The International Institutes for Physics and Chemistry, founded by Ernest Solvay, acknowledge with gratitude the generous support of

Institutional Sponsors

REPORT 2011

INTERNATIONAL SOLVAY INSTITUTES BRUSSELS

Contents

A word from the P	resident	8
A word from the D	irector	10
General Informatio	<u>n</u>	13
 Board of Direct Scientific Comr Scientific Comr International Ac Local Scientific Honorary Mem Tribute to Robe 	ors mittee for Physics mittee for Chemistry dvisory Committee committee bers ert Brout and Laurent Houart	14 18 19 20 20 21 23
25 th Solvay Confer Chaired by Pro	ence on Physics: "The Theory of the Quantum World" fessor David Gross, 2004 Nobel Prize in Physics	25
Solvay Public Ever	<u>it</u> : "The Future of Physics"	38
Professor William F	Phillips, 1997 Nobel Prize in Physics – "Time and Einstein in	39
Professor Frank W	/ilczek, 2004 Nobel Prize in Physics – "Quantum Beauty"	40
Activities on the occ	casion of the Centenary of the 1 st Solvay Conference on Physics	47
 Exhibition "Brain One-hundred y A staged readire Academic Session The "Usefulnes 	nstorming sessions in Brussels – rears of Solvay Conferences on Physics" ng of "Copenhagen" written by Michael Frayn sion: Why "curiosity-driven" science? ss of useless research"	49 53 59
International Solva	y Chairs	75
 Solvay Chair in (Georgia Institu) Solvay Chair in (Georgia Institu) 	Chemistry: Professor Jean-Luc Brédas ite of Technology, Atlanta, USA) Physics: Professor Nathan Seiberg	77
(Institute for AdCentenary Solv	Ivanced Study, Princeton, USA) /ay Chair : Professor David Gross	81
(Kavli Institute f	or Theoretical Physics at Santa Barbara, USA)	85
Workshops and So	chool organized by the Institutes	89
Workshop on "Modave SummWorkshop on "	Gauge Theories, Strings and Geometry" her School in Mathematical Physics The early Solvay Councils and the Advent of the Quantum Era"	91 99 105

Doctoral School	109
Colloquia	113
Workshops sponsored by the Institutes	125
 Colloquium on "Cosmology: "The Science of the Universe" Workshop on "Cosmological Frontiers in Fundamental Physics" co-organized with the Perimeter Institute (Waterloo – Canada) and APC (Université Paris VII) 4th MHD Summer Program 	126 127 128
Seminars	131
Research on Gravitation, Strings and Cosmology	135
 Researchers Research Summary Research Interests of some Members Institutional Collaborations Appraisals & Prizes - Theses defended in 2011 Invited Talks at Conferences, Seminars and Schools List of Publications 	136 136 138 146 148 149 153
Research in Chemistry carried out in the group of Professor Anne De Wit	159
 Researchers Research Summary Research Interests of some Members Invited Talks at Conferences, Seminars and Schools List of Pubications 	160 160 162 163 164
Appendix: Outreach	167
 Newspapers Press about the 100th Anniversary of the First Conseil de Physique Solvay Members of the Association Colophon 	168 170 216 216

A word from the President

The year 1911 was an exceptional year: the first Solvay Conference on Physics in Brussels inaugurated a new dynamic of scientific discoveries in fundamental physics enabling the technological achievements that surrounds us in our daily lives.

One hundred years later, we celebrated this event, true to its spirit of scientific excellence, by setting the ambitious goal of studying the latest findings related to the theory of Quantum Mechanics, which was born out of these early Solvay conferences. Thus the 25th Conference brought together 70 outstanding specialists from such diverse areas as quantum computing, condensed matter, quantum systems, particle physics, quantum gravity and string theory. I can attest to the intense and fruitful discussions that took place!

We also celebrated the event by holding an academic session focused on the importance of fundamental research. We are proud to have been able to gather outstanding speakers from a variety of backgrounds, to discuss before an illustrious public the vitality of modern fundamental research and its impact on our world. Other spirited events were organized for the pleasure of inquiring minds. This report will present all the centennial celebration events in detail. Through this celebration, our goal of showing that the Solvay Institutes are alive and well has been accomplished.

We owe it in large part to the tireless work of our director Marc Henneaux and the Chair of the Scientific Committee for Physics David Gross. They have brought together the ingredients of this outstanding celebration.

I would like to thank our very dedicated team at the Institutes that made it possible for the various events to run so smoothly. I would also like to thank our faithful and new sponsors. Without their generous supports, we could not have organized such a high-level successful commemoration.

Lastly, as we embark on our second century, we will continue to bring together the most brilliant minds to solve the most compelling questions.

Jean-Marie Solvay President

A word from the Director

The legendary first Conseil de Physique Solvay took place in Brussels in 1911. Gathered around Ernest Solvay, the leading physicists of the time began a series of remarkable international conferences that helped give birth to quantum mechanics and continued to shape modern physics.

Following the success of the 1911 conference, Ernest Solvay created the International Institute of Physics in 1912 with the crucial advice of Hendrik Lorentz. A year later, he founded the International Institute for Chemistry. These two Institutes merged in 1970 to become the "International Institutes for Physics and Chemistry, founded by Ernest Solvay", in short, "International Solvay Institutes".

The mission of the International Solvay Institutes is to support fundamental research in physics, chemistry and related areas, not only through the periodic organization of the celebrated Solvay conferences, but also through chairs, fellowships, doctoral training, workshops and colloquia. Since 2005, the Institutes also run a program of annual lectures aimed at popularizing science to the general public.

The creation of the Solvay Institutes was an idea even more ahead of its time than thought by its visionary founders, who anticipated an existence of 25 years: a century later, the International Solvay Institutes still play, more than ever, a key role in the development of science at the international level, with an exceptional impact on Belgian research activities.

As holders of a unique legacy, the International Solvay Institutes celebrated in 2011 the hundredth anniversary of the first Solvay conference on physics.

What a spectacular celebration it was! It drew to Belgium many leading scientists and major global actors from the industrial, economical, political and higher education worlds, making Brussels the "International Capital of Physics" for a week. The centenary activities :

- the 25th Solvay Conference entitled "The Theory of the Quantum World",
- the reading of the theatre play "Copenhagen",
- the Academic Session "Why `Curiosity-Driv en' Research?",
- the public event "The Future of Physics" with two popular lectures and a panel discussion,
- the exhibition "One hundred Years of Solvay Conferences on Physics".

were complemented by a workshop on "The Early Solvay Councils and the Advent of the Quantum Era". All were exceptional events, enjoying a success that went beyond what could have been dreamed.

His Majesty Albert II, King of the Belgians, attended the Academic Session on the importance of fundamental research. The support of the Royal Family to the Solvay Institutes, which goes back to the early days of the Institutes, is a unique encouragement.

There are many individuals who contributed to the immense success of the centenary celebrations. It is impossible to thank them all here but they should be assured that the Solvay Institutes are extremely grateful for their priceless help. A special gratitude goes to David Gross, without whose precious support, advice and involvement the celebration program could not have been carried through. Special acknowledgements also go to Nancy Kawalek who masterly directed "Copenhagen", and to Henri Eisendrath, Gaston Moens and Jean Wallenborn who orchestrated the exhibition with a contagious enthusiasm.

The centenary celebrations were also the occasion to launch a 5-year Capital Raising Campaign, the objective of which is to significantly increase the endowment of the Institutes in order to consolidate and expand the novel scientific initiatives taken in the last years. More science is needed than ever to successfully confront the challenges facing modern sociecty.

The International Solvay Institutes are looking for partners who wish to associate themselves with the prestige of its fundamental research in Physics and in Chemistry, and help promote the excitement of the pursuit of knowledge and the understanding of science among future generations.

I am pleased to announce that the Solvay Company and the Bank BNP-Paribas Fortis have already significantly contributed to the Capital Raising Campaign. They are most gratefully thanked.

The centenary celebrations are reviewed in the present report. The report also gives a survey of the other activities organized or supported by the International Solvay Institutes during the year 2011. These activities pursued at the frontiers of knowledge, were attended by hundreds of participants from all over the world. They are detailed in the corresponding sections of this volume.

The report describes also the advances in the research carried by the scientists affiliated with the Institutes. The main area of investigation is the understanding of gravity, which remains the most mysterious force in the universe.

Two other important events in the life of the Institutes occurred in 2011:

- Half of the International Solvay Committee for Chemistry was renewed. We thank both the members whose term came to an end for their help in the scientific running of the Solvay Conferences in Chemistry and the new members who agreed to assist us in this task.

- The financial debt, which used to be extremely preoccupying, has been progressively reduced to zero over the last eight years by following strict management practices, while keeping an active, redeployed scientific program. The debt is now completely cleared. The stabilization of the financial situation was a prerequisite for the credibility of the Centennial Capital Raising Campaign.

The 2011 activities and research would not have been possible without the support of the sponsors of the International Solvay Institutes, to whom I would like to express our gratitude. These are our traditional sponsors:

- the "Université Libre de Bruxelles"
- the "Vrije Universiteit Brussel"
- the Solvay Company
- the Belgian National Lottery
- the "Communauté Française de Belgique"
- the "Vlaamse Regering"
- the David & Alice Van Buuren Foundation
- the bank BNP Paribas Fortis
- Belgacom
- the Hôtel Métropole

as well as the sponsors who provided special support for the 2011 celebrations:

- the Brussels-Capital Region
- the "Région Wallonne"
- the Chancellery of the Prime Minister
- the Belgian Science Policy
- the FWO
- the FNRS
- the Belgian Academies
- the Max-Planck Society
- BASF
- Umicore
- Bekaert

Last but not least, I wish to once again extend our warmest thanks to the Solvay family who has, since 1911, unfailingly supported the activities of the Institutes.

The extraordinary dedication and efficiency of the entire staff working at the Institutes is again gratefully acknowledged. I also thank our treasurer, Professor Bingen, for his assistance in managing the finances.

Marc Henneaux Director

Members of the Board of Directors

Mr. Jean-Marie Solvay

President

Professor Franz Bingen Emeritus - Professor VUB Vice-president and Treasurer

Professor Lode Wyns Vice-Rector for Research VUB Secretary

Mr. Philippe Busquin Minister of State

Annual Report 2011 - General Information

Professor Eric De Keuleneer Solvay Brussels School of Economics

Mr. Bernard de Laguiche Chief Financial Officer Solvay S.A.

Mr. Alain Delchambre President of the Administrative Board of the ULB

Baron Daniel Janssen Honorary Chairman of the Board of Directors of Solvay S.A.

Mr. Eddy Van Gelder President of the Administrative Board of the VUB

Board of Directors

Honorary Members

Baron André Jaumotte Honorary Rector and Honorary President ULB Honorary Director

Mr. Jean-Marie Piret Emeritus Attorney General of the Supreme Court of Appeal and Honorary Principal Private Secretary to the King

Professor Jean-Louis Vanherweghem Former President of the Administrative Board of the ULB

Professor Irina Veretennicoff Professor VUB

Guests

Professor VUB

Professor Marc Henneaux Professor ULB

Professor Alexander Sevrin

Director

Deputy Director Scientific Secretary of the Committee for Physics

Professor Franklin Lambert Professor VUB

Professor Anne De Wit Professor UI B

Scientific Secretary of the Committee for Chemistry

Professor Hervé Hasquin Permanent Secretary of the Royal Academy of Sciences, Letters and Fine Arts of Belgium

Professor Géry van Outryve d'Ydewalle Permanent Secretary of the Royal Flemish Academy of Belgium for Sciences and the Arts

Management and Staff

Director

Deputy Director

Office Manager Project Coordinator

Assistants to the Director

Professor Marc Henneaux (ULB)

Professor Alexander Sevrin (VUB)

Professor Anne De Wit (ULB) Professor Glenn Barnich (ULB) Professor Ben Craps (VUB)

Ms Dominique Bogaerts Ms Isabelle Juif Ms Isabelle van Geet

Accounting Officer

Project Coordinator

Ms Chantal Verrier

Postal address: International Solvay Institutes, Campus Plaine ULB / CP 231, Bd du Triomphe, B-1050 Brussels, Belgium

Delivery address: International Solvay Institutes, Campus Plaine ULB / Access 2, Bd de la Plaine, Building NO, 5th Floor, Office 2N5 105A, B-1050 Brussels, Belgium

Tel: + 32 2 650 54 23 (Ms Juif/Ms Van Geet) or + 32 2 650 55 42 (Ms Bogaerts) Fax: + 32 2 650 50 28

Emails: dominique.bogaerts@ulb.ac.be, isabelle.vangeet@solvayinstitutes.be Website: http://www.solvayinstitutes.be

Scientific Committee for Physics

Members are appointed for a 6-year period term, renewable once.

Chair	Professor David GROSS, Nobel Prize 2004, Kavli Institute for Theoretical Physics, Santa Barbara, USA
Members	Professor Roger BLANDFORD, Stanford University, USA (1 June 2010 – 31 May 2016, first term)
	Professor Steven CHU, Nobel Prize 1997, Stanford University, USA (1 January 2008 – 31 December 2013, first term)
	Professor Robbert DIJKGRAAF, Instituut voor Theoretische Fysica, Universeit van Amsterdam, the Netherlands (1 June 2010 – 31 May 2016, first term)
	Professor Bert HALPERIN, Harvard University/Dept of Physics, Cambridge, USA (1 June 2010 – 31 May 2016, first term)
	Professor Gerard 't HOOFT, Nobel Prize 1999, Spinoza Instituut, Utrecht, the Netherlands (1 July 2010 – 30 June 2016, second term)
	Professor Giorgio PARISI, Università La Sapienza, Roma, Italy (1 January 2008 – 31 December 2013, first term)
	Professor Pierre RAMOND, University of Florida, Gainesville, USA (1 July 2010 – 30 June 2016, second term)
	Professor Klaus VON KLITZING, Nobel Prize 1985, Max-Planck-Institut, Stuttgart, Germany (1 July 2010 – 30 June 2016, second term)
	Professor Peter ZOLLER, Institut für Theoretische Physik, Universität Innsbruck, Austria (1 June 2010 – 31 May 2016, first term)
Scientific Secretary	Professor Alexander SEVRIN, Vrije Universiteit Brussel, Belgium

19

General Information

Scientific Committee for Chemistry

Members are appointed for a 6-year period term, renewable once.

Chair	Professor Dr. Kurt WÜTHRICH, Nobel Prize 2002 Institut für Molekularbiologie und Biophysik, Zurich, Switzerland
Members	Professor Graham FLEMING, University of Berkeley, USA (1 June 2011 – 31 May 2017, second term)
	Professor Robert H. GRUBBS, CALTECH, Pasadena, USA (1 June 2011 – 31 May 2017, first term)
	Professor Roger KORNBERG, Nobel Prize 2006. Stanford University, USA (1 January 2010 – 31 December 2016, first term)
	Professor Harold W. KROTO, Nobel Prize 1996, University of Sussex, Brighton, UK (1 June 2011 – 31 May 2017, second term)
	Professor Henk N.W. LEKKERKERKER, Utrecht Universiteit, the Netherlands (1 June 2011 – 31 May 2017, second term)
	Professor K.C. NICOLAOU, University of California, San Diego, USA (1 June 2011 – 31 May 2017, second term)
	Professor JoAnne STUBBE, MIT, Cambridge, USA (1 June 2011 – 31 May 2017, first term)
	Professor George M. WHITESIDES, Harvard University, Cambridge, USA (1 June 2011 – 31 May 2017, first term)
	Professor Ahmed ZEWAIL, Caltech, Pasadena, USA (1 June 2011 – 31 May 2017, first term)
Scientific Secretary	Professor Anne DE WIT, Université Libre de Bruxelles, Belgium

International Advisory Committee

Members are appointed for a 6-year period term, renewable once.

Chair	Professor Lars BRINK, Chalmers University of Technology, Göteborg, Sweden (1 June 2008 – 31 may 2014)
Members	Professor Leticia CUGLIANDOLO, Université Paris 6, France (1 June 2008 – 31 may 2014)
	Professor Hermann NICOLAI, Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam, Germany (1 June 2008 – 31 may 2014)
	Professor Jacques PROST, École Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France (1 June 2008 – 31 may 2014)
	Professor Hirosi OOGURI, Caltech, Pasadena, USA and Tokyo University, Japan (1 June 2008 – 31 may 2014)
	Professor Gunnar VON HEIJNE, Stockholm University, Sweden (1 June 2008 – 31 may 2014)

Local Scientific Committee

Chair	Professor Marc HENNEAUX (ULB, Brussels)
Members	Professor Jean-Luc BREDAS (Georgia Institute of Technology, Atlanta)
	Professor Ben CRAPS (VUB, Brussels)
	Professor Anne DE WIT (ULB, Brussels)
	Professor Pierre GASPARD (ULB, Brussels)
	Professor Paul GEERLINGS (VUB, Brussels)
	Professor Albert GOLDBETER (ULB, Brussels)
	Professor Alexander SEVRIN (VUB, Brussels)

Honorary Members

Professor Anatole ABRAGAM Professor Fortunato Tito ARECCHI Professor Robert BROUT Professor Claudio BUNSTER Professeur Claude COHEN-TANNOUDJI Nobel Prize 1997 Professor Manfred EIGEN Nobel Prize 1967 Professor François ENGLERT Professor Ludwig FADDEEV, Professor I.M. KHALATNIKOFF Professor Jean-Marie LEHN Nobel Prize 1987 Professor William LIPSCOMB Nobel Prize 1976 Professor Mario J. MOLINA Nobel Prize 1995 Professor Victor P. MASLOV Professor Stuart RICE Professor Victor A. SADOVNICHY Professor Roald SAGDEEV Professor E.C.G. SUDARSHAN Professor Chen Ning YANG Nobel Prize 1957

Collège de France, Paris, France († 8 June 2011)

Università di Firenze and INOA, Italy

Université Libre de Bruxelles, Belgium († 3 May 2011)

Centro de Estudios Científicos, Valdivia, Chile

Ecole Normale Supérieure, Paris, France

Max-Planck Institut, Göttingen, Germany

Université Libre de Bruxelles, Belgium

V.A. Steklov Mathematical Institute, St Petersburg, Russia

Landau Institute of Theoretical Physics, Moscow, Russia

Collège de France, Paris, France

Harvard University, Cambridge, USA († 14 April 2011)

Massachusetts Institute of Technology, Cambridge, USA

Moscow State University, Russia

University of Chicago, USA

Moscow State University, Russia

University of Maryland, College Park, USA

University of Texas, Austin, USA

Chinese University Hong Kong & Tsinghua University, Beijing, China

Appraisals & Prizes

Professor **Stuart RICE**, Chair of the International Scientific Committee for Chemistry until 31 May 2011, received the 2011 Wolf Prize for Chemistry for the deep creative contributions to the chemical sciences in the field of synthesis, properties and an understanding of organic materials.

In Memoriam Robert Brout and Laurent Houart

The International Solvay Institutes regret the loss in 2011 of two of their close collaborators.

Robert Brout, Honorary Member of the International Solvay Institutes since 2004, died on May 3, 2011.

Robert Brout made crucial contributions to the development of theoretical physics. His most notable achievement was the discovery, in collaboration with François Englert, of the mechanism of spontaneous symmetry breaking in gauge theories, a key ingredient for the unification of the fundamental forces and one of the deepest discoveries of 20th century physics. For this work, he received the J.J. Sakurai Prize of the American Physical Society in 2010, the High Energy and Particle Physics Prize of the European Physical Society in 1997 and the prestigious Wolf Prize in 2004.

Laurent Houart, « Directeur de recherches » at the FNRS, died unexpectedly on February 24, 2011 at the age of 43. He was a leading scientific collaborator of the International Solvay Institutes.

His work dealt with the central problem of understanding quantum gravity, where he made key contributions to conformal field theory and string theory, black hole physics, duality and hidden symmetries of gravitational theories. For the importance of his research, he received in 2004 the De Donder Prize of the Belgian Academy.

Both had a contagious passion for scientific research. They were warm-hearted colleagues and true humanists. They will be deeply missed.

Annual Report 2011

25th Solvay Conference on Physics

19 - 22 October 2011

25th Solvay Conference on Physics

The Theory of the Quantum World

Quantum Mechanics is one of the most profound intellectual achievements of the 20th century.

This physical theory deals with the fascinating and somewhat puzzling behaviour of Nature at the atomic and sub-atomic scales. It has deeply modified our traditional views on reality and determinism. Driven by the physicists' curiosity for unlocking the mysteries of the microscopic world, the quantum revolution has also led to a wealth of applications going from electronics and lasers to medical imaging and atomic clocks. These have dramatically changed our everyday life.

But quantum mechanics is far from being a finished theory. The number of Nobel Prizes awarded for work that involves astonishing new quantum phenomena shows no sign of stagnation and can safely be predicted to continue keeping that pace for the years to come.

Areas of active current research where many key questions remain include: foundational aspects of quantum mechanics, quantum computing, control of quantum systems, puzzles in condensed matter theory, challenges in particle physics at the time of the LHC, quantum gravity and string theory. These hot subjects at the frontiers of knowledge were under focus at the 25th Solvay Conference on Physics entitled "The Theory of the Quantum World".

The history of the Solvay Conferences is intimately connected with the development of quantum mechanics. It was at the first Solvay Conference on Physics that the conceptual rupture between the old "classical" physics and the new theory of quanta was clearly realized to be inevitable. It was at the 5th Solvay Conference in 1927 that the formulation of quantum mechanics still used today was definitely established. Most of the subsequent Solvay Conferences dealt with quantum mechanics in one form or the other (to list some in the last fifty years: 1961: "Quantum Field Theory"; 1967: "Fundamental Problems in Elementary Particle Physics": 1982: "Higher Energy Physics"; 1991: "Quantum Optics"; 2005: "The Quantum Structure of Space and Time"; 2008: "Quantum Theory of Condensed Matter").

It was thus quite logical and natural that quantum mechanics was chosen to be the central theme of the 25th Solvay Conference on Physics, which celebrates the hundredth anniversary of the First Solvay Conference.

Among the eminent scientists who attended the Conference were Nobel laureates Murray Gell-Mann (Physics 1969), David Gross (Physics 2004), Alan Heeger (Chemistry 2000), Wolfgang Ketterle (Physics 2001), Anthony Leggett (Physics 2003), William Phillips (Physics 1997), Gerard 't Hooft (Physics 1999), Klaus von Klitzing (Physics 1985), Frank Wilczek (Physics 2004) and Fields medalist Edward Witten (1990). Distinguished physicist Stephen Hawking took also part in the Conference.

Following the tradition initiated by Hendrik Lorentz one century ago, the conference consisted in a few rapporteurs' talks followed by intense discussions.

The conference was chaired by Nobel Laureate David Gross (Physics 2004). \triangleright

The Theory of the Quantum World

David Gross is the Frederick Gluck Professor of Theoretical Physics and Director of the Kavli Institute for Theoretical Physics at UCSB. He received his Ph.D. in 1966 at UC Berkeley and was previously Thomas Jones Professor of Mathematical Physics at Princeton University.

He has been a central figure in particle physics and string theory. His discovery, with Frank Wilczek, of asymptotic freedom—the primary feature of non-Abelian gauge theories—led Gross and Wilczek to the formulation of Quantum Chromodynamics, the theory of the strong nuclear force. This completed the Standard Model, which details the three basic forces of particle physics: the electromagnetic force, the weak force, and the strong force. Gross was awarded the 2004 Nobel Prize in Physics, with Politzer and Wilczek, for this discovery.

He has also made seminal contributions to the theory of Superstrings, a burgeoning enterprise that brings gravity into the quantum framework. His awards include the Sakurai Prize, MacArthur Prize, Dirac Medal, Oscar Klein Medal, Harvey Prize, the EPS Particle Physics Prize, the Grande Medaille d'Or and the Nobel Prize in Physics in 2004. He holds honorary degrees from the US, Britain, France, Israel, Brazil, Belgium and China. His membership includes the US National Academy of Science, the American Academy of Arts and Sciences, the American Philosophical Society, and the Indian Academy of Science.

Since 2006, he is the chair of the Solvay Scientific Committee for Physics. This committee is in charge of the scientific organization of the Solvay Conferences (choices of subjects and lecturers) and has always been led by distinguished scientists (Hendrik Lorentz, Paul Langevin, Lawrence Bragg etc). He also held the Solvay Centenary Chair.

