Large fields in synthetic dimensions

I. B. Spielman

Synthetic fields: L. M. Aycock, D. Genkina, and H.-I Lu; departed: B. Stuh

NS

Novel vortex formation: A. Putra, A. Valdés-Curiel, E. Marshall, and D. Trypogeorgos; departed: R. Price, D. Campbell

Chip: F. Salces-Carcoba, Y. Yue, A. Putra, and S. Sugawa; departed: A. R. Perry

<u>Support</u>

AFOSR Quantum Phases MURI, ARO Atomtronics MURI, NIST, and NSF PFC @ JQI

Backdrop

Basic idea: laser induced hopping

$$H = -\sum_{\mathbf{j}} \left[t^{(x)} e^{-i2\pi\Phi j_{y}} |\mathbf{j} + \mathbf{e}_{x}\rangle \langle \mathbf{j}| + t^{(y)} |\mathbf{j} + \mathbf{e}_{y}\rangle \langle \mathbf{j}| + \text{h.c.} \right]$$

References

D. Jaksch and P. Zoller; New Journal of Physics (2003).

AMO: fields in lattices

Light assisted hopping I: Munich

References

M. Aidelsburger et al PRL (2011), M. Aidelsburger et al PRL (2013)

Light assisted hopping II: MIT

References

C. J. Kennedy, et al Nat. Phys (2015), H. Miyake et al PRL (2013)

Synthetic dimensions

References

Celi, A. ...N. Goldman... et al. Phys. Rev. Lett. (2014)

AMO: exotic lattices

Modulation I: Hamburg

References

J. Struck et at N. Physics (2013)

Modulation II: Zurich

References

J. Gotzu at al Nature (2014)

Large magnetic fields in synthetic dimensions

<u>JQI:</u> B. Stuhl and Hsin-I Lu, et al. Science (2015)

<u>Florence</u> M. Mancini et al. Science (2015)

<u>THEORY PROPOSAL:</u> Celi, A. et al. Phys. Rev. Lett. (2014)

<u>Where we are going:</u>

Large magnetic fields in a 2D lattice

We will engineer each term in the model individually

References

B. Stuhl, et al. arxiv (2015); Celi, A. et al. Phys. Rev. Lett. (2014); Large fields in extended systems: MIT and Munich

Continuum magnetic fields

Single-particle eigenstate structure: Landau gauge

$$H = \frac{\hbar^2}{2m} \left[\left(k_x + \frac{qBy}{\hbar} \right)^2 + k_y^2 \right], \quad \text{from} \quad \mathbf{A} = -By\mathbf{e}_x \quad \text{with} \quad \ell_B = \sqrt{\frac{\hbar}{qB}}$$

<u>References</u> Figure From: A. Cili and L. Tarruell, Science Perspective (2015)

Continuum magnetic fields

Single-particle eigenstate structure: Landau gauge

$$H = \frac{\hbar^2}{2m} \left[\left(k_x + \frac{qBy}{\hbar} \right)^2 + k_y^2 \right], \quad \text{from} \quad \mathbf{A} = -By\mathbf{e}_x \quad \text{with} \quad \ell_B = \sqrt{\frac{\hbar}{qB}}$$

Has lowest Landau level eigenstates with **one** quantum number *k*

$$\psi(x, y) \propto e^{ikx} e^{-(y-y_0)^2/2\ell_B^2}$$

with guiding center $y_0 = -k\ell_b^2$

QHE systems: Edge states

Edge excitations in QHE systems

References

I. B. Spielman; Ann. der Phy. (2013).

<u>Lattice magnetic fields</u>

Single-particle eigenstate structure: Landau gauge

$$H = -\sum_{\mathbf{j}} \left[t^{(x)} e^{-i2\pi\Phi j_{y}} |\mathbf{j} + \mathbf{e}_{x}\rangle \langle \mathbf{j}| + t^{(y)} |\mathbf{j} + \mathbf{e}_{y}\rangle \langle \mathbf{j}| + \text{h.c.} \right]$$

Has lowest Landau *band* eigenstates with **two** quantum numbers: k_x and k_y

With
$$\Phi = \frac{p}{q}$$
 in simplest form,

$$\psi(\mathbf{j}) = u_{\mathsf{k}}(j_{\mathsf{y}})e^{i\mathbf{j}\cdot\mathbf{k}}$$

Magnetic B.Z. sized: $k_0 \times k_0/q$

Unit cell sized: $a_0 \times q a_0$

<u>Lattice magnetic fields</u>

Single-particle eigenstate structure: Landau gauge

q degenerate ground states each with with a distinct "guiding center" *within* each magnetic unit cell

Finite width strips

<u>Building a magnetic lattice</u>

<u>Building a magnetic lattice</u>

Usual level diagram

Lattice picture

$$m = +1 \qquad \bigcirc t^{(s)}$$
$$m = 0 \qquad \bigcirc t^{(s)}$$
$$m = -1 \qquad \bigcirc$$

Reference Celi, A. et al. Phys. Rev. Lett. (2014).

