before the collective atomic excitations are 
transferred to  the optical excitations. 

connection, we first prepare in parallel two pairs of ensembles in the EME states 
with the same vacuum coefficient ci-1 and the same communication length Li-1, 

and then perform the entanglement swapping as shown in Fig. 2, which now 
succeeds with a probability pi = f 1  (ci-1). After a successful detector click, the 
communication length is extended to Li = 2Li-1, and the vacuum coefficient in 
the connected EME state becomes ci = f2(ci-l) .  Since the ith entanglement 
connection need be repeated in average l/pi times, the total time needed to establish 
an EME state over the distance L,  = 2"Lo is given by T, = TO nr=, ( l / p i ) ,  where 
LO denotes the distance of each segment in the entanglement generation. 

4 Entanglement-based communication schemes 

After an EME state has been established between two distant sites, we would like 
to use it in the communication protocols, such as quantum teleportation, cryptog- 
raphy, and Bell inequality detection. It is not obvious that the EME state (3), 
which is entangled in the Fock basis, is useful for these tasks since in the Fock basis 
it is experimentally hard to do certain single-bit operations. In the following we 
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Figure 3. (3a) Schematic setup for the realization of quantum cryptography and Bell inequality 
detection. Two pairs of ensembles L1, R1 and Lz, Rz (or two pairs of metastable states as shown 
in Fig. l(b)) have been prepared in the EME states. The collective atomic excitations on each side 
are transferred to the optical excitations, which, respectively after a relative phase shift p~ or p~ 
and a 50%-50% beam splitter, are detected by the singlephoton detectors Df’, Dk and DF,  0;. 
We look at the four possible coincidences of DF, D f  with Of’, 0 5 ,  which are functions of the 
phase difference q~ - p ~ .  Depending on the choice of p~ and pa, this setup can realize both the 
quantum cryptography and the Bell inequality detection. (3b) Schematic setup for probabilistic 
quantum teleportation of the atomic “polarization” state. Similarly, two pairs of ensembles L1, 
R1 and La, Rz are prepared in the EME states. We want to teleport an atomic “polarization” 
state (&Sfl + dlSj,) IOaOa),112 with unknown coefficients do,dl from the left to the right side, 

where Sjl, Sj2 denote the collective atomic operators for the two ensembles I1 and 12 (or two 
metastable states in the same ensemble). The collective atomic excitations in the ensembles 11, 
L1 and Iz,  Lz are transferred to the optical excitations, which, after a 50%-50% beam splitter, are 
detected by the singlephoton detectors D!, Df and D;,D$. If there two clicks, one at Df or D! 
and another one at Dk or 021, the protocol is successful. A n-phase rotation is then performed on 
the collective mode of the ensemble Rz conditional on that the two clicks appear in the detectors 
D:,Dk or D;,Df’. The collective excitation in the ensembles R1 and Rz, if appearing, would be 
found in the same “polarization” state doSA, + d1.9;~) I O a O a ) R I R z .  ( 

will show how the EME states can be used to realize all these protocols with simple 
experimental configurations. 

Quantum cryptography and the Bell inequality detection are achieved with the 
setup shown by Fig. 3a. The state of the two pairs of ensembles is expressed as 
~ L ~ R ~  @ ~ L , R , ,  where ~ L ~ R ~  (i = 1,2)  denote the same EME state with the vacuum 
coefficient c, if we have done n times entanglement connection. The p-parameters 
in , D L ~ R ~  and ,DL,R, are the same provided that the two states are established over 
the same stationary channels. We register only the coincidences of the two-side 
detectors, so the protocol is successful only if there is a click on each side. Under 
this condition, the vacuum components in the EME states, together with the state 
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components SL,Si, Ivac) and SL,SL, Ivac), where Ivac) denotes the ensemble state 
(OaOaOaOa)LIRILzRz, have no contributions to the experimental results. So, for 
the measurement scheme shown by Fig. 8 p , - , , ~ ~  is 
effectively equivalent to  the following “polarization” maximally entangled (PME) 
state (the terminology of “polarization” comes from an analogy to the optical case) 

3, the ensemble state 

I%ME = (st,sL, + si,sLJ /Jz IV.4. (4) 

The success probability for the projection from PL,R, 8 PL,R, to (i.e., 
the probability to get a click on each side) is given by pa = 1/[2 (c, + 1)2]. One 
can also check that in Fig. 3, the phase shift $A (A = L or R) together with 
the corresponding beam splitter operation are equivalent to a single-bit rotation in 
the basis {lo), = 5’1, IOaOa)A1A2 , I1)A = SA, IOaOa)A,A,} with the rotation angle 
0 = $A/2. Now, it is clear how to  do quantum cryptography and Bell inequality 
detection since we have the PME state and we can perform the desired single-bit 
rotations in the corresponding basis. For instance, to distribute a quantum key 
between the two remote sides, we simply choose $A randomly from the set (0, n/2} 
with an equal probability, and keep the measurement results (to be 0 if 0;’ clicks, 
and 1 if Df clicks) on both sides as the shared secret key if the two sides become 
aware that they have chosen the same phase shift after the public declare. This is 
exactly the Ekert scheme and its absolute security follows directly from the proofs 
in I6,I7. For the Bell inequality detection, we infer the correlations E ( $ L ,  $JR) = 
PDfDp + P D i D ~  - PDfD; - PDLDR = cos ( $ L  - $ R )  from the measurement of 
the coincidences PDfDp etc. Fo: the setup shown in Fig. 3a, we would have 
IE (0,  ~ / 4 )  + E ( ~ / 2 ,  n/4) + E ( ~ / 2 , 3 n / 4 )  - E (0 ,3~/4) I  = 2 f i ,  whereas for any 
local hidden variable theories, the CHSH inequality implies that this value should 
be below 2. 

We can also use the established long-distance EME states for faithful transfer 
of unknown quantum states through quantum teleportation, with the setup shown 
by Fig. 3b. In this setup, if two detectors click on the left side, there is a signif- 
icant probability that there is no collective excitation on the right side since the 
product of the EME states PL,R, 8 PL,R, contains vacuum components. However, 
if there is a collective excitation appearing from the right side, its “polarization” 
state would be exactly the same as the one input from the left. So, as in the 
Innsbruck experiment the teleportation here is probabilistic and needs posterior 
confirmation; but if it succeeds, the teleportation fidelity would be nearly perfect 
since in this case the entanglement is equivalently described by the PME state (4). 
The success probability for the teleportation is also given by pa = 1/[2 (c, + 1)2], 
which determines the average number of repetitions for a successful teleportation. 

5 

We next discuss noise and imperfections in the schemes for entanglement generation, 
connection and applications. In particular we show that each step contains built-in 
entanglement purification which makes the whole scheme resilient to the realistic 
noise and imperfections. 

Noise and built-in entanglement purification 
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In the entanglement generation, the dominant noise is the photon loss, which 
includes the contributions from the channel attenuation, the spontaneous emissions 
in the atomic ensembles (which results in the population of the collective atomic 
mode s with the accompanying photon going to  other directions), the coupling in- 
efficiency of the Stokes signal into and out of the channel, and the inefficiency of 
the single-photon detectors. The loss probability is denoted by 1 - qp with the over- 
all efficiency vp = vie-LolLatt, where we have separated the channel attenuation 
e-LolL*tt (L,tt is the channel attenuation length) from other noise contributions 7; 
with 17; independent of the communication distance LO. The photon loss decreases 
the success probably for getting a detector click from p ,  to rlpp,, but it has no influ- 
ence on the resulting EME state. Due to  this noise, the entanglement preparation 
time should be replaced by TO - ta/  (qpp , ) .  The second source of noise comes from 
the dark counts of the single-photon detectors. The dark count gives a detector 
click, but without population of the collective atomic mode, so it contributes to the 
vacuum coefficient in the EME state. If the dark count comes up with a probability 
pdc  for the time interval ta,  the vacuum coefficient is given by co = p d c / ( v p p c ) ,  
which is typically much smaller than 1 since the Raman transition rate is much 
larger than the dark count rate. The final source of noise, which influences the 
fidelity to get the EME state, is caused by the event that more than one atom are 
excited to the collective mode S whereas there is only one click in D1 or D2. The 
conditional probability for that event is given by p, ,  so we can estimate the fidelity 
imperfection AFo = 1 - FO for the entanglement generation by 

AFO P c .  (5) 
Note that by decreasing the excitation probability p,, one can make the fidelity 
imperfection closer and closer to  zero with the price of a longer entanglement prepa- 
ration time TO. This is the basic idea of the entanglement purification. So, in this 
scheme, the confirmation of the click from the single-photon detector generates and 
purifies entanglement at the same time. 

In the entanglement swapping, the dominant noise is still the losses, which in- 
clude the contributions from the detector inefficiency, the inefficiency of the excita- 
tfon transfer from the collective atomic mode to the optical mode 21,22, and the small 
decay of the atomic excitation during the storage ",". Note that by introducing 
the detector inefficiency, we have automatically taken into account the imperfection 
that the detectors cannot distinguish the single and the two photons. With all these 
losses, the overall efficiency in the entanglement swapping is denoted by 77,. The loss 
in the entanglement swapping gives contributions to the vacuum coefficient in the 
connected EME state, since in the presence of loss a single detector click might result 
from two collective excitations in the ensembles I1 and 12,  and in this case, the col- 
lective modes in the ensembles L and R have to  be in a vacuum state. After taking 
into account the realistic noise, we can specify the success probability and the new 
vacuum coefficient for the ith entanglement connection by the recursion relations 
pi = f1 (ci-1) = 7, (1 - 2(cil;+l)) / (ci-1 + 1) and c, = f~ ( ~ - 1 )  = 2c,-1 + 1 - 77,. 
The coefficient co for the entanglement preparation is typically much smaller than 
1 - v,, then we have ci x (22 - 1) (1 - q,) = (.&/LO - 1) (1 - q,), where Li de- 
notes the communication distance after i times entanglement connection. With the 
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expression for the G, we can easily evaluate the probability p ,  and the communica- 
tion time T, for establishing a EME state over the distance L,  = 2,Lo. After the 
entanglement connection, the fidelity of the EME state also decreases, and after n 
times connection, the overall fidelity imperfection AF,  - 2,AFo - (L,/Lo) AF,. 
We need fix AF, to be small by decreasing the excitation probability p ,  in Eq. (5). 

It is important to point out that our entanglement connection scheme also has 
built-in entanglement purification function. This can be understood as follows: 
Each time we connect entanglement, the imperfections of the setup decrease the 
entanglement fraction 1/ (c, + 1) in the EME state. However, the entanglement 
fraction decays only linearly with the distance (the number of segments), which is 
in contrast to the exponential decay of the entanglement for the connection schemes 
without entanglement purification. The reason for the slow decay is that in each 
time of the entanglement connection, we need to repeat the protocol until there is 
a detector click, and the confirmation of a click removes part of the added vacuum 
noise since a larger vacuum components in the EME state results in more times 
of repetitions. The built-in entanglement purification in the connection scheme is 
essential for the polynomial scaling law of the communication efficiency. 

As in the entanglement generation and connection schemes, our entanglement 
application schemes also have built-in entanglement purification which makes them 
resilient to the realistic noise. Firstly, we have seen that the vacuum components 
in the EME states are removed from the confirmation of the detector clicks and 
thus have no influence on the fidelity of all the application schemes. Secondly, 
if the single-photon detectors and the atom-to-light excitation transitions in the 
application schemes are imperfect with the overall efficiency denoted by qa, one 
can easily check that these imperfections only influence the efficiency to get the 
detector clicks with the success probability replaced by pa = qa/ 2 (cn + l)’] , and 
have no effects on the communication fidelity. Finally, we have seen that the phase 
shifts in the stationary channels and the small asymmetry of the stationary setup 
are removed automatically when we project the EME state to the PME state, and 
thus have no influence on the communication fidelity. 

The noise not correctable by our scheme includes the detector dark count in the 
entanglement connection and the non-stationary channel noise and set asymmetries. 
The dark counts decrease the fidelity linearly with the number of segments L,/Lo, 
and the non-stationary noise as well as the asymmetries decrease it by the random 
walk law d m .  For each time of entanglement connection, the dark count 
probability is about lo-‘ if we make a typical choice that the collective emission 
rate is about lOMHz and the dark count rate is 10’Hz. So this noise is negligible 
even if we have communicated over a long distance (lo3 the channel attenuation 
length Latt for instance). The non-stationary channel noise and setup asymmetries 
can also be safely neglected for such a distance. For instance, it is relatively easy 
to control the non-stationary asymmetries in local laser operations to values below 
lop4 with the use of accurate polarization techniques 2o for Zeeman sublevels (as 
in Fig. 2b). 
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6 

We have shown that each of our entanglement generation, connection, and applica- 
tion schemes has built-in entanglement purification, and as a result of this property, 
we can fix the communication fidelity to be nearly perfect, and at the same time 
keep the communication time to increase only polynomially with the distance. As- 
sume that we want to communicate over a distance L = L,  = 2,Lo. By fixing 
the overall fidelity imperfection to be a desired small value AF,, the entanglement 
preparation time becomes TO - t A /  (vPAFo) - (L,/Lo) tA /  (vPAFn).  For an effec- 
tive generation of the PME state (4), the total communication time Ttot - T,/p, 
with T, - Ton:=, (l/pi). So the total communication time scales with the distance 
by the law 

Scaling of the communication efficiency 

where the success probabilities p i , p ,  for the ith entanglement connection and for 
the entanglement application have been specified before. The expression (6) has 
confirmed that the communication time Ttot increases with the distance L only 
polynomially. We show this explicitly by taking two limiting cases. In the first case, 
the inefficiency 1 - qs for the entanglement swapping is assumed to  be negligibly 
small. One can deduce from Eq. (6) that in this case the communication time Ttot - 
T,,, (L/Lo)' eLolLaCf, with the constant T,,, = 2ta/ (v;vaAFT) being independent 
of the segment and the total distances LO and L. The communication time Ttot 
increases with L quadratically. In the second case, we assume that the inefficiency 
1 - qs is considerably large. The communication time in this case is approximated 

still polynomially (or sub-exponentially in a more accurate language, but this makes 
no difference in practice since the factor log, (L/Lo)  is well bounded from above 
for any reasonably long distance). If Ttot increases with L/Lo by the mth power 
law ( L I L O ) ~ ,  there is an optimal choice of the segment length to  be LO = mLatt 
to  minimize the time Tt,t. As a simple estimation of the improvement in the 
communication efficiency, we assume that the total distance L is about 100Latt, for 
a choice of the parameter 77, = 2/3, the communication time Ttot/Tcon - lo6 with 
the optimal segment length Lo - 5.7Latt. This result is a dramatic improvement 
compared with the direct communication case, where the communication time T tot 

for getting a PME state increases with the distance L by the exponential law 
Ttot - T,,,eL/Latt. For the same distance L N 100Latt, one needs Ttot/Tcon - 
for direct communication, which means that for this example the present scheme is 

by Ttot ,-- Tcon(L/~o)[~o~~(~/Lo)+ll/~+~og~(l/~~-~)+~~LO/L~tt, which increases with L 

times more efficient. 

