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Quasicrystals are materials which are non-periodic but present long-range order
Shechtman et al., PRL (1984)
Levine & Steinhardt, PRB (1986)  

Several realizations in solid-state physics :
- quenched Al alloys
- metal/semiconductor epitaxy
- nanofabrication

Natural (khatyrkite) Steinhardt, Rep. Prog. Phys. (2012)
Bindi et al. Science (2009)

Wide range of applications (mechanical properties, optical gratings, …)

Experiments with photonic, phononic quasicrystals, optical elements,….

Rich physical/mathematical properties : fractal structure, topological features, … 
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Fibonacci numbers are defined by : 

Finite length Fibonacci sequence is defined by : 

Why the Fibonacci sequence ? 
basic example of 1D quasicrystal

ABAABABAABAABABAABABA

Example : 

21 letters

Golden mean : 
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Starting point : square 2D lattice
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Project



Cut and project 

13

Project

For any rational slope a 1D periodic structure is created
For an irrational slope, one gets a quasi-periodic structure
Fibonacci sequence is obtained by choosing a slope of 1 /



Diffraction pattern

14

Real space Reciprocal space

Initial lattice

u

v

ku

kv



Diffraction pattern

15

Real space Reciprocal space

Initial lattice

Cut

u

v

ku

kv



Diffraction pattern

16

Real space Reciprocal space

Initial lattice

Cut

Project

u

v

ku

kv



Diffraction pattern
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Deduce the diffraction pattern :

Peak positions given by two integers :

Peaks amplitude given by their
distance from the cutting line 
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Density of states shows a series of gaps

Gap Labelling Theorem

q is a Chern number

Gaps open at the position of the diffraction peaks

Belissard (1982)
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Fibonacci chain

Phason degree of freedom

Experimental results
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Offset of the cut can be tuned

We consider finite-size chains of length

We associate a phase      with this translation with

Scanning      generates new chains
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Scanning      generates new chains

One change at a time :  BAABAB           BABAAB

The generated chains are different segments of the infinite chain

ABAABABAABAABABAABABA…..Example :

ABAABABA
ABAABAAB
AABABAAB

Spatial shift is :
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Scanning      generates new chains which can be found on the 
Infinite chain by a shift :  

A spatial shift in real space corresponds to a phase shift in reciprocal
space. Effect of the phason will appear in the phase of the diffracted
field.
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Scanning      generates new chains which can be found on the 
Infinite chain by a shift :  

A spatial shift in real space corresponds to a phase shift in reciprocal
space. Effect of the phason will appear in the phase of the diffracted
field.

For a diffraction peak at  ,

We can show that

Chern numbers are encoded in the phase of diffracted field.
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We can find a characteristic function to define the Fibonacci sequence : 
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We can find a characteristic function to define the Fibonacci sequence : 

Kraus et al.  (2012)

Aubry-André model and Fibonacci sequence for 1D tight-biding hamiltonians with
modulated hopping terms can be described as two limits of a generalized
characteristic function :

Fibonacci : 
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We can find a characteristic function to define the Fibonacci sequence : 

Kraus et al.  (2012)

Aubry-André model and Fibonacci sequence for 1D tight-biding hamiltonians with
modulated hopping terms can be described as two limits of a generalized
characteristic function :

Fibonacci : 

Both models can be obtained from a 2D ancestor Harper Hamiltonian :

With a flux                             and 



Photonics experiment
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Kraus et al. PRL 109 106402 (2012)
Kraus et al. PRL 109 116404 (2012)
Verbin et al. PRB 91 064201 (2015)

Phason is scanned by changing longitudinally
the coupling between guides.

Edge states propagation
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Fibonacci chain

Phason degree of freedom

Experimental results



Optical setup 
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Laser @ 532 nm Digital Micromirror Device (DMD)
– mirror (“pixel”) size a ~ 14 µm
– 1024 × 768 pixels

Fibonacci encoding :

DMD front view

Fibonacci chain
outside
(OFF)

outside
(OFF)

...
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Diffraction by a single Fibonacci chain

38

Diffraction peaks at 

q=1q=-1q=2 q=-4q=4q=-3



Scanning the phason (1)
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DMD Pattern Diffraction pattern

89 letters



Scanning the phason (1)
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DMD Pattern Diffraction pattern

No effect from the scan of the phason !

89 letters



Scanning the phason (2)

41

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4
89 letters



Scanning the phason (2)

42

Peaks are crossed by holes

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4

Slope of the crossing gives the Chern number q

89 letters



Scanning the phason (2)
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DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4

q=1q=4

Cuts at a given

89 letters
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Multiple of 2π

No dependance on Φ
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Multiple of 2π

No dependance on Φ

Sinusoidal variation with Φ at a period π/q
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DMD Pattern

y axis is associated with Φ
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DMD Pattern Diffraction pattern

q=1q=2
q=4

y axis is associated with Φ

q=-1

q=7

Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number
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2D Diffraction experiment
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DMD Pattern Diffraction pattern

y axis is associated with Φ

q=46

Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number

q=48q=49
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Discussion

Peaks for same values of        as before

and for   



Robustness against noise
Adding noise :
- choose randomly a fraction    of the lines
- choose randomly their state (A or B)
- average over many realization of the noise
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Robustness against noise
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Adding noise :
- choose randomly a fraction    of the lines
- choose randomly their state (A or B)
- average over many realization of the noise

Slope of the crossing is constant and robust as the peak is still visible



Conclusion and perspectives
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We measure structural properties of the Fibonacci sequence in its diffraction pattern

We can tune the phason degree of freedom
and measure Chern numbers in the diffraction pattern

Can be extended to other 1D quasiperiodic systems

Possibility to realize 2D tilings and investigate their topological properties
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