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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described

by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the
continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presented.
[S0031-9007(98)07267-6]

PACS numbers: 32.80.Pj, 03.75.Fi, 71.35.Lk

Optical lattices—arrays of microscopic potentials in-
duced by the ac Stark effect of interfering laser beams—
can be used to confine cold atoms [1–7]. The quantized
motion of such atoms is described by the vibrational mo-
tion within an individual well and the tunneling between
neighboring wells, leading to a spectrum describable as a
band structure [3]. Near-resonant optical lattices, where
dissipation associated with optical pumping produces
cooling, have given filling factors of about one atom per
ten lattice sites [1,6]. Higher filling factors will require
lower temperatures, and hence will also require mini-
mization of the optical dissipation. This can be achieved
in a far-detuned optical lattice (especially with blue detun-
ing), where photon scattering times of many minutes have
been demonstrated [2]. Thus the lattice then behaves as a
conservative potential, which could be loaded with a Bose
condensed atomic vapor [8,9], for which present densities
would correspond to tens of atoms per lattice site.
In this Letter we will study the dynamics of ultracold

bosonic atoms loaded in an optical lattice. We will show
that the dynamics of the bosonic atoms on the optical
lattices realizes a Bose-Hubbard model (BHM) [10–16],
describing the hopping of bosonic atoms between the
lowest vibrational states of the optical lattice sites, the
unique feature being the full control of the system’s
parameters by the laser parameters and configurations.
The BHM predicts phase transition from a superfluid

(SF) phase to a Mott insulator (MI) at low temperatures
and with increasing ratio of the on site interaction U
(due to repulsion of atoms) to the tunneling matrix
element J [10]. In the case of optical lattices this
ratio can be varied by changing the laser intensity: with
increasing depth of the optical potential the atomic wave
function becomes more and more localized and the on
site interaction increases, while at the same time the
tunneling matrix element is reduced. In the MI phase the
density (occupation number per site) is pinned at integer
n ≠ 1, 2, . . . , corresponding to a commensurate filling of

the lattice, and thus represents an optical crystal with
diagonal long range order with the period imposed by the
laser light. The nature of the MI phase is reflected in the
existence of a finite gap U in the excitation spectrum.
Our starting point is the Hamilton operator for bosonic

atoms in an external trapping potential

H ≠
Z

d3x cysxd

√
2

h̄2

2m
=2 1 V0sxd 1 VT sxd

!
csxd

1
1
2

4pash̄2

m

Z
d3x cysxdcysxdcsxdcsxd , (1)

with cs
x

d a boson field operator for atoms in a given
internal atomic state, V0sxd is the optical lattice poten-
tial, and VT sxd describes an additional (slowly varying)
external trapping potential, e.g., a magnetic trap (see
Fig. 1a). In the simplest case, the optical lattice poten-
tial has the form V0sxd ≠

P3
j≠1 Vj0 sin2skxjd with wave

vectors k ≠ 2pyl and l the wavelength of the laser
light, corresponding to a lattice period a ≠ ly2. V0 is
proportional to the dynamic atomic polarizability times
the laser intensity. The interaction potential between the

FIG. 1. (a) Realization of the BHM in an optical lattice (see
text). The offset of the bottoms of the wells indicates a trapping
potential VT . (b) Plot of the scaled on site interaction UyER
multiplied by ayas s¿1d (solid line; axis on left-hand side of
graph) and JyER (dashed line; axis on right-hand side of graph)
as a function of V0yER ; Vx,y,z0yER (3D lattice).
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Calculations 
Communication 
Creation of knowledge 
… 



What should it look like? 
 

Quantum Simulator 

What should it do? 





What should a Quantum Simulator do? 

knowledge 



Which Hamiltonian? 
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Quantum Phase Transitions 

Metals Insulators 

Quantized Conductance 

Quantum Hall Effect 

Topological  Insulators 

Dirac Fermions 

Graphene 

Photovoltaic Quantum Hall effect 

High Tc 

Superconductivity 

Majorana Fermions 

Quantum Magnetism 

Weyl Fermions 



Why quantum simulation? 