I.Antoniadis, X⊠G Wen, A.Sen, J.Maldacena, G.Giudice, D.Awschalom, N.Beisert, S.Dimopoulos, G.Veneziano, M.Shifma G.Horowitz, L.Randall, W.Zurek, D.Kleppner, J.Hartle, J.Polchinski, V.Mukhanov, G.Dvali, Y.Aharonov, B. A.Aspect, I.Cirac, J.Preskill, P.Zoller, R.Dijkgra A.Sevrin, F.Englert, N.Seiberg, A.Leggett, E.Witten, M.Henneaux, F.Wilczek, D.Gross,

S.Das Sarma, S.Kachru, A.Polyakov, N.Nekrasov, n, V.Rubakov, I.Klebanov, F.Haldane, S.Davis, S.Wadia, E.Rabinovici, A.Zeilinger, D.Wineland, M.Green, M.Douglas, Altshuler, M.Berry, L.Balents, M.Fisher, C.Bunster, G.Gibbons, A.Guth, G.Parisi, S.Sachdev, S.Girvin, af, H.Ooguri, B.Halperin, H.Nicolai, H.Georgi,

G.'t Hooft, K.von Klitzing, M.Gell-Mann, L.Brink, W.Phillips, W.Ketterle, S.Hawking,

25th Solvay Conference on Physics

Opening Session of the 25th Solvay Conference on Physics

Devoted to the historical role played by the Solvay Conferences on the development of quantum physics and science in general, this special session took place in the gothic room of the magnificent city hall of Brussels in the presence of Sabine Laruelle, Minister for Scientific Policy and Freddy Thielemans, Mayor of Brussels.

Programme

Welcome by Freddy Thielemans, Mayor of Brussels Welcome by Marc Henneaux, Director of the Solvay Institutes A few words from Sabine Laruelle, Minister for Scientific Policy A few words from Jean-Marie Solvay, President of the Solvay Institutes

Session 1

A Century of Quantum Mechanics by Professor David Gross (Santa Barbara, 2004 Physics Nobel Laureate) Conference Chair and Solvay Centenary Chair

The First Solvay Council: a sort of private conference by Professor John Heilbron (Berkeley)

From Solvay 1961 to Solvay 2011 by Professor Murray Gell-Mann (Santa Fe, 1969 Physics Nobel Laureate)

The Theory of the Quantum World

19 – 22 October 2011 Hôtel Métropole

Programme

Session 2 Chair	Foundations of Quantum Mechanics and Quantum Computing Alain Aspect (Palaiseau)
Rapporteurs	Anthony Leggett (Urbana Champaign), "The Structure of a World Described by Quantum Mechanics"
	John Preskill (Caltech), "Quantum Entanglement and Quantum Computing"
Session 3 Chair	Control of Quantum Systems Peter Zoller (Innsbruck)
Rapporteurs	Ignacio Cirac (Garching), "Quantum Computing and Simulation with Atoms and Photons"
	Steven Girvin (Yale), "Coherent Control of Mesoscopic Solid-State Systems"
Session 4 Chair	Quantum Condensed Matter Bertrand Halperin (Harvard)
Rapporteur	Subir Sachdev (Harvard), "Quantum Phases of Matter"
Session 5 Chair	Particles and Fields Howard Georgi (Harvard)
Rapporteur	Frank Wilczek (MIT), "A Long View on Particle Physics, 100 Years On"
Session 6 Chair	Quantum Gravity and String Theory Joe Polchinski (Santa Barbara)
Rapporteurs	Juan Maldacena (Princeton), "String Theory and Gravity" Alan Guth (MIT), "Quantum Fluctuations in Cosmology"

31

Participants

Yakir Aharonov Boris Altshuler Ignatios Antoniadis Nima Arkani-Hamed Alain Aspect David Awschalom Leon Balents Niklas Beisert Michael Berry Roger Blandford Lars Brink Claudio Bunster Ignacio Cirac Sankar Das Sarma Seamus Davis Robbert Dijkgraaf Savas Dimopoulos Michael R. Douglas Georgi Dvali Francois Englert Matthew Fisher Murray Gell-Mann Howard Georgi Gary Gibbons Steven Girvin Gian Francesco Giudice Michael B. Green David Gross Alan Guth F. Duncan M.Haldane Bertrand Halperin Jim Hartle Stephen Hawking Alan J. Heeger Gary Horowitz Shamit Kachru Wolfgang Ketterle Igor Klebanov Daniel Kleppner Juan Maldacena Viatcheslav Mukhanov Anthony J. Leggett Nikita Nekrasov Hermann Nicolai Hirosi Ooguri Giorgio Parisi

Chapman University, Orange, USA Columbia University, New York, USA CERN, Geneva, Switzerland Institute for Advanced Study, Princeton, USA Institut d'Optique, Palaiseau, France University of California, Santa Barbara, USA University of California, Santa Barbara, USA Max Planck Institute for Gravitational Physics, Golm, Germany University of Bristol, UK KIPAC, Stanford, USA Chalmers University of Technology, Göteborg, Sweden Centro de Estudios Científicos, Santiago, Chile Max-Planck-Institut für Quantenoptik, Garching, Germany University of Maryland, College Park, USA Cornell University, Ithaca, USA Universiteit van Amsterdam, the Netherlands Stanford University, USA Rutgers, Piscataway, USA New York University, USA Université libre de Bruxelles, Belgium University of California, Santa Barbara, USA Santa Fe Institute, USA Harvard University, Cambridge, USA Cambridge University, UK Yale University, New Haven, USA CERN, Geneva, Switzerland University of Cambridge, UK University of California, Santa Barbara, USA Massachusetts Institute of Technology, Cambridge, USA Princeton University, USA Harvard University, Cambridge, USA University of California, Santa Barbara, USA University of Cambridge, UK University of California, Santa Barbara, USA University of California, Santa Barbara, USA) Stanford University, USA Massachusetts Institute of Technology, Cambridge, USA Princeton University, USA Massachusetts Institute of Technology, Cambridge, USA Institute for Advanced Study, Princeton, USA) Universität München, Germany University of Illinois, Urbana, USA Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France Max-Planck-Institut für Gravitationsphysik, Golm, Germany California Institute of Technology, Pasadena, USA Università La Sapienza, Roma, Italy

Participants

William D. Phillips Joseph Polchinski Alexander Polyakov John Preskill Eliezer Rabinovici Lisa Randall Valery Rubakov Subir Sachdev Nathan Seiberg Ashoke Sen Mikhail Shifman Eva Silverstein Gerard 't Hooft Gabriele Veneziano Erik Verlinde Klaus von Klitzing Spenta Wadia Xiao-Gong Wen Frank Wilczek David J. Wineland Edward Witten Anton Zeilinger Peter Zoller Wojciech H. Zurek

University of Maryland, Gaithersburg, USA University of California, Santa Barbara, USA Princeton University, USA California Institute of Technology, Pasadena, USA Hebrew University, Jerusalem, Israel Harvard University, Cambridge, USA Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia Harvard University, Cambridge, USA Institute for Advanced Study, Princeton, USA Harish-Chandra Research Institute, Allahabad, India University of Minnesota, Minneapolis, USA Stanford University, USA Spinoza Instituut, Utrecht, the Netherlands Collège de France, Paris, France Universiteit van Amsterdam, the Netherlands Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany Tata Institute of Fundamental Research, Mumbai, India Massachusetts Institute of Technology, Cambridge, USA Massachusetts Institute of Technology, Cambridge, USA Physics Laboratory National Institute of Standards and Technology, Boulder, USA Institute for Advanced Study, Princeton, USA Universität Wien. Austria Institut für Theoretische Physik, Innsbruck, Austria Los Alamos Natl. Lab, USA

Scientific Secretaries

R. Argurio Université libre de Bruxelles Université libre de Bruxelles G. Barnich Vrije Universiteit Brussel B. Craps J. Danckaert Vrije Universiteit Brussel T. Durt Vrije Universiteit Brussel P. Gaspard Université libre de Bruxelles N. Goldman Université libre de Bruxelles Université libre de Bruxelles S. Massar S. Pironio Université libre de Bruxelles A. Sevrin Vriie Universiteit Brussel Université Mons-Hainaut P. Spindel Universiteit Antwerpen J. Tempere P. Tinyakov Université libre de Bruxelles Université libre de Bruxelles M. Tytgat

Auditors

N. Cerf Université libre de Bruxelles F. Denef K.U.Leuven F. Ferrari Université libre de Bruxelles J-M. Frère Université libre de Bruxelles J-M. Gérard Université catholique de Louvain T. Hertog K.U.Leuven A. Kleinschmidt Université libre de Bruxelles F. Maltoni Université catholique de Louvain C. Van Den Broeck Universiteit Hasselt A. Van Proeven K.U.Leuven I. Veretennicoff Vrije Universiteit Brussel

The "Conseils Solvay"

The International Solvay Conferences are a key part of the history and development of science. They were responsible for initiating the first meeting between Einstein and Poincaré. They were highly instrumental in the understanding of the theory of quantum mechanics and later, of many areas of modern physics ranging from the infinitely small to the infinitely large and covering fascinating topics such as elementary particle physics, atomic physics, condensed matter, quantum optics, cosmology, black holes, string theory. Through the decades they have been associated with an astonishing number of Nobel Laureates such as Einstein, Lorentz, Bragg and more recently Gross, to cite only a few.

The International Scientific Committees for Physics and Chemistry have full authority to set the subjects, schedule and the choice of participants for each international conference in either physics and in chemistry.

Why are the International Solvay Conferences so successful?

"The famous Austrian-Dutch physicist Paul Ehrenfest who participated in the Solvay conferences in 1927 and 1930, once said that there had never been philosophical discussions of such great depth in the history of mankind as at those conferences. The unique selection of participants and the format with intense discussions after well-prepared talks, offered the forum for Albert Einstein and Niels Bohr to lead these discussions to depths never reached before. Science and mankind owe a tremendous lot to the Solvay family and the Solvay Institutes who made these events possible. Now when the conferences will celebrate 100 years of successful meetings the aim, the format and the unique choices of participants are still the same, and we can expect the meetings to continue to penetrate ever deeper into the mysteries of Nature."

Professor Lars Brink, Member of the Swedish Academy of Sciences, Member of the Nobel committee, Chair of the Solvay visiting Committee

Previous Solvay Conferences on Physics

1911	"La théorie du rayonnement et les
Chair	Hendrik Lorentz (Leyden)
1913	"La structure de la matière"
Chair	Hendrik Lorentz (Leyden)
1921	"Atomes et électrons"
Chair	Hendrik Lorentz (Leyden)
1924 Chair	"Conductibilité électrique des métaux et problèmes connexes" Hendrik Lorentz (Leyden)
1927	"Electrons et photons"
Chair	Hendrik Lorentz (Leyden)
1930	"Le magnétisme"
Chair	Paul Langevin (Paris)
1933	"Structure et propriétés des noyaux
Chair	Paul Langevin (Paris)
1948	"Les particules élémentaires"
Chair	Sir Lawrence Bragg (Cambridge)
1951	"L'état solide"
Chair	Sir Lawrence Bragg (Cambridge)
1954	"Les électrons dans les métaux"
Chair	Sir Lawrence Bragg (Cambridge)
1958	"La structure et l'évolution de l'univers"
Chair	Sir Lawrence Bragg (Cambridge)
1961	"La théorie quantique des champs"
Chair	Sir Lawrence Bragg (Cambridge)
1964	"The Structure and Evolution of Galaxies"
Chair	Robert Oppenheimer (Princeton)
1967 Chair	"Fundamental Problems in Elementary Particle Physics" Christian Møller (Copenhagen)
1970 Obair	"Symmetry Properties of Nuclei"

1973 "Astrophysics and Gravitation" Chair Edoardo Amaldi (Rome) "Order and Fluctuations in Equilibrium 1978 and Nonequilibrium Statistical Mechanics" Chair Léon Van Hove (CERN) 1982 "Higher Energy Physics" Léon Van Hove (CERN) Chair 1987 "Surface Science" Chair F.W. de Wette (Austin) 1991 "Quantum Optics" Paul Mandel (Brussels) Chair 1998 "Dynamical Systems and Irreversibility" organized by Ioannis Antoniou (Brussels) "The Physics of Communication" 2001 organized by Ioannis Antoniou (Brussels) 2005 "The Quantum Structure of Space and Time" Chair David Gross (Santa Barbara) 2008 "Quantum Theory of Condensed Matter" Chair Bertrand Halperin (Harvard)

Annual Report 2011 - 25th Solvay Conference on Physics

25th Solvay Conference on Physics

Annual Report 2011

Solvay Public Event

SOLVAY PUBLIC LECTURES The Future of Physics Sunday 23 October 2011 - FLAGEY - STUDIO 4 of 3:00pm In the presence of Minister Jean-Marc Notlet and Minister Pascal Smet

Talks followed by a discussio

Time and Einstein in the 21st Century William Phillips NIST & College Park, USA

1.34

Quantum Beauty Frank Wilczek

ENT-AAABAA

nology, US

FONDATION DAVID ET AL

Simultaanvertaling is voorzien naar het Nederlands Interprétation simultanée en fr Free entrance, but registration is requested. Registration, information and program

1 2 61

Solvay Public Event The Future of Physics

Following a tradition initiated a few years ago, the International Solvay Institutes organized their 8th annual public event on the day following the close of the 25th Solvay Conference on Physics, taking advantage of the presence in Brussels of many of the world's leading experts in physics. The event took place at the Flagey building on October 23, 2011 in the presence of Mr. Pascal Smet, Flemish Minister for Education, Youth, Equal Opportunities and Brussels Affairs and Mr. Eric Remacle who represented Mr. Jean-Marc Nollet, Walloon Community Minister for Children, Research and Public Service.

Popularizing science is one of the important missions of the International Solvay Institutes. More than 800 participants were captivated by the popular lectures delivered by Professor William Phillips (1997 Nobel Prize in Physics) on "Time and Einstein in the 21st Century and Professor Frank Wilczek (2004 Nobel Prize in Physics) on "Quantum Beauty".

The lectures were followed by a panel discussion with main theme "The Future of Physics". The panel was composed of distinguished scientists who had participated in the 25th Solvay Conference on Physics. The event closed with a drink offered to all the participants, the speakers and the panel members, which allowed the public to interact more closely with the invited scientists. The International Solvay Institutes warmly thank the two speakers who accepted to deliver a lecture, as well as all the panel members who participated in the discussion. They are very busy persons and the Institutes value very much the time that they gave them to make their 8th Public Event a great success.

Annual Report 2011 - Solvay Public Ever

The Future of Physics

William D. Phillips was

born in 1948, in Wilkes-Barre PA, in the USA. He received a bachelor of science in Physics from Juniata College in 1970 and a Ph.D. from MIT in 1976. After two years as a Chaim Weizmann postdoctoral fellow at MIT, he joined the staff of the National Institute of Standards and Technology (then the National Bureau of Standards) in 1978. He is currently the leader of the Laser Cooling and Trapping Group of NIST's Physical Measurement Laboratory, and a Distinguished University Professor at the University of Maryland. He is a Fellow of the Joint Quantum Institute, a cooperative research venture of NIST and the University of Maryland that is devoted to the study of quantum coherent phenomena. At the JQI he is the co-director of an NSF-funded Physics Frontier Center focusing on quantum phenomena that span different subfields of physics. The research group led by Dr. Phillips has been responsible for developing some of the main techniques now used for laser-cooling and cold-atom experiments in laboratories around the world. Today, the group pursues research in laser cooling and trapping; Bose-Einstein condensation; atom optics; collisions of cold atoms; cold atoms in optical lattices; quantum information processing; quantum simulation of the behavior of complex systems; and the study of cold-atom analogs to condensed matter.

Dr. Phillips is a fellow of the American Physical Society and the American Academy of Arts and Sciences. He is a Fellow and honorary member of the Optical Society of America, and a member of the U.S. National Academy of Sciences. In 1997, Dr. Phillips shared the Nobel Prize in Physics "for development of methods to cool and trap atoms with laser light."

Solvay Public Event

Professor Frank Wilczek

is one of the leading theoretical physicists at work today. When only 21 years old and a graduate student at Princeton University, in collaboration with David Gross he discovered the fundamental equations for one of the four basic forces of nature: the strong force. That work led to a Nobel Prize. He is also known, among other things, for the development of unified field theories, the invention of axions, and the discovery and exploitation of new forms of quantum statistics (anyons).

Professor Wilczek is a secondgeneration American and a graduate of the New York City's public schools. Presently he is the Herman Feshbach Professor of Physics at MIT. Professor Wilczek has received many honors. Notably, he was among the earliest MacArthur Fellows (1982-87) and in 2004 he received the Nobel Prize in Physics. He contributes regularly to Physics Today and to Nature, explaining topics at the frontiers of physics to wider scientific audiences. and is much in demand as a public lecturer. He received the

Lilienfeld Prize of the American Physical Society for those activities. Two of his pieces have been anthologized in Best American Science Writing (2003, 2005). His latest book, The Lightness of Being: Mass, Ether, and the Unification of Forces (Perseus), has just appeared in paperback. He's now hard at work on The Attraction of Darkness, a novel mixing science, music, and murder.

40

The Future of Physics

Programme

- Moderator : Franklin Lambert (VUB & International Solvay Institutes)
- 15:00 15:10 Welcome by Franklin Lambert and Marc Henneaux (International Solvay Institutes)
- 15:10 15:20 Opening by Mr. Eric Remacle representing Minister Jean-Marc Nollet and by Minister Pascal Smet
- 15:20 16:05 William Phillips (1997 Physics Nobel Laureate) "Time and Einstein in the 21st Century"
- 16:05 16:15 Question session
- 16:15 17:00 Frank Wilczek (2004 Physics Nobel Laureate) "Quantum Beauty"
- 17:00 17:10 Question session
- 17:10 17:55 Panel discussion on "The Future of Physics" led by David Gross (UCSB, 2004 Physics Nobel Laureate), with the participation of Alain Aspect (Palaiseau), Gerard 't Hooft, (Utrecht, 1999 Nobel Physics Laureate), William Phillips (NIST & College Park, 1997 Physics Nobel Laureate), Subir Sachdev (Harvard), Frank Wilczek (MIT, 2004 Physics Nobel Laureate), Peter Zoller (Innsbruck)
- 17:55 18:00 Closing
- 18:00 19:00 Drink

Mr. Eric Remacle representing Minister Jean-Marc Nollet

Minister Pascal Smet

Solvay Public Event

Debate : The Future of Physics

Professor F. Lambert, Moderator

The distinguished panel that conducted the debate following the lectures was composed of some of the participants in the 25th Solvay Conference. Professor David Gross was the chair of the panel and Professor Franklin Lambert was the moderator.

Professor D. Gross, Chair of the Panel

The Future of Physics

Here is a brief presentation of the panel members

Professor Alain Aspect

studied at the Ecole Normale Supérieure de Cachan and Université d'Orsay. After a three years teaching assignment in Cameroon, he started in 1974, a series of experiments on the foundations of quantum mechanics. His "Experimental Tests of Bell's Inequalities with Correlated Photons", were the subject of his doctorate thesis presented in 1983. In 1983-86, with his student Philippe Grangier, he developed the first source of single photons and made fundamental experiments on wave-particle duality of light. From 1985 to 1992 he worked with Claude Cohen-Tannoudji

at the Laboratoire Kastler Brossel de l'ENS and Collège de France, on cooling atoms with lasers, in particular "cooling below the one photon recoil".

Since 1991, he is head of the group of Atom Optics that he has established at the Institut d'Optique, now in Palaiseau. Recent scientific production concerns mainly Bose Einstein Condensates, Atom Lasers, Quantum Atom Optics with metastable Helium, Anderson localization of ultracold atoms.

CNRS senior scientist ("Directeur de recherches CNRS") at Laboratoire Charles Fabry de l'Institut d'Optique, Alain Aspect is also a professor at Institut d'Optique and Ecole Polytechnique, Palaiseau. He is a member of the French Académie des Sciences, and of the Académie des Technologies, as well as of foreign academies (USA, Austria).

He is frequently invited as a distinguished lecturer, and has received major awards, among them, the CNRS Gold Medal (2005), the Quantum Optics senior prize of the European Physical Society (2009), the Wolf prize in Physics (2010).

Professor Gerardus 't Hooft

received his doctorate in theoretical physics in 1972 at Utrecht University on "The Renormalization Procedure for Yang-Mills fields", this work would later earn him, together with his advisor Martinus Veltman, the 1999 Nobel Prize in Physics.

Professor 't Hooft has been Professor in Theoretical

Physics at Utrecht for most of his professional life, doing research and education on the topics of the electro-weak interaction, the strong interaction and later also the gravitational forces in the world of the sub-atomic particles. Member of the Dutch Academy of Sciences (KNAW) as well as other institutions and Academies. his work led to a number of honorary doctorates and international prizes such as the Wolf Prize of Israel, the Pius XI Medal, and the Franklin Medal.

Solvay Public Event

Professor Subir

Sachdev is a Professor of Physics at Harvard University, a position he has held since 2005. Dr. Sachdev received an undergraduate degree in physics from the Massachusetts Institute of Technology in 1982 and M.Sc. and Ph.D. degrees from Harvard in 1984 and 1985, respectively. He joined the Yale faculty as an assistant professor in 1987. Dr. Sachdev has served as a visiting professor or scientist at a number of institutions, including Harvard and the University of Paris. Professor Sachdev is a widely demanded lecturer. He holds a distinguished Research Chair at the Perimeter Institute for Theoretical Physics.

He is a well-known expert in the theory of quantum materials and quantum phase transitions. He has done pioneering work

in the field of high temperature superconductors and has managed to connect quantum phase transitions with some current ideas in string theory.

His most recent research interests include the development of the theory of quantum phase transitions, and its use in understanding the non-zero temperature dynamics of correlated electron systems. Dr. Sachdev has received numerous awards and honours for his work including the National Science Foundation's Presidential Young Investigator Award (1988), an Alfred P. Sloan Foundation Fellowship (1989), the National Science Foundation's Creativity Award (1998). election as a fellow of the American Physical Society (2001), and a John Simon Guggenheim Memorial Foundation Fellowship (2003).

Professor Peter Zoller

is Professor at the University of Innsbruck and works on quantum optics and quantum information and is best known for his pioneering research on quantum computing and quantum communication and for bridging quantum optics and solid state physics.

Professor Zoller studied physics at the University of Innsbruck, obtained his doctorate there in February 1977, and became a lecturer at their Institute of Theoretical Physics. In 1991, he was appointed Professor of Physics and JILA Fellow at JILA and at the Physics Department of the Universitv of Colorado. Boulder. At the end of 1994, he accepted a chair at the University of Innsbruck, where he has worked ever since. Peter Zoller continues to keep in close touch with JILA as Adjoint Fellow. He was Loeb lecturer in Harvard, Boston, Yan Jici chair professor at the University of Science and Technology of China, Hefei, and chair professor at Tsinghua University, Beijing, as well as Lorentz professor at the University of Leiden in the Netherlands. Since 2003. Peter Zoller has also held the position of Scientific Director at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

Professor Zoller has received numerous awards for his achievements in the field of quantum optics and quantum

The Future of Physics

information and especially for his pioneering work on quantum computers and quantum communication. These include The Franklin Institute's 2010 Benjamin Franklin Medal in Physics (with Ignacio Cirac and David Wineland), the Dirac Medal (2006), the Max Planck Medal (2005), the Max Born Award (1998) of the Optical Society of America. In 2001, Peter Zoller became full member of the Austrian Academy of Sciences, in 2008 he was elected to the United States National Academy of Sciences.

Professor William D.Phillips and Professor Frank Wilczek were also members of the panel.

Professor A. Sevrin, Minister P. Smet, Mr. E. Remacle and Mrs Solvay

Professor 't Hooft talking to students

Professor F. Englert and Mr. P. Busquin

Centenary of the First Conseil de Physique Solvay

Exhibition Brainstorming sessions in Brussels

Centenary of the First Conseil de Physique Solvay

Brainstorming sessions in Brussels: One-hundred years of Solvay Physics Conferences

To celebrate the centenary of the First Conseil de Physique Solvay, the first world physics conference, the International Institutes for Physics and Chemistry, founded by E. Solvay, organized an exceptional range of activities in Brussels, which were attended by leading personalities from the worlds of science, politics and economy. These events, organized to celebrate a century of scientific excellence. turned Brussels into the world capital of physics.