7 Summary 

In summary, in this section we explained the recent atomic ensemble scheme for 
implementation of quantum repeaters and long-distance quantum communication. 
The proposed technique allows to generate and connect the entanglement and use 
it in quantum teleportation, cryptography, and tests of Bell inequalities. All of the 
elements of the scheme are within the reach of current experimental technology, 
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and have the important property of built-in entanglement purification which makes 
them resilient to the realistic noise. As a result, the overhead required to imple- 
ment the scheme, such as the communication time, scales polynomially with the 
channel length. This is in remarkable contrast to direct communication where the 
exponential overhead is required. Such an efficient scaling, combined with a relative 
simplicity of the proposed experimental setup, opens up realistic prospectives for 
quantum communication over long distances. 
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DISCUSSION 
Chairman: A .  Ekert 

L. Accardi: When you extend your argument from single ion trap, two level, 
to N two-level systems, you produce entangled pairs or an entangled chain of N? 

J. Cirac: Entangled pairs. One entangles the first two ions in an EPR state. 
Then one takes a second ion in the same trap and an ion somewhere else, and then 
creates another entangled pair. Now, one performs a joint measurement between 
these two ions in the same trap, and automatically what one has is that the first 
and the last ions become entangled. 

L. Accardi: So you have to know which atom on the chain has emitted the 
photon, or it is not necessary? 

J. Cirac: Yes. 
L. Wang: In terms of keeping fidelity to a certain value such that you can do 

the repeating, what’s the maximum loss I can tolerate in a fibre? 
J. Cirac: The loss does not affect the fidelity, it is something independent. The 

loss means that the photon does not arrive so you have to repeat the procedure 
more times. So, if there is no phase change in a fibre but there is a bit of loss on the 
way, then you have to  repeat it more times. The problem is that, of course, if you 
go to very long distances then you have to wait for a very long time, an exponential 
time with respect to the length. So it is better go to a short distance and wait for 
shorter times. And the fidelity would be 1. Now, what may happen is that there 
are not only losses, but also some other errors, in the fibre. This may damage your 
fidelity. 

L. Wang: That’s my question: how long a distance do I have to implement a 
repeater? I mean that’s one kilometre, or that’s one centimetre? 

J. Cirac: 10 kilometres. 
L. Wang: The second question quickly is: if I want to  do only quantum key 

distribution, I don’t need entanglement. What about that? 
J. Cirac: Yes, you don’t need entanglement but the problem is that you must 

use fault tolerant error correction. But in that case the error rate cannot be larger 
than lop4, so it is better do this with entanglement, with our protocol. 

S. Lloyd: I have a question concerning these collective modes. How sensitive 
are these collective modes to the position of the detector? 

J. Cirac: This is a Raman transition, and what we are using is that the laser 
and the detected photon propagate along the same direction. What counts now 
is that the relative k is basically zero, corresponding to a hyperfine transition. It 
is of the order of centimetres. So we can move the detectors over centimetres and 
nothing will happen. 

L. Stodolsky: In the discussion, when you have the correlations, and that 
manifold does not go into the detector. They all cancel out somehow. So my 
question is: at the end, will I have the same result as if I have only one atom from 
ensemble A and one atom from ensemble B,  and then average over all pairs? 

J. Cirac: You will get the result. I mean, you can think there are N collective 
atomic modes, which are coupled to the electromagnetic field. And now what 
happens is that there is one of these last modes which is relevant - this is the one 
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coupled to the atomic collective modes - and the other ones are not relevant. Not 
relevant in the sense that you are not going to measure them, so that you will trace 
them out. But they don’t interfere with the relevant modes. But of course, I didn’t 
prove this fact in the talk; one has to read the paper to see how this works. 

L. Stodolsky: So why do you need this collective language? 
J. Cirac: Well, you need the collective language because otherwise you have 

to use a single atom. So the important point here is that we can get exactly the 
same as if we would have a single atom, but having many atoms. You don’t have 
to make the effort of the isolating, cooling an atom, and all that. This is the claim. 
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UNIVERSAL QUANTUM COMPUTATION WITH 
JOSEPHSON JUNCTIONS 

K. CH. CHATZISAWAS: C. DASKALOYANNISt, C. P. PANOSt 
Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece 

An implementation method of a gate in a quantum computer is studied in terms 
of a finite number of steps evolving in time according to  a finite number of basic 
Hamiltonians, which are controlled by on-off switches. As a working example, the 
case of a particular implementation of the two qubit computer employing a simple 
system of two coupled Josephson junctions is considered. 

1 In t roduct ion  

In classical computing the programming is based on commands written in the 
machine language. Each command is translated into manipulations of the consid- 
ered device, obtained by electronic switches. In quantum computation quantum 
mechanics is employed to process information. Although there are differences be- 
tween classical and quantum computers, the programming in both cases should be 
based on commands, and a part of these commands is realized by quantum gates. 

Initially, one of the leading ideas in quantum computation was the introduc- 
tion of the notion of the universal gate '. Given the notion of a universal set of 
elementary gates, various physical implementations of a quantum computer have 
been proposed '. Naturally, in order for an implementation to qualify as a valid 
quantum computer, all the set of elementary gates have to be implemented by the 
proposed system. This property is related to the problem of controllability of the 
quantum computer. The controllability of quantum systems is an open problem 
under investigation 3.  

Recently 4,5, attention was focused on the notion of encoded universality, which 
is a different functional approach to the quantum computation. Instead of forcing 
a physical system to act as a predetermined set of universal gates, which will be 
connected by quantum connections, the focus of research is proposed to be shifted 
to the study of the intrinsic ability of a given physical system, to act as a quantum 
computer using only its natural available interactions. Therefore the quantum com- 
puters are rather a collection of interacting cells (e.g. quantum dots, nuclear spins, 
Josephson junctions etc). These cells are controlled by external classical switches 
and they evolve in time by modifying the switches. The quantum algorithms are 
translated into time manipulations of the external classical switches which control 
the system. This kind of quantum computer does not have connections, which is 
the difficult part of a physical implementation. Any device operating by external 
classical switches has an internal range of capabilities, i.e. it  can manipulate the 
quantum information encoded in a subspace of the full system of Hilbert space. 
This capability is called encoded universality of the system '. 

*E-MAIL: KCHATZ AUTH. GR 
t~-MAIL : DASKALO m AUTH . GR 
*E-MAIL: CHPANOSBAUTH.GR 
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The notion of the encoded universality is identical to the notion of the con- 
trollability of the considered quantum device. The controllability on Lie groups 
from a mathematical point of view was studied in 6,7,8,9,10,11. The controllability of 
atomic and molecular systems was studied by several authors, see review article 
and the special issue of the Chemical Physics vol. 267, devoted to this problem. 
In the case of laser systems the question of controllability was studied by several 
authors and recently in In the present paper we investigate the conditions 
in order to obtain the full system of Hilbert space by a finite number of choices of 
the values of the classical switches. As a working example we use the Josephson 
junction devices in their simplest form 12,13,14,15, but this study can be extended 
in the case of quantum dots or NMR devices. 

In this paper the intrinsic interaction of a system operating as a universal com- 
puter is employed instead of forcing the system to  enact a predetermined set of uni- 
versal gates ‘. As a basic building block we use a system of two identical Josephson 
junctions coupled by a mutual inductor. The values of the classical control parame- 
ters (the charging energy E,and the inductor energy E L )  are chosen in such a way 
that four basic Hamiltonians, Hi,(i = 1,. . . , 4 )  are created by switching on and off 
the bias voltages and the inductor, where the tunneling amplitude EJ is assumed 
to  be fixed. Our procedure allows the construction of any one-qubit and two-qubit 
gate, through a finite number of steps evolving in time according to the four basic 
Hamiltonians. Using the two Josephson junctions network a construction scheme 
of four steps for the simulation is presented in the case of an arbitrary one-qubit 
gate, and of fifteen steps, for the simulation of a fundamental two-qubit gate. The 
main idea of this paper is the use of a small number of Hamiltonian states in order 
to  obtain the gates. 

Each fundamental two-qubit gate U is represented by a command containing 15 
letters i.e. the fifteen steps mentioned above. Each letter consists of a binary part 
(the states of the on-off switches), which determines the basic Hamiltonian used, 
and a numerical part corresponding to the time interval. 

Our proposal can be generalized for N-qubit gates ( N  > 2) belonging to the 
SU(2N) .  In that case N + 2 basic Hamiltonians are needed to implement such a 
gate. The generalization of these ideas is under investigation. 

The paper is organized as follows: In section 2 we present for clarity reasons 
the formalism of Josephson junctions one-qubit devices. In section 3 we apply the 
formalism to two qubit gates and simulate two-qubit gates and the possible N-qubit 
generalizations are discussed. In section 4 the results are summarized. Finally in 
the Appendix A, the essential mathematical feedback is provided. 

2 One-qubit devices 

The simplest Josephson junction one qubit device is shown in Fig 1. In this 
section we give a summary of the considered device. The detailed description and 
the complete list of references can be found in the section I1 of the detailed review 
paper 16. The device consists of a small superconducting island (“box”), with n 
excess Cooper pair charges connected by a tunnel junction with capacitance CJ 
and Josephson coupling energy EJ to  a superconducting electrode. A control gate 
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59 1 

Figure 1. One qubit device 

voltage V, (ideal voltage source) is coupled to  the system via a gate capacitor C,. 
The chosen material is such that the superconducting energy gap is the largest 

energy in the problem, larger even than the single-electron charging energy. In this 
case quasi-particle tunneling is suppressed at low temperatures, and a situation can 
be reached where no quasi-particle excitation is found on the island. Under special 
condition described in l6 only Cooper pairs tunnel coherently in the superconduct- 
ing junction. 

The voltage V, is constrained in a range interval where the number of Cooper 
pairs takes the values 0 and 1, while all other coherent charge states, having much 
higher energy, can be ignored. These charge states correspond to the spin basis 
states: 

I I> corresponding to 0 Cooper-pair charges on the island, and 
I L> corresponding to 1 Cooper-pair charges. 

In this case the superconducting charge box reduces to a two-state quantum 
system, qubit, with Hamiltonian (in spin 1/2 notation): 

(1) 
1 1 H = -ECa3 - - E J u ~  
2 2 

where 

031 t>= I t>, 031 I>= - 1  J> 
and 

011 t>= I b, 011 I>= I t>  
In this Hamiltonian there are two parameters the bias energy E, and the t un -  

neling amplitude EJ. The bias energy E, is controlled by the gate voltage Vg of 
Fig 1, while the tunneling amplitude EJ here is assumed to be constant i.e. it is a 
constant system parameter. The tunneling amplitude can be controlled in the case 
of the tunable effective Josephson junction, where the single Josephson junction is 
replaced by a flux-threaded SQUID 16,  but this device is more complicated than 
the one considered in this paper. 

The Hamiltonian is written as: 

(2) 
1 
2 

H = -AE(q)(cosqcs3 - s inqgl )  

where q is the mixing angle 
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The energy eigenvalues are 

and the splitting between the eigenstates is: 

The eigenstates provided by the Hamiltonian (l), are denoted in the following 
as I+ > and I -  >: 

To avoid confusion we introduce a second set of Pauli matrices p'= ( p l ,  p2, p3), 
which operate in the basis I+ >, I- >, while reserving the a' operators for the basis 
of I T> and I J> :  

p3 = I+ >< +I - I- >< - 1 ,  
p1 = I+ >< - 1  + I- >< +I, 

p2 = il- >< +I - il+ >< - 1  
In the proposed model we assume that the device of Fig 1 has a switch taking 

two values 1 and 0, corresponding to the switch states ON and OFF. This switch 
controls the gate voltage V,, which takes only two values either v d  or Vdeg, where 
the first one corresponds to the idle Hamiltonian, while the second one corresponds 
to the degenerate Hamiltonian. 

The idle point can be achieved for a characteristic value of the control gate 
voltage V, = vd, corresponding to a special value of the bias energy and to the 
phase parameter 7 = qid. At this point the energy splitting A E ( q )  achieves its 
maximum value, which is denoted by A E .  

For simplicity reasons we reserve the symbol E,for the bias energy correspond- 
ing to the idle point and by definition, the Hamiltonian at the idle point then 
becomes: 

At the degeneracy point q = $ the energy splitting reduces to E J ,  which is 
the minimal energy splitting. This point is characteristic for the material of the 
Josephson junction and corresponds to a special characteristic choice of the control 
gate voltage V, = V&. 

( 5 )  
EJ EJ 

Hdeg = --GI = -- (Sinqidp3 - cosqidp1) 
2 2 

The system is switched in the state OFF (or 0) corresponding to  the degenerate 
Hamiltonian ( 5 )  during a time interval t l ,  then the system is switched to the state 
ON (or 1) i.e. the idle Hamiltonian (4) during a time interval t 2  and it comes back 
to  the initial degenerate Hamiltonian during the time t3 etc. The general form 22 

of the evolution operator is: 

(6) u = e-it4ffid e-itaffdeg e-ZtZffid e-it1Hd.g 
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The operators Hid and Hdeg and their commutator 

form a (non-orthogonal) basis of the algebra 4 2 ) .  Therefore the pair Hid, Hdeg 

generates su(2) by taking these elements and all their possible commutators and 
their linear combinations. That means that the combination of four terms as in 
equation (6) for all the four time intervals { t l ,  t z ,  t3 ,  t 4 }  cover all the matrices be- 
longing in SU(2).  

Thus we conclude that every 2~ 2 matrix U in SU(2)  can be achieved by a device 
as in Fig 1, with manipulation of the binary switch permitting to the Hamiltonian 
two possible states i.e. the idle one and the degenerate one. The gate U corresponds 
to a command,  each command is constituted by (three) letters, each of them having 
the form of a pair 

{el t } ,  e = 0 ( O F F ) ,  or 1 ( O N ) ,  and 0 5 t < M 

i.e. the command corresponding to  equation (6) is analyzed in the following (at 
most four 22) letters: 

Lvl 
(0, tl} 
{ L t d  
(0, t 3 )  El (1, t 4 )  

The one qubit gates are 2 x 2 unitary matrices belonging to the group U(2). 
Each element in the group V ( 2 )  can be projected up to one multiplication constant 
to an element of group SU(2).  Evidently the elements generated by the evolution 
operator (6) belong to  SU(2).  Throughout this paper we shall use projections of 
U ( 2 N )  matrices in SU(2N) ,  using the symbol "H" to  denote this projection. Let us 
consider the fundamental one qubit gates or commands NOT, m, Hadamard, 
Phase Shift and their SU(2) projections: 

where 
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and 

where 

The above formulas imply the following analysis of these commands in letters 
(Table 1). 