Different approach 

Surprises 

New problems 



Quantum Simulation of Devices 

Short and long-range interactions 



Quantum Simulation of Devices 



Simulation of Quantum Devices? 



B. J. van Wees, H. van Houten, C. W. 
J. Beenakker, J. G. Williamson, L. P. 
Kouwenhoven, D. van der Marel, C. T. 
Foxon, Phys. Rev. Lett. 60, 848 (1988);  

D A Wharam, T J Thornton, R Newbury, 
M Pepper, H Ahmed, J E F Frost, D G 
Hasko, D C Peacock, D A Ritchie and 
G A C Jones, J. Phys. C: Solid State 
Phys. 21 L209  

Quantized Conductance 



0.7 Anomaly 

in fig. 2b of ref. 14, for the density of spin-up electrons calculated using
spin-density-functional theory, initialized in a small applied field to
break spin symmetry. In ref. 14, the local maximum in the spin-up
density was interpreted as evidence for a ‘quasi-bound state’ that was
argued to host a spin-1/2 local moment; in contrast, features one and,
especially, three above imply that our model yields no local moment.

Next we discuss the effect of the van Hove ridge on the conductance,
g ~Vc
! "

, starting with its U dependence at ~B~~T~0 (Fig. 1k). Increasing
U skews the shape of the step in g ~Vc

! "
, which eventually develops a

shoulder near g<0:7 (red arrow). This shoulder develops because the
increase in local density with decreasing ~Vc is slightly nonlinear when
the apex of the van Hove ridge drops past m, causing a corresponding
nonlinear upward shift in the effective Hartree barrier. For a parabolic
barrier top, this occurs for g<0:7. If the shape of the barrier top is
changed to be non-parabolic, both the shape of the bare conductance
step and the energy distance between the van Hove ridge apex and m
will change, which can cause the interaction-induced shoulder in g to
shift away from 0.7. This explains the experimentally observed
spread6,12 of shoulders (that is, plateau values of the 0.7-anomaly) for
0:5= g = 1.

On increasing ~B for fixed U and ~T~0 (Figs 1l and 2a), the shoulder
in g ~Vc

! "
becomes more pronounced, eventually developing into a

spin-split plateau. Comparison of Fig. 2a with Fig. 2e shows that this
development qualitatively agrees with experiment; the agreement was
optimized by using U as fit parameter. Inspecting how the corresponding

spin-resolved conductances, g" and g#, change with ~B (Fig. 2b), we note a
strong asymmetry: although the bare barrier heights for spins " and # are
shifted symmetrically by {~B

#
2 and ~B

#
2, respectively, g# is decreased

much more strongly than g" is increased. This is due to exchange inter-
actions: increasing the spin-up density near the CCR centre (Fig. 1d)
strongly raises the Hartree barrier, and more so for spin-down electrons
than spin-up, owing to Pauli’s exclusion principle. The consequences are
most pronounced in the sub-open regime, owing to the van-Hove-ridge-
induced peak in xtot there (Fig. 1j). We note, however, that g"5 g# at
~B~0, reflecting our above-mentioned assumption that no spontaneous
spin splitting occurs.

Our FRG approach is limited to the case of zero temperature and
zero source–drain voltage, for which no inelastic scattering occurs. To
access qualitatively the effects of the latter at fixed U, we have instead
used SOPT (Supplementary Information, section 7). Figure 2c–h
shows a comparison of our SOPT results for the linear conductance,
g ~Vc
! "