Brainstorming sessions in Brussels – Onehundred years of Solvay Physics Conferences

An exhibition on quantum mechanics and the history of the "Brainstorming sessions in Brussels – One-hundred years of Solvay Physics Conferences" took place at the Palais des Académies from October until December 2011.

This exhibition will run through the whole country in 2012 and 2013.

The aim of the exhibition is to show to a wider public how much the Solvay Conferences on Physics, those from 1911 and 1927 in particular, have played a crucial role in the development of physics concepts which have revolutionnised our vision of the world and lead to new technologies that influence today's society. The exhibition recounts the story of quantum physics and its technological impact. Put in its social context, it also has the aim of showing that scientific research is an engrossing activity, full of surprises, adventures, successes, failures, agreements and conflicts but above all, satisfaction and gratification. That's how the organisers hope to revive the image of scientific activities and to motivate younger people to choose scientific careers.

This exhibition has been created, organised and designed by a team of researchers, professors, secondary school teachers, technical and administrative staff from ULB, VUB and the Solvay Institutes.

The team has also benefited from the expert opinion of other universities.

Brainstorming sessions in Brussels

Official opening in the presence of the Ministers of the Brussels-Capital Region.

△ Mr. Charles Picqué, Minister-president of the Government of the Brussels-Capital Region, Mr. Jean-Luc Vanraes, Minister for Finance and Budget for Brussels and Mr. Benoît Cerexhe, Brussels Minister of Economy, Employment, Scientific Research and Foreign trade

Mr. Charles Picqué and M. Jean-Luc Vanraes Δ

The Solvay Family \bigtriangledown

51

17 October 2011

Centenary of the First Conseil de Physique Solvay

S

A staged reading of "Copenhagen" by Michael Frayn Directed by Nancy Kawalek

This event took place on Monday 17 October at Flagey, Studio4. The event was free and open to everyone. The roles of Bohr and Heisenberg were played by Nobel Laureates Alan Heeger (Chemistry 2000) and David Gross (Physics 2004). The part of Mrs. Bohr was played by the famous Shakespearian actress Fiona Shaw. This performance was directed by Nancy Kawalek (University of California and the Professional Artists Lab).

The play was followed by a debate and a reception, attended by the author, the director and the actors.

Director's Notes for Copenhagen

Copenhagen takes place in 1941, a time of tremendous upheaval internationally and in science. Countries are choosing sides, and many people believe the outcome of the war will be determined by technological supremacy – whoever has the most powerful weapons will emerge victorious. At the same time, science is undergoing an extraordinary change; new theories explaining the behavior of matter at the atomic and sub-atomic levels are challenging core beliefs about how nature works. And in an ironic twist of fate, the worlds of war and science intersect when it becomes apparent this new physics may provide the critical key to creating atomic weapons.

Though it's undoubtedly helpful, one doesn't need to be a Nobel Prize-winning physicist to appreciate the exquisite artfulness and depth in Michael Frayn's Copenhagen. Innumerable parallel themes dance about, each reverberating off the other, and all comprehensible: conflict between countries, conflict between friends. and conflict between "old" versus "new" science. Uncertainty abounds in the play, not just as a scientific principle, but also as a fundamental mystery of human nature: the uncertainty of why people do what they do, about why we behave as we ourselves do, and the "what if" we all ask. whether in regard to events in our own lives or those concerning the world at large. And here we are this evening in our own "parallel universe," in which two

55

A staged reading of "Copenhagen" by Michael Frayn

Nobel Prize-winning physicists play the roles of two Nobel Prize-winning physicists – a collision of truth and fiction quite complementary to that at the heart of Copenhagen.

Nancy Kawalek, Director

Michael Frayn talks about the play

"The idea for Copenhagen came to me out of my interest in philosophy.

It was when I read a remarkable book called Heisenberg's War by Thomas Powers, that I came across the story of Werner Heisenberg's visit to Niels Bohr in 1941. As soon as I read it I began to think that this story reflected some of the problems that I had been thinking about in philosophy for a long time. How we know why people do what they do, and even how one knows what one does oneself. It's a fundamental question... this is the heart of the play.¹"

"The central event in Copenhagen, playwright Michael Frayn explains, "is a real one."

"Heisenberg did go to Copenhagen in 1941, and there was a meeting with Bohr... He almost certainly went to dinner at the Bohrs' house," Frayn adds, "and the two men almost certainly went for a walk to escape from any possible microphones, though there is some dispute about even

1 http://www.pbs.org/hollywoodpresents/ copenhagen/id/id_play_1.html these simple matters. The question of what they actually said to each other is even more disputed."

Though the details of their famous meeting may be in dispute, Niels Bohr and Werner Heisenberg are certainly well-documented historical persons, both very much a part of their times. They were intimately involved in the evolution of modern atomic physics. They survived not one but two devastating world wars, and they lived well into the 20th Century under the threat of the Cold War, a war chiefly fought with the terror of nuclear annihilation, whose basic scientific concepts they helped discover. Significant men, in significantly troubled times.2"

2 http://www.pbs.org/hollywoodpresents/ copenhagen/story/index.html

Actors

Fiona Shaw

Her awards include two Evening Standard Awards and three Olivier Awards for Best Actress. She was made an Officier des Arts et des Lettres by the French government in 2000, and was awarded a CBE in 2001.

Theatre credits include: I ondon Assurance, Mother Courage, Happy Days, The Good Person of Sichuan, Machinal, Richard II, The Way of the World, The Power Book, Prime of Miss Jean Brodie (RNT). As You Like It. Philistines, Mephisto, The Taming of the Shrew, The Merchant Of Venice, Electra (RSC). John Gabriel Borkman, Medea, Hedda Gabler (Abbey Theatre), Footfalls (Garrick Theatre), Julius Caesar (Barbican), Dido and Aeneas (Paris), The Waste Land (Wilton's Music Hall, London, and international tour). Film includes: My Left Foot, The Avengers, The Butcher Boy, Jane Eyre, Three Men & A Little Lady, Dorian Gray, The Harry Potter Series,

Centenary of the First Conseil de Physique Solvay

The Black Dahlia, The Last September, Mountains of the Moon, The Tree of Life, Trial and Retribution. TV includes: True Blood, Fireworks for Elspeth, For the Greater Good, Hedda Gabler, Persuasion, Gormenghast, Mindgames. She is currently directing The Marriage of Figaro for ENO, having previously directed Riders To The Sea (2008) and Elegy For Young Lovers (2010)

David J. Gross

David Gross is the Frederick Gluck Professor of Theoretical Physics and Director of the Kavli Institute for Theoretical Physics at UCSB. He received his Ph.D. in 1966 at UC Berkeley and was previously Thomas Jones Professor of Mathematical Physics at Princeton University (see CV chapter 25th Solvay Conference)

Alan J. Heeger

Widely known for his pioneering research in and the co-founding of the field of semiconducting and metallic polymers, Professor Heeger is also the recipient of numerous

awards, including the Nobel Prize in Chemistry (2000), the Oliver E. Buckley Prize for Condensed Matter Physics, the Balzan Prize for the Science of New Materials, the President's Medal for Distinguished Achievement from the University of Pennsylvania, the Chancellor's Medal from the University of California. Santa Barbara, and honorary doctorates from universities in the United States. Europe and Asia. He is a member of the National Academy of Science (USA), the National Academy of Engineering (USA), the Korean Academy of Science and the Chinese Academy of Science.

He has long been interested in and a fan of theatre. Prof. Heeger has participated in the production of three Broadway plays: *In the Heights* (2008 Best Musical and still running), *West Side Story* (revival currently running) and *Barefoot in the Park* (a revival in 2007 did not survive the critics!).

His research group at UC Santa Barbara continues to study aspects of the science and technology of semiconducting and metallic polymers with focus on the gate-induced insulator-to-metal transition in polymer Field Effect Transistors and low cost "plastic" solar cells. Current interests also include biosensors for the detection of specific targeted sequences on DNA, the detection of specific proteins and the detection of biologically relevant small molecules.

Director

Nancy Kawalek

Nancy Kawalek is a New York theatre-trained actor whose credits include *Strider on Broadway*, as well as several leading roles Off Broadway along with a one-woman show, *Alice Without*, which she also co-authored. She has also acted in regional theatres across the United States, film, television, numerous commercials, and on National Public Radio's acclaimed Selected Shorts series.

Among her credits as director are the documentary film, *Lost and Found*, and currently, *The Art of Questionable Prove-*

57

A staged reading of "Copenhagen" by Michael Frayn

nance, a new multi-media play about the brain.

As a Studio Professor at the University of California, Santa Barbara, Nancy teaches acting, directing and the adaptation of literature for performance. She is the founder/ director of UCSB's Professional Artists Lab, a dynamic artistic laboratory in which professional actors, directors, writers and producers create and develop new works in theatre, film, television, radio and multi-media performance.

Nancy is also the founder/ director of STAGE (Scientists, Technologists and Artists Generating Exploration) at UCSB's California NanoSystems Institute.

Playwright

Michael Frayn

Michael Frayn began his career as a journalist - first as a reporter on *the Guardian*, then as a columnist for *the Guardian* and *the Observer*. He has written sixteen plays, including Noises Off, Democracy, and most recently Afterlife.

Michael Blakemore's production of Copenhagen for the National Theatre in 1998 won the Evening Standard and two other Best Play awards; the Prix Molière (France) and the Tony Award for Best Play.

He has published ten novels, including *The Tin Men*, *Towards the End of the Morning*, *Headlong*, and *Spies*, and two works of philosophy, *Constructions* and The *Human Touch*. His most recent book was a memoir, *My Father's Fortune*.

Discussion moderator

Robbert Dijkgraaf

Robbert Dijkgraaf is President of the Royal Netherlands Academy of Arts and Sciences and Distinguished University Professor of Mathematical Physics at the University of Amsterdam. He studied physics and mathematics at Utrecht University and obtained his PhD cum laude in 1989 with Nobel Prize laureate Gerard 't Hooft. He held positions at Princeton University and Princeton's Institute for Advanced Study. He is also a member of the Solvay Scientific Committee for Physics.

His current research focus is on string theory, quantum gravity, and the interface between mathematics and particle physics. In 2003 his research was rewarded with the NWO Spinoza Prize, the highest scientific award in the Netherlands.

Many of his activities are at the interface between science and society. Robbert Dijkgraaf is dedicated to bringing about greater public awareness of science, for example through his involvement with popular TV science programs. He also initiated and finances *Proefjes.nl*, a website that allows children aged 8 and up to carry out simple experiments at home.

Academic Session: Why "curiosity-driven" science? The "Usefulness of useless research"

In the presence of HM King Albert II 18 October 2011

Centenary of the First Conseil de Physique Solvay

Academic Session: Why "curiosity-driven" science? The "Usefulness of useless research"

Background on "curiosity-driven research"

When organizing the first Solvay conference, Ernest Solvay clearly saw the importance of "curiosity-driven" (basic) science. The quantum revolution initiated in 1911 and pursued during the next Solvay conferences gives a superb illustration on how research carried for the sole purpose of reaching a deeper understanding of the natural laws, without other goals in mind, inevitably leads to unforeseen but revolutionary transformations of our way of livina.

The transistor and electronics, the laser - just to take two celebrated examples - are children of 1911. They would not have been invented without the understanding of quantum mechanics, even though the founders of the theory did not have transistors or lasers in mind when they developed it. In fact, it is fair to say that most of the high-tech developments of recent times have their origin in the quantum revolution and its subsequent deeper understanding of Nature at the smallest scales. An exemplar case is the GPS. It not only uses high precision atomic clocks made possible thanks to the advent of quantum mechanics, but it also takes into account effects predicted by general relativity – another theory developed

by Einstein out of scientific curiosity.

Unanticipated applications made possible by revolutions in fundamental understanding abound equally well in other fields of scientific inquiry, from mathematics to life sciences.

The Solvay conferences have always been devoted to questions of basic science. This was the will of Ernest Solvay and Hendrik Lorentz when creating the International Solvay Institutes and this will has been followed up to this date.

To face and solve the challenges that our society currently faces (energy, environment etc), we need more science than ever – and in particular more basic science than ever. Solutions will come from unexpected ways paved by new fundamental understanding.

Since curiosity-driven science tries to answer basic inquiries that have always puzzled humankind, it is also extremely attractive to the young generations and can help reconcile them with scientific careers. Physics – and science in general – is a beautiful endeavor.

On the occasion of the 100 years anniversary of the first Conference organized by Ernest Solvay and Hendrik Lorentz, the Institutes brought together top-level scientists with major global actors in the industrial, economical, political and higher education worlds, in order to reflect on the situation of basic science as our world confronts major challenges.

This original angle of approach to current global challenges was well in line with the history and philosophy of the International Solvay Institutes.

The academic session took place in the presence of His Majesty Albert II, King of the Belgians. The International Solvay Institutes had also the great honour to greet Mr. Yves Leterme, Belgian Prime Minister. who opened the session, and Mr. Herman Van Rompuy, President of the European Council, who addressed the audience at the gala dinner. The International Solvay Institutes are grateful to them, as well as to all the distinguished speakers and panel members who made this afternoon a unique event. .

Academic Session

Programme

	Academic Session Moderator: Alexander Sevrin, Professor at the Vrije Universiteit Brussel and Deputy-Director of the International Solvay Institutes
14:30 -15:05	Session 1 "Welcome and Introduction"
14:30	Welcome by Marc Henneaux
14:40	Robbert Dijkgraaf, "The Unreasonable Effectiveness of Fundamental Research"
14:55	Arrival of HM King Albert II
15:05	Opening address by Yves Leterme, Belgian Prime Minister
15:10 - 16:40	Session 2"Importance and Impact of Basic Research"
15:05	Shoichiro Toyoda: "Research and Creativity"
15:30	Panel discussion Moderator: Norman Augustine Participants: Klaus von Klitzing, Eric Maskin, Gérard Mestrallet, Craig Mundie
16:40	Coffee break
17:10 -18:20	Session 3: "How to Promote Scientific Excellence" Panel discussion Moderator: Lord Martin Rees Participants: Christian de Duve, David Gross, Helga Nowotny, C.N.R. Rao
18:20 -19:05	Session 4: "The Role of Philanthropy"
18:20	Introduction by Staffan Normark: "To Those who have
18:35	James Simons: "Curiosity Driven Philanthropy"
18:50	Jean-Marie Solvay: "A centenary of passion for scientific exploration"
19:05 -19:15	Closing: "The future of the Solvay Institutes" by Marc Henneaux

61

Centenary of the First Conseil de Physique Solvay Presentation of the speakers

Robbert Dijkgraaf

Robbert Dijkgraaf is President of the Royal Netherlands Academy of Arts and Sciences and Distinguished University Professor of Mathematical Physics at the University of Amsterdam. He studied physics and mathematics at Utrecht University and obtained his PhD cum laude in 1989 with Nobel Prize laureate Gerard 't Hooft. He held positions at Princeton University and Princeton's Institute for Advanced Study.

"I think that there is a tremendous impact of science on industry, and vice versa. This is something that Ernest Solvay was already discussing, 100 years ago, with the founding fathers. He said that the spirit of that time (1911) was such that people felt very much pressed to short-term risks, to short-term research, and there was no room for the long view. In fact the Solvay Congress made

this possible. That was a very important message 100 years ago, but I think that this is even more important these days where life sometimes seems to go faster and faster, and there is very little room for long-term research. In that sense I would like to conclude with some words that were written in a very visionary document in 1954 by Vannevar Bush, which in some sense led to modern science as we know, large trail modern science, that the responsibility for the creation of new scientific knowledge - and for most of its applications rest on that small body of men and women who understand the fundamental laws of nature and are skilled in the techniques of scientific research."

ROBBERT DIJKGRAAF

Yves Leterme Belgian Prime Minister

and i "The challenges our world faces, in terms of environment, energy, sustainable development, make fundamental research more important than ever. Governments have a duty to foster the fascinating voyage of discovery, which fundamental research is, not only by financial means but by putting curiosity and audacity, ambition and the pursuit of excellence back at the heart of our education systems. But governments can only do so much. They need institutions like the Solvay Institutes who

have such an impressive tradition of fostering fundamental research, of bringing together the most brilliant minds of their time. As well in this field as in the industrial field, the name Solvay stands for excellence, and our country is proud of and grateful to the Solvay family and all those who work with it."

YVES LETERME

Academic Session

Shoichiro Toyoda

Shoichiro Toyoda graduated from Nagoya University in September 1947 with a degree in engineering and joined Toyota Motor Corporation (TMC) in July 1952. He later earned an engineering doctorate, with the subject of his thesis centered on fuel injection.

He became managing director in 1961, and after promotions to senior managing director in 1967 and executive vice presi dent in 1972, he was named president of Toyota's sales organization in 1981. Upon the merger of the sales and production organizations in 1982, he assumed the presidency of the newly integrated TMC, and later served as chairman from 1992 to 1999. After serving on the board for 57 years, Dr.

Toyoda

now serves as honorary chairman, a position he has held since June 1999. He is recipient of several medals, honors and awards

"The 20th century often referred to as the 'century of science'. It was in this century that humanity discovered the theory of radioactivity, quantum theory, and double helix structure of DNA. It was in this century that we began to uncover the mysteries of nature, space and life. This contribution that science and technology have made to the development of human culture and improvement of human welfare are all around us to see. We are also, however, seeing negative impacts as well as in the form of global warming, and the mass consumption of resources and energy. I believe that we are at the major turning point in our civilisation in which me must overcome global scale challenges in order to realize our sustainable growth. We must also acknowledge the fact that humanity continues to be exposed to natural threats, like the East-Japan great earthguake that caused such enormous damage to Japan. It is science and technology that bear the responsibility of addressing and overcoming these challenges. I believe that the 21st century must be a new science century in which humanity seeks to create societies capable of living in peace and abundance."

SHOICHIRO TOYODA

Norman Augustine

Norman Augustine is retired Chairman and CEO of the Board of the Lockheed Martin Corporation. He was a Professor at Princeton, his alma mater, from 1997-99. Mr. Augustine has been presented the National Medal of Technology by the President of the United States and received the Joint Chiefs of Staff Distinguished Public Service Award. He has five times received the Department of Defense's highest civilian decoration, the Distinguished Service Medal.

"One often hears that basic research is highly risky and takes a long time and very often the benefits of it do not accrue to the underwriter or the performer of that research, but accrue to the society as a whole. That is exactly the sort of thing that the governments should support. Indeed, governments are more and more being called upon to support basic research, but in the Western World and certainly in my country very few people in our governments have backgrounds in science or technology. My question is how can we do a better job of indicating the importance of research technology and properly allocating funds within those areas given that the government is the primary funder in many cases."

NORMAN AUGUSTINE

53

Centenary of the First Conseil de Physique Solvay

Klaus von Klitzing

Klaus von Klitzing is a physicist known for discovery of the integer quantum Hall Effect, for which he was awarded the 1985 Nobel Prize in Physics.

Von Klitzing has been a director of the Max Planck Institute for Solid State Research in Stuttgart since 1985.

ful basic research based on curiosity-driven science, one needs scientific freedom, the best brains, and financial resources that do not dictate the contents of the research activities. On the one hand, basic science and the generation of new knowledge is part of our culture, there is an intrinsic value, but on the other hand it is clear that no quantum jumps, no real progress and successful developments are possible without basic research, which will hopefully contribute to the solving of the big problems of our world."

KLAUS VON KLITZING

64

Gérard Mestrallet

Gérard Mestrallet is graduate of Ecole Polytechnique, Ecole de l'Aviation Civile, Institut d'Etudes Politiques (Toulouse) and trained as a senior civil servant at the Ecole Nationale d'Administration Gérard Mestrallet was Civil administrator in the Treasury and Advisor on Industrial Affairs to Jacques Delors Finance Minister. In July 1995 Gérard Mestrallet was appointed Chairman and Chief Executive Officer of Compagnie de Suez. In July 2008 Gérard Mestrallet was appointed Chairman and Chief Executive Officer of GDF SUEZ.

"My main message is clear: basic research on curiositydriven science is at the core of progress in society in general, and in industry in particular. Some of the most important technological breakthroughs happen thanks to basic research and not simply research on the lines of applied science. It is absolutely necessary to convince the decision making bodies and governments of the absolute importance of basic research, because in my view it is their responsibility [...] When a discovery has been done, it becomes a public good, it belongs to everyone and has to be used in the world. So, the corporations have to finance applied research and the governments basic research, but they have to be combined. It is not one against the other, we have to favor both. For the governments, financing basic research can have very positive consequences for the population, for the country and for the economy of the country."

GERARD MESTRALLET

Academic Session

Eric Maskin

Eric Maskin is Albert O. Hirschman Professor of Social Science at the Institute for Advanced Study. He was previously professor of economics at Harvard University and the Massachusetts Institute of Technology. He is best known for his work on mechanism design theory, which analyzes when it is possible to design an institution (i.e., a mechanism) that implements a given social goal. He has also made contributions to many other areas of economic theory.

In 2007 he was awarded the

Craig Mundie

Craig Mundie holds a

bachelor's degree in

electrical engineering and a master's degree in

information theory and

computer science from

He is chief research

and strategy officer of

role, he oversees Microsoft

largest computer-science

works with government

Research, one of the world's

research organizations, and

is responsible for Microsoft's

long-term technology strategy.

Mundie also directs a number

of technology incubations, and

and business leaders around

the world on technology policy,

Georgia Tech.

Nobel Memorial Prize in Economics for his work on mechanism design, together with Leonid Hurwicz and Roger B. Myerson.

"Just looking at it from an economic point of view. Yes, we want to solve problems like cancer and aids, and ves there is a strong case

for putting public money into them. However, someone who devices vaccine (against aids) is probably going to get a good commercial reward from that vaccine. So, as to things like aids and cancer, we can rely more on market forces for their solution than things that are more remote from the market, as cosmology and anthropology. From an economic point of view, there is an even stronger argument for funding basic research which is remote from the market, because the market is not going to do it, it is the government's job to do it."

ERIC MASKIN

regulation and standards. In April 2009 Mundie was appointed by President Barack Obama to the President's Council of Advisors on Science and Technology.

and a "There are a class of things that emerge either

through competitive action or just the evolution of the situation of our societies and technology, that you just do not anticipate. So you have not asked anyone to work on it and you have no specific goal in mind regarding that problem, but when you encounter it, you must have the capability to react. That leads me to the role that basic science plays in training scientists and engineers to think about problems, and more today than ever before, to also participate or have the insight to participate and how to translate that knowledge into realizations that are important."

CRAIG MUNDIE

Annual Report 2011 - Centenary of the First Conseil de Physique Solvay

65

Lord Martin Rees

Martin Rees is Master of Trinity College and Emeritus Professor of Cosmology and Astrophysics at the University

of Cambridge. He holds the honorary title of Astronomer Royal. He was President of the Royal Society during 2005-10 and is a member of the UK's House of Lords. His international awards include the Balzan Prize, the Bower Award of the Franklin Institute, the Gruber Cosmology Prize, the Crafoord Prize

(Royal Swedish Academy) and the Templeton Prize. In addition to his research papers he has written eight books (six for general readership), and numerous magazine and newspaper articles on scientific and general subjects. He has broadcast and lectured widely and held various visiting professorships.

"Whether in science, the arts or entrepreneurial activities, confidence and high moral are crucial drivers of creativity, innovation and risk-taking.[...] Science is the most universal culture: it can be shared by all nations and all faiths, protons and proteins are the same the world over. So, in the 21st century we must keep this flame alive, we depend on private benefactors, like Solvay as well as the governments, to do this." MARTIN REES

Christian de Duve

Christian de Duve is a Nobel Prize-winning cytologist and biochemist. He studied at the Catholic University of Leuven, where he became a professor in 1947. He specialized in subcellular biochemistry and cell biology and discovered peroxisomes and lysosomes, cell organelles.

In 1962 de Duve joined the faculty of what is now Rockefeller University in New York City, dividing his time between New York and Leuven. He took emeritus status at Université catholique de Louvain in 1985 and at Rockefeller in 1988, though he continued to conduct research.

In 1960, de Duve was awarded the Francqui Prize for Biological and Medical Sciences.

He was

awarded the shared Nobel Prize for Physiology or Medicine in 1974, together with Albert Claude and George E. Palade, for describing the structure and function of organelles (lysosomes and peroxisomes) in biological cells.