Table 1. Letter Analysis of One-qubit gates 

The above analysis of a quantum gate in letters is rather trivial in the one qubit 
case and it was presented for clarity reasons, but the similar construction is far 
from evident and quite complicated in the N-qubit case. 

3 Two-qubit devices 

In order to perform one and two qubit quantum gate manipulations in the same 
device, we need to couple pairs of qubits together and to  control the interaction 
between them. For this purpose identical Josephson junctions are coupled by one 
mutual inductor L as shown in Fig 2. The physics and the detailed description 
of the coupled Josephson junctions are discussed and reviewed in 16. For L = 0 
the system reduces to  a series of uncoupled, single qubits, while for L -+ 00 they 
are coupled strongly. The ideal system would be one where the coupling between 
different qubits could be switched in the state ON (or state ’1’) by applying an 
induction via a constant value inductor L and in the state OFF (or state ’0’) 
corresponding to L = 0 and leaving the qubits uncoupled in the idle state. 
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Figure 2. Two qubit device 

The Hamiltonian for a general two-qubit system is written: 

For an explanation of the formalism used in this section see Appendix A. 
In the case of two identical junctions we have EJ ,  = EJ, = E J ,  since the tun- 

neling amplitude of the junction is a system parameter, depending on the material. 
Under these conditions the two coupled Josephson junctions Hamiltonian will be 
controlled by the following control parameters : E,, , E,, , E L ,  which will be called 
switches. The first two parameters are controlled by the gate voltages V,, , V,, , 
while the last parameter is related to  the inductor switch L. In the proposed model 
each of the parameters E,, , E,, can have two values 0 or E,. The first is the state 
'0' (or O F F )  corresponding to the degenerate one qubit state, while the other one 
is equal to E, (ON or '1' state) corresponding to  the one qubit idle state. Also 
the parameter EL takes two values. The one is EL = 0 ( O F F  or '0' state) corre- 
sponding to an uncoupled two qubit state and the other one has a fixed value (ON 
or '1' state). For the sake of simplicity we use the symbol EL for this induction 
amplitude. Using this combination of parameter values or binary switches values, 
we can obtain the following four fundamental states of the Hamiltonian (7): 

H I :  where both of the junctions are in the idle state (E,, = E,, = E,), while they 
are uncoupled (EL = 0). 

This Hamiltonian corresponds to  the switches choice (E,,, E,, , E L )  + (1,1,0). 

H2: where both of the junctions are in the degenerate state (E,, = E,, = 0 ) ,  while 
the two qubits are coupled. 

corresponding to the switch choice (O,O,  1). 
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H3: where the first junction is in degeneracy (Ecl = 0), the second is in the idle 
state (E,, = E,) and they are uncoupled (EL  = 0). 

1 1 
2 2 H3 = -E,ar)  - -EJ ( a i l )  + a?)) 

corresponding to  the switch choice (0,1,0) 

H4: where the first junction is in the idle state (Eel = E,), the second is in the 
degeneracy (E,, = 0) and they are uncoupled (EL  = 0). 

corresponding to the switch choice ( 1 , 0 , 0 ) .  

These four Hamiltonian forms are linearly independent and they can generate 
the su(4) algebra by repeated commutations and linear combinations. For a detailed 
discussion see the discussion in Appendix A, equation (25). Any elementary two- 
qubit gate, which is represented by a unitary 4 x 4 matrix U ESU(4), can be 
constructed as follows: 

u = e - iHk , tm . . . e - i H k 1 5 t ~ 5 e - i H k 1 4 t i 4  . . . e-iHk6t6. 

,e-Zffk5 t 5  e - i f f k 4  t4  e - i H k 3  t j  e - i H k , t z  e - i H k l  t i  (12) 

At the k-th step the device is put at one of the Hamiltonian states H I ,  H2, H3 
or H4b y appropriate manipulations of the switches during a time interval t k ,  k = 
1 , 2 , .  . . ,n. 

From a physical point of view any two qubit quantum gate can be obtained 
by n time steps. The maximum number of steps is a large finite number equal to  
5449 22. In practice the fundamental two bit gates can be calculated by 15 steps. 
Each gate, corresponding to the 4 x 4 matrix U ,  is associated to  a command. Each 
command consists of a number n letters or steps, each of them being a collection 
of 4 numbers { e l ,  e2, t ,  t }  of the following form for a command: 

letter H { e l ,  e2, t ,  t }  0 5 t < oc1 
el = 0 if V,, = vd,, + E,, = 0 

I- - 
= 1 if V,, = T/d +- E,, = E, 

e2 = 0 if V,, = Vdeg +- E,, = 0 
= 1 if v,, =Kid  + E,, = E ,  

C = O  i f L = O  

We shall show that any fundamental two-qubit gate U corresponds to  a com- 
mand, which contains 15 letters and is presented in Table 2, for the choice of 
parameters used by the experimentalists in their proposed Josephson junction mod- 
els 12,13,14,15. Each letter is the codified command which indicates the state of the 
binary switches and the time interval. 

We should notice that the succession of switch states follows a cyclic pattern. 
This regularity might facilitate the manipulation of the coupled junction device. 

Let us now give some numerical simulations of the proposed model for some 
fundamental quantum gates essential for the quantum computation (we use these 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



597 

U 

Table 2. Letter analysis of a command 

gates multiplied with a proper constant because the corresponding matrices should 
be elements of the SU(4) group). These gates are: 

1. The CNOT gate. Probably the most important gate in quantum computation: 

CNOT= (s;:;) o o o l  H 

2. The SWAP gate, which interchanges the input qubits: 

SWAP= (ir'i) o l o o  H 

3. The QFT, gate, the gate of the Quantum Fourier Transform (the quantum 
version of the Discrete Fourier Transform), for 2 qubits. A very useful gate for 
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the implementation of several quantum algorithms (e.g. Shor's algorithm): 

4. A conditional Phase Shift. This gate provides a conditional phase shift ei$ on 
the second qubit (adds a phase to the second qubit): 

)+ i sin * (1) up' - - + (g3 
+ (3 e-i$ + ei$ II 8 I[ 

In our analysis we consider this phase to be 4 = ;. 

In the simulations of this paper, the energies are assumed to take the following 
values: 

E, = 2.5 K = 3.45 

EJ = 0.1 K = 0.138 

EL = 0.1 K = 0.138 

J ,  

J, 

J 

i.e. the time scale is of the order of sec . The numerical value corresponding 
to the idle state is chosen to conform to the available experimental data 20, and to 
keep in the range of different experimental propositions 15,17,18,16,19. 

Each fundamental gate or command Ugate is approximated by an evolution 
operator U(t1, t 2 , .  . . , t15) of the form (12). This simulation is equivalent to the 
analysis of the command Ugate to letters in conformity with Table 2. The efficiency 
of our simulation is defined by a test function, ftest. It is a function of 15 time 
variables: 

ftest(tl1 t 2 , .  . . 7 t15) = 
4 

= C I(Ugate)ij - (U(t17t27.. . 3t15)) i j l2  = 

= Ilugate - U1l2 

(13) 
i,j=l 

Actually, ftest is the norm deviation of our simulation. The optimum, is ob- 
viously the nullification of this norm, ftest = 0. In fact we apply a minimization 
procedure and we calculate the time values, which minimize fiest. The numerical 
results are shown in Table 3. 
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Table 3. Letter analysis of Two-Qubit Gates 

In our numerical examples we use an approximation of the time parameters to  
the fourth decimal digit. Respectively we calculate the value of the test function. 
Taking into consideration three more decimal digits the test function ftest attains 
values of the order of It is a matter of intensity of the numerical algorithms 
used to  find the minimum of the test function (ftest = 0) and convention of the 
number of decimal digits of the time parameters to  succeed the optimal simula- 
tion. Indeed time parameters can not be determined with absolute precision in an 
implementation scheme for quantum computation. 

The construction of the one-qubit gates with the two-qubit Josephson device of 
Fig 2 is possible. That is gates of the form II @I W and W @I 1, where W E SU(2) ,  
Fig 3, which are simulated by the same device. 

-+ I -  
U 

Figure 3. Twequbit. and one-qubit gates in two qubit networks 
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The construction scheme comes as follows: 
u = e-it4H1e-it3H4 e -itzH1 e -itlH4 

(14) 
where H1 and H4 are special forms of the Hamiltonian (7), rewritten in the idle 
basis and tl, . . . , t 4  the time duration of each step. Obviously: 

where 

It can easily be shown that: 

Setting the total time 

the previous relation is written as: 
u = 1 @ e - i t 4 y p 3  e --it3+ e - i t 2 y p 3 e - i t 1 y 7  

The right hand side of the last relation is a 2 x 2 SU(2) matrix depending on 3 in- 
dependent time parameters t l ,  t2, t 3 ,  since the fourth time parameter t4  is specified 
from the demand that total time is assumed to be fixed. By an appropriate choice 
of these three time parameters any gate U of the above form can be constructed. 
So any command of the form U = II €3 W ,  which corresponds to an one qubit gate 
can be constructed by at most four steps. Therefore any command II €3 W can be 
analyzed in at most four letters. We simulate numerically the proposed model for 
the following one-qubit gates, II €3 (NOT), II€3 (Had), II 8 (m) and1 €3 PhS: 

II@NOT= (i:::) ~ i l @ ( i u l ) E S U ( 4 )  

0 1 0 0  

0 0 1 0  

/ 1 1  o o \  
I I€3h=L [ 1 - 1 0  0 J ++l€3(-$ul+u3)) 

Jz 0 0 1 1  
0 0 1 - 1  
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II@PhS = 

-116 

1 0 0 0  
0 ei@ 0 0 
0 0 1 0  
o o 0 ei$ 

where 

The equivalent construction scheme is: 
,y = e-it4H1 e -it3H3 e -itzHI e -itlH3 

Obviously, 
' A E  u = e-ltr 7 p3 e-it3 r e - i t z  y p3 e-it 1 €$ T@ 

ge-itt,t y ~ 3  

Setting the total time 

4k-r 4 

ttot = pi = - AE' 
k € M  

i=l 
the previous relation is written as: 

@II u = --it4 y p3 -it3 y r - i t?  p3 e- i t 1 T e 

It is apparent that the numerical results for a simulation of an one-qubit gate 
should be the same regardless of its form, 11 @ W or W @ II. Thus the numerical 
results concerning the time parameters presented in Table 4 should be the same for 
the simulation of the corresponding gates NOT @ 11, Had €4 11, @ II, PhS @ II. 

Here it must be noticed that usually in order to achieve the construction of one 
qubit gates a more complicated technique is usually proposed. In this method the 
Josephson junctions are "neutralized by appropriate annihilation of the tunneling 
amplitude EJ by using SQUID techniques 17,16. 
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Table 4. Letter analysis of one-qubit gates in two qubit networks 

4 Summary 

The traditional approach to quantum computing is the construction of elemen- 
tary one-qubit and two-qubit gates (universal set of quantum gates) which are 
connected by quantum connections and can represent any quantum algorithm ". 
A different view is employed in the present paper, proposed in 4,5 under the name 
of encoded universality. According to this, we do not force the system to act as 
a predetermined set of universal gates connected by quantum connections, but we 
exploit its intrinsic ability to act as a quantum computer employing its natural 
available interaction. 

Thus, any one-qubit and two-qubit gate can be expressed by two identical 
Josephson junctions coupled by a mutual inductor. This can be realized by a finite 
number of time steps evolving according to a restricted collection of basic Hamil- 
tonians. These Hamiltonians are implemented using the above system of junctions 
by choosing suitably the control parameters, by switching on and off the bias volt- 
ages and the mutual inductor. The interaction times of the steps are calculated 
numerically. 

Each command consists of a series of letters and each letter of a binary part 
(the values of the switch characterizing the Hamiltonian) and a numerical part (the 
interaction time). 

The generalization to N-qubit gates is currently under investigation. In this 
case we need N + 2 basic Hamiltonians in order to represent the corresponding 
N-qubit gate. The structure of commands is an open problem. However by using 
the techniques described in 21,22, the number of letters can be reasonably reduced 
in the N-qubit case. The application of the same methodology for other devices as 
quantum dots and NMR are under investigation. 
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Appendix 

A Minimal generating set of the s ~ ( 2 ~ )  - algebra 

Let us consider the su(2) algebra in the adjoint representation. This algebra 
representation is a three dimensional vector space with basis the 2 x 2 Pauli matrices: 

u3=((!,"), u l = ( ; i )  and u 2 = (  -2 0 2 )  

therefore 

4 2 )  = span(u3, m, 63) 

This su(2) algebra in the adjoint representation is generated by the following 
2 x 2 hermitian matrices: 

because 

[ 0 3 ,  a11 = 2 2 0 2  

The adjoint representation of the algebra su(2') is the vector space spanned by the 
15 matrices 

S U ( ~ ~ )  = span(ui , ui , ui u j  , Z , J  = 1,2,3) (16) (1) (2) (1) (2) ' ' 

where 

Jl) P = a@ 1, a:') = II €9 ui, a,! ')ay = a@ aj 

the adjoint representation of the S U ( ~ ~ )  algebra can be generated by linear combi- 
nations and successive commutations of the following 4 elements: 

(17) (l) (2) a(1) + and (2) 
a3 7 0 3  ? 1 2 a 2  

This is indeed true because all the elements of the basis (16) can be generated by 
repeated commutations of the elements (17), because for k = 1,2,3: 

The elements af)uY) can be generated by commutating the generators a:) with 

using the generators (17): 
up (2) One illustrative . example is the construction of the element oil)u$!), by 6 2  . 
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In the case of the adjoint representation of the algebra S U ( ~ ~ ) ,  we can work following 
a similar methodology. The adjoint representation algebra S U ( ~ ~ )  is a vector space 
spanned by the following 63 matrices: 

where 

'Ti1) = u@ n €3 II, at2) = 18 u@ 11 a?) = If €4 II €4 (Ti 
The above elements can be generated by repeated commutations of the following 5 
matrices: 

The linear terms o!~) can be easily generated by formulas as in equation (18). The 
quadratic terms U ~ ( ~ ) U ? )  are generated by manipulations slightly more complicated 
than in the case of equation (19). Let us take the example of the generation of the 
element u i l ) u f ) ,  then we must perform the following commutation actions: 

Therefore all the quadratic terms can be generated by the elements (21). Let us now 
generate a cubic term of the algebra as the element u c ) u ~ ) u ~ ) .  This element is 
generated by the commutation elements up)up) and up)uy),  which are generated 
previously: 

By induction we can prove the following proposition: 
Proposition A.l  T h e  adjoint h e m i t i a n  representation of the algebra s ~ ( 2 ~ ) ,  
i.e the set of herrnitian traceless 2N x 2N can generated by the algebra of Lie- 
polynomials of the set: 

N N 
( N )  C (k) CuF) ( j )  

u2 } (23) ( k = l  i < j  

(1) (2) 
A N =  u3 7 u3 7 ..., a 3  7 u1 1 

The set A N  of the generators has N + 1 elements, we should point out that this 
number is much smaller than the number 4N - 1, which is the dimension of the 
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algebra s ~ ( 2 ~ ) .  Therefore, large Lie algebras can be generated by using a relatively 
small number of elements. 