, calculated for several values of magnetic field, ~B, and temper-
ature, ~T~kBT , and our experimental data for g(Vc). The measured
conductance step shows a shoulder (Fig. 2e, f, red arrows) that
becomes increasingly more pronounced with both increasing field, B
(Fig. 2e), and increasing temperature, T (Fig. 2f), which is the hallmark
of the 0.7-anomaly. Our perturbative calculations qualitatively repro-
duce both trends remarkably well. The only caveat is that the experi-
mental curves in Fig. 2e, f show more pronounced shoulders than do
the respective SOPT curves in Fig. 2c, d. This failure of SOPT to
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Figure 2 | Conductance: theory versus experiment. a, b, FRG results: the
linear response conductance, g ~Vc, ~B

! "
, of a QPC (a), and its spin-resolved

components, g" and g# (b), plotted as functions of ~Vc
#

Vx for several values of ~B
at ~T~0 (but finite interaction U). The grey dashed and solid lines in a show the
low-energy scale ~B! ~Vc

! "
for U 5 0 and U 5 0.5, respectively, plotted on the log-

linear scale indicated on the right-hand axis (as also done in c–f). The small-
field magnetoresponse in a is strongest when ~B! takes its smallest value,
~Bmin
! (vertical dashed lines). Inset of b, the shot noise factor,

Nshot~
P

s gs 1{gsð Þ=2, plotted as function of g. Its asymmetric development
with ~B, which reflects that of g" and g#, agrees qualitatively with experiment (see
fig. 4d of ref. 7). c, d, SOPT results: g ~Vc, ~B

! "
at ~T~0 for several values of ~B

(c) and g ~Vc, ~T
! "

at ~B~0 for several values of ~T (d), both plotted as functions of
~Vc
#

Vx . The low-energy scale ~B! ~Vc
! "

is shown as a thin grey line in c and
repeated in d; ~T! ~Vc

! "
and ~Vsd! ~Vc

! "
are respectively shown as thin black and

brown lines in d. The vertical dashed line indicates where ~B! takes its minimal
value, ~Bmin

! . For ~Vc values below this dashed line, the lines for ~B!, ~T! and ~Vsd! in
d are nearly straight on the log-linear scale, implying the behaviour
summarized by equation (3), and are nearly parallel to each other, implying that
the ratios ~B!

#
~T! and ~Vsd!

#
~T! are essentially independent of ~Vc there.

e, f, Experiments—pinch-off curves. e, g(Vc) measured at a low 2DES

temperature, T0, for various magnetic fields parallel to the 2DES, plotted as a
function of DVc 5 Vc 2 V0.5, where V0.5 is the gate voltage for which the
conductance at B 5 0 and T 5 T0 is g(V0.5) 5 0.5. f, Analogous to e, but for
B 5 0 and various temperatures T. Colours in e and f are chosen to provide
comparability with theory curves in a, c and d (with the correspondence
ej jDVc!{~Vc). g, h, Experiments—Fermi-liquid behaviour: g(B)/g(0) as

function of B at temperature T0 (g), and g(T)/g(T0) as function of T at B 5 0
(h), shown on log-linear scales (insets show their differences from unity on log-
log scales) to emphasize small values of B and T. Coloured symbols distinguish
data taken at different fixed Vc values, indicated by dashed lines of
corresponding colour in e and f. The quadratic B and T dependences observed
in g and h for each fixed Vc value confirm equation (2) and were used to
determine the corresponding scales B!(Vc) and T!(Vc). (Black lines in g and
h show 1 2 (B/B!)

2 and 1 2 (T/T!)
2, respectively.) The resulting energies,

E!5 mBB!(Vc) and E!5 kBT!(Vc), are shown as functions of Vc in e (for B!)
and f (for both B! and T!) on a log-linear scale. The shape of these measured
functions agrees qualitatively with the SOPT predictions in c and d, confirming
the nearly exponential ~Vc dependences and the nearly Vc-independent B!=T!
ratio, discussed above. (For additional data, similar to that in g and h, see
Supplementary Information, section 2B.)
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Florian Bauer, Jan Heyder, Enrico Schubert, David Borowsky, 
Daniela Taubert, Benedikt Bruognolo, Dieter Schuh, Werner Wegscheider,  
Jan von Delft & Stefan Ludwig, Nature 501, 73–78 (05 September 2013)  
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Why? 