RF or Raman Hamiltonian

 $H = \Omega \cdot \hat{\mathbf{F}}$

Simple "tunneling"

$$t^{(s)} = -\frac{\hbar}{\sqrt{2}} \left(\Omega_x - i\Omega_y\right)$$

Complete harmonic "potential"

$$E_m = (\hbar\delta)m + (\hbar\Omega_2)m^2$$

In todays experiments the m^2 term may be neglected.

Full lattice

Synthetic hopping

 $\frac{\text{RF}}{t^{(s)}} = \frac{\Omega_{RF}}{\sqrt{2}}$

Raman

$$t^{(s)} = \frac{\Omega_R}{\sqrt{2}} e^{i2k_R x}$$
$$= \frac{\Omega_R}{\sqrt{2}} e^{i(2\pi\Phi)\ell}$$
ith $\Phi = \frac{\lambda_L}{\lambda_R} \approx 1.32$

W

References

Celi, A. et al. Phys. Rev. Lett. (2014); 3-site dual to: M. Atala et al. Nat. Phys. (2014)

In Yb, with spins

Related experiment in Florence, with Yb

References M. Mancini ... L. Fallani, Science (2015)

2x leg ladder experiments

Related experiment in Munich with a 2x leg ladder

References M. Atala, ... I. Bloch, Nat Phys 10, 588–593 (2014)

Full lattice

Synthetic hopping

<u>RF</u>

$$t^{(s)} = \frac{\Omega_{RF}}{\sqrt{2}}$$

<u>Raman</u>

$$t^{(s)} = \frac{\Omega_R}{\sqrt{2}} e^{i2k_R x}$$
$$= \frac{\Omega_R}{\sqrt{2}} e^{i(2\pi\Phi)\ell}$$
with $\Phi = \frac{\lambda_L}{\lambda_R} \approx 1.32$

Interpreting data

Interpreting data: zero flux

Lattice site along *m*

First excited state

Density/Potential

-2

-1

0

т

2

2

1

1

Second excited state

QHE systems: Edge states

Edge states in QHE systems

Center

т

Interpreting data: -1/3 flux quantum

Center

2

2

1

0

т

Rotating BEC Quadrupole mode

References

Chevy, F., Madison, K. W. & Dalibard, Phys. Rev. Lett. (2000).

<u>Quadrupole mode</u> In the extreme large field limit

Chiral current

Effective box potential Release from central site

Chiral current

Chiral current Peak current

<u>Chiral current</u> Tunneling anisotropy

Chiral slope

Independent of anisotropy (tight binding)

<u>OHE systems: edge states, skipping?</u>

Edge excitations in QHE systems

<u>Dynamics: "edge magnetoplasmons"</u>

References

van Houten, H. et al. Phys. Rev. B 39, 8556–8575 (1989). Goldman, V. J., Su, B. & Jain, J. K. Physical Review Letters 72, 2065–2068 (1994).

<u>QHE systems: edge states, skipping?</u>

References

R. Ashoori, et al., Phys. Rev. B 45, 3894–3897 (1992).

Cold-atom theory connection

References N. Goldman ... P. Zoller ... et al; PNAS (2013)

<u> Dynamics: edge magnetoplasmons</u>

<u>Dynamics: edge magnetoplasmons</u>

References

B. Stuhl and H.-I Lu, et al., Science (2015); M. Mancini, et al., Science (2015)

Other completed work

Adiabatic vortex generation

R. Price, et al. (in preparation)

Topological transition

Invariants in parameter space for nonabelian

S. Sugawa, et al. (in preparation)

Damping and diffusion of solitons

Geometric charge pumping

<u>Wrap-up</u>

Using mechanism from

Synthetic dimensions lattice

Edge states

Pumps throughout history

Geometric/topological pumps

NIST single electron pump

Sometimes quantized pumping,

quantum mechanical (left) or not quantum mechanical (right_.

References

(1) Hsin-I Lu, Maximilian Schemmer, et al. arXiv: 1508.04480v1(2) M. A. Keller et al Science (1999)

Lattices and Bloch bands

Spatial lattice potential

Unit cell with size $a = \lambda/2$, and two sub-lattice sites

Each eigenstate has quantum numbers: crystal momentum *q* and band index *n*.

<u>Quantum charge pumps</u>

Topological or "Thouless" charge pumps

In condensed matter **topological** pumps focus on filled Bloch bands

Cold atoms can have:

- Thermally filled bands
- Interaction-filled bands (Mott insulator)
- Statistically filled bands (Fermions)

In contrast geometric pumps operate with a single crystal momentum state

Cold atoms can have:

- A very cold thermal cloud
- BECs

References

M. Lohse et al Nature Physics (2015), S. Nakajima et al Nature Physics (2015), Hsin-I Lu, et al. arXiv: 1508.04480v1 (NIST/JQI)

<u>Physical mechanism</u>

Charge pump basics

In a charge pump we adiabatically and periodically vary a Hamiltonian

$$\hat{H}(\hat{q},t) = \hat{H}(\hat{q},t+T)$$

with period T, and where q is the crystal momentum.