Let us now construct the group SU(2N). For the sake of simplicity we start 
the discussion with the SU(4) case, i.e with the set of unitary 4 x 4 matrices with 
determinant equal to 1. 

Let us consider four linearly independent elements, which are given by the for- 
mulas: 

Starting from this system we can reconstruct the elements (17) because: 

These relations prove that the su(4) algebra can be generated by combinations and 
successive commutations of the four elements { H I ,  H2, H3, H4).  
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DISCUSSION 
Chairman: A .  Ekert 

S. Lloyd: I have two comments. The first comment is that let’s be careful with 
Josephson junction devices. The fabrication tolerances are not so great, so assuming 
things like degeneracy for a couple of bits, that is very difficult to  make actual bits 
that are actually degenerated. The next comment or question is that there is a 
difference between universal quantum code and universal quantum computations. 
It was shown a long time ago that if you have almost any interaction between 
quantum bits, it allows you to construct quantum logic gates and then performs 
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universal quantum control. So in that case it is not a conjecture. The problem 
is that just being able to  do any unitary calculations does not mean that you are 
able to do the same two-qubit operation in an efficient fashion. You know, the fact 
that you can do any CNOT operation could take 2 N  operations to do a two-qubit 
operation. So I was wondering, in your scheme where you have everything coupled 
with everything else in these Josephson devices, what guarantee to  you that you 
are actually able to  perform two-qubit operations or quantum logic operations by 
this kind of quantum machine language? 

C .  Daskaloyannis: First of all, we consider the "idealized" Josephson junction, 
proposed by the experimentalists, as a working example. We could take as working 
examples another device like quantum dots or other solid state devices, but these 
proposals have not yet been confirmed by experiments. In order to  design a machine 
language, i.e. the appropriate sequence of letters, for a quantum computer one must 
specify some device. We do not propose any device, but we study the quantum 
computing capabilities of devices which are composed of identical elementary parts 
controlled by binary parameters. Also, the choice of control parameters is not 
unique, one could propose another choice of binary control parameters. These 
choices are constrained by the internal structure of the device. The proposed model 
is flexible, and our discussion does not depend really on the choice of the device. In 
our discussion the quantum byte has a binary part and a continuous bit. With this 
choice we can construct any gate. We have studied a minimal configuration which 
is not necessarily the most economic one. Specially in the Josephson N-qubit device 
we can show that any elementary CNOT or two-qubit gate can be constructed by 
N + l  steps. 

P. Stamp: You are assuming that in those models that you use, as you said, 
one of the terms is variable and the other is constant. But then you have more 
complicated schemes which have more letters and I really want t o  ask: have you 
some feeling for how much you can reduce the time of computation by increasing 
the length number of letters? 

C. Daskaloyannis: At this moment, we consider a minimal construction 
scheme, which can implement any gate. We do not have any idea how the compu- 
tational time could be reduced by increasing the number of q-bits. W
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STATISTICAL MECHANICS APPROACH TO 
ERROR-CORRECTING CODES 

NICOLAS SOURLAS 
Laboratoire de Physique The'orique de I' Ecole Normale SupLrieure * 

24 rue Lhomond, 75231 Paris CEDEX 05, France. 
e-mail: sourlas@$t. ens.fr 

I will review the relationship between error-correction codes and certain mathe- 
matical models of spin glasses. I will show that there is a one to one relationship 
between error correcting codes and spin glass models. Minimum error proba- 
bility decoding is equivalent to finding the magnetisation of the corresponding 
spin system. Convolutional codes correspond to one-dimensional spin systems and 
Viterbi's decoding algorithm to the transfer matrix algorithm of Statistical Me- 
chanics. 
I will also show how the recently discovered (or rediscovered) capacity approach- 
ing codes (turbo codes and low density parity check codes) can be analysed using 
statistical mechanics. Turbo codes correspond to  two coupled spin chains, while 
low density parity check codes are spin models on a diluted random graph. It 
is possible to show, using statistical mechanics, that these codes allow error-free 
communication for signal to noise ratio above a certain threshold. This thresh- 
old, which corresponds to a phase transition in the spin model, depends on the 
particular code, and can be computed analytically in many cases. 

The mathematical theory of communication1y2 is probabilistic in nature. Both 
the production of information and its transmission are considered as probabilis- 
tic events. A source is producing information messages according to a certain 
probability distribution. Each message consists of a sequence of K bits a' = 
{(TI,. . . , (TK}, = f l  and it is assumed that the probability Ps(a') = exp -H,(a') 
of any particular sequence a' is known. According to Shannon the information con- 
tent of the message is - In Ps(a') and the average information of the source is given 
bY 

The messages are sent through a transmission channel. In general there is noise 
during transmission (which may have different origins) which corrupts the trans- 
mitted message. If a (T = f l  is sent through the transmission channel, because of 
the noise, the output will be a real number J ,  in general different from 0. Again, 
the statistical properties of the transmission channel are supposed to be known. 
Because of the noise during the transmission, there is a loss of information. The 
channel capacity C is defined as the maximum information per unit time which 
can be transmitted through the channel. The maximum is taken over all possible 
sources. 

For reasons of simplicity, we will assume in the following that all the source 
symbols are statistically independent and that the noise is independent for any 

'UMR 8549, Unit6 Mixte de Recherche du Centre National de la Recherche Scientifique et de 
I' &ole Normale Sup6rieure. 
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pair of bits (“memoryless channel”). In the case of a memoryless channel and of a 
gaussian noise, Shannon1,2calculat ed the channel’s capacity 

1 v2 

2 W2 
c = - log,(l + -) 

where v2/w2is the signal to  noise power ratio. 
Under the above assumptions, communication is a statistical inference prob- 

lem. Given the transmission channel’s output and the statistical properties of the 
source and of the channel, one has to infer what message was sent. In order to  
reduce communication errors, one may introduce (deterministic) redundancy into 
the message (“channel encoding”) and use this redundancy to  infer the message 
sent through the channel (“decoding”). The algorithms which transform the source 
outputs to redundant messages are called error-correcting codes. The inverse of the 
redundancy (see later for a precise definition) is called the rate R of the code. 

states that for infinite long messages, 
it is possible to  communicate error free, provided the rate of the code is smaller 
than the channel capacity. For practical purposes it is also required that the com- 
putational complexity of the code (the amount of computation required both for 
encoding and decoding) is not very large. It must be possible to encode and decode 
in a reasonable amount of time. A code which is very good for very long messages 
of length N but requires an exponential in N decoding time is obviously not very 
interesting. 

Until recently there were no known codes of reasonable computational com- 
plexity allowing communication with a very small error, for noise level not too far 
from capacity. This situation changed drastically with the recent discoveries of the 
“capacity approaching” codes. First came the discovery of turbo codes by Berrou 
and Glavieux3 and later the rediscovery of low density parity check codes4, first 
discovered by Gallager5,6, in his thesis, in 1962. Both turbo codes and low den- 
sity parity check (LPDC) codes are based on random constructions. Because of 
this randomness, it is not easy to analyse them with the traditional methods of 
communication theory. 

I have shown some time ag071839310 that there is a mathematical eqivalence of 
error-correcting codes to  some theoretical spin-glass models. 

I will explain later that it is possible to use this equivalence with spin glasses, 
to  study the properties of these capacity approaching codes using the methods of 
statistical mechanics developed in the study of disordered systems. 

Let me start by fixing the notations. Each information message consists of a 
sequence of K bits ii = {ul, . . . , UK}, ui = 0 or 1. The binary vector .ii is called the 
source-word. Encoding introduces redundancy into the message. One maps ii --f Z 
by encoding. ii -+ Z has to  be a one to  one map for the code to  be meaningful. 
The binary vector Z has N > K components. It is called a code-word. The ratio 
R = K I N  which specifies the redundancy of the code, is called the rate of the code. 
One particularly important family of codes are the so-called linear codes. Linear 
codes are defined by 

The famous Shannon coding 

Z =  G7i 
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G is a binary (i.e. its elements are zero or one) ( N  x K )  matrix and the multipli- 
cation is modulo two. G is called the generating matrix of the code. Obviously by 
construction all the components zi of a code-word z are not independent. Of all 
the 2N binary vectors only 2 K  = 2 N R ,  those corresponding to  a vector ii, are code- 
words. Codewords satisfy the linear constraints (called parity check constraints) 
H I  = 0 (modulo two), where H is a ( K  x N )  binary matrix, called the parity check 
matrix. The connection with spin variables is straightforward. ui -+ ~i = (-l>”i, 
zi + Ji = (-l)”<. It follows that ui+ uj + cicj and 

The previous equation defines the “connectivity matrix” C in terms of the gener- 
ating matrix of the code G. Similarly one can write the parity check constraints in 
the form: 

This defines the “parity constraint matrix” M in terms of the parity check matrix 
H of the code. 

Codewords are sent through a noisy transmission channel and they get corrupted 
because of the channel noise. If a J ,  = f l  is sent, the output will be different, in 
general a real number Let us call &(J””‘~~d f ’” ‘  the probability for the 
trans_mission channel’s output to be between Put and J’+ d f ’ u t ,  when the input 
was J .  The channel “transition matrix” Q(J””‘IJ’, is supposed to  be known. We will 
assume that the noise is independent for any pair of bits (“memoryless channel”), 
i.e. 

Knowing the noise probability i.e. q(J,OutlJi), the code (i.e. in the present case 
of linear codes knowing the generating matrix G or the parity check matrix H )  and 
the channel output Put, one has to infer the message that was sent. The quality 
of inference depends on the choice of the code. 

We will now show that there exists a close mathematical relationship be- 
tween error-correcting codes and theoretical models of disordered systems. To 
every possible information message (source word) 7‘ we can assign a probability 
psource (.‘I?”‘), conditional on the channel output f i t .  Or, equivalently, to  any 
code-word ;we can assign a probability Pcode(flJ’out). 

Because of Bayes theorem, the probability for any code-word symbol ( “letter”) 
Ji = f l ,  p(JiIJ:”t), conditional on the channel output J f U t ,  is given by 

It follows that 
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61 1 

where c l  and c2 are constants (non depending on Ji) and 

The two previous equations illustrate the well known fact that the most general 
function of a variable J= f l  is a linear function (because J2k = 1 , J2k+' = 
J ) .  hi which will play the role of an external field (see eq. (8) below) or of a 
coupling constant (see equ. (10) ), is called in coding theory the log-likelihood or 
the "extrinsic information". 

It follows that 

1 i 

where c is a normalising constant. The Kronecker 6's enforce the constraint that f 
obeys the parity check equations (Equ. (2) ), i.e. that it is a code-word. The 6's 
can be replaced by a soft constraint, 

where u +. 00. We now define the corresponding spin Hamiltonian by: 

- H c o d e ( f )  = In Pcode(JJ'out) = u C Mkl . . .k l  J k l  . . . J k L  + hiJi  (8) 

There are two models of memoryless channel noise, i.e. of q(J,OU'IJi), that are 
extensively studied. The first is the "gaussian channel" for which the output JoUt 
can take any real value and 

1 i 

(Jf"' - Ji)2 
q(J,OUtlJi) = cexp- 

2w2 
where w2 is the variance of the gaussian noise and c a normalising constant. The 
other is the " binary symmetric channel ", for which the output is a binary variable, 
i.e. JoUt = kl, and 

(?(J,O"'IJi) = (1 - P)6;o"t,Ji + P6J4"',--J, 
i.e. every symbol Ji is transmitted without error with probability 1 -p and is flipped 
with probability p. For the gaussian channel the field hi is given by (see equation 
( 5 ) )  hi = J,0Ut/w2, while for the binary symmetric channel hi = $JfUt  ln((1-p)/p). 

Alternatively, one may proceed by solving the parity check constraints 
J .  - ci 

z - kl...kinkl '. ' o k i  

by expressing the codewords in terms of the sourcewords. 

where the hi's are given as before. The logarithm of PsoUrce(Zl?Ut), 
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In equation (lo), and in equation (8), the hi’s, are known because the channel 
output is known (see equation ( 5 ) ) .  They are known numbers once the channel 
output is known. 

We imagine the case where we transmit the same word a large number of times. 
Because of the randomness of the noise, every time we will get a different channel 
output, although the input was the same. We will consider the ensemble of all 
these transmissions and the ensemble of the resulting outputs. This is completely 
analogous to the case of disordered magnetic systems, where in every sample the 
positions of the magnetic ions is fixed, but one considers the ensemble of samples 
obtained with the same experimental procedure (i.e. exactly the same chemical 
composition, exactly the same concentrations, etc). In statistical mechanics one 
computes the average value of an observable in this ensemble. There are two rea- 
sons for doing this. The first reason is that “good” observables, as for example the 
magnetization per spin, the energy per spin etc, are “self-averaging” . An observable 
is called self-averaging if its probability distribution over the ensemble of samples 
becomes a delta function when the size of the sample becomes large. (This property 
of self-averaging has been recently studied by probabilists and they proved it in sev- 
eral cases. They call it  concentration of the measure.) The other reason is that we 
have developed the tools of computing analytically the ensemble average. Without 
averaging we are unable, up t o  now, to perform any analytical computation. 

Viewed in this way, the Hamiltonian defined in equation (8) is the Hamiltonian 
of a spin system with multispin interactions with infinite ferromagnetic coupling 
and a random external magnetic field, while the Hamiltonian in equation ( lo) ,  is a 
spin glass Hamiltonian. I will show later that the error probability per bit is simply 
related to the magnetization of the corresponding spin model (at the appropriate 
temperature, see later). It follows that the error probability per bit is self-averaging. 

We have given two different statistical mechanics formulations of error correcting 
codes. One in terms of the souceword probability PSourCe and the other in terms 
of the codeword probability Pcode. 

Because of the one to  one correspondence between codewords and sourcewords, 
the two formulations are equivalent. In practice however it may make a difference. 
It may be more convenient to  work with PSoUrCe rather than Pcode, depending on 
the case. For the case of turbo codes (see later) it will be more convenient to  define 
another probability, the “register word” probability. 

It follows that the most probable symbol sequence (“word maximum a posteriori 
probability” or “word MAP decoding”), i.e. the symbol sequence that maximises 
the probability PSourCe or Pcode (depending on the case), is given by the ground 
state of this Hamiltonian (Hcode or HSourCe ). Instead of considering the most prob- 
able symbol sequence, one may only be interested in the most probable value T,P of 
the i’th symbol or “bit” ~ i ~ , ’ ~ 9 ’ ’ ,  ignoring the values of the other symbols (“symbol 
MAP decoding”). The sequence of the most probable symbols does not necessarily 
coincide with the most probable sequence. Because ~i = kl, the probability pi for 
~i = 1 is related to the average of mi, by pi = (1 + mi)/2. 
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In the previous equation m, is obviously the thermal average at temperature T = 
1. It is amusing to notice that T = 1 corresponds in spin glasses to Nishimori’s 
tempera t~re’~ .  