Left Reservoir Right Reservoir Constriction 
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Current for T=0, Ta=1:  
  

    
Ia = dε ga ε( ) 

εF

εF +Δ

∫ va ε( ) Ta ε( ) =
Δ
h



Current for T=0, Ta=1:  
  

    
Ia = dε ga ε( ) 
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∫ va ε( ) Ta ε( ) =
Δ
h



Current for T=0, Ta=1:  
  

    
Ia = dε ga ε( ) 

εF

εF +Δ

∫ va ε( ) Ta ε( ) =
Δ
h

     
va ε( ) =

ka

m
= 2 ε−εa( ) / mvelocity: 

density of states: 
(right movers)  

     
ga ε( ) =

1
2π

dka

dε
=

1
2πva ε( )

Landauer, Büttiker, Imry 
 



Current for T=0, Ta=1:  
  

    
Ia = dε ga ε( ) 

εF

εF +Δ

∫ va ε( ) Ta ε( ) =
Δ
h

Conductance 
   
G =

1
h

Landauer, Büttiker, Imry 
 

Consequence of Heisenberg + Pauli’s principle 



Multimode Conductance 
  

    
G =

1
h

1
Δµn
∑ dE fL E( )− fR E( )⎡
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⎤
⎦⎥   

En

∞

∫

Landauer, Büttiker, Imry 
 



Cold atoms proposal: Thywissen, J. H., Westervelt, R. M. 
& Prentiss, M. Quantum point contacts for neutral atoms.  
Phys. Rev. Lett. 83, 3762–3765 (1999).  
 

Quantized Conductance in Neutral Matter? 



Quantized Conductance in Neutral Matter? 

See also: G. Lambert, G. Gervais, and W.J. Mullin, Low Temp. Phys. 34, 249 (2008).  
 

M. Savard, C. Tremblay-Darveau,  
and G. Gervais, PRL 103, 104502 (2009)  
  



Quantized Conductance in Neutral Matter? 

•  Method to measure conductance 
•  Ballistic channel 
•  Quantum degenerate Fermi gas 
•  Resolve individual conduction channels 
•  Adiabatic regime 
•  Applicability of Landauer theory 
    (mean free path > trap) 
 



Jean-Philippe Brantut, Charles Grenier, Sebastian Krinner, Martin Lebrat,  
Dominik Husmann, Shuta Nakajima, Samuel Häusler  



Thanks to Henning Moritz now @ Hamburg 



6Li 





Battery discharge 

time (s) 

Δ
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G: conductance  
C: compressibility      ∂N ∂µ

   
τ = C

G



Resistance? 



Ballistic Multimode Channel 

channel 

contact 

channel 

contact 

J.-P. Brantut, J. Meineke, D. Stadler, S. Krinner, T. Esslinger, Science 337, 1069 (2012) 



Dreams and worries 

T < hν"
10 atoms in channel"



Single Mode Channel? 





Connecting two strongly correlated superfluids 
with quantum point contact 



Connecting two strongly correlated superfluids 
with quantum point contact 

control µ "



Quantum Point Contact 
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Measure number imbalance after 1.5 s 

νz=10.4 kHz 
νz=8.2 kHz 

T= 35 nK (=0.1 TF) < hνz≈ 500 nK  

νx=31.8 kHz 

S. Krinner, D. Stadler, D. Husmann, J.P. Brantut and T. Esslinger, Nature 517, 64 (2015)  
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S. Krinner, D. Stadler, D. Husmann, J.P. Brantut and T. Esslinger, Nature 517, 64 (2015)  



Connecting two strongly correlated superfluids 
with quantum point contact 



Connecting two strongly correlated superfluids 
with quantum point contact 
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Connecting two strongly correlated superfluids 
with quantum point contact 

control µ "



