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Outline

Majorana Edge modes 
- exact solvable system with  
  fixed particle number 

- double wire system 

Topological band structures 
with dipolar interactions 
- realized with polar molecules and  
  Rydberg atoms 

- Chern number C=2 

edge states

17



Topological band structure

singel particle band structure 
independent on statistics of particles

edge states
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- topological quantum numbers 
- edge states

Requirements for topological states/phase

Fermions

Bosons

integer filling+ 
weak interactions

flat bands + 
strong interactions

topological insulators

fractional topological  
insulators

flat bands + 
strong interactions

bosonic fractional  
topological insulators



Topological band structure
Homogeneous magnetic fields 

- integer quantum Hall effect 
- Hofstadter butterfly

motivation: difficulties

4

Time-reversal symmetry 
breaking 

- Haldane model

- lattice shaking 
- artificial gauge fields 
- synthetic dimension 
(Esslinger, Bloch, Spielman, Fallani,…

Here:  

Topological band structure 
characterized by a Chern  
number
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Dipolar interactions

Vdd =
di · dj � 3 (di · nij) (di · nij)

|ri � rj |3

motivation: experimental requirements

5

di

dj

nij

Dipole-dipole interaction 

- anisotropic interaction 

 
 
 
 
 

 

- coupling between orbital degree of freedom 
  and internal degree of freedom

“spin-orbit”  
coupling

- Einstein de Haas effect 
  (Y. Kawaguchi et al, PRL 2006) 

- demagnetization cooling 
  (M. Fattori et al, Nature Phys 2006) 

- pattern formation in spinor condensates 
  (D. Stamper-Kurn, M. Ueda, RMP 2013).

Observation in cold gases

dipole operator



Dipolar interactions

motivation: experimental requirements

5
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Exploit this spin orbit coupling  
for the generation  

of topological band structures 

Requirements:

- particles in  
  a 2D lattice 

- internal “Spin” structure 

- strong dipole-dipole interaction

- polar molecules 

- Rydberg atoms 

- NV centers 

- atoms with large magnetic  
  dipole moments

Systems:

title

1



Mapping onto two hard-core bosons: 

- bosonic creation operators for excitations

Rydberg atoms in an optical lattice
Setup 

- one atom per lattice site 
  with quenched tunneling 

- static external electric field 
  and magnetic field 

- select three internal states 

: ground state

|+ii|�ii
|0ii

: two excited states

|+ii = b†i,+|0i

|�ii = b†i,�|0i



Mapping onto two hard-core bosons: 

- bosonic creation operators for excitations

Rydberg atoms in an optical lattice
Setup 

- one atom per lattice site 
  with quenched tunneling 

- static external electric field 
  and magnetic field 

- select three internal states 

: ground state|+ii|�ii
|0ii : two excited states

|+ii = b†i,+|0i

|�ii = b†i,�|0i
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|0ii



motivation: experimental requirements
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Dipolar exchange interactions

Hamiltonian  

- dipolar interaction restricted to 
  the three internal levels 

Hij =
1

|ri � rj |3
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hopping of excitation



Dipolar exchange interactions

Hamiltonian  

- dipolar interaction restricted to 
  the three internal levels 

Hij =
1
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Time-reversal symmetry breaking 

- different hopping for excitations 

- energy shift on levels 

Single excitation Hamiltonian

Hamiltonian  

-  single particle hoping with  
   spin orbit interaction 

H =
X
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Single excitation Hamiltonian
Hamiltonian  

-  single particle hoping with  
   spin orbit interaction

H =
X
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Topological character of band 

- characterized by a Chern number
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Topological band structure

band structure

12

band structure

12

With time reversal symmetry  

- square lattice 

- two bands with quadratic  
  band touching points 

quadratic band  
touching point

Dirac points in  
rectangular lattice

Linear dispersion: 

- consequence of slow  
  dipolar decay of hopping

see also Syzranov et al Nat. Comm. 2014



Topological band structure

Without time reversal symmetry  

- square lattice 

- gap openings 

band structure

12

band structure

12

Topological bands 

- Chern number

C =

Z
dk
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topological phase diagram
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Topological band structure
Without time reversal symmetry  

- optimal experimental parameters 

- Chern number C=2

band structure

12



Edge states

edge states

17

Finite system in y-direction 

- bulk edge correspondence 
  (Hatsugai PRL 1993) 

- exponential localization in  
  presence of long-range hopping

C= 2 implies two edge states



Stability under disorder

Chern number in the disordered system

18

edge states: disorder

26

Disorder 

- missing molecules in the lattice 

- stabilized by long-range hopping

Chern number in the disordered system

18



Flat topological bands

honeycomb lattice: flat bands

19

honeycomb lattice: flat bands

19

Honeycomb lattice 

- much flatter bands accessible 

- very rich topological structure  

- even richer for Kagame lattice
honeycomb lattice: topological phase diagram

23

C 2 {0,±1,±2,±3,±4}



Finite systems
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Minimal system for observation 
of edge states 