"You cannot do good science with mediocre people. So in science we have to respect and seek excellence. Excellence is a very rare commod-

ity. And there is a tremendous competition all over the world for the very few people who answer that definition. How can you attract them? You can attract them by offering them adequate working conditions, a stimulating environment which I think is extremely important, of course adequate means, you have to give them a decent salarv but I do not think that is the most important point. What is most important has been said already by the other speakers and that is freedom. The real scientists are motivated by curiosity and if you are not free to follow your curiosity, then you are not motivated. If you recruit excellent researchers, you must provide them with the freedom to pursue their own ideas, to pursue their own research."

CHRISTIAN DE DUVE

67

Academic Session

David Gross

David Gross is the Frederick Gluck Professor of Theoretical Physics and Director of the Kavli Institute for Theoretical Physics at UCSB. David Gross was awarded the 2004 Nobel Prize in Physics, with David Politzer. and Frank Wilczek. (see CV chapter 25th Solvay Conference).

"Bosses, rulers, markets do not decide scientific conflicts, nature does. And transparency is essential. Science to a large extend is the daughter of freedom. Science invented mechanisms to allow for openness, lack of ownership, free exchange, cooperation with competition

and those inventions which really came from the scientific community and our universities enabled the modern burst of scientific activity. The biggest danger I see, especially and unfortunately in my own country, is bureaucratic ossification. Science has mechanisms for change and renewal. Nature is our boss and we turn over generations every five years. Bureaucracies do not seem to. So we must turn for help to the social sciences, to learn how to reform bureaucracies without revolutions."

DAVID GROSS

Helga Nowotny

Helga Nowotny is Professor emerita of Social Studies of Science, ETH Zurich (Swiss Federal Institute of Technology) and a founding member of the European Research Council. In 2007 she was elected ERC Vice President and in March 2010 succeeded Fotis Kafatos as President of the ERC. She holds a Ph.D. in Sociology from Columbia University, NY. and a doctorate in jurisprudence from the University of Vienna. She is a Foreign member of the Royal Swedish Academy of Sciences and long standing member the Academia Europaea and recipient of several prizes and awards.

"At the moment as president of the European Research Council, I may have the good news that perhaps we are starting a new experiment in Europe that will be of tremendous importance and benefit to Europe in the very rapidly changing global scientific landscape. Let me just explain this very briefly. Since

2007, when the so-called 7th Framework Programme started, we witnessed a radical policy shift. It is for the first time in the history of the European Union that it was decided that basic research could and should be funded at FU level. Of course it continues on the national level. this remains a very important component since we can never have sufficient funds at EU level but this meant a radical policy shift. And therefore, when the ERC was set up as a special part of the 7th Framework Programme, our mission was very simple; find the best scientists, fund them and do this on the principle of excellence only".

HELGA NOWOTNY

Centenary of the First Conseil de Physique Solvay

C.N.R. Rao

Prof. C.N.R. Rao is the National Research Professor as well as Honorary President and Linus Pauling Research Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. His main

research interests are in solid state and materials chemistry. He received the M.Sc. degree from Banaras, Ph.D. from Purdue, D.Sc. from Mysore universities and has received honoris causa doctorate degrees from 51 universities.

Prof. Rao is a member of all the major science academies in the world including the Royal Society, London, the National

Academy of Sciences, U.S.A. and the French Academy of Sciences. He is recipient of several medals, honours and awards. He currently serves as the Head of the Scientific Advisory Council to the Prime Minister of India and he is member of the Atomic Energy Commission of India.

"I think there is no question, even in the best institutes, in many countries, there is hardly any female faculty... we must allow everyone to contribute, provide opportunities so the world changes a bit. And we do need people from everywhere to contribute to excellence of science... countries like India and China are not doing as well as we think they can do in terms of quality of science... contribution from all parts of the world and all kinds of people and including women scientists becomes very important."

C.N.R RAO

Staffan Normark

-Staffan Normark is a Swedish physician, microbiologist and infectious disease researcher. He was awarded his Ph.D. at Umeå University in 1971. He was professor at Umeå University en professor of molecular microbiology at Washington University.

In 2008 he was active at Umeå University to build up a research group within bioinformatics and infection research.

He was elected a member of the Royal Swedish Academy of Sciences in 1987 and took up the position as the Academy's permanent secretary in July 2010. In 1992 he was awarded the Göran Gustafsson Prize in

medicine and in 1999 he was elected a member of the Royal Swedish Academy of Engineering Sciences.

"An impressive number of physicists that have attended the Solvay conferences have been Nobel laureates or they were to become Nobel laureates. And one example has already been mentioned that at the fifth Solvay international conference on electrons and photons, 17 of the 29 attendants would become or were already Nobel laureates in physics. So even though Alfred Nobel and Ernest Solvay did not meet in person, at least I have no evidence for it. their creations, their philanthropic creations, the Nobel prize and the Solvay conference have always been intimately connected through eminent scientists that have shaped our current knowledge in physics and I am sure they will continue to do so to move the frontiers of fundamental research."

STAFFAN NORMARK

69

Academic Session

James Simons

Dr. James H. Simons is President of Euclidean Capital, a family office, and Board Chair of Renaissance Technologies LLC, a highly quantitative investment firm, from which he retired in 2009 having founded the company and serving as its CEO for over thirty years. Previously he was chairman of the Mathematics Department at the State University of New York at Stony Brook

Dr. Simons holds a B.S. in mathematics from the Massachusetts Institute of Technology and a Ph.D. in mathematics from the University of California at Berkeley. His scientific research was in the area of geometry and topology. He received the American Mathematical Society Veblen Prize in Geometry in 1975 for work that involved a recasting of the subject of area minimizing

multi-dimensional surfaces. Dr. Simons is the founder and Chairman of Math for America, a nonprofit organization with a mission to significantly improve math education in our nation's public schools. Together with his wife, Marilyn, Dr. Simons manages the Simons Foundation, a charitable organization primarily devoted to scientific research.

The Foundation's philanthropic activities include, in addition to Math for America, a major re-

search initiative on the causes of autism, and the recent establishment of an institute for research in mathematics and theoretical physics

"Good taste, in science, picking good problems is as all the scientists in the audience know, an important criterion that goes beyond curiosity [...] Here is the question. Can curiosity and taste of the leadership of a private foundation, successfully drive pure scientific discovery in a manner and with a speed, which would amply justify the funds expended. I think that some problems, even in pure science, marshalling some forces, maybe not solve the problem, but would make some really good progress in that direction."

JAMES SIMONS

Jean-Marie Solvay

"Many times over the last weeks, I was asked over and over, why after one hundred years is the Solvay family still supporting fundamental research and contributing regularly to the organization of these physics and chemistry councils? [...] Why are we passionate about fundamental science? Why do we support this type of philanthropy?

There are two answers: the first one, let me be blunt is return on investment, the second is simply: passion

In a certain way we have not changed much from our ancestor Ernest: we are still inhabited with the idea that we have a responsibility to support the greater good. In business, this expresses itself in the culture at Solvay SA, in the support to the project Solarimpuse which has mobilized the company towards building together a more sustainable future. In regards to philanthropy, I strongly believe that the objective is to support the common good, the family's

investment in the Institutes constitutes the best return. It may not be the quickest return, but it is the best return. One just needs to look at the money invested in promoting these early 20th century conferences and the advances made by science that followed [...] New technology has made our lives easier and has lifted huge numbers of people out of poverty [...]. It is my belief that science will find solutions to new challenges. More importantly, fundamental research, as we saw earlier, has a multiplying effect because major discoveries impact many applications that affect many lives. Therefore what was true in 1911, remains true today: Investing into bringing together the brightest mind of our time to debate the most crucial

questions, remains the best return on investment.

The family remains passionate and incredibly curious about the creative process. The issues studied by modern science have become too complex to be tackled by one mind. Therefore since the beginning of the 20th century, international networking was made necessary to be efficient. Hendrik Lorentz and Ernest Solvay, managed to create a successful format. Today the buzzword is Open Innovation. It is in itself a social project where the sum of the interlockina contributions is much more than the individual contributions added to each other. In other words: 1+1=3 This is the creative process: It is always magic and unexpected, it requires unvielding focus and discipline, and, most challenging of all, it requires one to maintain a free spirit, which is in my view, the highest challenge of all."

JEAN-MARIE SOLVAY

Academic Session

Marc Henneaux

"The hundredth anniversary of the first Solvay meeting gives also a splendid opportunity for publicly celebrating pure research, that is, research pursued out of curiosity for the advancement of human knowledge [...] Two simple and clear principles prevailed in the scientific running of the Institutes from the very beginning: scientific excellence and freedom. No preset priority

theme was

imposed on the subjects of the Solvay conferences, there was no citizenship or laboratory affiliation or age quota imposed, and no strings were attached to the fellowships given to the best individuals or laboratories. No immediate return was expected. No preset goal was defined except excellence [...] Independent research institutions which are not constrained by short-term returns and which can favour long term views and long term investigations are therefore without doubt an important element of the research landscape, offering privileged niches where creative research, can freely blossom."

MARC HENNEAUX

Herman Van Rompuy, President of the European Council

"At other occasions, you have probably listened to other politicians prior to me, encouraging you to focus on applied research to help us solve the problems of our age; to stop global warming, to halt famines, to cure Alzheimer's. That is fine, but we definitely need fundamental research, too.

In the spirit of the Solvay Conference, I say here tonight: the shortest road to solve these societal challenges often is a detour. And therefore my

message to you is: Embrace serendipity, pursue your curiosity, follow the beauty... That is your *noble* task. And whatever the yields down the road for science or society at large, they have to be unexpected, a source of astonishment themselves. That is why we should be grateful to Ernest Solvay who clearly saw the tremendous importance of curiosity-driven research by setting up, a hundred years ago, the Solvay conferences, always devoted to questions related to basic science".

That is why I am grateful to everybody attending and participating in this Solvay Conference."

HERMAN VAN ROMPUY

Centenary of the First Conseil de Physique Solvay Photo Gallery

Annual Report 2011 - Centenary of the First Conseil de Physique Solvay

Academic Session

- 1- M. Rees, D. Gross and C. de Duve
- P. van Gysel, F. Thielemans, HM Albert II, J-M Solvay, Mme Solvay and M. Henneaux
- 3- D. Renders, HM Albert II, D. Gross and R. Dijkgraaf
- 4- N. Augustine, D. Reynders and HM Albert II
- 5- 25th Solvay Conference participants
- 6- Y. Leterme
- 7- S. Laruelle, B. Cerexhe and H. De Croo
- 8- H. Van Rompuy and D. Janssen
- 9- D. Gross, M. Henneaux and H. Van Rompuy
- 10- C. Jourquin and F. Englert
- 11- D. Renders, HM Albert II, S. Toyoda and M. Henneaux
- 12- P. Busquin and P. van Moerbeke
- 13- J-M Solvay, D. Reynders, HM Albert II and E. Maskin
- 14- HM Albert II and K. von Klitzing
- 15- Mme Solvay and C. de Duve
- 16- H. Van Rompuy
- 17- J-M Solvay, Mme Solvay, H. Yokota and S. Toyoda
- 18- M. Eyskens and P. van Gysel

International Solvay Chairs

e
International Solvay Chairs

The International Solvay Chairs enable the Institutes to invite in Brussels eminent scientists for a period of one to two months in order to give lectures on their work to researchers in the corresponding fields, not only from the ULB and the VUB, but also from other Belgian universities and abroad. The program started in 2006 for physics and in 2008 for chemistry. It is an indisputable success.

The 2011 International Solvay Chairs are described in separate sections.

Past Chairs

International Solvay Chairs in Physics

- 2006 Professor Ludwig Faddeev (Steklov Mathematical Institute, Saint-Petersburg, Russia)
- 2007 Professor Sir Michael Berry (University of Bristol, UK)
- 2008 Professor David Gross (KITP, Santa Barbara, USA)
- 2009 Professor Valery Rubakov (INR and Russian Academy of Sciences, Moscow, Russia)
- 2010 Professor Serge Haroche (Collège de France and Ecole Normale Supérieure, Paris, France)
- 2011 Professor Nathan Seiberg (Institute for Advanced Study, Princeton, USA)

International Solvay Chairs in Chemistry

- 2008 Professor Richard Saykally (University of Berkeley, USA)
- 2009 Professor Alexander Mikhailov (Max Planck Institute, Berlin, Germany)
- 2010 Professor Weitao Yang (Duke University, USA)
- 2011 Professor Jean-Luc Brédas (Georgia Institute of Technology, Atlanta, USA)

2011 International Solvay Chair in Chemistry

Professor Jean-Luc Brédas

Georgia Institute of Technology, Atlanta, USA

International Solvay Chairs

2011 International Solvay Chair in Chemistry

The fourth international Chair in Chemistry is held by Professor Jean-Luc Brédas from the Georgia Institute of Technology (USA), a world renowned chemist. Professor Brédas gave a fascinating inaugural lecture entitled "Organic Electronic Materials: A Bright Future" on November 29. The rest of his lectures will be given in April and October of 2012 and will be incorporated in the master program in chemistry of the ULB. Professor Brédas has ongoing collaborations with many Belgian research teams, including the group of Professor Yves Geerts who is his host during the period of the chair.

The chair program in chemistry was launched in 2008 thanks to a generous grant from the Solvay Company, which the Institutes gratefully acknowledge.

Jean-Luc Brédas got his PhD in chemistry at the university of Namur in 1979. He developed his research career first at the FNRS (Fonds National de la Recherche Scientifique) until 1988, when he moved to the University of Mons-Hainaut where he became Professeur Ordinaire in 1990. At the same time, he made numerous visits to the most prestigious international institutions. To name only a few: MIT, IBM research center in the United States, Caltech, the University of California at Santa Barbara, the RIKEN Institute in Japan – the list is incomplete. He has also developed an excellence pole – Matera Nova – in Mons.

He is currently the head of a large research group at Georgia Tech where he is a distinguished professor, but he has kept close ties with Belgium, in particular the university of Mons, the university of Namur, the UCL, the ULB where he holds a honorary doctoral degree and the International Solvay Institutes.

His research deals with the structural, electronic and optical properties of novel organic materials (polymer and oligomer materials) with promising characteristics in the field of electronics, photonics and information technology. His work involves theoretical investigations based on computational techniques derived from quantum chemistry and condensedmatter physics and keeps a close contact with experiment.

His research has received numerous distinctions. In Belgium, the Prix Scientifique Louis Empain in 1984, the Francqui Prize in 1997 and the Prix Quinquennal du FNRS in 2000, and he is equally well recognized abroad since he got the Descartes Prize of the European Union in 2003, the Charles Stone Award of the American Chemical Society in 2010 and many honorary degrees. He was also elected Fellow of the American Physical Society.

Jean-Luc Brédas is the author of more than 500 publications in the most prestigious journals in the field. These publications are very much appreciated by the community as indicated by his high number of citations.

International Solvay Chair

Programme

Inaugural Lecture

29 November 2011

Organic Electronic Materials: A Bright Future

The origin of the field of organic electronics can be traced back to the 1976 discovery of high electrical conductivity in polyacetylene, which led to the 2000 Nobel Prize in Chemistry. After reviewing some of the progress made over the past thirty years, we will describe the current state-of-the-art in organic electronics and photonics. We will discuss in particular the applications of organic electro-active and opticallyactive materials as active components in devices such as field-effect transistors, lightemitting diodes, photovoltaic cells, or all-optical switches. The future of organic electronic materials is bright indeed!

Programme 2012

The lectures of Professor Jean-Luc Brédas will be given in 2012.

Special Seminar

Tuesday 17 April 2012 Hybrid Interfaces between Organic Layers and Transparent Conducting Oxides

Lectures

Wednesday 18 April 2012 Charge-Transport Processes in Organic Materials

Friday 20 April 2012 Organic Electroluminescence and Applications of Organic Light-Emitting Diodes

October 2012 Title to be advised

2011 International Jacques Solvay Chair in Physics

Professor Nathan Seiberg

Institute for Advanced Study, Princeton, USA

International Solvay Chairs

2011 International Jacques Solvay Chair in Physics

The sixth international Chair in Physics took place in the Spring of 2010. It was held by Professor Nathan Seiberg from the Institute for Advanced Study in Princeton, one of the world's leading theoreticians in high energy physics. His inaugural lecture, "The World's Largest Experiment" took place on October 4 and was devoted to the LHC, a superb machine aiming at the exploration of physics at the subatomic scale.

The inaugural lecture was followed by a series of more specialized, captivating lectures on "Supersymmetry", a fascinating and powerful symmetry that might be experimentally discovered soon at CERN. These were attended by a great number of researchers from Belgium and neighbouring countries, and was part of the courses of the Amsterdam-Brussels-Paris International School in Theoretical Physics.

Nathan Seiberg got his PhD from the Weizmann Institute of Science in 1982, where he then held various positions, before moving as a Professor to Rutgers in 1989. In 1997, he became Professor at the Institute for Advanced Study in Princeton.

His research covers various aspects of high energy physics, ranging from string theory and quantum gravity to more phenomenological aspects of particle physics. In particular, he has contributed major advances to the understanding of the dynamics of quantum field theories, especially supersymmetric quantum field theories, where he provided powerful and unexpected insights, including the fundamental role of electric-magnetic duality. His work has led to many applications not only in physics but also in mathematics. He has also explored the phenomenological consequences of supersymmetry breaking, which can be tested at the Large Hadron Collider - LHC- in Geneva.

For his work, Nathan Seiberg got many honors and awards, among which one can mention: the Oskar Klein Medal in 1995, a Mac Arthur fellowship in 1996 (given "to (young) talented individuals who have shown extraordinary originality and dedication in their creative pursuits") and the most prestigious Dannie Heineman Prize for Mathematical Physics in 1998. Since 2008 he is a Member of the National Academy of Sciences of the United States.

He is regularly invited to give lectures at renowned institutions, including Harvard, Stanford, the Hebrew University of Jerusalem and ETH-Zurich.

Jacques Solvay Chair in Physics

The year 2011 marked the launch of the International "Jacques Solvay Chair in Physics". After his death in 2010, the Board of Directors of the International Solvay Institutes decided to give to the chair in physics the name of Jacques Solvay, who presided over the destiny of the Institutes for more than 50 years.

Jacques Solvay was deeply interested in science and was firmly convinced that new scientific understanding inevitably leads to the progress of humanity. His curiosity for scientific progress made it more than natural that the chair in physics be renamed after him.

The Institutes are grateful to the Solvay family who has favoured this initiative.

Programme

Inaugural Lecture

4 October 2011

The World's Largest Experiment

The Large Hadron Collider, a particle accelerator and the world's largest experiment has started operating. It allows us to explore the laws of physics at shorter distances and at higher energies than ever before. The LHC is expected to provide further information about the standard model of particle physics, which describes the elementary particles and the forces acting between them. Among the potential discoveries the LHC may yield are new insights about the origin of mass, the physics of the early universe, new symmetries of nature and extra space dimensions.

Lectures

Super-dynamics

We will review some of the techniques that allow us to control the dynamics of supersymmetric field theories emphasizing the role of electric magnetic duality. The presentation will be geared toward the subject of supersymmetry breaking and will describe the various known mechanisms leading to it. Lecture 1: Monday 10 October 2011

Lecture 2: Tuesday 11 October 2011

Lecture 3: Wednesday 12 October 2011

Lecture 4: Thursday 13 October 2011

Centenary Solvay Chair 1911-2011

Professor David Gross

Kavli Institute for Theoretical Physics at Santa Barbara, USA

International Solvay Chairs

Centenary Solvay Chair 1911-2011

On the occasion of the hundredth anniversary of the first Solvay Conference on Physics, the International Solvay Institutes have created a special "Solvay Centenary Chair".

This chair has been granted to Professor David Gross for his seminal contributions to particle physics and string theory.

In addition to recognizing his outstanding scientific merits,

the granting of the Solvay Centenary Chair to Professor Gross was also a way to express the gratitude of the International Solvay Institutes for the exceptional role he played in giving new vigor to their activities as chair of the Solvay Scientific Committee for Physics. In this position, Professor Gross has not only brought back the Solvay Conferences to their past glory, but he has also provided invaluable help and support in defining the new scientific directions.

Professor Gross played a pivotal role in activities organized for the centenary celebrations ("Copenhagen", Academic Session "Why Curiosity-Driven Science?", opening address at the 25th Solvay Conference which he chaired, moderator of the panel discussion on "The Future of Physics" at the Solvay public event).

International Solvay Chairs

Workshops and School organized by the Institutes

Be

Workshop on "Gauge Theories, Strings and Geometry"

18-20 May 2011

Workshops and School organized by the Institutes

Workshop on "Gauge Theories, Strings and Geometry"

The aim of the Workshop was to gather top level researchers working on the relations between gauge theories and string theory.

There were 21 seminars by invited speakers, and an overall attendance of about 100 participants (speakers included), many of them from abroad, which is a testimony to the interest in the field of research and the Workshop itself. The main idea addressed by the workshop is that string theory incorporates the physics of gauge theories and other non-gravitational theories, in a way which is reminiscent of holography. This powerful "duality" allows in particular cases to describe through string theory some strongly coupled phenomena, and vice-versa.