Connecting two strongly correlated superfluids 
with quantum point contact 



Connecting two strongly correlated superfluids 
with quantum point contact 



Connecting two strongly correlated superfluids 
with quantum point contact 

Theory: 
Shun Uchino, 
Thierry Giamarchi 

Dominik Husmann, Shun Uchino, Sebastian Krinner, Martin Lebrat, Thierry Giamarchi,  
Tilman Esslinger, Jean-Philippe Brantut, Science 350, 1498-1501 (2015) 



Connecting two strongly correlated superfluids 
with quantum point contact 

Theory: 
Shun Uchino, 
Thierry Giamarchi 

large proximity effect 
point-like connection (transparency α)  

Keldysh formalism in mean-field approximation 
 

α"

Dominik Husmann, Shun Uchino, Sebastian Krinner, Martin Lebrat, Thierry Giamarchi,  
Tilman Esslinger, Jean-Philippe Brantut, Science 350, 1498-1501 (2015) 



Connecting two strongly correlated superfluids 
with quantum point contact 

Theory: 
Shun Uchino, 
Thierry Giamarchi 

Gap for single particle transfer bridged by 
 coherent transfer of n pairs 
(multiple Andreev reflection) 

 Dominik Husmann, Shun Uchino, Sebastian Krinner, Martin Lebrat, Thierry Giamarchi,  
Tilman Esslinger, Jean-Philippe Brantut, Science 350, 1498-1501 (2015) 

Josephson Effect: G. Valtolina, , A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombettoni, A. 
Smerzi, M. Zaccanti, M. Inguscio, G. Roati, Science 3501505-1508 (2015). 



Finite temperature transport properties 

Dominik Husmann, Shun Uchino, Sebastian Krinner, Martin Lebrat, Thierry Giamarchi,  
Tilman Esslinger, Jean-Philippe Brantut, accepted Science, arXiv:1508.00578  



Changing Interactions 
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Conductance Map 
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Figure 3. Particle conductance of the attractively interacting Fermi gas. a, Particle conductance G

N

as a function of the horizontal

confinement frequency ⌫
x

of the QPC, at fixed gate potential V
g

= 0.42µK; and b, as a function of the gate potential V
g

at fixed confinement frequency ⌫
x

= 23.2kHz,
for di↵erent interaction strengths 1/(kF,resa) in the reservoirs. The solid lines are theoretical predictions for 1/(kF,resa) = 2.1 and 1.9 respectively, based on the

Landauer formula including mean-field attraction (SI Text). Each data point represents the mean over 5 measurements and error bars indicate one standard deviation. c, and

d, Two-dimensional colour plot of G
N

as a function of interaction strength 1/(kF,resa) and horizontal confinement (c) or gate potential (d). Both plots contain the cuts

of Fig. 3a and b (grey dotted lines), and an estimation of the local superfluid transition at the QPC exits (black dashed line).

Figure 4. Particle and spin conductances in the single mode

regime. G

N

(closed circles) and G

�

(open triangles, every second error bar displayed)

for various interaction strengths are presented as a function of the reduced temperature T/T
c

,

which varies due to the dependence of T
c

on density and scattering length. Blue data points

are obtained from the measurements shown in Fig. 2 and Figs. 3b, d, for V
g

= 0.64µK and

⌫

x

= 23.2 kHz. Red data points are obtained from the measurements shown in Figs. 3a,

c, for V
g

= 0.42µK and ⌫

x

= 14.5 kHz. G

N

tends to the conductance quantum 1/h
(horizontal dash-dotted line) for weak interactions (T/T

c

� 1). Error bars contain statistical

and systematic errors (see Materials and Methods).
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Figure 1. Concept of the experiment a, Low-temperature phase diagram of the attractive Fermi gas at fixed temperature. In the normal, weakly-interacting

phase the two spin components move independently of each other. In the superfluid phase large particle currents arise, whereas spin currents are strongly suppressed due to

pairing. b, Three-dimensional impression of the QPC, connected via an intermediate 2D region to large 3D reservoirs (only shown partly). c, E↵ective potentials in the