When all messages are equally probable and the transmission channel is mem- 
oryless and symmetric, i.e. when q(J~” t l J , )  = q(-J,””tI - J,), the error probability 
is the same for all input sequences. It is enough to compute it in the case where all 
input bits are equal to one, i.e. when the transmitted code-word is the all zero’s 
code-word. In this case, the error probability per bit P, is P, = l-m(d) , where 

z=l T : ~ )  and T : ~ )  is the symbol sequence produced by the decoding 
procedure. 

This means that it is possible to compute the bit error probability, if one is able 
to compute the magnetization in the corresponding spin system. 

Let me give a simple example of an R = 1/2 “convolutional” code. From the 
N source symbols (letters) u,’s we construct the 2 N  code-word letters zk, xi, 

m(4 = 1 c N 

k =  l , . . . , N  . 

z,‘ = u,+ u,-1+ u,-2 , z,” = u,+ ut-2 (12) 

JL = (Tk(Tk-1Uk-2, JZ = ok(Tk-2 (13) 

It follows that 

Here I assumed a Gaussian noise. In that case, Equ. (5) reduces to hk = JiUt/w2, 
where w2 is the variance of the noise. This is a one dimensional spin glass Hamilto- 
nian. In fact it is easy to see that convolutional codes correspond to one dimensional 
spin systems. Their ground state can be found using the T = 0 transfer matrix 
algorithm. The T = 0 transfer matrix algorithm corresponds to the Viterbi algo- 
rithm in coding theory. For symbol MAP decoding, one can use the T = 1 transfer 
matrix algorithm. The T = 1 transfer matrix algorithm is the BCJR algorithm in 
coding theory15. 

I have illustrated above the mat hematical correspondence between disordered 
spin systems and error correcting codes. Using this correspondence it has been pos- 
sible to analyse both LPDC codes and turbocodes using the methods of statistical 
mechanics. Most of the results have been obtained with the “replica” method. (For 
a lucid exposition of this method see reference [IS]). This is a method developed in 
the context of spin-glass theory and which has not yet been made rigorous. Within 
the “replica” method there are approximation schemes. The simplest is the replica 
symmetric approximation. For symbol MAP decoding, i.e. for the temperature 
T = 1, there are very strong arguments that replica symmetry is not broken. It is 
outside the scope of the present paper to explain the replica method. 

To fix the notations, let me remind that Gallager’s low density parity check 
( k ,  I )  codes are defined by choosing at random a sparse parity check K x N matrix 
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H as follows. H has N columns (we consider the case of codewords of length N ) .  
Each column of H has k elements equal to one and all other elements equal to  zero. 
Each row has I non zero elements. 

It is convenient to use graphical representations (slightly different from Tanner’s 
graphical representation used in coding theory) to  represent the interaction terms 
appearing in the Hamiltonian. Each spin is represented by a point in the graph. 
The spins which are multiplied by the same coupling are connected by a line. It 
follows from equation (8) that Gallager’s k ,  I codes correspond to random “diluted” 
(sparse) graphs. Such models are called diluted spin models with 1-spin infinite 
strength ferromagnetic interactions in an external random field. It is known that 
in the case of extreme dilution, one can analyse these models in the mean field 
approximation. Very sparse graphs have locally a tree structure, i.e. there are no 
loops of short length. In such a graph with N vertices, the size of the typical loop 
is known to be In N .  This is the reason why one can apply mean field in this case. 

gall age^-^,^ proposed an approximate iterative decoding algorithm for LDPC 
codes. This is an iterative computation of the log-likelihood (or extrinsic informa- 
tion or cavity field, according to  the terminology) hi(t), where t is the iteration time. 
The probability p(ai) of the spin oi is related to  hi by p(ui) = exp(hi)/cosh(hi). 
hi(0) is given by equ. ( 5 ) .  At t = 1 one considers the interaction of a* with its 
neighbors aj on the graph. Let us remind that the interaction (see equ. (8) where 
the limit u + co has to  be taken) imposes the product of the spins present in an 
interaction term to  be equal to  plus one. Taking into account this information, 
together with the values of hj(O), one computes hi(1). It  easy to imagine how 
this procedure can be iterated. At time t one takes into account the information 
coming from all the spins which are up to  distance t on the graph. It is hoped that 
this procedure will converge to a fixed point for p(ai) after a reasonable number of 
iterations. It is obvious that this number of iterations will depend on the amount 
of noise. If the noise is too strong there will be no convergence. 

This updating of hi(t), which today is called the sum-product algorithm, would 
be exact in a graph without loops. It is approximate because of the presence of 
loops on a random graph. It is worth noticing that decoding with the sum-product 
algorithm is equivalent to  “solving” the corresponding spin model, i.e. computing 
the local magnetizations, by iteration of the Thouless Anderson Palmer” (TAP) 
equations, which invented fifteen years later in the context of mean field spin glasses. 
A more general derivation for spin glasses, called the cavity method, was later 
developed by MBzard, Parisi and Virasoro”. The same algorithm was rediscovered 
recently in computer science, where it is called the belief propagation algorithm. 

As we saw, low density parity check codes are based on a random construction, 
a random parity check matrix more precisely. We will see that the same is true for 
Turbo Codes, a random permutation in that case. By the same random construc- 
tion, for example in Gallager’s case matrices with fixed k and I ,  we can construct 
several codes, i.e. there exist several random matrices even if k and 1 are fixed. In 
order to be able to use statistical mechanics, we have to  consider the ensemble of 
codes defined by these matrices and compute the average error probability per bit 
in this ensemble. This is justified because it can be shown a posteriori that the 
error probability per bit is self-averaging. 
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Low density parity check codes have been analysed using Statistical Mechanics 
methods by Kabashima Kanter and Saad19,20 in the replica symmetric approxi- 
mation. More recently Montanari21 was able to  go beyond replica symmetry. He 
established the entire phase diagram of LDPC codes. For k ,  1 -+ co with rate 
R = 1 - k / l  fixed, he showed that k , l  codes can be analysed without replicas, 
similarly to the random energy model of Derrida22. There is a phase transition in 
this model, which occurs at a critical value of the noise n,. Phase transitions can 
appear only in the infinite volume limit (the thermodynamic limit), i.e. in the limit 
of strings of symbols of infinite length. n,separates a zero error phase, i.e. a phase 
with a magnetization equel to one, from a high error phase. I t  turns out that n,, in 
this limit, coincides with Shannon’s channel capacity. For finite k and 1 Montanari 
found an exact one step replica symmetry breaking solution. He computed the 
location of the phase transition, i.e. the critical value of the noise n, for which the 
phase transition occurs. n, is given in terms of an implicit equation which has to 
be solved numerically. n, has a simple asymptotic expansion for large k ,  1 and fixed 
rate R. For the binary symmetric channel with error probability p, the first term 
of the asymptotic expansion for the threshold p c ( k ,  I )  is 

p z  is the threshold for k ,  1 -+ 00, i.e. the threshold provided by the channel capacity. 
We see that the approach to  the k ,  1 + 00 limit is exponential. 

The thresholds above were obtained by maximising the appropriate probabil- 
ities. This means that they can only be reached by an optimal (but unknown) 
decoder. The actual decoder may behave differently. 

The only alternative to  statistical mechanics to theoretically understand LPDC 
codes and turbocodes is the method of “density evolution” which was devised by 
Richardson and Urbanke23. This method, applied to Gallager’s k, 1 codes, consists 
in considering the ensemble of Gallager’s codes with fixed k and 1 and the ensem- 
ble of channel outputs, when the input is the all zeros codeword. This method of 
considering an ensemble of codes and an ensemble of channel outputs is very new 
in coding theory. It can be considered as the rediscovery by coding theorists of the 
methods developed in the seventies in the study of disordered systems. Richardson 
and Urbanke study the probability density P(h)  of the log-likelihoods (or cavity 
fields) hi, for this ensemble. As we stated earlier, the sum product decoding al- 
gorithm can be viewed as a time evolution process of these hi’s. They study how 
P(h)  evolves with “time”, i.e. when iterating the decoding algorithm. They showed 
that the probability density converges to  the zero error limit provided the noise is 
less than some value n?. They computed n? performing a local stability anal- 
ysis of density evolution, starting from the no error regime. n? is not equal to 
the threshold n, computed by statistical mechanics for regular Gallager codes, i.e. 
the decoding is not optimal near the threshold. The reason for this is not yet 
understood. See the remarks at the end of this paper for a possible explanation. 

Turbo Codes also have been analysed using statistical  mechanic^^^,^^. They are 
based on recursive convolutional codes. An example of non recursive convolutional 
code was given in Equ. (12). The corresponding recursive code is given, most 
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conveniently, in terms of the auxiliary bits bi ,  defiqed below. The bi’s are stored in 
the encoder’s memory registers, that’s why I call b the the “register word”. 

Z: = ~ i ,  Z: = bi+ b i - 2 ,  bi = ~ i +  bi-1 + bi-2 (16) 
It follows that the source letters ui are given in terms of the auxiliary “register 
letters” bi 

~i = b i t  bi-1 + bi-2 (17) 
All additions are modulo two. 

To construct a turbo code, one artificially considers a second source word v’, by 
performing a permutation, chosen at random, of the original code-word C. So one 
considers uj = where j = P( i )  is a (random) permutation of the K indices i 
and a second “register word” ci,  ci = wi + ci-l + ci-2. Obviously 

~i = C* + ci-1 + ci-2 = ~j = bj + bj-1 + b j - 2 ,  j = P( i )  (18) 

Equ. (18) can be viewed as a constraint on the two register words b’ and C: Finally 
in the present example, a rate R = 1/3 turbo code, one transmits the N = 3K 
letter code-word Z: = ui, x: = bi + bi-2, x: = ci + ci-2, i = 1,. . . , K.  Let’s call, as 
before, 

J,” = (-1)”y, a = 1 , 2 , 3  

the channel inputs and JzoutVa the channel outputs. In the previous, for reasons of 
convenience, we formulated convolutional codes using the source-word probability 
P S O U T C ~  and LDPC codes using the code-word probability Pcode. 

The statistical mechanics of turbo codes is most conveniently formulated in 
terms of the “register words” probability P r e g ( Z ,  7‘1 Jout)  conditional on the channel 
outputs pt ,  where ri = ( - l ) b i  and mi = (-1)‘;. The logarithm of this probability 
provides the spin Hamiltonian 

Because of Equ. (18), the two spin chains 7‘ and a‘ obey the constraints 

(As previously, we have considered the case of a Gaussian noise of variance w2. )  
This is an unusual spin Hamiltonian. Two short range one dimensional chains are 
coupled through the infinite range, non local constraint, Equ. (20). This constraint 
is non local because neighboring i’s are not mapped to  neighboring j ’s  under the 
random permutation. It turns out that this Hamiltonian can be solved by the 
replica method. 

The equations one gets cannot be solved exactly as in the case of LPDC codes. 
One can verify that, when the noise is sufficiently weak, zero error probability is 
a solution of the equations. One can perform a local stability analysis of this zero 
error probability solution. 

One finds a phase transition at a critical value of the noise n,,it. For noises less 
than nCrit, it is possible to communicate error free. (For example for the R = 1/3 
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Figure 1. Numerical results for the average error probability per bit of the Turbo Code described 
in the text (gaussian channel). Stars (*) are obtained for a random permutation, diamonds 
(0) correspond to the identity permutation. The continuous curve corresponds to the uncoded 
message. The leftmost vertical line is located at the Shannon capacity, while the rightmost one is 
the threshold computed using statistical mechanics (see text). 

Turbo Code we described above we get that the error probability vanishes for signal 
to  noise ratio above 8 N -2.240 db.) In this respect, turbo codes are similar to  
Gallager’s LDPC codes. The statistical mechanical models however, are completely 
different. 

Figure 1 shows the results of a numerical simulation for the Turbo Code pre- 
sented above. The bit error probability vanishes above a certain value of the signal 
to  noise ratio, but the value of this threshold seems to be slightly different from the 
one we obtain from our equations. This disagreement could have different origins. 
One possibility is that the true threshold is different from that provided by the 
local stability analysis (possibility of a first order phase transition. Local stability 
analysis assumes there is a second order transition). Another possibility is that 
the turbodecoding algorithm does not find the optimal configuration for this code 
(possibility of a “dynamical transition”). It was explained above that the algo- 
rithm tries to  find the configuration which maximises the appropriate probability 
function. It may happen that this function has a large number of local maxima 
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Figure 2. The dynamics of the turbo decoding algorithm in the low-noise regime. Triangles, 
diamonds and circles represent the average extrinsic information as a function of the number of 
iterations for different sizes ( L  = 5000,50000,500000) of the source message. Notice that the 
saturation after a large number of iterations is a finite size effect. The slope of the straight line 
describes the asymptotic behavior for an infinitely long message and is obtained analytically from 
the KPP equation. 

and that the algorithm is trapped in one of them. A third possibility is that when 
close to  the threshold, convergence becomes extremely slow and that one should 
run the algorithm for an infinite time to reach the correct threshold. (This is called 
“aging”). It would be interesting to  understand which of the above scenaria occurs. 

Let me also mention that, under some reasonable assumptions, the iterative 
decoding algorithm for turbo codes (turbodecoding algorithm), can be viewed25 as 
a time discretisat ion of the Kolmogorov, Petrovsky and Piscounov equation26. It 
is known that this KPP equation has traveling wave solutions. The velocity of the 
traveling wave, which is computable analytically, corresponds to  the convergence 
rate of the turbodecoding algorithm. The agreement with numerical simulations is 
excellent, as this is illustrated in Figure 2. 

I would like to  conclude by pointing out some open questions. 
As it was emphasised above, belief propagation decoding is expected to work 

in the absence of loops. For random graphs the typical loop length L N logN, 
where N is the number of vertices. For N = lo6, L - 10. However it is known 
empirically that, in the case of a not very weak noise, one has to  iterate t times the 
decoding algorithm with t >> L (t N 150 is a typical value), i.e. in practice one 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



619 

cannot ignore the presence of loops. It is not known why the algorithm works in 
the presence of loops as it does in practice. 

We saw that there is a phase transition both in LDPC codes and in Turbo 
Codes. What is the order of the phase transition? This question is particularly 
relevant for turbo codes where we assumed a second order transition. Without this 
assumption we are unable to compute the signal to noise threshold above which 
communication is error free. 

Using statistical mechanics we computed the properties of infinite systems, i.e. 
infinite message length in the case of error correction codes. In practice of course 
all messages have finite length. In some applications this length is short. What are 
the finite size effects? We know from the theory of phase transitions that near a 
phase transition finite size effects can be very important. Is there finite size scaling? 
The answer will depend on the order of the phase transition. 