Some specific topics discussed during the Workshop were the following:

- Holographic condensed matter systems
- Emergent gravity
- Exact results in gauge theories and matrix models
- Holography, hydrodynamics and thermalization
- 3-dimensional Chern-Simons gauge theories
- 6-dimensional (2,0) theories
- BPS states counting and wall-crossing

Scientific Committee

Riccardo Argurio Université libre de Bruxelles, Belaium Frederick Denef Harvard University, USA and K.U.Leuven, Belgium Michael Douglas Stony Brook University, USA Frank Ferrari Université libre de Bruxelles, Belgium Shamit Kachru Stanford University, USA Shiraz Minwalla Tata Institute, Mumbai, India Greg Moore Rutgers, Piscataway, USA Kostas Skenderis Universiteit van Amsterdam, the Netherlands

Workshop on "Gauge Theories, Strings and Geometry"

Organizing Committee

Riccardo ArgurioUniversité libre de Bruxelles, BelgiumBen CrapsVrije Universiteit Brussel, BelgiumFrank FerrariUniversité libre de Bruxelles, BelgiumAlex SevrinVrije Universiteit Brussel, Belgium

Invited Speakers

Francesco Benini	Princeton University, USA
Jan de Boer	Universiteit van Amsterdam, the Netherlands
Frederick Denef	Harvard University, USA and K.U.Leuven, Belgium
Michael Douglas	Stony Brook University, USA
Nadav Drukker	King's College London, UK
Jerome Gauntlett	Imperial College, London, UK
Rajesh Gopakumar	Harish-Chandra Research Institute, Allahabad, India
Jonathan Heckman	Institute for Advanced Study, Princeton, USA
Shamit Kachru	Stanford University, USA
Marcos Marino	Université de Genève, Switzerland
Dario Martelli	King's College London, UK
Shiraz Minwalla	Tata Institute, Mumbai, India
Greg Moore	Rutgers, Piscataway, USA
Andrew Neitzke	The University of Texas at Austin, USA
Vasily Pestun	Harvard University, USA
Boris Pioline	Université Paris VI, France
Martin Schnabl	Academy of Sciences of the Czech Republic, Prague, Czech Republic
Kostas Skenderis	Universiteit van Amsterdam, the Netherlands
Yuji Tachikawa	Institute for Advanced Study, Princeton, USA
Stefan Vandoren	Universiteit Utrecht, the Netherlands
Herman Verlinde	Princeton University, USA

93

Workshops and School organized by the Institutes

Programme

Wednesday 18 May 2011

Chair	A. Sevrin
09:10 - 09:15	Welcome address by M. Henneaux, Director of the Solvay Institutes
09:15 - 10:00	F. Denef String glasses
10:00 - 10:45	M. Schnabl On multiple D-brane solutions in OSFT
10:45 - 11:15	Coffee Break
11:15 - 12:00	R. Gopakumar A Large N Dual to 2d CFTs
12:00 - 12:45	N. Drukker Generalized quark-antiquark potential at weak and strong coupling
12:45 - 14:30	Lunch
Chair	G. Barnich
14:30 - 15:15	K. Skenderis Holographic Inflation confronts data
15:15 - 16:00	Coffee Break
16:00 - 16:45	D. Martelli The large N limit of quiver matrix models and Sasaki- Einstein manifolds
16:45 - 17:30	S. Vandoren Black holes and black branes in Lifshitz spacetimes
Thursday 19 May 2011	
Chair	F. Ferrari
09:15 - 10:00	G. Moore Surface Defects and the BPS Spectrum of 4d N=2 Theories
10:00 - 10:45	B. Pioline Wall-crossing from quantum multi-centered black holes
10:45 - 11:15	Coffee Break

95

Workshop on "Gauge Theories, Strings and Geometry"

11:15 - 12:00	V. Pestun Localization for 't Hooft loopsin 4d N=2 theories
12:00 - 12:45	M. Mariño Torus knots and mirror symmetry
12:45 - 14:30	Lunch
Chair	R Crans
Chan	D. Oraps
14:30 - 15:15	J. Gauntlett Superfluid black branes for AdS4xS7
15:15 - 16:00	Coffee Break
16:00 - 16:45	F. Benini Quantum moduli space of N=2 Chern-Simons quivers, AdS4/CFT3 and D6-branes
16:45 - 17:30	S. Minwalla A Theory of Dissipative Superfluid Hydrodynamics

Friday 20 May 2011

Chair	R. Argurio
09:15 - 10:00	J. de Boer Holography, entanglement and thermalization
10:00 - 10:45	J. Heckman Quantum Field Theory and Fuzzy Twistors
10:45 - 11:15	Coffee Break
11:15 - 12:00	H. Verlinde Twistors and Emergent Gravity
12:00 - 12:45	S. Kachru Comments on holographic condensed matter
12:45 - 14:30	Lunch
Chair	A. Van Proeyen
14:30 - 15:15	Y. Tachikawa Surface operators and W-algeberas
15:15 - 16:00	Coffee Break
16:00 - 16:45	M. Douglas Questions about the D=6 (2,0) theory
16:45 - 17:30	A. Neitzke Gauge theory and BBB branes

Workshops and School organized by the Institutes

Participants

Alexandrov Sergei Université de Montpellier, France Arjun Bagchi University of Edinburgh, UK Asensio Cesar Universidad de Zaragoza, Spain Barnich Glenn Université Libre de Bruxelles & Solvay Institutes, Brussels, Belgium Benichou Raphael Vrije Universiteit Brussel, Belgium Queen Mary University, London, UK Berman David Vrije Universiteit Brussel, Belgium Bernamonti Alice **Boulanger Nicolas** Université Mons, Belgium Chatterjee Saikat Tata Institute of Fundamental Research, School of Mathematics, India Chemissany Wissam K.U.Leuven, Belgium Chiou Chan-Chi University of Liverpool, UK Chowdhurv Borun Universiteit van Amsterdam, the Netherlands Closset Cyril Weizmann Institute, Rehovot, Israel Universiteit van Amsterdam, the Netherlands Compere Geoffrey Copland Neil Vrije Universiteit Brussel, Belgium de Buyl Sophie Université Libre de Bruxelles, Belgium Detournay Stephane Université Libre de Bruxelles, Belgium IPhT CEA Saclay, France El-Showk Sheer Université Libre de Bruxelles, Belgium Englert François Estes John K.U.Leuven, Belgium Fanuel Michael Université Catholique de Louvain, Belgium Galli Federico Vrije Universiteit Brussel, Belgium Graham Robert Universität Duisburg-Essen, Germany IPhT, CEA Saclay, France Guica Monica Universiteit van Amsterdam, the Netherlands Heller Michal Univ-paris7, France Hertog Thomas Imeroni Emiliano Université Libre de Bruxelles & Universite Catholique de Louvain, Belgium Janssen Bert Universidad de Granada, Spain Jarvinen Matti University of Crete, Heraklion, Greece Jokela Niko Technion & University of Haifa, Oranim, Israel Université Libre de Bruxelles, Belgium Kim Sung-Soo Kleinschmidt Axel Université Libre de Bruxelles, Belgium Klevtsov Semyon Université Libre de Bruxelles, Belgium Koerber Paul K.U.Leuven, Belgium Krym Darya K.U.Leuven, Belgium Kryvobok Artem Lambda Research Optics Europe n.v., Gent, Belgium Lambert Pierre-Henry Université Libre de Bruxelles, Belgium DAMTP, University of Cambridge, UK Lee Sungjay Lippert Matthew University of Crete, Heraklion, Greece IFIC /CSIC-Universitat de València, Spain Lledo Maria Lozano Yolanda Universidad de Oviedo. Spain Lucena Gómez Gustavo Université Libre de Bruxelles, Belgium Marsh David Cornell University, Ithaca, USA Maruyoshi Kazunobu SISSA, Trieste, Italy Massai Stefano IPhT, CEA/Saclay, France Mawatari Kentarou Vrije Universiteit Brussel, Belgium

Workshop on "Gauge Theories, Strings and Geometry"

Melnikov Dmitry Tel Aviv University, Israel Meyer Rene University of Crete, Heraklion, Greece Milanesi Giuseppe Universität Bern, Switzerland Monnier Samuel LPTENS Paris, France Moskovic Micha Université Libre de Bruxelles, Belgium Musso Daniele Università di Torino - INFN Torino, Italy Pathak Krishan Kumar Columbia Institute of Technology, Raipur, India Penati Silvia Università di Milano-Bicocca, Italy Persson Daniel ETH Zürich, Switzerland Plauschinn Erik Universiteit Utrecht, the Netherlands Puhm Andrea IPhT - CEA Saclay, France Université Libre de Bruxelles, Belgium Redigolo Diego Restuccia Cosimo Max-Planck-Instituts für Gravitationsphysik, Potsdam, Germany **Rollier Blaise** Universität Bern, Switzerland Rovai Antonin Université Libre de Bruxelles, Belgium Segui Antonio Universidad de Zaragoza, Spain Max-Planck-Institut für Physik - MPG, München, Germany Shock Jonathan Spindel Philippe Université de Mons, Belgium Staessens Wieland Vrije Universiteit Brussel, Belgium National University of Singapore, Singapore Tan Meng-Chwan Thompson Daniel Vrije Universiteit Brussel, Belgium Triendl Hagen CEA Saclay, France Van Pol Bert K.U.Leuven, Belgium Van Proeyen Antoine K.U.Leuven, Belgium Vercnocke Bert CEA/Saclay, France Virmani Amitabh Université Libre de Bruxelles and Solvay Institutes, Brussels, Belgium Vonk Marcel Instituto Superior Técnico, Lisboa, Portugal Università degli Studi di Perugia, Italy Zayakin Andrey Zhang Hongbao University of Crete, Heraklion, Greece Ziaeii Babak Shiraz University-International Unit, Iran

S

98

7th Modave Summer School in Mathematical Physics

29 August -3 September 2011

Workshops and School organized by the Institutes

7th Modave Summer School in Mathematical Physics

Organizing committee

Josef Lindman Hornlund (ULB) Antonin Rovai (ULB) Federico Galli (VUB) Diego Redigolo (ULB) Frederik Coomans (KUL) Pierre-Henry Lambert (ULB) Bert Van Pol (KUL)

The school was organised by young PhD students and Post-docs of the Service de physique théorique et mathématique of the ULB, the Theoretical Particle Physics Group of the VUB, the Institute for Theoretical Physics of the KUL and the Service de physique théorique et mathématique of the Université de Mons-Hainaut.

The main goal of the school was to study mathematical tools useful for research in theoretical physics of fundamental interactions, generally supposed to be known but too seldom explained in details. The summer school consisted of about 6 hours of lectures a day, during the morning and in the late afternoon. The participants were given the opportunity to give a short presentation on their work (25-30 min). This years topics included an introduction to gauge/gravity duality, loop quantum gravity, supersymmetric sigma models, confinement as well as various aspects of black holes. The atmosphere was informal and relaxed, so as to encourage the participants to interact with the speakers, who are also young researchers. As

the level of the average participant was not known, the courses are supposed to begin with the basics, be synthetic and self-contained. Reference books were also placed at the disposal of everyone. The major part of the afternoon was left free, in order to allow spontaneous discussions and/ or meetings for questions and answers in connection with the morning's courses.

Lectures

• Matteo Giordano (University of Zaragoza): *Models for con-finment.*

After a general introduction to the problem of confinement in gauge theories, Giordano discussed its explicit realisation in two models: the twodimensional, exactly solvable Schwinger model, and threedimensional compact QED. He also reviewed possible mechanisms for confinement in four dimensions.

• Sophie de Buyl and Stephane Detournay (ULB): *Gauge/Grav-ity duality.*

Motivating the correspondence and generalities – String theory "derivation" and dictionary – Computing CFT correlators from AdS gravity – Extensions of the correspondence and recent applications.

• Andreas J. Woehr (University of Tubingen): *Loop Quantum Gravity.*

A systematic description of canonical quantization is outlined and the underlying mathemat-

ics is shown. In addition, Woehr described the kinematical quantization and the implementation and solution of the constraints. The main results of the theory such as the discovery of Planck scale discreteness of geometry and the computation of the entropy of a black hole are illustrated. Woehr also covered the main ideas behind the spin foam representation of LQG in detail for the mathematical rigorous case of 2+1 gravity. Loop Quantum Cosmology (LQC), the application of the quantization methods of LQG to homogeneous spacetimes was introduced. The main predictions of LQC such as the avoiding of the big bang singularity by extending the time evolution to negative times (big bounce) were showned.

• Malin Goteman (Uppsala University): *Supersymmetric sigma models.*

In these lectures, Goteman derived supersymmetric non-linear sigma models from basic considerations. After introducing superspace and superfields, the geometric constraints on the target space arising from extended supersymmetry on the sigma model were discussed in detail. Different aspects of Kähler geometry and hypercomplex geometry were reviewed, and a brief introduction to generalized complex geometry was given. Related topics such as gauged isometries, quotient constructions and T-duality on sigma models were covered.

101

Annual Report 2011- Workshops and School organized by the Institutes

S

103

7th Modave Summer School in Mathematical Physics

Clément Ruef (Albert Einstein Institute, Potsdam): Extremal black holes, and other supergravity solutions.

In these lectures Ruef tried to give a pedagogical overview on an interesting topic of supergravity, which are the multicenter solutions. Clément reviewed the different approaches to them (Denef, Bena, Warner; Algebraic approach) and tried to link them to holography and to black hole microstates. He first looked at supersymmetric solutions, and then to the generalisation to non-supersymmetric ones, emphisizing on their similitudes and differences.

Josef Lindman Hörnlund (ULB): Black hole uniqueness theorems.

Josef discussed in detail two famous theorems for black holes in pure four-dimensional gravity; Israel/Bunting/UI-Alam's staticity implies spherical symmetry-theorem and Hawking's stationarity implies axi-symmetry rigidity-theorem from a differential geometric perspective. He also discussed briefly the state-of-the-art uniqueness theorems of the Kerr black hole and topics such as umbillic embeddings, global foliations, conformal flatness and so on.

Participants

Universiteit Gent, Belgium Benjamin Bollen Dario Buttazzo Nele Callebaut Nicolo Colombo Frederik Coomans Sophie de Buyl Stephane Detournay Michaël Fanuel Federico Galli Matteo Giordano Gustavo Lucena Gomez ULB, Belgium Malin Göteman Kristian Holsheimer Josef Lindman Hörnlund ULB, Belgium Pierre-Henry Lambert Elisa Meunier Micha Moskovic Fredrik Ohlsson Andrea Puhm Diego Redigolo Antonin Rovai Clément Ruef

Joris Vanhoof Bert Van Pol Amitabh Virmani Andreas J. Woehr Yihao Yin

Scuola Normale Superiore, Pisa, Italy Universiteit Gent, Belgium Université Mons-Hainaut, Belgium K.U.Leuven, Belgium ULB, Belgium ULB, Belgium UCL, Belgium VUB, Belgium Universidad de Zaragoza, Spain Uppsala Universitet, Sweden Universiteit van Amsterdam, the Netherlands ULB, Belgium Université de Tours, France ULB, Belgium Göteborgs Universitet, Sweden IPhT/CEA, Saclay, France ULB, Belgium ULB, Belgium Max Planck Institute for Gravitational Physics - Albert Einstein Institute - Golm, Germany VUB, Belgium K.U.Leuven, Belgium ULB, Belgium Universität Tübingen, Germany Universiteit van Groningen, the Netherlands

<image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

14 October 2011

Workshop on "The Early Solvay Councils and the Advent of the Quantum Era"

Workshops and School organized by the Institutes

Workshop on "The Early Solvay Councils and the Advent of the Quantum Era"

To celebrate the centenary of the first Solvay Council on Physics, the International Solvay Institutes for Physics and Chemistry organized a round table meeting of distinguished historians of science. This workshop took place on 14 October 2011 at the Belgium's Royal Academy.

The idea was to make the broader public aware of the importance of the early Solvay Councils in the development of quantum physics. Seven lectures were presented by experts in the field. Special attention was given to elements which favoured the birth of new major areas in physics, and to the innovative aspects of Ernest Solvay's International Institute of Physics that paved the way to modern scientific collaboration.

Also some broader issues were addressed, such as the social and scientific environment of founder E. Solvay, the impact of the international networks of physicists and scientific institutions in the early twentieth century, and the changing role of physics in, and on the public sphere.

The workshop was a clear success: more than 100 persons registrated for this event. The Institutes intend to publish the proceedings of this Solvay Workshop, as has been done in the past for similar workshops.

Invited Members

Bernadette Bensaude-Vincent Frits Berends Diana K. Buchwald Nicolas Coupain Michael Eckert John L. Heilbron Dieter Hoffmann Ernst Homburg Helge Kragh Franklin Lambert Pierre Marage Arne Schirrmacher Jos Uffink Dirk van Delft Geert Vanpaemel Université Paris I, France Universiteit Leiden, the Netherlands Caltech, Pasadena, USA Solvay S.A., Belgium Deutsches Museum, München, Germany University of California Berkeley, USA Max-Planck-Institut für Wissenschaftsgeschichte, Berlin, Germany Universiteit Maastricht, the Netherlands Aarhus University, Denmark VUB, Brussels, Belgium ULB, Brussels, Belgium Humboldt Universität zu Berlin, Germany Universiteit Utrecht, the Netherlands Universiteit Leiden, the Netherlands K.U.Leuven, Belgium

107

Workshop on "The Early Solvay Councils and the Advent of the Quantum Era"

Programme

09:15 - 09:20	Official opening by Prof. Marc Henneaux
Chair	E. Homburg (Universiteit Maastricht)
09:20 - 09:40	P. Marage (ULB) Introductory talk
09:40 - 10:00	F. Lambert (VUB) <i>Einstein's Witches' Sabbath in Brussels:</i> from the Legend back to the Facts
10:00 - 10:30	J.L. Heilbron (University of California Berkeley) The Impact of the First Two Solvay Conferences on the British Attendees and their Collaborators
Chair	J. Uffink (Universiteit Utrecht)
11:00 - 11:30	M. Eckert (Deutsches Museum, Munich) From X Rays to the h-Hypothesis: Sommerfeld and the Early Quantum Theory, 1909-1913
11:30 - 12:00	D. Hoffmann (Max-Planck-Institut für Wissenschaftsgeschichte) Walther Nernst, Max Planck and Others – Berlin Physicists and their Role in the Organization and Running of the First Solvay Conference
Chair	G. Vanpaemel (K.U.Leuven)
14:00 - 14:30	N. Coupain (Solvay S.A.) <i>Ernest Solvay's scientific networks.</i> From personal research to academic patronage
14:30 - 15:00	F. Berends (Universiteit Leiden) Lorentz, the Solvay Councils and the Physics Institute
15:00 - 15:30	A. Schirrmacher (Humboldt Universität zu Berlin) Who made quantum theory popular? On the relation between the early Solvay Councils and the emerging network of centers for quantum physics
16:00 - 17:30	Round table discussion chaired by H. Kragh (Aarhus) Members of the panel: B. Bensaude-Vincent (Paris), J. Heilbron (Berkeley), D. Hoffmann (Berlin), D. van Delft (Leiden).
19:30	Banquet Dinner - Hôtel Métropole

Annual Report 2011- Workshops and School organized by the Institutes

The International Doctoral School

28 September -14 October 2011

61 for Din Wilking

The International Doctoral School

"Quantum Field Theory, Strings and Gravity"

This school was organized for the fifth consecutive year in the fall of 2011 by the International Solvay Institutes and the Service de Physique Théorique et Mathématique at U.L.B., the Theoretical Particle Physics group at V.U.B, the Laboratoire de Physique Théorique at École Normale Supérieure in Paris and the Institute for Theoretical Physics in Amsterdam. Each of the organizing sites (Brussels, Paris and Amsterdam) welcomed the students for intense three-week sessions separated by one-week breaks.

The participants were all beginning graduate students, from the organizing nodes and also from various other institutions in France, the Netherlands and Belgium. All the students followed more than 250 hours of lectures organized in various courses. The main goals were to strengthen their training in quantum field theory and string theory and to introduce them to cutting-edge research problems in the field. In Brussels, Prof. Adel Bilal and Alberto Lerda taught the Advanced Quantum Field Theory (30 h) and Introduction to String Theory (24 h) courses respectively, carrying on their much appreciated contribution to the school. Moreover, Prof. Nathalie Deruelle, from the AstroParticule Cosmologie laboratory in Paris VII University, joined our team of teachers this year and was in charge of lectures on General Relativity, Cosmology and Black holes (24 h). Finally, Prof. Nathan Seiberg, holder of the Solvay Chair in Physics, talked about the Large Hadron Collider experiment in his inaugural lecture and then delivered a series of four two-hours lessons on supersymmetric gauge theories and curved superspace.

This programme is unique in Europe. It provides a great opportunity for the students to be introduced, at an unusually early stage in their training, to the "Big Picture" of a highly technical field that covers large areas of Physics and Mathematics. The possibility to meet leading experts in an informal setting and to share research interests and insights with fellow graduate students from other countries, which may become long-term collaborators after their PhD study, is also a great asset of the School.

In Brussels, the School greatly benefits from the assistance of the International Solvay Institutes, both through financial and organizational supports.

The School has now reached maturity, with an excellent organization, thoroughly chosen topics and a smooth transition between the trainings offered at the different nodes. All the participants seem extremely enthusiastic about this programme and we are looking forward to welcoming the students next year.

FRANK FERRARI

"The purpose of my teaching at the doctoral school was to provide the students with tools that would allow them to better understand current gravitational theories.

The list of such tools includes:

- Differential geometry concepts
- An advance presentation on black holes in general relativity
- A presentation on current cosmology themes (mainly inflation and black energy). "

NATHALIE DERUELLE

S

"Quantum Field Theory, Strings and Gravity"

The Brussels Organizing Committee

Riccardo Argurio	ULB
Ben Craps	VUB
Frank Ferrari	ULB

Participating Institutions

• Institute for theoretical physics, Universiteit van Amsterdam, the Netherlands

• Laboratoire de physique théorique, Ecole Normale Supérieure (Paris), France

• Physique théorique et mathématique, ULB / Theoretical particle physics, VUB, Brussels, Belgium.

Programme Brussels 2011

- String Theory Alberto Lerda (Torino, Italy);
- General Relativity, Cosmology and Black Holes – Nathalie Deruelle (AstroParticule Cosmologie, Paris VII, France);
- Advanced Quantum Field Theory Adel Bilal (ENS Paris, France);

• Supersymmetric gauge theories and curved superspace – Nathan Seiberg (Princeton, USA).

Participants

Borsato Riccardo	Universiteit Utrecht,
	the Netherlands
Busch Xavier	Université Paris Sud, Orsay,
	France
de Lange Paul	Universiteit van Amsterdam,
0	the Netherlands
Dugard J-Philippe	Université Paris-Sud 11,
	France
Hörtner Sergio	Université libre de Bruxelles,
C C	Belgium
Karlsson Anna	Chalmers University of
	Technology, Sweden
Kelm Maximilian	ETH Zurich, Switzerland
Knoops Rob	CERN, Switzerland/
·	K.U.Leuven, Belgium
Krämer Manuel	Universität zu Köln, Germany
Laidet Julien	Ecole polytechnique,
	France
Mayerson Daniel	Universiteit van Amsterdam,
	the Netherlands
Mosk Benjamin	Universiteit van Amsterdam,
·	the Netherlands)
Pinzani F. Natalia	Universiteit van Amsterdam,
	the Netherlands)
Taels Pieter	Vrije Universiteit Brussel,
	Belgium
Vanel Thomas	Université Paris 6 (UPMC) -
	laboratoires LPTHE &
	LPTENS, France
Vanhoof Joris	Vrije Universiteit Brussel,
	Belgium
Vollenweider Carl	ETH Zurich, Switzerland

Annual Report 2011- Blablabla

A Long and Complicated Friendship: Albert Einstein & the Solvay Conferences, 1911-1933

Professor Diono K. BUCHWALD Caltech, Pasadena, USA

1st February 2011

Abstract

As one of the few participants of the First International Solvay Congress in Physics held in Brussels in 1911, Albert Einstein was then a relatively unknown young scientist, present thanks to the foresight of H.A. Lorentz. He was both honored to be invited and yet skeptical of the meeting's stated goal of resolving the challenge before them, namely the issues posed by the newly formulated quantum theory. By the time he left Europe in 1933, Einstein had become a distinguished attendee, whose occasional absences were always lamented. Why did Einstein

choose to attend some, but not all conferences? What role did he play in their organization, in the formulation of topics, and in the research agenda of the Solvay Institute? And how did the significance and reach of the Solvay Congresses evolve before the Second World War? This examination will draw upon original documentary evidence from Einstein's correspondence and writings with scientists, family, and friends, as well as recent scholarship in the history of physics.

Invisible Cloaks & a Perfect Lens

Professor John PENDRY Imperial College London, UK

1st March 2011

Abstract

Electromagnetism encompasses much of modern technology. Its influence rests on our ability to deploy materials that can control the component electric and magnetic fields. A new class of materials has created some extraordinary possibilities such as a negative refractive index, and lenses whose resolution is limited only by the precision with which we can manufacture them. Cloaks have been designed and built that hide objects within them, but remain completely invisible to external observers. The new materials, named metamaterials, have properties

determined as much by their internal physical structure as by their chemical composition and the radical new properties to which they give access promise to transform our ability to control much of the electromagnetic spectrum.

The Polymer Chemistry of Carbon Materials and Graphenes

Professor Klaus MÜLLEN

Max-Planck-Institute for Polymer Research, Mainz, Germany

22 March 2011

Abstract

Research into energy technologies and electronic devices is strongly governed by the available materials. We introduce a synthetic route to graphenes which is based upon the cyclodehydrogenation ("graphitization") of well-defined dendritic (3D) polyphenylene precursors. This approach is superior to physical methods of graphene formation such as chemical vapour deposition or exfoliation in terms of its (i) size and shape control, (ii) structural perfection, and (iii) processability (solution, melt, and even gas phase). The most convincing case is the synthesis of graphene nanoribbons under surface immobilization and in-situ control by scanning tunnelling microscopy.

Columnar super structures assembled from these nanographene discs serve as charge transport channels in electronic devices. Field-effect transistors (FETs), solar cells, and sensors are described as examples. Upon pyrolysis in confining geometries or "carbomesophases", the above carbon-rich 2D- and 3D- macromolecules transform into unprecedented carbon materials and their carbon-metal nanocomposites. Exciting applications are shown for energy technologies such as battery cells and fuel cells. In the latter case, nitrogen-containing graphenes serve as catalysts for oxygen reduction whose efficiency is superior to that of platinum.

New Tools for Forecasting Old Physics at the LHC

Professor Lance DIXON

SLAC National Accelerator Laboratory, Menlo Park, USA & CERN, Genève, Switzerland

26 April 2011

Abstract

The Large Hadron Collider at CERN is now exploring the energy frontier of particle physics, searching for new particles and interactions.

For the LHC to uncover many types of new physics, the "old physics" produced by the Standard Model must be understood very precisely. For decades, the central theoretical tool for this job was the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated LHC events with many jets in the final state, events that are already visible in the initial LHC data. Over the past few years, alternative

methods to Feynman diagrams have come to fruition. These new "on-shell" methods are based on the old principle of unitarity. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. I will explain how and why these methods work, and present some of the recent state-ofthe-art results that have been obtained with them.