central region around the QPC along the transport axis y. It is the sum of the zero-point energy of the QPC (green dashed line: contribution from confinement along x), an

attractive gate potential (purple dashed line) and the underlying harmonic trap (see Materials and Methods). The black solid line corresponds to the parameters for which the

conductance plateau in Fig. 3a is observed. Thin violet lines show how the e↵ective potential evolves when V

g

is increased from 0.42µK to 0.82µK, whereas thin green

lines depict the corresponding evolution when ⌫

x

is increased from 13.2 kHz to 25.2 kHz. d, Absorption images of the " and # cloud components as prepared before spin

conductance measurements. e, Chemical potentials and currents in the presence of a spin bias. f, Absorption image of the atoms prepared for the particle transport, with

identical bias for " and #. g, Chemical potentials and currents in the presence of a chemical potential bias.

Table 1. Envelope functions determining the e↵ective
potential.

Envelope function Waist Description
f

x

(y) = exp(�y

2
/w

2
x

) w

x

= 5.6(6)µm QPC, x conf.
f

z

(y) = exp(�y

2
/w

2
z

) w

z

= 30(1)µm QPC, z conf.
f

g

(y) = exp(�2y2
/w

2
g

) w

g

= 25(1)µm Gate potential
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Figure 2. Spin conductance of the attractively interacting Fermi

gas. a, Spin conductance G
�

as a function of the gate potential V
g

for di↵erent interaction

strengths 1/(kF,resa) in the reservoirs. Each data point represents the mean over 9 measure-

ments and error bars indicate one standard deviation plotted for every third point. Inset: G
�

obtained from a mean-field phenomenological model, reproducing the non-monotonic behaviour

of the experimental data. b, Two-dimensional color plot of G
�

as a function of 1/(kF,resa),
with cuts of Fig. 2a indicated as grey dotted lines. The points whereG

�

is maximum, obtained

from a parabolic fit along V
g

, are displayed as orange circles for comparison. The black dashed

line represents the superfluid critical line estimated at the entrance and exit regions of the QPC,

using the results of [22].

6 www.pnas.org — — Footline Author

Gate Potential Vg (µK) 



Spin Conductance 

i
i

“paper” — 2015/12/10 — 19:37 — page 6 — #6 i
i

i
i

i
i

Figure 2. Spin conductance of the attractively interacting Fermi

gas. a, Spin conductance G
�

as a function of the gate potential V
g

for di↵erent interaction

strengths 1/(kF,resa) in the reservoirs. Each data point represents the mean over 9 measure-

ments and error bars indicate one standard deviation plotted for every third point. Inset: G
�

obtained from a mean-field phenomenological model, reproducing the non-monotonic behaviour

of the experimental data. b, Two-dimensional color plot of G
�

as a function of 1/(kF,resa),
with cuts of Fig. 2a indicated as grey dotted lines. The points whereG

�

is maximum, obtained

from a parabolic fit along V
g

, are displayed as orange circles for comparison. The black dashed

line represents the superfluid critical line estimated at the entrance and exit regions of the QPC,

using the results of [22].

6 www.pnas.org — — Footline Author



More Possibilities 

J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath,  
T. Esslinger, A. Georges, Science 342, 713 (2013). 

Thermoelectric Effect 

Disorder S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut, and 
T. Esslinger, Phys. Rev. Lett. 110, 100601 (2013). 

S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut, and 
T. Esslinger, Phys. Rev. Lett. 115, 045302 (2015). 