Since we assume the pumping process is adiabatic, any initial crystal momentum state can at most acquire a phase after each pump cycle:

$$\ket{\psi(q)} o e^{i\phi(q)} \ket{\psi(q)}$$

The phase *can* be different for different crystal momentum states. This allows us to define the single-cycle evolution operator

$$\hat{U}_{\text{single}} = e^{i\phi(\hat{q})}$$

<u>Physical mechanism</u>

Charge pump basics

Independent of its origin this phase leads to motion after each pump cycle $U^{\dagger}(\hat{q})\hat{x}U(\hat{q}) = \hat{x} - \frac{\partial \phi(\hat{q})}{\partial \hat{a}}$

from the non-commutation of x and q.

For any q the phase has two contributions. The first is:

dynamical (kinetic energy) $-\frac{1}{\hbar}\int_0^T dt E(q, t)$

Giving the displacement: $\delta x = \frac{T}{\hbar} \frac{\partial E(q)}{\partial q}$

from mean group velocity.

Zero for: filled bands or particles at the dispersion minimum

<u>Physical mechanism</u>

Charge pump basics

The second phase is the geometric (Berry phase):

$$\phi_{\mathcal{B}}(q) = \frac{1}{\hbar} \int_{0}^{\mathcal{T}} dt \langle \psi(q, t) | i\hbar\partial_{t} | \psi(q, t) \rangle = \frac{1}{\hbar} \int_{0}^{\mathcal{T}} dt \langle u(q, t) | i\hbar\partial_{t} | u(q, t) \rangle$$

In terms of the Bloch functions

$$|\psi(q,t)\rangle = e^{iq\hat{x}}|u(q,t)\rangle$$

Derived from the time component of the Berry connection $\mathbf{A}(q, t) = \langle \psi(q, t) | i\hbar \partial_q | \psi(q, t) \rangle \mathbf{e}_q + \langle \psi(q, t) | i\hbar \partial_t | \psi(q, t) \rangle \mathbf{e}_t$

Giving

$$\delta x = -\frac{1}{\hbar} \int_0^T dt \, \partial_q A_t(q, t)$$

Physical mechanism

Charge pump basics

Next consider the Berry curvature

$$F(q, t) = \left[\nabla_{qt} \times \mathbf{A}(q, t)\right]_{z}$$

= $i\hbar(\langle \partial_{q}u(q, t)|\partial_{t}u(q, t)\rangle - \langle \partial_{t}u(q, t)|\partial_{q}u(q, t)\rangle$

And think about the displacement as a loop integral around the path

Quantum charge pumps

Every state occupied topological, quantized

$\delta x = -\frac{1}{2\pi\hbar} \int$	$\int dq dt \Omega(q,t)$
--	--------------------------

References

D. J. Thouless, Phys. Rev. B 27, 6083 (1983)M. Lohse et al Nature Physics (2015)S. Nakajima et al Nature Physics (2015)

BEC at band minimum geometric, not quantized

$$\delta x = -\frac{1}{\hbar} \int_0^T dt \Omega(q, t)$$

References

Hsin-I Lu, et al. arXiv: 1508.04480v1 (JQI) In a phase-number basis for a single superconducting dot: M. Mottonen, J. J. Vartiainen, J. P. Pekola; PRL (2008)

<u>Technique</u>

References

Extending: K. Jiménez-García, et al, PRL (2012), and L. W. Cheuk, et al PRL (2012)

<u>Technique</u>

Magnetic interpretation

References

Morally similar in outcome to proposal of D.-W. Zhang, et al, PRA 92, 013612 (2015).

<u>Techniquc</u>

Magnetic interpretation

Joins the family of double-well lattices in for quantum gases With "well spacing" of lambda/4

References

Higher spatial frequency components, related to work in Martin Weitz's group. W. P. Su, J. R. Schrieffer, and A. J. Heeger, PRL (1979), and M. J. Rice and E. J. Mele, PRL (1982)

Essential properties

Momentum structure

Topology and local geometry

Full-band topology

Zak phase

Local geometry

Berry curvature at q = 0 Nothing special at Topological singular points

References M. Atala, et al, Nat. Phys (2013)

Magnetization

Direct sub-lattice readout

Trajectories

Trajectory

Pumping

Trajectory (i)

Oscillating local magnetization

"Polarization" effect in conventional charge pump theory

Conclusions?

- Atoms are oscillating back and forth in the same well?
- Atoms move by ± one cell

Correct for: a classical particle and a filled bands \rightarrow quantized motion

Essential properties: Classical

Spatial structure

Classical/Quantum pumps

Essential properties: Classical

Pumping

Trajectory

All three trajectories

Direct observation pumping 20 pump cycles

What else?

Harmonic trapping: 2 ms pump period vs (m*/m) x 70 ms \rightarrow 240 ms)

Look at short time to see initial force

<u>Pumping: short time response</u>

Trajectory

All three trajectories

Direct observation pumping Agreement with Berry's phase

Conclusions

Cold atom systems are

- the first systems to show the topological charge pumps
- can show new kinds of quantum charge pumping, e.g., geometric

M. Lohse et al Nature Physics (2015); S. Nakajima et al Nature Physics (2015) Hsin-I Lu et al. arXiv: 1508.04480v1 (JQI)