Colloquia

Models and detection methods for dark matter

Professor Lars BERGSTRÖM Stockholm University, Sweden

17 May 2011

Abstract

The problem of the identity of dark matter belongs to the most important ones in physics and cosmology. Presently, three different methods are used for its identification: Accelerator searches, direct detection and indirect detection. In this talk, I will describe the situation in this rapidly developing field, discussing advantages and drawbacks of each method, and discuss strategies to combine them in order to get closer to a solution of this enigmatic problem. Particular focus will be given to weakly interacting massive particles such as those

implied by supersymmetric models, but other candidates will also be discussed. Future prospects for experimental progress in this field will be discussed.

Photonic Metamaterials: Challenges and Opportunities

Professor Costos M. SOUKOULIS Iowa State University, Ames.

Iowa State University, Ames, Iowa, USA & University of Crete, Heraklion, Greece

24 May 2011

Abstract

In the last decade, a new area of photonics research has emerged, that has given the ability to produce materials with entirely novel electromagnetic properties. These new materials are known as "metamaterials" for their ability to take beyond conventional materials. Clearly, the field of metamaterials can develop mould-breaking technologies for a plethora of applications, where control over light (or more generally electromagnetic radiation) is a prominent ingredientamong them telecommunications, solar energy harvesting, biological and THz imaging

and sensing, optical isolators and polarizers.

In this talk, I give an introduction into this emerging field, review recent progress, and highlight remaining challenges and opportunities.

The World's Largest Experiment 2011 International Jacques Solvay Chair in Physics Inaugural Lecture

Professor Nathan SEIBERG Institute for Advanced Study, Princeton, USA

4 October 2011

Abstract

The Large Hadron Collider, a particle accelerator and the world's largest experiment has started operating. It allows us to explore the laws of physics at shorter distances and at higher energies than ever before. The LHC is expected to provide further information about the standard model of

particle physics, which describes the elementary particles and the forces acting between them. Among the potential discoveries the LHC may yield are new insights about the origin of mass, the physics of the early universe, new symmetries of nature and extra space dimensions.

Bioinspired chemistry and artificial photosynthesis: from hydrogenases to catalysts for water splitting and hydrogen production

Professor Marc FONTECAVE

Université Joseph Fourier, Grenoble, France & Collège de France, Paris, France

25 October 2011

Abstract

One of the grand challenges of twenty-first century chemistry is to convert abundant energy-poor molecules to energy rich molecules using sunlight as the energy source. Hydrogen from water is such a solar fuel. However its production and use currently depend on noble metals such as Platinum which is expensive and not abundant enough. Viable renewable energy systems will require new catalysts made from earth-abundant materials, cheap and robust.

We will describe our bioinspired strategy, aiming at reproducing hydrogenase active sites, which leads to remarkable nickel- and ironbased as well as cobalt-based (photo)catalysts for hydrogen production and oxidation.

Organic Electronic Materials: A Bright Future 2011 International Solvay Chair in Chemistry Inaugural Lecture

Professor Jean-Luc BREDAS Georgia Institute of Technology, Atlanta, USA

29 November 2011

Abstract

The origin of the field of organic electronics can be traced back to the 1976 discovery of high electrical conductivity in polyacetylene, which led to the 2000 Nobel Prize in Chemistry. After reviewing some of the progress made over the past thirty years, we will describe the current state-of-the-art in organic electronics and photonics. We will discuss in particular the applications of organic electro- active and opticallyactive materials as active components in devices such as field-effect transistors, lightemitting diodes, photovoltaic cells, or all-optical switches. The future of organic electronic materials is bright indeed!

Quantum criticality, high Tc superconductivity and the AdS/CFT correspondence of string theory

Professor Jan ZAANEN

Lorentz Institute for Theoretical Physics, Leiden University, the Netherlands

13 December 2011

Abstract

The general nature of matter formed from fermions is mysterious. The established methods of many body quantum physics fail and empirically one finds that the phenomenological Fermi-liquid and BCS theories fail: non Fermi-liquid quantum critical metals are observed in heavy fermion systems and cuprate high Tc superconductors. Remarkably, it appears that the mathematics of string theory is capable of describing such states of fermion matter. The AdS/CFT correspondence translates this problem into an equivalent general-relativity problem involving the propagation of classical fields in an

Anti-de-Sitter space-time with a black hole in its center. Triggered by the succes of AdS/ CFT predicting the low viscosity of the quark-gluon plasma, the focus shifted very recently to the fermions, creating much excitement. It appears that both emergent Fermi-liquids and non Fermi-liquids can be gravitationally encoded, as well as 'holographic' superconductors having suggestive traits in common with the real life high Tc variety.

Annual Report 2011

Workshops sponsored by the Institutes

Workshops sponsored by the Institutes

126

Colloquium on "Cosmology : The Science of the Universe" 19 March 2011

Programme

10:00	Introduction by Professor Alexander Sevrin (Vrije Universiteit Brussel), President of the Colloquium
10:10	Professor Carlos Frenk (Durham, UK) <i>Recreating the cosmos in a supercomputer: the evolution of</i> <i>galaxies and larger scale structures</i>
11:20	Professor Ariel Goobar (Stockholm University, Sweden) Observational Cosmology and Supernovae
12:30	Lunch

Poster Session with contributions of the Belgian research groups working in the Cosmology and Particle Astrophysics

14:00	Professor Paolo De Bernardis (Sapienza-Università di Roma, Italy) <i>Cosmic Microwave Background Radiation and the Big Bang</i>
15:10	Professor Joseph Silk (Oxford University, UK) <i>Particle cosmology, dark matter and dark energy</i>
16:30	Closing Reception

Colloquium on "Cosmology: The Science of the Universe"

THE ROYAL ACADEMIES FOR SCIENCES AND THE ARTS OF BELGIUM COLLOQUIUM

Workshops sponsored by the Institutes

Workshop on "Cosmological **Frontiers in Fundamental Physics**" 14 – 17 June 2011 - APC, Paris

The purpose of this informal workshop was to discuss and exchange ideas on recent developments at the interface of modern cosmology and fundamental physics.

Scientific Areas: Cosmology, String Theory, Particle Physics, Quantum Gravity

This workshop was the fifth in a series organized jointly by the Perimeter Institute (Waterloo, Canada), the International Solvay Institutes (Brussels, Belgium) and APC (Denis Diderot University, Paris, France). The last edition was at the Perimeter Institute in June 2010

Local Organizing Committee Confirmed speakers

Thomas Hertog
David Langlois
Daniele Steer
Sarodia Vydelingum

APC, France APC, France APC, France APC, France

Scientific Advisory Committee

Alessandra Buonanno	University of Maryland,
Latham Boyle	Perimeter Institute, Canada
Ben Craps Thomas Hertog David Langlois Viatcheslav Mukhanov Misao Sasaki Alexei Starobinsky Paul Steinhardt	VUB/Solvay, Belgium APC, France APC, France LMU, Germany Kyoto University, Japan Landau Institute, Russia Princeton University, USA

Niayesh Afshordi	Perimeter Institute,
Devial Devices	Canada
Daniel Baumann	IAS, USA
Iosif Bena	CEA Saclay, France
Adam Brown	Princeton University,
	USA
Alessandra Buonanno	University of Maryland, USA
Cliff Burgess	Perimeter Institute,
-	Canada
Xingang Chen	Cambridge University, UK
Neil Cornish	Montana State University
	USA
Curt Cutler	JPL, USA
Thibault Damour	IHES, France
Gia Dvali	LMU, Germany/NYU, USA
Ken Ganga	APC, France
Gary Horowitz	UCSB, USA
Scott Hughes	MIT, USA
Jean-Luc Lehners	MPI Potsdam, Germany
Liam McAllister	Cornell University, USA
Rob Myers	Perimeter Institute,
	Canada
Alberto Nicolis	Columbia University, USA
Misao Sasaki	Kyoto University, Japan
Bernard Schutz	AEI, Germany
Alexei Starobinsky	Landau Institute, Russia
Takahiro Tanaka	Kyoto University, Japan
Benjamin Wandelt	IAP, France/University of
	Illinois, USA
David Wands	University of Portsmouth, UK
Jun'ichi Yokoyama	Tokyo University, Japan

129

4th MHD Summer Program 31 July – 12 August 2011

The 4th MHD summer program in Brussels, organized by the "Service de Physique Statistique et des Plasmas", took place between the 31st of July and the 12th of August 2011. For this edition, 15 guest scientists were accommodated at ULB to work on projects related to the modeling and simulation of hydro- and magnetohydro- dynamic flows.

As in the previous editions of this event, the objective was not to have lectures or seminars but to spend most of the time on research projects and benefit from the proximity of fellow workers to collaborate and exchange ideas.

Topics and projects

• usage of the OpenFoam CFD library for fusion resistive non-linear plasma simulations;

• dynamic simulations of Lorentz force velocimetry with magnetic dipoles;

• finite element simulations of liquid-metal flows at high Hartmann numbers;

• magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities;

• particle transport in MHD turbulent channel flows;

• modeling of free surface lithium flows; simulation of magnetohydrodynamic flows in toroidal ducts;

• spectral methods for wall bounded MHD flows; MHD instabilities in aluminum reduction cells; • study of energy transfers in guasi-static MHD turbulence;

• impact of scale separation on the non-linear energy transfers in MHD turbulence;

• algorithms for the magnetic induction equation on unstructured grids;

• study of anisotropy in MHD ring to ring transfers.

For the Service de Physique Statistique et des Plasmas, hosting such an event allows its members, and in particular young post-docs and PhD students to collaborate and network with leading scientists in their fields of research. Given the renewed success of the programme, a 5th edition is likely to be organized in 2013.

Participants

Benos Lefteris	University of Thessaly
DUECK INUITIDS	Ilmenau
Cambon Claude	Ecole centrale de Lyon
Cassart Benjamin	ULB
Dechamps Xavier	ULB
Degrez Gérard	ULB
Dimopoulos Dimitrios	University of Thessaly
Dritselis Chris	University of Thessaly
Gordeev Sergej	Karlsruhe Institute of
	Technology
latridis Alexandros	University of Thessaly
Kakarantzas Sotirios	ULB
Knaepen Bernard	ULB
Kornet Kacper	Coventry University

Krasnov Dmitry

Lessines Thomas Molokov Sergei Petrisor Iulian Potherat Alban Reddy Sandeep Teaca Bogdan

Tympel Saskia

Vantieghem Stijn Verma Mahendra Technische Universität Ilmenau ULB Coventry University University of Craiova Coventry University I. I. T. Kanpur Ecole Polytechnique Fédérale de Lausanne Technische Universität Ilmenau ETH Zürich

Seminars

The list below gives the joint inter-university weekly seminars co-organized by the International Solvay Institutes and the research groups in theoretical and mathematical physics of the ULB, the VUB, the KUL and the UMons-Hainaut. It also gives the group seminars of the research team of the Director.

Massive Gravity, Viatcheslav Mukhanov (Arnold Sommerfeld Center, Munich) – 2 February 2011.

Type IIB consistent truncations and their applications to holography, Davide Cassani (Padua University) – 2 February 2011.

Transport in holographic (*super*)*fluids*, Piotr Surowka (VUB) – 9 February 2011.

Thermalization of strongly coupled field theories, Ben Craps (VUB) – 9 February 2011.

Negative refractive index and anti-M2 branes, Davide Forcella (ULB) – 16 February 2011.

Static supersymmetric black holes in AdS4 with spherical symmetry, Stefan Vandoren (Utrecht) – 16 February 2011.

String Theory and The Velo-Zwanziger Problem, Rakibur Rahman (Scuola Normale Superiore) – 17 February 2011.

D-brane non-perturbative effects and geometric deformations, Anatoly Dymarsky (Princeton) – 23 February 2011. Holographic quantum criticality induced by magnetic fields, Eric D'Hoker (UCLA) – 23 February 2011.

A U-duality supermultiplet, Martin Cederwall (Chalmers) – 2 March 2011.

Holographic Superconductors and Negative Refractive Index, Massimo Siani (KUL) – 2 March 2011.

Massive and critical (super) gravities in $d \ge 3$, Jan Rosseel (Groningen) – 9 March 2011.

Supersymmetry breaking in conifold throats, Nick Halmagyi (LPTHE, Paris) – 9 March 2011.

Interpreting and eliminating infrared divergences via a local theory of observables in inflationary cosmology, Diego Chialva (UMons) – 16 March 2011.

An action principle for Vasiliev's faur-dimensional higher-spin gravity, Nicolas Boulanger (UMons) – 16 March 2011.

Warped AdS/(C)FT correspondences and a digression on Chiral(og) gravity, Stéphane Detournay (ULB) – 23 March 2011.

Non-local F(R) gravity or SFT motivated cosmology, Alexey Koshelev (VUB) – 23 March 2011.

Wall-Crossing from Moduli Dynamics, Sungjay Lee (DAMTP) – 30 March 2011. Fusion of line operators, and quantum integrability in AdS/ CFT, Raphael Benichou (VUB) – 30 March 2011.

Monopole operators and dualities in 3d CS matter theories, Mauricio Romo (UC Santa Barbara) – 6 April 2011.

A non-compact elliptic genus, Jan Troost (LPTENS Paris) – 6 April 2011.

Superstring Sigma Models Computation Using the Pure Spinor Formalism, Oscar Bedoya (Sao Paulo) – 11 April 2011.

Matrix models for random partitions: integrability and applications, Alexander Alexandrov (CEA, Ecole Normale Supérieure, ITEP) – 27 April 2011.

Electroweak Vector Boson Production in Association with Jets at the LHC, Lance Dixon (SLAC) – 27 April 2011.

Black Hole Enigmas in AdS3/ CFT2, Borun Chowdhury (Amsterdam) – 4 May 2011.

2De gravity and Kahler metrics, Semyon Klevtsov (ULB) – 4 May 2011.

Randomized Wilson loops, reduced models and the large D expansion, Oleg Evnin (ITP, Beijing) – 11 May 2011.

Anatoly Konechny (Heriot-Watt University, Edinburgh) – 11 May 2011.

Seminars

High Density Holographic Baryons, Dmitry Melnikov (Tel Aviv University) – 16 May 2011.

Jock McOrist (DAMPT) – 25 May 2011.

Giulio Bonelli (SISSA) – 25 May 2011.

Topics on 3d gravity and AdS/ CFT, Alan Garbarz (University of Buenos Aires) – 31 May 2011.

Effective action in a higher-spin background, Xavier Bekaert (Tours U., CNRS) – 1 June 2011.

The supermagic triangle is 30, Bernard L. Julia (Ecole Normale Supérieure) – 30 June 2011.

New Results on Supersymmetric Solitons in String Theory, Eric A. Bergshoeff (University of Groningen) – 30 June 2011.

Trace Anomaly Matching and the a-Theorem, Adam Schwimmer (Weizmann Institute of Science, Israel) – 7 September 2011.

Holograms of Conformal Chern-Simons Gravity, Hamid R. Afshar – 12 September 2011.

Curved Superspace, Nathan Seiberg (IAS, Princeton) – 5 October 2011.

Thermodynamics and instabilities of a strongly coupled anisotropic plasma, David Mateos (Barcelona) – 5 October 2011. *Mellin amplitudes in AdS/CFT,* Miguel Paulos (LPTHE, Paris) – 12 October 2011.

Holographic Correlators of Giant Gravitons, Konstantinos Zoubos (Niels Bohr Institute, Copenhagen) – 12 October 2011.

Two Dimensional Quantum Gravity Revisited, Frank Ferrari (ULB) – 17 October 2011.

Global Aspects of F-theory GUTs, Sakura Schäfer-Nameki (King's College London) – 26 October 2011.

Supergravity as Generalised Geometry, Daniel Waldram – 26 October 2011.

Thermalization and entanglement following a non-relativistic holographic quench, Esko Keski-Vakkuri (Helsinki University) – 9 November 2011.

M-theory and generalised geometry, David Berman (Queen Mary) – 9 November 2011.

Higher-spin theories in odd dimensions, Shailesh Lal (Harish-Chandra Research Institute) – 16 November 2011.

M5's, D4's, 5D SYM and instantons, Neil Lambert (CERN Theory Division) – 16 November 2011.

Dimensional reductions of Double Field Theory, Diego Marqués (CEA Saclay) – 23 November 2011. Holographic no-boundary measure, Thomas Hertog (K.U.Leuven) – 23 November 2011.

T-duality for massive stringy states: A world sheet perspective, Jnanadeva Maharana (Bhubaneswar, India) – 30 November 2011.

A ten-dimensional action for non-geometric fluxes, Magdalena Larfors (LMU, Munich) – 30 November 2011.

Unbalanced Holographic Superconductors and Spintronics, Francesco Bigazzi (University of Florence and INFN) – 7 December 2011.

Trivertices and SU(2)'s, Amihay Hanany (Imperial College London) – 7 December 2011.

Momentum space entanglement and renormalization in quantum field theory, Vijay Balasubramanian (University of Pennsylvania) – 14 December 2011.

Observing holographic superconductivity in the laboratory, Jan Zaanen (Leiden) – 14 December 14, 2011.

Annual Report 2011

Research on Gravitation, Strings and Cosmology

Groups of Professors Marc Henneaux (ULB) and Alexander Sevrin (VUB)

Research on Gravitation, Strings and Cosmology

Researchers

Permanent Members

Riccardo Argurio (ULB) Glenn Barnich (ULB) Andrés Collinucci (ULB) Ben Craps (VUB) Frank Ferrari (ULB) Marc Henneaux (ULB) Thomas Hertog (APC Paris) Axel Kleinschmidt (ULB) Alexander Sevrin (VUB)

Postdoctoral Members

Raphael Benichou (VUB) David Chow (ULB) Neil Copland (VUB) Sophie de Buyl (ULB) Stephane Detournay (ULB) Davide Forcella (ULB) Phillip Grajek (VUB) Sung-Soo Kim (ULB) Semyon Klevtsov (ULB) Alexey Koshelev (VUB) Manuela Kulaxizi (ULB) Alberto Mariotti (VUB) Kentarou Mawatari (VUB) Jakob Palmkvist (ULB) Rakibur Rahman (ULB) Piotr Surowka (VUB) Daniel Thompson (VUB) Amitabh Virmani (ULB)

Graduate Students

Alice Bernamonti (VUB) Karen De Causemaeker (VUB) François Dehouck (ULB) Federico Galli (VUB) Sergio Hortner (ULB) Pierre-Henry Lambert (ULB) Elias Leite Mendonça (ULB) Josef Lindman Hörnlund (ULB) Gustavo Lucena Gómez (ULB) Micha Moskovic (ULB) Bettina Oexl (VUB) Diego Redigolo (ULB) Antonin Rovai (ULB) Wieland Staessens (VUB) Dimitri Terryn (VUB) Cedric Troessaert (ULB) Joris Vanhoof (VUB)

Master Students

Zino Boisdenghien (VUB) Laura Donnay (ULB) Martin Hendrick (ULB) Blagoje Oblak (ULB) Pieter Taels (VUB) Thomas in 't Veld (VUB)

Research Summary

Of all the fundamental forces (electromagnetism, gravitation, weak and strong nuclear forces), gravity remains the most mysterious. In spite of its remarkable successes, Einstein's general theory of relativity, which has led to an unprecedented geometrization of physics, is an unfinished revolution. Fully unravelling the mysteries of the gravitational force is a long-term research goal.

The group has a long-standing interest and a demonstrated expertise in quantum gravity, quantum field theory, string theory and M-theory, black holes, cosmology, the cosmological constant problem ("dark energy") and the novel mathematical structures underlying these questions. These challenging areas raise many of the most profound issues in theoretical physics.

A central thread in the study of gravity and the fundamental interactions is the concept of symmetry (global and local). Some of the general background is given below.

137

Researchers & Research Summary

General Framework

The standard model of particle physics is based on quantum field theory, a framework that reconciles Poincaré invariance with quantum mechanics and allows one to understand the electromagnetic and the two types of nuclear interactions. The fourth fundamental interaction, gravitation, is described by Einstein's theory of general relativity. Experiments as well as theoretical arguments indicate that neither the standard model, nor general relativity can be complete.

Purely theoretical attempts at generalizations are constrained, of course, by mathematical consistency and the need to incorporate the previous theories in the domains where they have been successful. Additional guiding principles are needed, though. Symmetry is such a principle and pervades most of the research carried out in theoretical high energy physics.

The Yang-Mills type theories for the three microscopic forces of elementary particle physics are invariant under Poincaré symmetries, the symmetry group of flat space-time. These theories admit in addition certain internal symmetries known as gauge symmetries. In general relativity, gravitation arises when going from a flat to a curved spacetime, and Poincaré symmetries become part of the gauge group of diffeomorphisms. In models that go beyond the existing theories, other symmetries come to the front.

Supersymmetry

Supersymmetry is a natural extension of Poincaré symmetry in the presence of fermionic matter fields. Supersymmetric extensions of the standard model will be tested at the experiments planned in the Large Hadron Collider at CERN in Geneva.

Supersymmetry is also an important ingredient of string theory, a model for unification of the four fundamental interactions and for a microscopic formulation of gravity. At low energy, higher dimensional theories of gravitation emerge that include supersymmetry as part of their gauge group together with supersymmetric extensions of Yang-Mills gauge theories.

Dualities

One of the first theoretical extensions of Maxwell's theory of electromagnetism has been the inclusion of magnetic sources. The introduction of such sources is motivated by the desire to preserve invariance under duality rotations, a symmetry of the source-free equations. The solution that is dual to the Coulomb solution describing a static pointparticle electron is a magnetic monopole. In some sense, black hole solutions in gravitational theories are the analog

of the Coulomb solution to Maxwell's theory.

In nonlinear theories like Yang-Mills theories, dualities relate a strongly coupled regime to one at weak coupling, where standard perturbative computations may be performed. In supersymmetric situations, these dualities become tractable. Finally, dualities between different string theories as well as holographic duality between gauge and gravity theories feature prominently in most of the recent developments in string theory.

Hidden symmetries

Hidden symmetries in gravity and string theory arise in compactifications of supergravity theories and among the string duality groups. The algebraic structure of these symmetries is related to infinite-dimensional Lorentzian Kac-Moody algebras, in particular those of E10 and E11.

Research carried out in 2011

We have continued our research along the general directions outlined above. This has led to 71 published papers and preprints submitted for publication. These are listed below. Specific achievements by some researchers from the group are also described in the subsequent pages.

Research on Gravitation, Strings and Cosmology

Davide Forcella Postdoctoral Member (ULB)

One of the ultimate goals of String Theory is to give a consistent theory of quantum gravity (the description of gravity at the microscopic scale) coupled with the Standard Model (the theory that describe the interactions of the fundamental particles) or some extension of it, and to give insights into non-perturbative and strong coupling dynamics of field theories. String theory indeed contains gravity and gauge theory. In particular it contains non perturbative objects like D-branes and M-branes. They are extended massive states that deform the space-time and a gauge theory lives on their world volume. For this reason branes can be interpreted as links between gravity (geometry) and gauge theories. Some of the major insights in the relation between gravity and gauge theory come from the study of systems in which the gravity decouples from the gauge theory dynamics, but the geometry still encodes important information about the field theory. The relevant setups are local models: the branes sit at a geometrical singularities and they extend in the four/three dimensional space-time. The properties of the field theory are encoded in the geometrical data and the gravity decouples from the gauge theory due to the fact that the geometry is non-compact. This is the basic setup that realizes the celebrated gauge/gravity correspondence: the effective action of a strongly coupled four/three dimensional gauge theory is classical geometry and string theory in a parent ten/eleven dimensional space-time. In this setup,

string theory is able to describe very exotic states of matter and the strongly coupled phase of many field theories for which we have nowadays very few other tools.

In 2011, I investigated this setup to gain new insights into two main problems: the understanding of non-supersymmetric strongly coupled phase of M-theory, and the investigation of new exotic electromagnetic properties of charged fluids.

Non-supersymmetric M2 branes

The gauge/gravity correspondence is quite well understood if supersymmetry (a symmetry of nature that map boson into fermions and vice-versa) is preserved. Unfortunately in our world supersymmetry seems to be broken at low energy. For this reason, if we want to gain insight into the strongly coupled dynamics of realistic field theory, we are supposed to study the gauge/gravity correspondence in the nonsupersymmetric regime.

In collaboration with professor Alberto Zaffaroni, in University of Milano Bicocca, I obtained, for the first time, an infinite set of non-supersymmetric three dimensional field theories with a very well defined strong coupling dynamics. We studied part of the spectrum of their observable and we explained the relation of these field theories with the dual geometry. These field theories live on

139

Research Interests of some Members

anti-M2 branes at the tip of a eight dimensional geometrical singularities and they could shed new lights on some of the fundamental properties of M-theory, a still quite mysterious theory supposed to complete string theory at strong coupling. Moreover these theories are part of the models that are supposed to describe the strongly coupled phase of some three dimensional condensed matter systems and high temperature superconductors, and they can, for these reasons, contribute to offer a new prospective on such systems.