It is empirically known that the number of iterations required for the decoding 
algorithm to converge increases dramatically as the noise increases and one gets 
close to the phase transition. How does the decoding complexity behave as one 
approaches the zero error noise threshold? Is there a critical slowing down, as it is 
usually the case for physical systems near a phase transition? As it was said before, 
the decoding algorithms both for LDPC codes and turbo codes are heuristic and 
there are not known results as one approaches the phase transition. 

It is well known that disordered systems often exhibit a “glassy” behaviour. 
This means that below a certain temperature they get trapped in metastable states 
and do not reach equilibrium in any finite time. Is there a glassy phase in decod- 
ing? In other terms, do the heuristic decoding algorithms reach the threshold of 
optimum decoding (which we computed by equilibrium statistical mechanics) in a 
finite number of iteration steps, or is there a (lower) noise “dynamical” threshold 
(“dynamical” transition in the language of disordered systems) where the decoding 
algorithm gets trapped in metastable states? In that case the decoding algorithm 
would be unable to reach optimal performance as computed by equilibrium statis- 
tical mechanics. 

I hope that at least some of the above questions will be answered in the near 
future. 
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DISCUSSION 
Chairman: E. Polzik 

G. Hegerfeldt: How would you get the random matrix H? From random 
numbers generated by the computer? 

N. Sourlas: Yes, there are algorit.hms to give you this. That is the notion of 
self averaging. As you said, once you have given these algorithms, this defines for 
you a family of codes not a single one. And then the point is that the properties 
of their probabilities are the same with probability one for anyone of the codes in 
this family. 

W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c
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After playing a significant role in the development of the foundations of quantum 
mechanics, entanglement has been recently rediscovered as a new physical resource 
with potential commercial applications, ranging from quantum cryptography to 
very precise frequency standards. Thus, the detection of quantum entanglement 
is vital in the experimental context. We present a direct method of detecting the 
presence of entanglement and we put it in the context of quantum information 
science. 

1 Entanglement 

Probably the best way to agitate a group of jaded, but philosophically-inclined, 
physicists is to  buy them a bottle of wine and mention interpretations of quantum 
mechanics. Opening Pandora’s box isn’t much different, despite the fact that, as 
far as lip-service goes, the orthodoxy established by Niels Bohr over 60 years ago, 
known as the “Copenhagen interpretation”, still effectively holds sway. It seems 
that everybody agrees with the formalism of quantum mechanics, but no one agrees 
on its meaning. Quantum theory, according to  the “Copenhagen interpretation”, 
provides merely a calculational procedure and does not attempt to  describe objec- 
tive physical reality. According to  Bohr 

There is no quantum world. There is only an abstract physical description. 
It is wrong to think that the task of physics is to find out how the nature 
is. Physics concerns what we can say about nature. a 

aQuoted after Aage Petersen in Nzels Bohr: a centenary volume, eds. A.P. French and 
P.J. Kennedy, Harvard University Press, 1985. 

62 1 
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A very defeatist view indeed, but hardly surprising. The intellectual atmo- 
sphere and the philosophy of science at the time were dominated by positivism 
that emerged in Vienna in the early 1920s. According to this school of thought all 
statements other than those describing or predicting observations are meaningless ’. 

One of the first who found the pragmatic instrumentalism of Bohr unaccept- 
able was Albert Einstein. In 1927 during, the fifth Solvay Conference in Brus- 
sels, Einstein directly challenged Bohr over the meaning of quantum theory. This 
triggered the Bohr-Einstein debate, which lasted almost three decades and which, 
among many other things, brought quantum entanglement into the remit of modern 
physics. In early 1935, Einstein, together with Boris Podolsky and Nathan Rosen, 
published a classic paper which featured a composite quantum system consisting of 
two distant particles with entangled wave function ’. The entanglement of the wave 
function as such was never mentioned in the paper, as the authors focused on the 
incompleteness of quantum mechanical description of reality. Erwin Schrodinger, 
at the time a fellow of Magdalen College in Oxford, seems to have been the first to  
spot it and to realize its importance. In August 1935, the Cambridge Philosophical 
Society received a paper written by Schrodinger, and communicated by Max Born, 
titled “Discussion of probability relations between separated system” 2 .  The paper 
was read 28 October 1935. Its opening paragraph states 

When two systems, of which we know the states by their respective repre- 
sentatives, enter into temporary physical interaction due to  known forces 
between them, and when after a time of mutual influence the systems 
separate again, then they can no longer be described in the same way as 
before, viz. by endowing each of them with a representative of its own. I 
would not call it one but rather the characteristic trait of quantum me- 
chanics, the one that enforces its entire departure from classical lines of 
thought. By the interaction the two representatives (or $-functions) have 
become entangled ...“ 

After playing a significant role in the development of the foundations of quantum 
mechanics 3,  entanglement has been recently rediscovered as a new physical resource 
with potential commercial applications such as, for example, quantum cryptogra- 
phy 4,  better frequency standards or quantum-enhanced positioning and clock 
synchronization ‘. On the mathematical side, the studies of entanglement have 
revealed very interesting connections with the theory of positive maps 7,8. The 
capacity to generate entangled states is one of the basic requirements for building 
quantum computers. Hence, efficient experimental methods for detection, verifi- 
cation and estimation of quantum entanglement are of great practical importance. 
Here, we describe an experimentally viable, direct detection of quantum entangle- 
ment which has been proposed recently by Horodecki and Ekert ’’. It is efficient 
and does not require any a priori knowledge about the quantum state. In the 
particular case of two entangled qubits, it provides an estimation of the amount of 
entanglement. We also discuss it in context of some aspects of quantum information 
theory. 

is quite amusing to notice that according to this criterion positivism is itself meaningless. 
CThe emphasized “one” and “the” are due to Schrodinger. 
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2 Specification of the problem 

Suppose we are given n pairs of particles, all in the same quantum state described 
by some density operator Q, which is unknown. We need to decide whether the 
particles in each pair are entangled or not. From a mathematical point of view we 
need to assert whether Q can be written as a convex sum of product states 12, 

with I c y i )  and I pi) pertaining to different particles in the pair and xi pi = 1. It is 
assumed that the Hilbert spaces associated with each particle are of finite dimension 
d (taken to be the same for the two particles), so that one can always find k 5 d2 .  
If Q were known, we could try either to find the decomposition (1) directly or to 
use one of the mathematical separability criteria ’. For sufficiently large n, we may 
indeed start with the quantum state estimation. However, this involves estimating 
d4 - 1 real parameters of p, most of which are irrelevant in the context of the 
entanglement detection. 

Another possibility is the recourse to a particular class of two-particle observ- 
ables, called entanglement witnesses, which can detect quantum entanglement is 
some special cases (see g , 8 ) .  They have positive mean values on all separable states 
and negative on some entangled states. Therefore, any individual entanglement 
witness leaves many entangled states undetected. When e is unknown, we need 
to check infinitely many witnesses, which effectively reduces this approach to the 
quantum state estimation. However, if some information about the state is avail- 
able, the entanglement witnesses approach may be very convenient ll. In this paper 
we will focus on the case of unknown Q. 

3 

In the following we describe a direct method of detecting quantum entanglement 
without invoking the state estimation. 

We construct a measurement, as powerful in detecting quantum entanglement as 
the best mathematical test based on positive maps 7,  which can be performed on all 
copies of Q. The measurement can be viewed as two consecutive physical operations: 
firstly, we construct a transformation which maps Q into an appropriate state Q’; 

secondly, we measure the lowest eigenvalue of Q’. This eigenvalue alone serves as a 
separability indicator. 

A convenient starting point for our construction is the most powerful, albeit 
purely mathematical and not directly implementable in a physical way, separabil- 
ity criterion proposed to date. The criterion is based on mathematical properties 
of h e a r  positive maps acting on matrices ’. Let Md be a space of matrices of 
dimension d;  recall that : Md H Md is called positive if x 2 0 implies A ( X )  2 0 
(expression X 2 0 means that the matrix X has a nonnegative spectrum). If the 
induced map 1 @ A is also positive, then A is called completely positive and, as 
such, it represents a physically allowed transformation of density operators (here 

What are positive maps good for? 
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II denotes the identity map on an auxiliary system of any dimension). Using this 
terminology, the separability criterion reads 7: e is separable iff 

for all positive but not completely positive maps A : hfd H kfd acting on the 
second particle. In fact, it is sufficient to consider only positive maps A such that 
the maximum of TrA(@), over all e, is equal t o  unity. Other positive maps differ 
only by a positive multiplicative factor which does not affect the condition (2). 

Furthermore, in some cases, instead of scanning all positive maps, we can choose 
just one. For example, all entangled states of two qubits can be detected by choosing 
A to be transposition 13,7.  The snag is that positive maps A, such as an anti-unitary 
transposition and the induced maps II @ A, cannot be implemented in a laboratory. 
Thus, the criterion (2) tacitly assumes prior knowledge of e. However, there is a 
way to modify it, so that it becomes experimentally viable and without involving 
any state estimation. 

4 

If we mix in an appropriate proportion of [I 8 A] with a depolarizing map, that 
turns any density matrix into a maximally mixed state, the resulting map can be 
completely positive This is because the lowest negative eigenvalues generated by 
the induced map [(I I8 II) @ (II @ A)] can be offset by the positive eigenvalues of 
the maximally mixed state generated by the depolarizing map. The most negative 
eigenvalue - A  < 0 is obtained when [(I @ I) @ (1 8 A)] acts on the maximally 
entangled state of the form % ci,l li)li), where each state I i) pertains to a d2 
dimensional subsystem, itself IS composed of two d dimensional parts. Thus, the 
map 

Operational criterium for detecting entanglement 

da 

J;i- 

is completely positive, therefore physically implementable, when the induced map 
[(II@I)@(II@ A)] is positive. This happens for p 2 (d4X)/ (d4X+ 1) 14.  By inserting 
the threshold value p = (d4X)/(d4X + 1) into (3), we can modify the criterion (2) 
as follows: e is separable iff for all positive maps A, 

h_ 

- 
i.e. when the minimal eigenvalue of the transformed state p’ = [I 8 A](Q) is greater 
than (d2X)/(d4X + 1). In general, for some maps A, the related completely positive 
maps II @ A are not trace-preserving and require postselections in their physical 
implementations. Maps such as II @ A have been referred to as “structural” physical 
approximations of unphysical maps II @ A 14. 

- 
h_ 
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For example, if we take A to  be transposition T (the first positive map used for 
detecting entanglement), we obtain 

In the two qubit case, where the partial transposition is a sharp test for entangle- 
ment, we obtain, 

which can be represented and implemented as 

with the two channels defined as: 

The map can be implemented by applying selected products of unitary 
(Pauli) transformations with the prescribed probabilities. Since the map is t race  
preserving, any post-selection in experimental realizations is avoided. 

Thus, in order to detect entanglement of an arbitrary two-qubit state p, it is 
enough to estimate a single parameter, i.e. the minimal eigenvalue of [I @ T ] ( p ) .  
The state p is separable iff this eigenvalue satisfies Amin 2 $. Let us also point 
out an extra bonus: X m i n  gives us -A’, the most negative eigenvalue of [I €4 T ] ( p ) ,  
which enters the expression for the upper and lower bounds for the entanglement 
of formation, 

- 

where H ( z )  is the Shannon entropy. The above formulae can be derived from the 
estimations of the concurrence pravided by Verstraete et a1 15. 

5 Spectrum estimation 

Suppose for a moment that 1 8  A is a trace-preserving map, e.g. the transposition 
case. The first part of our entanglement detection measurement is accomplished by 
applying 11 €4 A to each of the n pairs to  obtain n copies of p’ = [ I T A ] ( p ) .  Then, 
following the criterion (4), we need to measure the lowest eigenvalue of p’. 

This can be viewed as a special case of the spectrum estimation, and possible 
approaches depend a lot on particular physical realizations of p’. Here, we provide 

h_ 

- 
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two general solutions. The first one, based on quantum interferometry, is concep- 
tually simple and relies on estimating d2 - 1 parameters from which the spectrum 
of e’ can be calculated (this is a significant gain over the state estimation which 
involves d4 - 1 parameters). The second solution is a joint measurement on all 
copies of e’, which gives directly the estimate of the lowest eigenvalue. 

We start with the quantum interferometry, presented here as a quantum net- 
work shown in Fig.(l). A typical interferometric set-up for a single qubit - the 
Hadamard gate, phase shift cp, the Hadamard gate, followed by a measurement - 
is modified by inserting in between the Hadamard gates a controlled-U operation, 
with its control on the qubit and with U acting on a quantum system described 
by some unknown density operator p .  (N.B. we do not assume anything about the 
form of p ;  it can, for example, describe several entangled or separable sub-systems.) 
The action of the controlled-U on p modifies the interference pattern by the factor, 

TrpU = veZa, (10) 

where v is the new visibility and a is the shift of the interference fringes, also known 
as the Pancharatnam phase 16. Formula (10) has been derived, in the context of 
geometric phases, by Sjoqvist et al. 17. 

PHASE SHIFT a 

Figure 1. Both the visibility and the shift of the interference patterns of a single qubit (top line) 
are affected by the controlled-U operation. This set-up allows to estimate Tr Up, the average value 
of U in state p .  

The network can evaluate certain non-linear functionals of density operators. 
Let us choose p to  be composed of two subsystems, p = pa @ @b, and let U to 
be the exchange operator V ,  such that V I a)  I p) = I p) I a)  for any pure states 
of the two subsystems. The interference pattern is now modified by the factor 
Tr V(e, 8 @b) = Tr @a&. For p = e B e, we can estimate Tr e2, which gives us an 
estimate of ELl A;, where X i  are the eigenvalues of e. N.B. Tr e2 is real hence 
there is no need to  sweep the phase cp in the interferometer, it can be fixed at  cp = 0. 

In general, in order to  calculate the spectrum of any m x m density matrix @ 

we need to  estimate m - 1 parameters Tre2, Tre3, ... Re” .  For this we need the 
controlled-shift operation. Given k systems of dimension m we define the shift 
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as 

for any states 14). Such an operation can be easily constructed by cascading k - 1 
swaps V. This time, if we prepare p = Q @ ~  the interference will be modified by the 
factor 

m 

Thus: measuring the average values of VCk) for k = 2 , 3  ...m gives us effectively 
the spectrum of Q. In our case, in particular, we obtain the spectrum (and the 
lowest eigenvalue) of e‘ = [I 8 A](@) by estimating d2 - 1 parameters Tr p’k, where 
k = 2.. .d2. Again, the phase in the interferometry can be fixed at p = 0. 