Competing short- and long-range 
interactions 



Long-range interactions 

Dipolar molecules/atoms 

Rydberg atoms 

cavity mediated interactions 



Long-range interactions
Short-range interactions




Competing short and long-range interactions


Renate Landig, Lorenz Hruby, Nishant Dogra, Manuele Landini, Rafael Mottl, Tobias 
Donner, TE, accepted for publication in Nature, arXiv:1511.00007 
 
Related work: J. Klinder, H. Keßler, M. Reza Bakhtiari, M. Thorwart, and A. 
Hemmerich, Phys. Rev. Lett. 115, 230403 (2015), arXiv: arXiv:1511.00850 



λ/2 

λ 



λ/2 

λ λ 

λ 



λ/2 

λ λ 



λ/2 

λ λ λ 

Phasetransition 

   
−Ulong n̂e− n̂o

o
∑

e
∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

   t b̂†b̂∑

Superfluid Supersolid 
(broken Z2) 



λ/2 

   
−Ulong n̂e− n̂e

e
∑

e
∑
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

   Ushort n̂(n̂−1)∑

λ 

Phasetransition 

Mott insulator CDW 
(broken Z2) 

λ 



Cavity + Atoms Theory: Ritsch, Mekhov, Domokos, Larson, Lewenstein, Morigi, Keeling, Strack, Kollath, Brennecke … 
Review: H. Ritsch, P. Domokos, F. Brennecke, and T. E., Reviews of Modern Physics 85, 553-601 (2013). 
  



x

z
y

785	nm	

785	nm	

670	nm	

Red	detuned	la3ce	depth:	3-25Erec		
Blue	detuned	la3ce	depth:	30Erec	

40,000	Rb-87	atoms	



Coherence: Measure of superfluid order parameter  

Cavity output: measure of checkerboard order parameter  



Phase diagram 



Evolution between CDW & MI


MI! CDW!



Renate Landig, ETH Zurich


Hysteretic behavior: Energy landscape


x	x	
CDW energetically 
favorable, but blocked 
by energy barrier


System driven out of 
metastable state


Ul < Us

Ul > Us

Ul ⇡ Us

⇥

E

0



The Team 

Nishant 
Dogra 

Tobias 
Donner 

Renate 
Landig 

Manuele 
Landini 

Lorenz 
Hruby 

Ferdinand 
Brennecke 
now@University 
Bonn  

Rafael 
Mottl  
now@Mettler-
Toledo 



Deep understanding of many-body quantum physics 

Identified the hard problems 



Quantum Gases in 
Optical Lattices 
Gregor Jotzu 
Michael Messer 
Rémi Desbuqouis 
Frederic Görg 
 
 
 
 
 
 

BEC and Cavity 
Tobias Donner 
Renate Landig 
Lorenz Hruby 
Nishant Dogra 
Manuele Landini 
 
 
Impact experiment 
Tobias Donner 
Julian Leonard 
Andrea Morales 
Philip Zupancic 
 
 
Electronics 
Alexander Frank 
 

Lithium Microscope 
Jean-Philippe Brantut 
Sebastian Krinner 
Dominik Husmann 
Martin Lebrat 
Samuel Häusler 
Shuta Nakajima 
 
 
 
 Former Members: Daniel Greif, Thomas Uehlinger, Rafael Mottl, Moonjoo Lee), David Stadler, Ferdinand Brennecke, Jakob 

Meineke, Laura Corman (ENS), Leticia Tarruell (ICFO), Torben Müller, Kristian Baumann (Stanford), Silvan Leinss, Robert 
Jördens (NIST), Bruno Zimmermann, Henning Moritz (Hamburg), Christine Guerlin (Thales), Niels Strohmaier 
(Hamburg),Thomas Bourdel (Palaiseou), Kenneth Günter, Michael Köhl (Cambrigde), Anton Öttl, Stephan Ritter (MPQ),  Thilo 
Stöferle (IBM), Yosuke Takasu (U Kyoto) Theory discussions: Ehud Altmann, Gianni Blatter, Georg Bruun, Nigel Cooper, Eugene Demler, Antoine Georges, Thierry 
Giamarchi, Gian Michele Graf, Sebastian Huber, Corinna Kollath, Dario Poletti, Christian Rüegg, Manfred Sigrist, Wilhelm 
Zwerger, … 

Administration: Stephanie Schorlemer, Eik Szee Goh Aschauer 