Electromagnetic properties of charged fluids

Electromagnetic waves in continuous media have been a large field of investigation in the last years. Indeed light waves have an amazing behavior in a new class of artificial materials (metamaterials), created in laboratories about a decade ago. One of the most attractive properties is the negative refractive index: namely the energy flux and the phase velocity of a wave packet propagate in opposite directions for a certain range of frequencies. This behavior led both to promising physical applications and to interesting theoretical developments.

In 2011, in collaboration with other researchers from VUB, Leuven and San Diego (California) University, I have shown that negative refraction is a generic phenomenon in homogeneous and isotropic systems that have a finite non zero charge density and that admit a low energy description in term of hydrodynamical equations. This conclusion is valid both for normal and super conducting fluids, and for relativistic or non relativistic systems. Before our study, negative refraction was supposed to exist only in artificial materials constructed in the laboratory. Our discovery points towards the presence of negative refraction in natural materials and in particular in the conducting bands of some metals, and in the Quark Gluon Plasma, a strongly coupled plasma at finite charge density that should be created in high energy physics colliding experiments.

It could give life to the first experiments motivated by string theory and the discovery of new exotic electromagnetic phenomena both in strongly coupled phases of field theory and in condensed matter setups.

Research on Gravitation, Strings and Cosmology

Pierre-Henry Lambert Second year PhD student (ULB)

All the known physical phenomena can be described using two different mathematical theories: the theory of general relativity (describing the gravitational interaction) and the quantum theory of fields (describing the weak, strong and electromagnetic interactions). Nowadays in 2012, it's not quite clear to see how these two pillars take part in the same edifice whose building is a big challenge for his architects that are the theoretical physicists. In others words, one of the important goal in theoretical physics is to conceptually unify the quantum and the gravitational worlds.

Symmetries and holography

In such a quest of unification one of the key obstacles consists in understanding the role (and also the number) of the quantum degrees of freedom of the gravity.

A progress along this direction was made in 1986 in¹, where it was showed that the asymptotic symmetry group of gravity with a negative cosmological constant (called Anti de-Sitter) in three dimensions (AdS 3) is generated by two copies of the Virasoro algebra which is, moreover, the algebra of the conformal group in two dimensions. Physically this result shows that an effect normally thought to be quantum (the central extension of the Virasoro algebra) arises from a classical computation. This is quite remarkable. In 1998, Andrew Strominger implemented the value of the central charge of ¹ in the Cardy formula to give a microscopic derivation of the Bekenstein-Hawking entropy formula for black holes whose near horizon geometry are locally AdS 3 (BTZ black holes).

The work of Brown et al¹ is an anticipation of the socalled holographic principle (proposed by 't Hooft and Susskind in 1993) according to which a gravitational theory of a certain world volume (in d+1 dimensions) is completely equivalent to a quantum theory 1 - J.D. Brown and M. Henneaux, Commun. Math.

1 - J.D. Brown and M. Henneaux, Commun. Math Phys. 104 (1986) 207.

living on the boundary surface of that volume (so in d dimensions).

Asymptotically flat spacetimes at null infinity

Motivated by the results of Brown et al¹ and of Strominger in three dimensions at spatial infinity, my research (led with my PhD director Glenn Barnich) aim to shed some light on the role played by the quantum degrees of freedom of the gravity in four dimensions without a cosmological constant. So the goal of my research is to build a holographic theory dual to asymptotically flat spacetimes at null infinity in four dimensions (what Edward Witten called in 1998 "the structure X").

Symmetries of asymptotically flat spacetimes are well known since the sixties when physicists were studying gravitational radiation in general relativity. At that time, focalization was made on globally well defined

141

A HOLD GRAPHIC DESCRIPTION THERE 1=0. ROALLY IS SUCH A THING, INVOLVE NOT CET MUST BUT SOMETHING ELSE-CALL IT "STRUCTURE X'

transformations, which singled out SL(2,R), that is isomorphic to the Lorentz group. However in 2010, it was showed in Barnich et al² that if one doesn't require the finite transformations to be globally well defined then, at the infinitesimal level, the algebra (bms) contains the infinitesimal local conformal transformations (Virasoro subalgebra) instead of the Lorentz subalgebra. They furthermore showed how this algebra bms acts on physical quantities (mass and angular momentum) in the solution space and they built the associated surface charges, which is a highly non trivial task (because at null infinity, the surface charges are neither integrable nor conserved).

Considering a different definition for asymptotically flat 2- G. Barnich and C. Troessaert, JHEP 1005: 062

(2010).

spacetime (Newman-Unti's one instead of the usual Bondi-Metzner-Sachs' one). Glenn Barnich and I showed in 2011³ that the previous results (the infinitesimal local conformal transformations instead of the usual Lorentz subalgebra, action on solution space, surface charge and the field dependent central charge) are still valid in that case. Moreover these results were found using the so called Newman-Penrose formalism (which is a complex null tetrad formalism) and his extension (Geroch-Held-Penrose formalism which is more compact). These two formalisms are geometrically constructed to describe infinity in the lightlike regime in a very natural way, so that all the results (transformation laws, central charge,...)

3- G. Barnich and P.-H. Lambert, A note on the Newman-Unti group, arXiv:1102.0589.

are written in a more elegant way in these formalisms. In the future we would like to apply these results to compute for instance the surface charge for the Robinson-Trautman solutions. One open question we would like to address in the near future is to understand in more details the presence of the field-dependent of the central charge, and also the non-integrability of the surface charges which is inherent to the null regime.

So my research allows for having a better understanding of the symmetries of asymptotically flat spacetimes, which is the first step in view of a holographic description of gravity without a cosmological constant.

Iconographical credits:

- "The illusion of gravity", Juan Maldacena, Scientific American Report, 2005.

- "Baryons and Branes in Anti de Sitter Space", Edward Witten, talk given at Strings 1998.

Research on Gravitation, Strings and Cosmology

Bettina Oexl PhD Student (VUB)

Supersymmetric signatures at the LHC

With the start of the Large Hadron Collider (LHC) in 2010 the most exciting period in search for unknown particles and phenomena at the teraelectronvolt (TeV) energy scale has begun. The LHC is with 27 km circumference the world's largest particle accelerator, located at CERN in Geneva, Switzerland. It collides two proton beams at currently 7 TeV and 14 TeV in the future, and analyses the particles produced by the collisions, searching e.g. for the yet undiscovered Brout-Englert-Higgs boson. The goal of the LHC is to gain insight into the fundamental structure of the universe and to test the predictions of

different theories in particle physics. The interpretation of the data delivered by the LHC is a difficult challenge, which we aim to address with our research.

The Standard Model (SM) of particle physics is currently the best description of strong and electroweak forces, as quantum field theories with gauge symmetries, up to the electroweak scale. However, there remain still lots of open questions, for example the origin of mass, dark matter, the hierarchy problem etc., whose answers require physics beyond the SM (BSM). One of the most promising candidates for BSM physics is supersymmetry (SUSY). The Minimal Supersymmetric extension of the Standard Model (MSSM) addresses the hierarchy problem, shows a precise unification of the gauge

couplings at high scales, and provides a suitable candidate for dark matter.

SUSY models assume a symmetry between bosons and fermions. As a consequence, each of the known fundamental particles has a superpartner with spin differing by 1/2 unit. If SUSY were an exact symmetry of nature, these superparticles would lie in the same mass range as the known particles, which has not been observed in experiments. Hence, in any SUSY model that attempts to describe the observed particle physics phenomenology, SUSY should be broken at low energy. Depending on the SUSY breaking mechanism and parameters, the mass spectrum at the low scale can change significantly and accordingly lead to very different collider signatures. Therefore, guidelines to identify models are necessary for SUSY searches in experiments, which we aim to provide with our research: starting from a theoretical model, we try to gain insight in the phenomenology of particle spectra and couplings, resulting in proposals for typical signatures at the LHC.

In 2011, we concentrated our research on gravitino phenomenology at colliders. The gravitino is the spin-3/2 superpartner of the graviton in local SUSY extensions of the SM. In spontaneously broken SUSY, it becomes massive via

143

Research Interests of some Members

the super-Higgs mechanism by absorbing the goldstino, in the same way as the weak bosons acquire mass by absorbing the goldstone boson in the Higgs mechanism. Therefore, the gravitino mass is directly related to the SUSY breaking scale, and it can take a wide range of mass values, depending on the SUSY breaking mechanism. In low-scale SUSY breaking scenarios, e.g. gauge mediation models, the gravitino is often the lightest supersymmetric particle (LSP), and can play an important role at colliders. The specific collider signature depends strongly on what is the next-to-lightest SUSY particle (NLSP), which decays into a LSP gravitino and a SM particle.

In collaboration with Dr. K. Mawatari (VUB) and Mr. Y. Takaesu (KEK, Japan), we studied associated light gravitino productions in a neutralino-NLSP scenario at a future electron-positron collider as well as a selectron-NLSP scenario at an electron-photon collider. The resulting signals will be a mono-photon plus missing energy and a single electron plus missing energy, respectively, where the missing energy is carried away by two gravitinos. We calculated the helicity amplitudes for the production processes and gained a deep insight into the dependence of the cross section and angular distributions on the SUSY parameters. We showed that the total cross

section provides information about the gravitino mass, while the mass of the NLSP as well as of the t-channel exchange SUSY particles can be explored from the energy and angular distributions of the (measurable) final state particles.

Thereafter, we have been extending our studies to

Fig.1: Aerial View of the Cern, including an artistic representation of the beam pipe. © 2005 CERN

the LHC, together with Prof. F. Maltoni (UCL) and Ms. P. de Aquino (KUL). Our current interest is a gluino NLSP scenario, giving rise to a jets plus missing energy signal. The basic processes remain similar to the ones investigated before. However, we have to deal with additional features in hadron collisions, e.g. parton showering and hadronization. Furthermore, we have to treat carefully extra jets that arise due to initial and final state radiation by employing a matrix-element and parton shower matching scheme, since those may modify the signal distributions.

The coming few years will be a very crucial period for the field of high energy particle physics - already at the end of last year, the ALTAS and CMS experiments at CERN reported a significant progress in the search for the Higgs boson. We expect more exciting results from the LHC soon, either in the search for the Higgs boson, SUSY particles or other new physics phenomena, which might revolutionize our understanding of the fundamental particles and forces. I feel it is a big fortune to live in the era of the LHC and I would like to contribute to the unique opportunities provided by the LHC experiments.

Fig.2: A typical candidate event in the Brout-Englert-Higgs boson search of the CMS experiment at the LHC. The two red towers depict hight-energy photons, the yellow lines are the mesured tracks of other particles produced in the collision. © 2011 CERN

Daniel C. Thompson Postdoctoral Member (VUB)

A fundamental question in physics is to understand what happens when the curvature of space-time is of the same scale as quantum fluctuations, for instance near the singularities of a black-hole or in the very earliest moments of the universe. To address this, one must combine the classical theory of gravity, General Relativity, with quantum mechanics. Superstring Theory is a leading candidate to achieve this and, moreover, has the possibility of unifying gravity with the other fundamental forces. Despite its relatively simple premise, replacing point particles with extended strings, superstring theory has proven to possess a remarkable unforeseen richness and deep hidden structure and presents a radically different description of our universe and one which requires us to question classical notions of geometry. The questions that I find interesting to research are those that concern the behavior of string theory when conventional geometrical notions are not sufficient; in other words, I am interested in studying the most "stringy" signatures of string theory.

Superstring theory makes many surprising predictions. Perhaps the most striking is that in addition to the 4 dimensions of space-time that we know of from day to day experience, the universe comprises a number of additional dimension in which the string can move. Typically these extra-dimensions are assumed to be compact (rather like the surface of a doughnut) and small so as to be only detected at extremely high energies. Somewhat related to this is the

discovery of dualities in string theory; the five superficially distinct superstring theories (Types I, IIA, IIB, HO and HE) developed during the 1980's are now understood to be related through an intricate set of connections or `dualities', suggesting that they may be different parts, or vacua of, a single all-encompassing theory known as M-theory. In order to fully understand string theory it is paramount to develop a refined understanding of its dualities, symmetries and hidden structure.

Duality Symmetric Approaches to M-theory and String Theory

One particular element of this web of dualities, T-duality, is a phenomenon intrinsic to string theory and a characteristic `stringy' signature. In its simplest form, it states an equivalence between a bosonic string on a circle of radius R and that of 1/R. Though its history is long, T-duality continues to provide great insight, a recent example being its use together with the AdS/CFT correspondence to give an explanation of the scattering amplitude/Wilson-loop connection displayed by a certain supersymmetric gauge theory. T-duality also indicates that geometry from the point of view of string theory may be very different from our classical intuition: an example being the T-fold, or non-geometric, string backgrounds in which

145

Research Interests of some Members

locally geometric patches are glued together with T-dualities - the space-time is no longer well described by Riemannian geometry.

Recently, I have been studying and developing a framework with which one can formulate string theory in a way which exposes this hidden structure of T-duality by promoting it to the level of a manifest symmetry. This approach has the virtue of being able to treat both geometric and non-geometric space-time on equal footings. Alongside this, one finds a related set of hidden symmetries in supergravity theories which only become apparent upon dimensional reduction. A key research interest of mine is the development of a formulation of supergravity theories that make these hidden symmetries manifest and to understand its relationship with the duality symmetric approach to string theory.

Strings can wind or wrap around compact extra-dimensions.

Novel Dualities and Symmetries of String Theory and Gravity

A natural question, and one which is poorly understood, is whether T-duality has gen-

eralizations beyond the radial inversion duality described above, for instance to spaces with large amounts of symmetry such as spheres. Such space-times occur frequently in string theory, the most well studied being those that are used in the AdS/CFT correspondence. A technical challenge is that these types of geometries involve not just the gravity field but also a number of Ramond-Ramond fields (which may be thought of as string theory extensions of the electro-magnetic field). An ongoing programme of mine is to generalize the notion of Tduality to accommodate these very symmetrical spaces with Ramond-Ramond fields. Going forward I hope to examine the interplay of these novel dualities with the AdS/CFT correspondence and notions such as integrability.

Supersymmetry and Extra-Dimensions

A key component of superstring theory is supersymmetry - a postulated symmetry between the bosonic and fermionic particles of nature. Whilst integral to string theory, supersymmetry also provides one of the most promising approaches to physics beyond the standard model. Indeed it is hoped that the first signs of supersymmetry may be experimentally confirmed in the coming years at the Large Hadron Collider in CERN.

However, if supersymmetry is realized in nature, it is cer-

tainly broken at the scales that we can observe. One of my interests is to understand the mechanism by which supersymmetry is broken in the context of the extra dimensions that string theory supplies us. I have recently explored how supersymmetry can be broken by means of "gauge mediation" in string theory inspired models with extra dimensions. In these models the visible universe is located on a 4-dimensional brane (or slice) within a 5-dimensional space time. The supersymmetry is broken on a second 4-dimensional brane and the effects of supersymmetry breaking are transmitted (or mediated) to the visible universe via gauge fields propagating through the five dimensional bulk. Recently I considered the case where the bulk geometry is anti de Sitter space in which the extra dimension is not flat but is "warped" -- this has direct phenomenological appeal since such warped scenarios can be used to generate hierarchy of scales that we find in nature and have interesting theoretical applications in view of the AdS/CFT correspondence.

Cooperation with Chile

The international collaboration with the Centro de Estudios Científicos (Valdivia, Chile), based on a collaboration agreement between the Institutes and the Center in Chile, was active in 2011.

Visits of Belgian Scientists to Chile

Professor Marc Henneaux 10-20 March 2011 15-25 June 2011

Visits of Chilean Scientists to Belgium

Professor Claudio Bunster 14-21 May 2011 16-24 October 2011

Professor Andrés Gomberoff 5-10 July 2011

Professor Cristián Martínez 22 March-2 April 2011 5 -12 December 2011

Dr. Alfredo Perez 11-15 August 2011

Dr. David Tempo 2-15 August 2011

Professor Ricardo Troncoso 22 March-8 April 2011 2-15 August 2011 5-12 December 2011

Joint Publications and Preprints

C. Bunster and M. Henneaux, Can (Electric-Magnetic) Duality Be Gauged?," Phys. Rev. D 83, 045031 (2011) [arXiv:1011.5889 [hep-th]].

C. Bunster and M. Henneaux, The Action for Twisted Self-Duality," Phys. Rev. D 83, 125015 (2011) [arXiv:1103.3621 [hepth]].

C. Bunster, A. Gomberoff and M. Henneaux, Extended Charged Events and Chern-Simons Couplings," Phys. Rev. D 84, 125012 (2011) [arXiv:1108.1759 [hep-th]].

M. Henneaux, C. Martinez and R. Troncoso, Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity," Phys. Rev. D 84, 124016 (2011) [arXiv:1108.2841 [hep-th]].

C. Bunster and M. Henneaux, Sp(2n,R) electric-magnetic duality as off-shell symmetry of interacting electromagnetic and scalar fields," arXiv:1101.6064 [hep-th].

Cooperation with Russia

Cooperation with the Lebedev Physical Institute (Moscow Russia).

This collaboration favors scientific exchanges of visitors between Belgium and Russia of scientists affiliated with the signing institutions or with neighbouring ones working in similar areas.

Visits of Russian Scientists to Belgium

Professor Andrei Slavnov (Steklov Mathematical Institute) 6-26 April 2011

Professor Maxim Grigoriev (Lebedev Physical Institute) 3-10 July 2011

Institutional Collaborations

Other Visits

Professor James Hartle

In addition to the visitors coming to Brussels in the framework of existing collaboration agreements, the Institutes greet many scientitsts for short, medium or longer research visits. These are very fruitful. Instead of giving the list of all these visits, we just quote here one testimony, from Professor James Hartle (University of California at Santa Barbara), who spent 10 days in October at the Institutes :

" [...] I had not properly thanked you for supporting my visit before and after the Solvay Conference to work with Thomas (Hertog) and Stephen (Hawking). This worked out very well. The main subject was a potential holograhic formulation of the no-boundary wave function and its implications for eternal inflation. [...] There is nothing like an actual visit to make progress. [...] "

Research on Gravitation, Strings and Cosmology

Appraisals & Prizes

• Dr. Daniel Thompson successfully applied for a prestigious FWO postdoctoral fellowship and was ranked first among all scientists (coming from all Flemish universities) applying in the physics commission.

• Dr. Sophie de Buyl successfully applied for a prestigious FNRS postdoctoral fellowship ("Chargé de Recherches").

• Dr. Alexey Koshelev success fully applied for a 3-year extension of his FWO postdoctoral fellowship.

• Dr. Andrés Collinucci successfully applied for a prestigious permanent FNRS research position ("Chercheur Qualifié) and joined the ULB group. • Prof. Dr. Alexander Sevrin received a three year appointment as guest professor at the University of Antwerp and a five year appointment as guest professor at the University of Leuven.

• Mr. Joris Vanhoof obtained a FWO "aspirant" PhD fellowship.

• Mr. Federico Galli obtained an extension of his FWO "aspirant" PhD fellowship.

• Prof. Marc Henneaux received a 5-year ERC Advanced Resarch Grant (2011-2015).

Theses defended in 2011

Wieland Staessens obtained his PhD titled: "Aspects of Type II Superstring Theory: Supersymmetric D-branes, T-duality, and Holographic Thermalization" on June 27, 2011. Promoters were Prof. Dr. Ben Craps (VUB) and Prof. Dr. Alexander Sevrin (VUB).

Cédric Troessaert obtained his PhD titled: "Aspects of Duality in Gravitational Theories" on June 6, 2011. Thesis director: Glenn Barnich (ULB).

Josef Lindman Hörnlund obtained his PhD titled: "Sigma-Models and Lie Group Symmetries in Theories of Gravity" on July 1, 2011. Thesis directors: Laurent Houart (ULB) and Marc Henneaux (ULB).

François Dehouck obtained his PhD titled: "Electric and Magnetic Aspects of Gravitational Theories" on September 23, 2011. Thesis director: Riccardo Argurio (ULB).

149

Appraisals & Prizes – Theses defended in 2011 & Invited talks at Conferences, Seminars and Schools

Invited talks at Conferences, Seminars and Schools

January 4, 2011: Amitabh Virmani, *Microscopics of Kerr from spinning M5 branes* -Indian Strings meeting 2011 (ISM 2011) - Institute of Physics, Bhubaneswar -Puri, India.

January 7, 2011: Sung-Soo Kim, *D=5 Super Yang-Mills in light-cone superspace* -HEP Seminars - Sungkyunkwan University - Suwon, Korea.

January 12, 2011: Amitabh Virmani, *Black Holes in String Theory* - Colloquium, Institute of Physics, Bhubaneswar - Institute of Physics, Bhubaneswar - Bhubaneswar, India.

January 13, 2011: Amitabh Virmani, *G2 Dualities, Black Strings, and Kerr CFT* -Seminar, Institute of Physics, Bhubaneswar - Institute of Physics, Bhubaneswar -Bhubaneswar, India.

January 19, 2011: Sung-Soo Kim, *Maximally supersymmetric Yang-Mills in five dimensions in light-cone superspace* - String theory group seminars - KIAS - Seoul, Korea.

January 19, 2011: Alexey Koshelev, *Non-singular bounce in non-local gravity* - Arnold Sommerfeld Center, LMU -Munich, Germany. January 20, 2011: Kentarou Mawatari, *Gravitino phenomenology at colliders* - UCL/CP3 - Louvain-la-Neuve, Belgium.

January 21, 2011: Sung-Soo Kim, *Maximally supersymmetric Yang-Mills in five dimensions in light-cone superspace* - CQUeST seminars - CQUeST - Seoul, Korea.

January 31, 2011: Raphael Benichou, *Fusion of line operators and Quantum integrability in Conformal sigma models on supergroups* - ENS Lyon seminar - Lyon, France.

February 8, 2011: Riccardo Argurio, *A Pseudo-Goldstino in Gauge Mediation* - Theory group seminar - University of Amsterdam - Amsterdam, the Netherlands.

February 10, 2011: Glenn Barnich, *Asymptotic symmetries form the point of view of Lie algebroids* - University of Stockholm - Stockholm, Sweden.

February 16, 2011: Ben Craps, *Thermalization of strongly coupled field theories* - North British Mathematical Physics Seminar - Edinburgh University - Edinburgh, UK.

February 17, 2011: Ben Craps, *Thermalization of strongly coupled field theories* - String Journal Club - Durham University - Durham, UK. February 17, 2011: Neil Copland, *Renormalisation of doubled theories* - CQUeST -Seoul, South Korea.

February 18, 2011: Neil Copland, *Thermalisation of strongly coupled field theory via AdS/CFT* - CQUeST -Seoul, South Korea.

February 18, 2011: Phill Grajek, *Dark Matter Indirect Detection and Uncertainty in CR Propagation* - U. Heidelberg seminar - Heidelberg University - Heidelberg, Germany.

February 22, 2011: Phill Grajek, *Dark Matter Indirect Detection and Uncertainty in CR Propagation* - IIHE Seminar - IIHE, Vrije Universiteit Brussel - Brussels, Belgium.

February 23, 2011: Marc Henneaux, Asymptotic Structure of three-dimensional gravity - IPMU Workshop on Black Holes - Institute for the Physics and Mathematiccs of the Universe, University of Tokyo, Japan.

March 2, 2011: Raphael Benichou, *Fusion of line operators and Quantum integrability in AdS/CFT* - King's College seminar - King's College - London, UK.

March 3, 2011: Glenn Barnich, *Aspects of the BMS/CFT correspondence* - APC Université de Paris 7 - Paris, France. March 8, 2011: Kentarou Mawatari, *Gravitino phenomenology at colliders* - Chalmers University of Technology -Gothenburg, Sweden.

March 9, 2011: Marc Henneaux, *Asymptotic structure of three-dimensional anti-de Sitter gravity* - IAFE - University of Buenos Aires -Buenos Aires, Argentina.

March 14, 2011: Davide Forcella, *Negative Refractive Index in Hydrodynamics and AdS/CFT* - Conference on Quarks, Strings and the Cosmos - Ecole Polytechnique - Paris, France.