The interferometric scheme described above is conceptually simple and experi- 
mentally viable. However, if the simplicity of the implementation is not an issue, we 
can choose to measure the estimate of the lowest eigenvalue directly. This requires 
a join measurement on all of the n pairs (see lo and l8 for further details). 

hc 

6 Conclusions 

Let us summarize our findings. Given n copies of a bipartite d 8 d system, de- 
scribed by some unknown density operator Q, we can test for entanglement either 
by estimating e and applying criterion (2), or, more directly, by performing the 
measurements we have just described. The state estimation involves estimating 
d4 - 1 parameters of e, most of which are of no relevance for the entanglement 
detection. The optimal state estimations rely on joint measurements on all copies 
of e. However, one can construct less efficient but simpler state estimation methods 
which involve measurements only on individual copies. Our more direct, interfer- 
ometry based, method requires estimations of only dZ - 1 parameters and joint 
operations on d copies of e’. The most demanding, from the experimental point of 
view, is our second method. I t  is a measurement with an outcome which is an esti- 
mate of just one parameter, but, like the optimal state estimation, the measurement 
involves joint operations on all copies of e’. Both direct and indirect entanglement 
detections have their own merits. Depending on the context, applications, and 
technologies involved, one can choose one or the other. 

There are powerful mathematical tools to  test the entanglement in bipartite and 
some multipartite Gaussian states 25, and the present scheme can be modified to 
directly detect it. However, in order to modify it efficiently, the present scheme 
would have to be translated into the language of spectrum of covariance matrix, 
rather then of the state itself. Those issues are related to more general and inter- 
esting questions of inherently quantum decision problems on continuous variables 
domain 26. In particular, it would be interesting to  consider possible implications 
of such approach, on the so called quantum Gaussian channels. 
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Direct entanglement detections can be employed as sub-routines in quantum 
computation. For example, one may consider performing or not performing a quan- 
tum operation on a given quantum system, conditioned on some part of quantum 
data being entangled or not. In fact, direct entanglement detections can be viewed 
as quantum computations solving an inherently quantum decision problem: given 
as an input n copies of p ,  decide whether e is entangled. Here, the input data is 
quantum and such a decision problem cannot even be even formulated for classical 
computers. Nonetheless, the problem is perfectly well defined for quantum com- 
puters. Finally, let us add that the method presented here can be easily generalized 
to cover all linear maps tests for arbitrary multiparticle entanglement 21 and the 
so called k-positive map tests detecting Schmidt numbers of density matrices 22. 

Modification of the method to the case of two distant labs, under restrictions to 
local operations and classical communication s, is possible 24). 

Acknowledgements 

A.K.E., L.C.K. and D.K. acknowledge financial support provided under the NSTB 
Grant No. 012-104-0040, P.H. and M.H. would like to acknowledge support from the 
EU (EQUIP, contract no. IST-1999-11053), C.M.A. is supported by the F'undaqtio 
para a Ciencia e Tecnologia (Portugal) and D.K.L.O. would like to acknowledge 
the support of CESG (UK) and QAIP (contract no. IST-1999-11234). 

References 

1. A. Einstein, B. Podolsky, and N. Rosen. Physical Review, 47:777, 1935. 
2. E. Schrodinger Proc. Cam. Phil. SOC, 31:555-563, 1935. 
3. J.S. Bell. Physics, 1:195, 1964. 
4. A. K. Ekert. Quantum cryptography based on bell theorem. Physical Review 

Letters, 67(6):661-663, 1991. 
5. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal 

frequency measurements with maximally correlated states. Physical Review 

6. V. Giovannetti, S. Lloyd, and L. Maccone. Quantum-enhanced positioning and 
clock synchronization. Nature, 412(6845):417-419, 2001. 

7. M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: 
Necessary and sufficient conditions. Physics Letters A,  223(1-2):l-8, 1996. 

8. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rottler, 
H. Weinfurter, R. F. Werner, and A. Zeilinger. Quantum information: an 
introduction to basic theoretical concepts and experiments., volume 173 of 
Springer Tracts in Modern Physics. Springer, 2001. 

9. D. BruO, J. I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, A. 
Sanpera. Reflections upon separability and distillability. quant-ph/0110081. 

10. P. Horodecki, A. K. Ekert. Direct detection of quantum entanglement quant- 
ph/OlllO64 

11. 0. Guhne, P. Hyllus, D. BruO, A. K. Ekert, M. Lewenstein, C. Macchiavello, 
A. Sanperra. Detection of entanglement with few local measurements quant- 

A ,  54(6):R4649-R4652, 1996. W
ith

 p
er

m
is

si
on

 fr
om

 ©
W

or
ld

 S
ci

en
tif

ic
 P

ub
lis

hi
ng

 C
om

pa
ny

.
Th

e 
Ph

ys
ic

s o
f C

om
m

un
ic

at
io

n,
 P

ro
ce

ed
in

gs
 o

f t
he

 X
X

II
 S

ol
va

y 
Co

nf
er

en
ce

 o
n 

Ph
ys

ic
s, 

D
O

I: 
10

.1
14

2/
53

34
 h

ttp
://

w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
/w

or
ld

sc
ib

oo
ks

/1
0.

11
42

/5
33

4#
t=

to
c



629 

ph/0205089 

mitting a hidden-variable model. Physical Review A ,  40(8):4277-4281, 1989. 
12. R. F. Werner. Quantum states with einstein-podolsky-rosen correlations ad- 

13. A. Peres. Separability criterion for density matrices. Physical Review Letters, 

14. P. Horodecki. From limits of nonlinear quantum operations to  multicopy en- 
tanglement witnesses and spectrum states estimation. quant-ph/0111036. 

15. F. Verstraete, K. Audenaert, J. Dehaene, and D. de Moor. A comparison of 
the entanglement measures negativity and concurence. quant-ph/0108021. 

16. S. Pancharatnam. Generalized theory of interference and its applications. PTO- 
ceedings of the Indian Academy of Science, XLIV(5):247-262, 1956. 

17. E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi, 
and V. Vedral. Geometric phases for mixed states in interferometry. Physical 
Review Letters, 85(14):2845-2849, 2000. 

18. M. Key1 and R. F. Werner. Estimating the spectrum of a density operator. 
Physical Review A ,  64 (5):052311-1-052311-5, 2001. 

19. J. I. Cirac, A. K. Ekert, and C. Macchiavello. Optimal purification of single 
qubits. Physical Review Letters, 82(21):4344-4347, 1999. 

20. A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Mac- 
chiavello. Stabilization of quantum computations by symmetrization. SIAM 
Journal on Computing, 26(5):1541-1557, 1997. 

21. M. Horodecki, P. Horodecki, and R. Horodecki. Separability of n-particle mixed 
states: necessary and sufficient conditions in terms of linear maps. Physics 
Letters A, 283(1-2):l-7, 2001. 

22. B. M. Terhal, P. Horodecki. Schmidt number for density matrices. Physical 
Review A ,  61 (4):040301-040305, 2000. 

23. Dirk Bouwmeester, Artur K. Ekert, and Anton Zeilinger. The physics of 
quantum information: quantum cryptography, quantum teleportation, quan- 
tum computation. Springer, New York, 2000. Dirk Bouwmeester, Artur K. 
Ekert, Anton Zeilinger (eds.). 

77( 8) 1413-141 5, 1996. 

24. P. Horodecki, et al. (in preparation). 
25. G. Giedke, B. Kraus, M. Lewenstein, J. I. Cirac, Phys. Rev. Lett. 87: 167904- 

, 2001; G. Giedke, B. Kraus, M. Lewenstein, J. I. Cirac, Phys. Rev. A, 64: 
052303- , 2002; and references therein. 

26. S. L. Braunstein and A. K. Pati (eds.), Quantum Information Theory with 
Continuous Variables, Kluwier Academic Publishers, Dodrecht, 2002, in press. 

DISCUSSION 
Chairman: E. Poldk 

L. Accardi: Do you check on an ensemble, because you cannot check on a 
single system? 

A. Ekert: Yes, of course. The experimental scenario I have in mind is that you 
have N copies of a bipartite system in the same state. Mathematically you have 
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the N-fold tensor product of this density operator. Then you apply a completely 
positive map to each of the N systems which generates N copies of a new density 
operator. Then you have to test for the lowest eigenvalue of this new density 
operator, and this, in general, involves joint operations on all N systems. 

P. Stamp: How to implement the final operator I @  T in certain cases in the 
lab? 

A. Ekert: For example, if you take two qubits, then you can look what this 
completely positive map looks like, and then you can decompose it into a mixture 
of some dephasing channels, with different probabilities, different randomisations 
of the channels. Or maybe they are other ways as well. 

I. Cirac: Is that completely positive map separable itself? Can it be imple- 
mented locally? 

A. Ekert: Yes, I think so. Actually what I know it is for the qubit, because I 
can write it in this way. But for the general case, I don’t know. 

D. Ellinas: In order to construct the modified criterion you have, do you use 
the partial transposition only or just any positive operator without being completely 
positive? Do you use the model with specific partial transposition or any positive 
map? 

A. Ekert: Actually, I use the partial transposition as an example. You can 
actually take this test, and you can go all the way through and you will get an 
equivalent test, a more general test, which says: for all maps, and then I put the 
tilde here and there will be an expression on the r.h.s. So I think it was just 
easier in this short time to explain the special case of partial transposition. And 
in fact, if you choose one particular positive map you will be as powerful as partial 
transposition. 

D. Ellinas: So I ask if positivity is sufficient for construction? 
A. Ekert: You can choose any map that is positive but not completely positive. 
K. Mdmer: I am sure that the chairman will forgive me this question, because 

in his talk he demonstrated entanglement himself. Can you see a relation between 
your visibility testing and visibility testing in that experiment? 

A. Ekert: Let’s put it this way: should E. Polzik be working on this process? 
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THE THEORY OF NEURAL NETWORKS AND CRYPTOGRAPHY 

I D 0  KANTER' and WOLFGANG KINZEL' 
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' Institut f u r  Theoretische Physik, Universitat Wurzburg 0-97074, Germany 

Minerva Center  and Department of Physics, Bar-Ilan University, Ramat-Gun 52900, 

A connection between the theory of neural networks and cryptography is presented. A 
new phenomenon, namely synchronization of neural networks, is leading to  a new method 
of exchange of secret messages. Two artificial networks being trained by the Hebbian 
learning rule on their mutual outputs develop an antiparallel state of their synaptic 
weights. The synchronized weights are used to construct an  ephemeral key exchange 
protocol for the secure transmission of secret data. The complexity of the generation of 
the secure channel is linear with the size of the network. An attacker who knows the 
protocol and all details of any transmission of the data  finds it difficult to decrypt the 
secret message. 

1 Introduction 

The ability to  build a secure channel is one of the most challenging fields of research 
in modern communication. Since the secure channel has many applications, in 
particular for mobile phone, satellite and internet-based communications, there is 
a need for fast, effective and secure transmission protocols'. Here we present a 
novel principle of a cryptosystem based on a new phenomenon which we observe for 
artificial neural networks. 

The goal of cryptography is to enable two partners to  communicate over an 
insecure channel in such a way that an attacker cannot understand and decrypt 
the transmitted message. In a general scenario, the message is encrypted by the 
sender through a key Ek, and the result, the ciphertext, is sent over the channel. 
A third party, eavesdropping on the channel, should not be able to  determine what 
the message was. However, the recipient who knows the encryption key can decrypt 
the ciphertext using his private key Dk. 

In a private-key system the recipient has to agree with the sender on a secret 
key Ek, which requires a hidden communication prior to the transmission of any 
message. In a public-key system, on the other side, the key Ek is published and 
a hidden communication is not necessary. Nevertheless, an attacker cannot de- 
crypt the transmitted message since it is computationally infeasible to  invert the 
encryption function without knowing the key Dk. In a key-exchange protocol, both 
partners start with private keys and transmit - using a public protocol - their en- 
crypted private keys which, after some transformations, leads to a common secret 
key. In most applications a public-key system is used which is based on number 
theory where the keys are long integers',2. 

In this report we suggest a novel cryptosystem. It is a key-exchange protocol 
which uses neither number theory nor a public key, but is based on a learning process 
of neural networks: The two participants start from a secret set of vectors & ( O )  and 
&(O) without knowing the key of their partner. By exchanging public information 
the two keys develop into a common time dependent key &(t)  = - o k ( t ) ,  which is 
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used to  encrypt and decrypt a given message. An attacker who knows the algorithm 
and observes any exchange of information finds it difficult to reveal the keys Ek(t) 
and &(t) .  Our method is based on a new phenomenon: Synchronization of neural 
networks by mutual learnin2. 

Simple models of neural networks describe a wide variety of phenomena in 
neurobiology and information t h e ~ r y ~ , ~ , ~ .  Artificial neural networks are systems of 
elements interacting by adaptive couplings which are trained from a set of examples. 
After training they function as content addressable associative memory, as classifiers 
or as prediction algorithms. 

Two feedforward networks can synchronize their synaptic weights by exchang- 
ing and learning their mutual outputs for given common inputs. Surprisingly, syn- 
chronization is fast; the number of bits required to achieve perfect alignment of 
the weights is lower than the number of components of the weights. After syn- 
chronization, the synaptic weights define the common time dependent private key 
Ek(t) = -Dk( t ) .  The complexity of our cryptosystems scales linearly with the size 
of the network (=number of bits of the keys). With respect to possible attacks, 
we find that tracking the weights of one of the networks by the attacker is a diffi- 
cult problem. In summary, from this new biological mechanism one can construct 
efficient encryption systems using keys which change permanently. 

The paper is organized as follows. In section I1 we speculate on the possible 
biological meaning of this new bridge between the theory of neural networks and 
cryptography. In section I11 the definition of the architecture and the dynamical 
rules are presented. In section IV the synchronization time between the parties 
derived from simulations are presented, while in section V the efficiency of a simple 
attacker is examined. In section VI some possible generalizations of our secure 
channel are briefly discussed. 

2 Possible biological relevance 

Synchronization is the subject of recent research in n e u r o s ~ i e n c e ~ ~ ~ ~ ~ ~ ’ ~ ~ ~ ~ ,  where, for 
instance, in experiments on cats and monkeys it was found that the spike activity 
of neurons in the visual cortex has correlations which depend on the kind of optical 
stimulus shown to the animap’. The phenomenon described here suggests that 
synchronization can be used by biological neuronal networks or by networks of 
the immune system to  exchange secure information between different parts of an 
organism. 

The interpretation of the synchronization process as a mechanism to  build a 
secure channel is a controversial subject. The need in biological systems for the 
secure transmission of secret data which is incorporated by a biological mechanism 
to  encrypt and to decrypt a data is in question. 

At that point we present our viewpoint on the possibility of such a biological 
realization. In table I we demonstrate a partial list of operations commonly used 
by a user of a personal computer (or by human activities in daily life). In compar- 
ison we present the implications of the research of modern biology, indicating that 
similar operations such as ‘copy’, ‘paste’, ‘insert’, ‘cut’ etc. exist in the activity 
of a cell and DNA. It is clear that biological operations are restricted to biological 
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purposes, hence they are very limited in comparison to the variety of options and 
flags suggested by any primitive software. 