- exponentially localized at edge 

- uni-directional motion
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Density of states  
with edge
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Spectroscopy 

- round structure with a single edge 

Finite systems
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Density of  
states with  
edge

Minimal system for observation 
of edge states 

- round structure with a single edge 
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Outlook on topological bands

Dipolar interaction provides 
natural spin orbit coupling 
- topological band structures  
  with Chern number C=2

edge states

17

Robust to disorder 
- topological nature is very robust 
  to missing particles in the lattice

Towards bosonic fractional 
Chern insulators 
- strongly interacting system 

- is flatness high enough for  
  topological phases 

- candidate expected at 2/3 filling

edge states: disorder

26



Outline

Majorana Edge modes 
- exact solvable system with  
  fixed particle number 

- double wire system 

Topological band structures 
with dipolar interactions 
- realized with polar molecules and  
  Rydberg atoms 

- Chern number C=2 

edge states

17



Kitaev’s Majorana chain
Kitaev’s Majorana chain 

- fermions on a 1D lattice  
  with supefluid pairing term 

- exact solution by introducing  
  Majorana fermions 

Topological state 

H = �
L�1X

i=1

h
wa†iai+1 ��aiai+1 + h.c.

i

Trivial phase:
Dominant chemical potential

Topological phase:
Dominant hopping & pairing

⇒ Zero-energy edge mode

�µ
LX

i=1

a†iai

ai =
c2i�1 + ic2i

2

ai =
c2i�1 + ic2i

2

- robust ground state  
  degeneracy 

- non-local order  
  parameter 

- localized edge states



Why should we care
Topological invariant edge states 

- ground state degeneracy is robust 
  to local perturbations 

Non-abelian anyons 

- localized edge modes obey 
  non-abelian braiding statistics 

Inherently robust way of
storing & manipulating quantum information 

& 
↓ 

⇒ Topological quantum memory & computer 

Topological Phase:
Topological invariant protects 
ground state degeneracy 

Anyonic Statistics:
Localized edge modes obey 
non-abelian anyonic statistics 

J. Alicea et al. (2011). Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Physics, 7(5), 412–417.

(Alicea et al Nat. Phys. 2011)

robust quantum  
memory?

topological quantum  
computation

- Novel state of matter 

- Toy model of a  
  topological phase



Beyond mean-field

H = �
L�1X

i=1

h
wa†iai+1 ��aiai+1 + h.c.

i

- mean-field coupling 
- violates particle conservation

exist a particle conserving theory  
with Majorana modes in one-dimension?



Beyond mean-field
Previous work in this context:

Bosonization

→ M. Cheng and H.-H. Tu (2011). Physical Review B, 84(9), 094503.
    Majorana edge states in interacting two-chain ladders of fermions. 

→ J. D. Sau et al. (2011). Physical Review B, 84(14), 144509. 
   Number conserving theory for topologically protected degeneracy 
   in one-dimensional fermions.  
→ L. Fidkowski et al. (2011). Physical Review B, 84(19), 195436. 
    Majorana zero modes in one-dimensional quantum wires 
    without long-ranged superconducting order.  

→ J. Ruhman et al. (2014). arXiv:1412.3444  
   Topological States in a One-Dimensional Fermi Gas 
   with Attractive Interactions.

Numerical (DMRG)→ C. V. Kraus et al. (2013). Physical Review Letters, 111(17), 173004.
   Majorana Edge States in Atomic Wires Coupled by Pair Hopping.

Long-Range→ G. Ortiz et al. (2014). arXiv:1407.3793 
   Many-body characterization of topological superconductivity: 
   The Richardson-Gaudin-Kitaev chain. 

Short-range interacting Theory
Exact ground state
Majorana Modes on edges 

⇒ Here: 

Bosonization

Numerical

Long-range

Sort-range interacting theory 
exact ground state 
Majorana edge modes

Here:

N. Lang and H. P. Büchler, Phys. Rev. B 92, 041118 (2015). 
F.Iemini,et al., Phys. Rev. Lett. 115, 156402 (2015).



Microscopic model
Hamiltonian 

- double wire system 

- intra-chain contribution 

- inter-chain contribution

H = Ha +Hb +Hab

Ha =
X

i

Aa
i (1 +Aa

i )

Hab =
X

i

Bi (1 +Bi)

Symmetries 

- total number of particles  

- time reversal symmetry 

- sub-chain parity

N

T

P



Microscopic model

Inter-chain Hamiltonian 

Intrachain Interactions:
Single-particle hopping & NN density-density interactions

Expanded form:

Aa
i = a†iai+1 + a†i+1ai

Ha =
X

i

Aa
i (1 +Aa

i )