A possible conclusion of the above comparison would be the following paradigm. 
All operations that can be found at the macroscopic level of human activity can 
also be found i n  biological activity on the microscopic level. Hence, the adaptation 
of this paradigm indicates that the secure transmission of data also exists on the 
microscopic activities of a biological system. Encryption and decrypt ion of biological 
signals should also be found in the microscopic functioning of human activities. 
The level of security, of course, should be rescaled with the expected capability of 
a sophisticated biological attacker. 

Table 1: A similarity between functions operated by computers and activities operated by biological 
systems on the microscopic level. 

3 Definition: network and dynamical rules 

In the following we introduce and investigate a simple model which shows the prop- 
erties sketched above. The architecture used by the recipient and the sender is a 
two-layered perceptron, exemplified here by a parity machine (PM) with K hidden 
units. More precisely, the size of the input is K N  and its components are denoted 
by X k j ,  k = 1, 2, ..., K and j = 1, ..., N .  For simplicity, each input unit takes 
binary values, x k j  = f l .  The K binary hidden units are denoted by y1, yz, ..., y K .  
Our architecture is characterized by non-overlapping receptive fields (a tree), where 
the weight from the jth input unit to the k th  hidden unit is denoted by wkj,  and 
the output bit 0 is the product of the state of the hidden units (see Fig. 1). For 
simplicity we discuss PMs with three hidden units K = 3. We use integer weights 
bounded by L,  i.e., wkj can take the values -L, - L + 1, ..., L. 

The secret information of each of the two partners is the initial values for the 
weights, wfj and w&, for the sender and the recipient, respectively. It consists of 
6 N  integer numbers, 3N of the recipient and 3N of the sender. Sender and recipient 
do not know the initial numbers of their partners, which are used to construct the 
common secret key. 

Each network is then trained with the output of its partner. At each training 
step, for the synchronization as well as for the encryption/decryption step, a new 
common public input vector ( x k j )  is needed for both the sender and the recipient. 
For a given input, the output is calculated in the following two steps. In the first 
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0 

X 
Figure 1: Architecture of the networks: 3N input units 3: are transmitted by three weight vectors 
w to three hidden units y. The final output bit 0 is the product of the hidden units. 

step, the state of the three hidden units, y:IR, k = 1 , 2 , 3 ,  of the sender and the 
recipient are determined from the corresponding fields 

In the case of zero field, w:iR xkj = 0, the senderlrecipient sets the hidden unit 
to 11 - 1. In the next step the output OSIR is determined by the product of the 
hidden units, OSIR = y1 yz yB . 

The sender is sending its output (one bit) to the recipient, the recipient is 
sending its output to the sender and both networks are trained with the output of 
its partner. In the event that they do not agree on the current output, OSOR < 0, 
the weights of the senderlrecipient are updated according to  the following Hebbian 
learning r ~ 1 & 9 ~ ~  

SIR S I R  S I R  

if (OSlRy:IR > 0 )  then W:iR = w:iR - X k j  

if (Iw:YRI > L )  then w:iR = sign(wkj SIR ) L 

Only weights belonging to the one (or three) hidden units which are in the same 
state as that of their output unit are updated, in each of the two networks. Note 
that by using this dynamical rule, the sender is trying to  imitate the response of 
the recipient and the recipient is trying to  imitate that of the sendeG6. 

There are three main ingredients in our model which are essential for a se- 
cure key exchange protocol: Firstly, from the knowledge of the output, the internal 
representation of the hidden units is not uniquely determined because there is a 
four fold degeneracy (for the output +l there are four internal representations for 
the three hidden units ( l , l , l ) ,  (1 , -1 ,  - l) ,  ( - l , l , - l ) ,  ( - 1 , - 1 , l ) ) .  As a conse- 
quence, an observer cannot know which of the weight vectors is updated according 
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to equation (2). Secondly, we have chosen the parity machine since there is a lack 
of correlation between the state of the hidden unit and the output bit (for output 
bit 1, for instance, for each hidden unit there are two internal representations with 
state 1 and two internal representations with state -1). This observation favors the 
PM over other multilayer networks. Thirdly, since each component is bounded by 
L ,  an observer cannot simply invert the sum of equation (2); the network forgetd5. 

4 Synchronization process 

We find that the two PMs learning from each other are able to synchronize, at 
least for some parameters K ,  L and M6. Our simulations show that after an initial 
relatively short transient time the two partners align themselves into antiparallel 
states. It is easy to verify from our learning rule that as soon as the two networks are 
synchronized they remain so forever. The number of time steps required to reach 
this state depends on the initial weight vectors and on the sequence of random 
inputs, hence it is distributed. Fig. 2 shows the distribution of synchronization 
time obtained from at least 1000 samples. It is evident that two communicating 
networks synchronize in a rather short time. The average synchronization time t,, 
decreases with increasing size N of the system (see Fig. 3); it  seems to converge 
to t,, N 410 for large networks. This observation was recently confirmed by an 
analytical solution of the presented modeP7. Surprisingly, in the limit of large 
N one needs to exchange only about 400 bits to obtain agreement between 3N 
components. However, one should keep in mind that the two partners do not learn 
the initial weights of each other, they are just attracted to  a dynamical state with 
opposite weight vectors. 

Note that this fast synchronization, independent of the size of the network, may 
also serve as an efficient biological mechanism to initialize two networks with the 
same initial conditions - the strength of the synapses. The number of operations 
(updates) per bit is very small, - 200 for L = 3 and only - 10 for L = 1 where 
synchronization is achieved after a few dozen steps. In artificial computers one 
can achieve a similar goal by the synchronization of the initial seed of a random 
number generator between the two partners. The complexity per bit (among 3N) 
is governed by the complexity to generate a random number. 

As soon as the weights of the sender and the recipient are antiparallel the 
public initialization of our private-key cryptosystem is terminated successfully and 
the encryption of the message starts. There are then two possibilities in choosing 
an algorithm: First, use a conventional encryption algorithm, for example a stream 
cipher like the well-known Blum-Blum-Shub bit generato+. In this case the seed 
for this pseudo-random number generator is constructed from our weight vector 
after synchronization. Note that this bit generator is secure: even without a secret 
message one cannot guess the next bit from a polynomial number of consecutive 
output bits. Second, use the PM with timedependent weights itself for a stream 
cipher by multiplying its output bit with the corresponding bit of the secret data. 

In the case of the PM, the complexity of the encryption/decryption processes 
scales linearly with the size of the transmitted message, whereas the complexity of 
the synchronization process does not scale with the size of the network. Hence our 
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Figure 2: Distribution of synchronization time tsync for three sizes N of the two networks. 

construction is a linear cryptosystem" 

5 An a t tacker  

We now examine a possible attack on our cryptosystem. An attacker eavesdropping 
on the line knows the algorithm as well as the actual mutual outputs, hence he 
knows in which time steps the weights are changed. In addition, the attacker knows 
the input x k j  as well. However, the attacker does not know the initial conditions 
of the weights of the sender and the recipient. As a consequence, even for the 
synchronized state, the internal representations of the hidden units of the sender 
and the recipient are hidden from the attacker and he does not know which are 
the weights participating in the learning step. For random inputs all four internal 
representations appear with equal probability in any stage of the dynamical process, 
hence for t training steps there are 4t possibilities to select internal repre~entationa~. 

Therefore, on the time scale of synchronization, the observing network has 
difficulty in obtaining complete knowledge about the other two networks. We have 
simulated the following basic attack on our cryptosystem. The architecture of an 
attacker is identical to  the architecture of the partners, the recipient and the sender. 
The dynamics of this attacker tries to  imitate the moves of one of the parties, the 
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Figure 3: Average synchronization time as a function of 1/N, for system size N = 
11,21,51,101,1001. 

sender for instance. The observing network is trained with the input vector and 
output bit of the sender, and the training step is performed only if sender and 
recipient disagree with each othe?. 

The learning rule may be considered for each component of the weight vectors 
as a kind of biased random walk with reflecting boundaries. Therefore, for very 
long times, the observer may take the weight vector of the other network by chance. 
The distribution of the ratio between the time tsync the sender and recipient need 
to synchronize and the learning time tlearn of this basic attacker needs for complete 
overlap is shown in Fig. 4. For N = 101 the average learning time is a factor of 
about 125 larger than the corresponding synchronization time. In addition, with 
increasing system size the tail of the distribution for larger ratios is reduced. 

Hence the time to  synchronize by chance is very long and in the example dis- 
cussed here it is of order O(105y9. The heart of our cryptosystem is that synchro- 
nization is a much simpler task than tracking by an observer. 

Recently the dynamic of such simple attackers was formulated and examined 
analytically for large networks, N >> 1. The analytical results for the learning time 
were found to be in agreement with the results of simulations". 

Possible advanced attacks were recently examined in 20, where it seems that 
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Figure 4: Frequency of the ratio T between synchronization and learning times. 

the presented cryptosystem is breakable under an attack based on an ensemble of 
attackers using more advanced strategies - dynamical rules. The question of whether 
a practical secure channel based on a public protocol for the synchronization of the 
parties exists is in question. We would like to conclude this section and to repeat our 
abovementioned statement that the required level of security for biological networks 
should be rescaled with the expected capability of a sophisticated biological attacker. 

6 Generalization 

Our key exchange protocol can be generalized in the following directions as is briefly 
described below. 

Bit-Packages: An important issue for the implementation of our cryptosystem 
is to accelerate the synchronization process from hundreds of time steps to a few 
dozen while maintaining the security of our channel. Surprisingly, both of these 
two goals can be achieved simultaneously by sending bit packages (BP). In this 
scenario the process contains the following steps: (a) The sender and the recipient 
generate B > 1 common inputs. (b) The sender and the recipient calculate the 
output of their PM for the set of B inputs and store the B sets of the corresponding 
values yki (i = I ,  ..., B)  of the hidden units (the internal representations) (c) The 
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Figure 5: Total number of transmitted bits until synchronization. B is the number of bits in each 
bit package exchanged between sender and recipient. 

transmission of mutual information; the sender/recipient sends a package consisting 
of B bits (bs’R) to the recipient/sender. (d) The sender and the recipient update 
their weights using the same learning rule as for B = 1: In the case where bit 
bf # b: the learning process takes place as before using the corresponding internal 
representations. The synchronization time is dramatically reduced, as shown in Fig. 
5 .  For instance, for N = 21, K = 3, L = 3, synchronization is achieved after 12 bit 
packages if the size of the package is larger than B 2 32. 

Several partners: Up to now we have discussed the scenario of two partners 
exchanging secret information. But our method can be extended to the case of a 
pool of several participants sharing secret information. In this case we would like to 
transmit information among several partners, but only if all of them are available to 
act cooperatively. The mutual information is the global flow of information, namely 
the output bits of all participants. Assume that we would like to build a common 
private key among an even number Q of partners, each of them represented by a PM. 
In each time step each of the Q partners is exposed to the Q outputs 01, ..., OQ. 
In case Oq = -Oq+l for q = 1, ..., Q - 1 the learning step is performed. In our 
simulations we find, for instance, that for N = 61, K = 3 and L = 3 for Q = 4, 6, 8 
the average synchronization time is 640, 1023, 2430 respectively. 
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Generation of inputs: A common public input can be generated following a 
public seed number for a random number generator. The main disadvantage of this 
method is that the number of new random variables necessary to  define a common 
input is of order O(N). A simple way to  overcome this difficulty is to shift all of 
the 3N input units one place to  the right and to  set the left-most input equal, for 
instance, to the output of the sende?1,22. 

Permutation of the weights: In order to  increase the security of our channel, 
one can apply the following types of permutations: (a) To permute a fraction (or 
all) of the weights belonging to an updated hidden units. (b) A global permutation 
of weights belonging to  an updated hidden unit with weights belonging to other 
hidden units. (c) The fraction of permuted weights increases as the parties approach 
synchronization. It is clear that the permutations are following a public protocoI, 
but the internal presentations of the parties are hidden. Our simulations indicate 
the following main results: (a) Synchronization between the parties is achievable 
under these classes of permutations, but tsynch increases. (b) The overlap between 
an attacker and one of the parties at the synchronization time is reduced by the 
permutation among the weights, and the system is more robust with respect to 
advanced attack$'. 

This work profitted from enjoyable collaborations with Richard Metzler and 
Michal Rosen-Zvi. The work is supported in part by the German Israel Science 
Foundation (GIF). 
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DISCUSSION 
Chairman: E. Polzik 

An introduction to the discussion 
The talk of Id0 Kanter concentrated on another type of cryptosystem: secure 

and linear cryptosystems using error-correcting codes. A public-key cryptosystem 
procedure based on a Gallager-type parity-check error-correcting code is presented. 
The complexity of the encryption and the decryption processes scale linearly with 
the size of the plaintext Alice sends to Bob. The public-key is pre-corrupted by Bob, 
whereas a private-noise added by Alice to a given fraction of the ciphertext of each 
encrypted plaintext serves to increase the secure channel and is the cornerstone for 
digital signatures and authentication. Various scenarios are discussed including the 
possible actions of an attacker as eavesdropper or as a disruptor. For more details 
please see Europhys. Lett. 51, 244 (2000). 

G .  Leuchs: What role does the added noise play? 
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I. Kanter: The idea is to use error-correcting codes as a cryptosystem. Usually 
one thinks of the noise in the following way: we prepare the message here, then we 
transmit it, and noise is somehow added during the transmission. However, in this 
case, we do not have noise added through the transmission, but Alice adds private 
noise. 

We can use this private noise for identification, signature and so on. Moreover, 
I would like to emphasize here that the cryptosystem should be considered not only 
as decryption and encryption, but also in terms of other tasks of the secure channel 
such as stamping, signature and authentication which are no less important than 
encryption and decryption. The second point I would like to  stress to  the community 
here is the need to think about an attacker which, besides eavesdropping over the 
channel, can also act as a disruptor. I cannot be certain that all the cryptosystems 
presented during this conference are robust against an attacker acting as a disruptor. 

G. Leuchs: So Bob has to know the noise, that private noise? 
I. Kanter:  No. Bob uses the decoder to split the message (signal) and noise. In 

addition we can use the private noise, for instance, in order to add more information, 
because it is not a random noise. The purpose of the noise is to  hide the information, 
and the amount of noise should be less than the channel capacity. 

G. Zeng: Do you think this is the case when you use quantum bits? 
I. Kanter:  I’m not sure. I have thought about it but I think one should try to 

find the quantum interpretation of the two matrices in the Gallager code. At the 
moment I don’t know the interpretation. 

A. Ekert:  My comment is that McEliece proposed cryptosystems resulting in 
a kind of quantum immune. It is not obvious how to  attack them with the current 
knowledge about quantum algorithms. 

I. Kanter :  I agree. By the way, the cryptosystem I proposed was first suggested 
by McEliece. The complexity of the encryption/decryption processes is of order N 2  
since McEliece used dense matrices. It’s not so easy to choose sparse matrices such 
that the inverse matrices are sparse, too. 
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