Ha
i = aia

†
i+1 + ai+1a

†
i + na

i

�
1� na

i+1

�
+ na

i+1 (1� na
i )

- positive Hamiltonian 
- zero-energy state  
   is ground state 

|ni =
X

{ni}

| . . . , ni, ni+1, . . .i

equal weight superposition of all  
possible distribution of n fermions

Inter-chain Hamiltonian (expanded) 



Microscopic model

Interchain Interaction:
Pair-hopping & Pair-density-density interactions

Expanded form:

Intra-chain Hamiltonian 

Hab =
X

i

Bi (1 +Bi)

Bi = a†ia
†
i+1bibi+1 + b†i b

†
i+1aiai+1

pair-hopping between chains

Intra-chain Hamiltonian (expanded) 

Hi
ab = a†ia

†
i+1bibi+1+b†i b

†
i+1aiai+1+na

i n
a
i+1

�
1�nb

i

� �
1�nb

i+1

�
+ nb

in
b
i+1 (1�na

i )
�
1�na

i+1

�

- positive Hamiltonian 
- zero-energy state  
   is ground state  
- fixed total number  
  of particles equal weight superposition of all possible  

distribution of N fermions between the two wires

| i =
X

n

|ni|N � ni



Ground state degeneracy

Two-open chains 

- two-fold ground state  
  degeneracy 

| eveni =
X

n2even

|ni|N � ni

| 
odd

i =
X

n2odd

|ni|N � ni

Two- closed chains 

- only one zero energy state for 
  total even number of particles 

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Even total number of particles

Odd total number of particles

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even



Wire networks

Networks of wires 

- exact ground states for arbitrary 
  networks 

- degeneracy consistent with 
  majorana modes at edges

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

Do the math ...
GS = Equal-weight superposition with fixed
         total particle number & subchain parity

Note:
Does not work for periodic boundary conditions in all sectors!

with

Degeneracy for open boundary conditions:
Two GS for each particle number sector:

odd

odd

even

even odd

even odd

even

2E/2�1

number of edges



Green’s function 

- exponential decay 

- revival at the edge

Superfluid correlations 

- long-range superfluid p-wave pairing

Ground state properties
Density-density correlations 

- independent on ground state 

i

j

i

j

i+ l

j + l

hn�
i n

�0

j i = ⇢2 i 6= j

ha†iaji

We conclude:
Edge modes in the ground states!

Greens Function:
Vanishes exponentially in the bulk & revival at the edges ...

existence of  
edge modes

ha†ia
†
i+1ajaj+1i = ⇢(1� ⇢)



Ground state properties

Stability of ground state degeneracy 
of edge states  

- stable under all local perturbations 
- splitting decays exponentially 

Stability of ground state degeneracy 
for open wires 

- Protected by either time-reversal  
  symmetry or subchain parity 

a†i bi + b†iai
: stable under time  
  reversal hopping 

ia†i bi � ib†iai : finite overlap between  
  two ground states



Excitation spectrum

Low-energy excitations 

- Goldstone mode due to broken 
  U(1) symmetry 

- exact wave function for single phase  
  kink excitation 

- quadratic excitation spectrum

|k, i =
X

j

eikj
h
(�1)n

a
j + (�1)n

b
j

i
| i

✏k = 4 sin2 k/2 ⇠ k2

System is in a critical state 

- vanishing compressibility 

- Goldstone mode with 
   quadratic dispersion



Setup for braiding of 
two edge states 

- wire network with two edges 

- restriction to the low energy  
  sector 

- very weak coupling terms: 
  adiabatic switching between them

Idea:
Braid edge-modes on subchains by adiabatic deformation of Hamiltonian

Low-energy sector:
Negative total parity 
→ 8 ground states

"Bath"

Majorana

Weak couplings

Subchain-parities: 

Non-abelian Braiding statistics

Idea:
Braid edge-modes on subchains by adiabatic deformation of Hamiltonian

Low-energy sector:
Negative total parity 
→ 8 ground states

"Bath"

Majorana

Weak couplings

Subchain-parities: 

8 relevant states 

- characterized by  
  subchain parity



Non-abelian Braiding statistics

Adiabatic switching of coupling 

- transformation of the ground state 
  according to the non-abelian statistic 
  of Majorana modes

Idea:
Braid edge-modes on subchains by adiabatic deformation of Hamiltonian

Low-energy sector:
Negative total parity 
→ 8 ground states

"Bath"

Majorana

Weak couplings

Subchain-parities: 



Conclusion

Majorana Edge modes 
- exact solvable system with  
  fixed particle number 

- analytical demonstration of  
  Majorana edge modes

Topological band structure 
with dipolar exchange 
interactions 
- spin-orbit coupling natural present 
  in dipolar system 

- existence of topological band structures 

edge states

17