March 15, 2011: Riccardo Argurio, *A Pseudo-Goldstino in Gauge Mediation* - Theory group seminar - Scuola Normale Superiore - Pisa, Italy.

March 16, 2011: Riccardo Argurio, *Lectures on Dynamical Supersymmetry Breaking* -Theory group lecture - Università di Firenze - Firenze, Italy.

March 24, 2011: Stephane Detournay, *WAdS/(C)FT correspondences, and a digression on Chiral(og) gravity* - Rencontres théoriciennes -Institut Henry Poincaré - Paris, France.

March 25, 2011: Davide Forcella, *Negative Refractive Index in Hydrodynamics and AdS/CFT* - Univeridad de Santiago de Compostela -Santiago de Compostela, Spain. March 26, 2011: Jakob Palmkvist, *Unifying N=5 and N=6* - The 27th Nordic Network Meeting on "Strings, Fields and Branes" - University of Stockholm - Stockholm, Sweden.

March 28, 2011: Raphael Benichou, *Fusion of line operators and Quantum integrability in AdS/CFT* -LPTENS seminar - LPTENS -Paris, France.

March 29, 2011: Davide Forcella, *Non Supersymmetric Chern Simons theories with gravity duals* - Jussieu University - Paris, France.

March 29, 2011: Daniel Thompson, *On Non-Abelian T-duality in Ramond Backgrounds* - CPHT Ecole Polytechnique - Paris, France.

March 31, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - Nordita - Stockholm, Sweden.

April 1, 2011: Kentarou Mawatari, *The top window for dark matter* - ULB - Brussels, Belgium.

April 5, 2011 : Riccardo Argurio, *Pseudo-Goldstini in Field Theory* - Joint theory seminars - Weizmann Institute of Science - Neve Shalom, Israel.

April 7, 2011: Bettina Oexl, *Gravitino productions at colliders* - IIHE, Vrije Universiteit Brussel - Brussels, Belgium. April 11, 2011: Ben Craps, Holographic Thermalization -High Energy Theory Seminar - University of Pennsylvania -Philadelphia, USA.

April 12, 2011: Neil Copland, *Thermalisation of strongly coupled field theory via AdS/ CFT* - Institute of Physics of the ASCR - Prague, Czech Republic.

April 14, 2011: Riccardo Argurio, *Gaugino masses and Semi-Direct Gauge Mediation* - Journal Club - Tel Aviv University - Tel Aviv, Israel.

April 15, 2011: Alice Bernamonti, *Holographic Probes of Thermalization* -Seminaire de matrices, cordes et geometries aleatoires - IPhT - Saclay, France.

April 18, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - Torino University - Torino, Italy.

April 20, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - Padova University - Padova, Italy.

April 21, 2011: Amitabh Virmani, *G2 Dualities, Black Strings, and Kerr CFT* - Seminar, Institute for Theoretical Physics - Utrecht University -Utrecht, the Netherlands.

May 3, 2011: Wieland Staessens, *Holographic Thermalization* - Johannes-Gutenberg Universiteit Mainz - Mainz, Germany.

151

Invited talks at Conferences, Seminars and Schools

May 6, 2011: Kentarou Mawatari, *Gravitino phenomenology with Mad-Graph/MadEvent* - MadGraph Spring 2011 - Fermilab -Batavia, USA.

May 10, 2011: Phill Grajek, Antiproton Flux in Cosmic Ray Propagation Models with Anisotropic Diusion -Pheno Symposium - UW Madison - Wisconsin, USA.

May 10, 2011: Kentarou Mawatari, *Gravitino productions at colliders* -2011 Phenomenology Symposium - Madison Wisconsin, USA.

May 16, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - SUSY breaking 2011 - CERN - Geneva, Switzerland.

May 25, 2011: Davide Forcella, *Negative Refractive Index in Hydrodynamics and AdS/CFT* - Padova University - Padova, Italy.

May 27, 2011: Alberto Mariotti, *Supersymmetry* - Tweedaagse van de Theoretische en Mathematische Fysica - Oostduinkerke, Belgium.

May 28, 2011: Federico Galli, *Hairy black holes in AdS* - Tweedaagse van de Theoretische en Mathematische Fysica - Oostduinkerke, Belgium.

June 9, 2011: Antonin Rovai, *Spacelike Singularities and*

Locally Carroll Invariant Theory - PandA Doctoral School - Université Libre de Bruxelles - Brussels, Belgium.

June 14, 2011: Davide Forcella, *Non Supersymmetric Chern Simons theories with gravity duals* - Torino University - Torino, Italy.

June 20, 2011: Riccardo Argurio, *Gaugino masses and Semi-Direct Gauge Mediation* - workshop on String Phenomenology - Nordita - Stockholm, Sweden.

June 23, 2011: Ben Craps, *Cosmological singularities in string theory* - Quantum Theory and Gravitation - ETH -Zurich, Switzerland.

June 30, 2011: Neil Copland, *Relating T-duality invariant theories* - Strings 2011 (Gong Show) - Uppsala, Sweden.

July 21, 2011: Alexey Koshelev, *On non-local modification of gravity: exact solutions and perturbations* -Supersymmetry and Quantum Symmetry 2011 (SQS'11) -JINR - Dubna, Russia.

July 25, 2011: Piotr Surowka, *Transport in holographic fluids* - University of Washington -Seattle, USA.

August 12, 2011: Neil Copland, *Connecting T-duality invariant theories* - QTS7 2011 - Prague, Czech Republic. August 19, 2011: Raphael Benichou, *First-principles derivation of the AdS/CFT Ysystems* - Integrability in String and gauge Theories 2011 -Perimeter Institute - Waterloo, Canada.

August 19, 2011: Ben Craps, *Holographic thermalization* -Conference on Cold Materials, Hot Nuclei, and Black Holes: Applied Gauge/Gravity Duality - ICTP - Trieste, Italy.

August 23, 2011: Glenn Barnich, *Asymptotically flat general relativity as an extended conformal field theory* - XLlème Institut d'été, Laboratoire de Physique Théorique, ENS, Paris.

August 25, 2011: Frank Ferrari, *Two Dimensional Quantum Gravity Revisited: Kähler Potentials, Bergman Metrics and Gravitational Effective Actions* - XLlth summer institute of the Laboratoire de Physique Théorique de l'École Normale Supérieure: Strings, Particles and the Universe -ENS- Paris, France.

August 30, 2011: Alexey Koshelev, *Modified non-local gravity* - Balkan summer Institute 2011 (BSI 2011) - Lepenski Vir, Serbia.

September 5, 2011 : Raphael Benichou, *First-principles derivation of the AdS/CFT Y-systems* - XVII European Workshop on String Theory 2011 - Padua University -Padua, Italy.

September 7, 2011: Sung-Soo Kim, *5D Super Yang-Mills on Light-Cone* -StringVac 2011 -String Phenomenology Conference - Pusan University - Busan, Korea.

September 10, 2011: Kentarou Mawatari, *MadGolem: automatized next-to-leading order calculations for BSM* - Workshop on Monte Carlo Tools for LHC - YITP - Kyoto, Japan.

September 10-22, 2011: Alexander Sevrin, *Several informal lectures on generalzed Kahler geometry* - Program on Complex Geometry and Generalized Geometry with Applications to Physics -Simons Center for Geometry and Physics - Stony Brook, USA.

September 28, 2011: Kentarou Mawatari, *Associated production of light gravitinos at future linear colliders* - 2011 International Workshop on Future Linear Colliders - Granada, Spain.

October 21, 2011: Frank Ferrari *Two Dimensional Quantum Gravity Revisited: Kähler Potentials, Bergman Metrics and Gravitational Effective Actions* -High Energy theory seminar -University of Southampton -Southampton, UK.

October 24, 2011: Glenn Barnich, *Theoretical Aspects of Black Hole Physics* - Cycle de conférences "Les Chercheurs Luxembourgeois à l'Etranger", Institut Grand-Ducal - Luxembourg. November 8, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - University of California San Diego - San Diego, USA.

November 11, 2011: Alexander Sevrin, *Supersymmetric WZW-models and generalized Kähler geometry* - Geometry of Strings and Fields - NORDITA - Stockholm, Sweden.

November 15, 2011: Alberto Mariotti, *PseudoGoldstini in Field Theory* - Santa Cruz Institute for Particle Physics (University of California Santa Cruz) - Santa Cruz, USA.

November 17,2011: Marc Henneaux, *Higher Spin Gauge Fields and Extended Kac-Moody Symmetries* - KIAS -Seoul, South Korea.

November 18, 2011: Jakob Palmkvist, *Weyl groups, division algebras and automorphic forms* - Automorphic Forms and String Theory, Karlstad, Sweden.

November 18, 2011: Marc Henneaux, *Electric-Magnetic Duality, Twisted Self-Duality and Action Principle* - Seoul National University - Seoul, South Korea.

December 1, 2011: Jakob Palmkvist, *Tensor hierarchies, Borcherds algebras and E11* -The 28th Nordic Network Meeting on "Strings, Fields and Branes", Stockholm, Sweden. December 6, 2011: Glenn Barnich, *BV cohomology I* -Workshop on Covariant Field Theory, Université du Luxembourg - Luxembourg.

December 7, 2011: Glenn Barnich, *BV cohomology II* -Workshop on Covariant Field Theory, Université du Luxembourg – Luxembourg.

December 7, 2011: Karen De Causmaecker, *Fourth generation aspects and supersymmetry* - Pheno-meeting CP3 -UCL/CP3 - Louvain-la-Neuve, Belgium.

December 9, 2011: Kentarou Mawatari, *The top window for dark matter* - Top@Brussels meeting - Vrije Universiteit Brussel - Brussels, Belgium.

December 9, 2011: Karen De Causmaecker, *Fourth generation aspects and supersymmetry* - Top@Brussels meeting - IIHE, Vrije Universiteit Brussel - Brussels, Belgium.

December 13, 2011: Daniel Thompson, *Duality Invariance in M-theory and String Theory* - Centre for Quantum Spacetime, Sogang University - Seoul, South Korea.

December 14, 2011: Daniel Thompson, *On Non-Abelian T-duality in Ramond Backgrounds* - Centre for Quantum Spacetime, Sogang University-Seoul, South Korea.

Invited talks at Conferences, Seminars and Schools & List of Publications

December 15, 2011: Daniel Thompson, *Duality Invariance in M-theory and String Theory* - Korean Institute for Advanced Studies - Seoul, South Korea.

December 22, 2011: Alexey Koshelev, *Modified non-local gravity* - Steklov Mathematical Institute - Moscow, Russia.

December 30, 2011: Alexey Koshelev, *Can non-local gravity resolve the cosmological puzzles?* - JINR - Dubna, Russia.

List of Publications

1- A. Amariti, L. Girardello, A. Mariotti and M. Siani, "Metastable Vacua in Superconformal SQCD-like Theories," JHEP 1102 (2011) 092 [arXiv:1003.0523 [hep-th]].

2- A. Amariti, D. Forcella, A. Mariotti and G. Policastro, "Holographic Optics and Negative Refractive Index," JHEP 1104 (2011) 036 [arXiv:1006.5714 [hep-th]].

3- A. Amariti, D. Forcella, A. Mariotti and M. Siani, "Negative Refraction and Superconductivity," JHEP 1110 (2011) 104 [arXiv:1107.1242 [hep-th]].

4- D. Anninos, S. de Buyl and S. Detournay, "Holography For a De Sitter-Esque Geometry," JHEP 1105, 003 (2011) [arX-iv:1102.3178 [hep-th]].

5- R. Argurio, Z. Komargodski and A. Mariotti, "Pseudo-Goldstini in Field Theory," Phys. Rev. Lett. 107, 061601 (2011) [arXiv:1102.2386 [hep-th]].

6- V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, "Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories," Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488 [hep-th]].

7- V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Muller and A. Schafer et al., "Holographic Thermalization," Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683 [hep-th]].

8- V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Muller and A. Schafer et al., "Thermalization of Strongly Coupled Field Theories," Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753 [hep-th]].

9- G. Barnich and C. Troessaert, "Supertranslations call for superrotations," PoS C NCFG2010, 010 (2010) [arXiv:1102.4632 [gr-qc]].

10- G. Barnich and C. Troessaert, "BMS charge algebra," JHEP 1112, 105 (2011) [arXiv:1106.0213 [hep-th]].

11- R. Benichou, "Fusion of line operators in conformal sigmamodels on super- groups, and the Hirota equation," JHEP 1101 (2011) 066 [arXiv:1011.3158 [hep-th]]. 153

12- R. Benichou, "First-principles derivation of the AdS/CFT Y-systems," JHEP 1110 (2011) 112 [arXiv:1108.4927 [hep-th]].

13- A. Bernamonti, "Two-point function probes of thermalization," Nucl. Phys. Proc. Suppl. 216 (2011) 216.

14- A. Bernamonti and R. Peschanski, "Timedependent AdS/CFT correspondence and the Quark-Gluon plasma," Nucl. Phys. Proc. Suppl. 216 (2011) 94 [arXiv:1102.0725 [hep-th]].

15- T. Binoth, D. Goncalves Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, "Automized Squark-Neutralino Production to Next-to-Leading Order," Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250 [hep-ph]].

16- C. Bunster and M. Henneaux, "Can (Electric-Magnetic) Duality Be auged?," Phys. Rev. D 83, 045031 (2011) [arXiv:1011.5889 [hep-th]].

17- C. Bunster and M. Henneaux, "The Action for Twisted Self-Duality," Phys. Rev. D 83, 125015 (2011) [arXiv:1103.3621 [hep-th]].

18- C. Bunster, A. Gomberoff and M. Henneaux, "Extended Charged Events and Chern-Simons Couplings," Phys. Rev. D 84, 125012 (2011) [arXiv:1108.1759 [hepth]].

19- K. Cheung, K. Mawatari, E. Senaha, P. Y. Tseng and T. C. Yuan, "Top window for dark matter," Int. J. Mod. Phys. D 20 (2011) 1413.

20- G. Compère, F. Dehouck and A. Virmani, "On Asymptotic Flatness and Lorentz Charges," Class. Quant. Grav. 28, 145007 (2011) [arXiv:1103.4078 [gr-qc]].

21- G. Compère and F. Dehouck, "Relaxing the Parity Conditions of Asymptotically Flat Gravity," Class. Quant. Grav. 28, 245016 (2011) [arXiv:1106.4045 [hep-th]]. 22- B. Craps and O. Evnin, "Light-like Big Bang singularities in string and matrix theories," Class. Quant. Grav. 28 (2011) 204006 [arXiv:1103.5911 [hep-th]].

23- B. Craps and O. Evnin, "Adiabaticity and emergence of classical space-time in timedependent matrix theories," JHEP 1101 (2011) 130 [arXiv:1011.0820 [hep-th]].

24- T. Damour, A. Kleinschmidt and H. Nicolai, "Sugawara-type constraints in hyperbolic coset models," Commun. Math. Phys. 302, 755 (2011) [arXiv:0912.3491 [hep-th]].

25- F. Dehouck, "Gravitational duality in General Relativity and Supergravity theories," Nucl. Phys. Proc. Suppl. 216, 223 (2011) [arXiv:1101.4020 [hep- th]].

26- S. Detournay, D. Israel, J. M. Lapan and M. Romo, "String Theory on Warped AdS3 and Virasoro Resonances," JHEP 1101, 030 (2011) [arXiv:1007.2781 [hep-th]].

27- F. Ferrari, S. Klevtsov and S. Zelditch, "Random Geometry, Quantum Gravity and the K'ahler Potential," Phys. Lett. B 705, 375 (2011) [arXiv:1107.4022 [hep-th]].

28- F. Galli and A. S. Koshelev, "Perturbative stability of SFT-based cosmological models," JCAP 1105 (2011) 012 [arXiv:1011.5672 [hep-th]].

29- Ginis V, Tassin P, Craps B, Veretennicoff I, Frequency Conversion by the Transformation-Optical Analogue of the Cosmological Redshift, Proceedings of SPIE: Conference on Metamaterials - Fundamentals and Applications IV, San Diego, CA, USA, 21-25 August 2011; Proceedings of SPIE, Volume: 8093, Article Number: 80931M, DOI: 10.1117/12.894065 ISSN: 0277-786X.

30- Ginis V, Tassin P, Craps B, Veretennicoff I, The cosmological redshift inside the transformation-optical analogue of the Robertson-

155

List of Publications

Walker metric, Proceedings of CLEO: 2011 - Laser Science to Photonics Applications, Baltimore, MD, USA, 1-6 May 2011; Optical Society of America, QTuM4 ISBN: 978-1-55752-910-7.

31- Ginis V, Tassin P, Craps B, Veretennicoff I, Mimicking the Cosmological Redshift with Time Dependent Transformation Optics; Proceedings of the 3rd International Topical Meeting on Nanophotonics and Metamaterials (NANOME-TA), Seefeld, Austria, 3-6 January 2011; European Physical Society, WED4f.10 ISBN-ISSN: 2-914771-65-7.

32- Ginis V, Tassin P, Craps B, Veretennicoff I, Time dependent transformation optics: frequency conversion using the dielectric analogue of the Robertson- Walker universe; Proceedings of CLEO/Europe-EQEC, Munich, Germany, 22-26 May 2011; European Physical Society, EJ.P.1 ISBN: 978-1-4577-0533-5.

33- K. Hagiwara, K. Mawatari and Y. Takaesu, "HELAS and MadGraph with spin-3/2 particles," Eur. Phys. J. C 71 (2011) 1529 [arXiv:1010.4255 [hep- ph]].

34- A. Hanany, D. Forcella and J. Troost, "The covariant perturbative string spectrum," Nucl. Phys. B 846, 212 (2011) [arXiv:1007.2622 [hep-th]].

35- J. Hartle, S. W. Hawking and T. Hertog, "Local Observation in Eternal inflation," Phys. Rev. Lett. 106, 141302 (2011) [arXiv:1009.2525 [hep-th]].

36- M. Henneaux, C. Martinez and R. Troncoso, "Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity," Phys. Rev. D 84, 124016 (2011) [arXiv:1108.2841 [hep-th]].

37- C. P. Herzog, N. Lisker, P. Surowka and A. Yarom, "Transport in holographic superfluids," JHEP bf 1108 (2011) 052 [arXiv:1101.3330 [hep-th]].

38- L. Houart, A. Kleinschmidt and J. Lindman Hornlund, "An M-theory solution from null roots in E11," JHEP 1101, 154 (2011) [arXiv:1101.2816 [hep-th]].

39- A. Kleinschmidt, "Counting supersymmetric branes," JHEP 1110, 144 (2011) [arX-iv:1109.2025 [hep-th]].

40- A. S. Koshelev and S. Y.Vernov, "Analysis of scalar perturbations in cosmological models with a non-local scalar field," Class. Quant. Grav. 28 (2011) 085019 [arXiv:1009.0746 [hep-th]].

41- S. S. Kim and J. Palmkvist, "N=5 threealgebras and 5-graded Lie superalgebras," J. Math. Phys. 52, 083502 (2011) [arXiv:1010.1457 [hep-th]].

42- J. Lindman Hornlund, "On the symmetry orbits of black holes in non-linear sigma models," JHEP 1108, 090 (2011) [arXiv:1104.4949 [hep-th]].

43- Y. Lozano, E. O. Colgain, K. Sfetsos and D. C. Thompson, "Non-abelian T-duality, Ramond Fields and Coset Geometries," JHEP 1106 (2011) 106 [arXiv:1104.5196 [hep-th]].

44- K. Mawatari, B. Oexl and Y. Takaesu, "Associated production of light gravitinos in e+eand e-Υ collisions," Eur. Phys. J. C 71 (2011) 1783 [arXiv:1106.5592 [hep-ph]].

45- K. Mawatari and Y. Takaesu, "HELAS and MadGraph with goldstinos," Eur. Phys. J. C 71 (2011) 1640 [arXiv:1101.1289 [hep-ph]].

46- J. Palmkvist, "Unifying N=5 and N=6," JHEP 1105, 088 (2011) [arXiv:1103.4860 [hep-th]].

47- J. V. Rocha, M. J. Rodriguez and A. Virmani, "Inverse Scattering Construction of a Dipole Black Ring," JHEP 1111, 008 (2011) [arXiv:1108.3527 [hep-th]].

S

48- A. Sevrin, W. Staessens and D. Terryn, "The Generalized Kähler geometry of N=(2,2) WZW-models," JHEP 1112 (2011) 079 [arXiv:1111.0551 [hep-th]].

49- K. Sfetsos and D. C. Thompson, "On nonabelian T-dual geometries with Ramond fluxes," Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320 [hep-th]].

50- D. C. Thompson, "Duality Invariance: From M-theory to Double Field Theory," JHEP 1108 (2011) 125 [arXiv:1106.4036 [hep-th]].

51- A. Virmani, "Asymptotic Flatness, Taub-NUT, and Variational Principle," Phys. Rev. D 84, 064034 (2011) [arXiv:1106.4372 [hep-th]].

Preprints

52- A. Amariti, D. Forcella and A. Mariotti, "Negative Refractive Index in Hydrodynamical Systems," arXiv:1107.1240 [hep-th].

53- R. Argurio, K. De Causmaecker, G. Ferretti, A. Mariotti, K. Mawatari and Y. Takaesu, "Collider signatures of goldstini in gauge mediation," arXiv:1112.5058 [hep-ph].

54- G. Barnich and P. H. Lambert, "A note on the Newman-Unti group," arXiv:1102.0589 [gr-qc].

55- R. Benichou and J. Estes, "The fate of Newton's law in brane-world scenarios," arX-iv:1112.0565 [hep-th].

56- R. Benichou and J. Estes, "Geometry of open strings ending on backreacting D3-branes," arXiv:1112.3035 [hep-th].

57- C. Bunster and M. Henneaux, "Sp(2n,R) electric-magnetic duality as off-shell symmetry of interacting electromagnetic and scalar fields," arXiv:1101.6064 [hep-th].

58- N. B. Copland, "Connecting T-duality invariant theories," Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888 [hep-th]].

Preprints

59- F. Dehouck, "Electric and magnetic aspects of gravitational theories," arXiv:1112.3962 [hep-th].

60- S. Detournay, J. M. Lapan and M. Romo, "SUSY Enhancements in (0,4) Deformations of AdS3 /CFT2," arXiv:1109.4186 [hep-th].

61- F. Ferrari, S. Klevtsov and S. Zelditch, "Random K´ahler Metrics," arXiv:1107.4575 [hep-th].

62- F. Ferrari, S. Klevtsov and S. Zelditch, "Gravitational Actions in Two Dimensions and the Mabuchi Functional," arXiv:1112.1352 [hep-th].

63- F. Ferrari, S. Klevtsov and S. Zelditch, "Simple matrix models for random Bergman metrics," arXiv:1112.4382 [hep-th].

64- D. Forcella and A. Zaffaroni, "Non-supersymmetric CS-matter theories with known AdS duals," arXiv:1103.0648 [hep-th].

65- J. Hartle and T. Hertog, "Arrows of Time in the Bouncing Universes of the No-boundary Quantum State," arXiv:1104.1733 [hep-th]. 66- M. Henneaux, A. Kleinschmidt and H. Nicolai, "Higher spin gauge fields and extended Kac-Moody symmetries," arXiv:1110.4460 [hep-th].

67- A. S. Koshelev, "On non-local modification of gravity: exact solutions and perturbations," To appear in proceedings of SQS'11

68- A. S. Koshelev, "Modified non-local gravity," arXiv:1112.6410 [hep-th].

69- J. Palmkvist, "Tensor hierarchies, Borcherds algebras and E11," arXiv:1110.4892 [hep-th].

70- R. Rahman, "Helicity-1/2 Mode as a Probe of Interactions of Massive Rarita- Schwinger Field," arXiv:1111.3366 [hep-th].

71- D. Redigolo, "On Lorentz-Violating Supersymmetric Quantum Field Theories," arX-iv:1106.2035 [hep-th].

Research in Chemistry

Corried out in the group of Professor Anne De Wit (ULB)

Research in Chemistry

Researchers

Permanent Members

De Wit, Anne ULB

Postdoctoral Members

Budroni, Marcello ULB Haudin, Florence ULB Rongy, Laurence ULB

Doctoral Members

Gérard, Thomas ULB Lemaigre, Lorena ULB Riolfo, Luis ULB

These defended in 2011

Thomas Gérard: "Theoretical study of spatiotemporal dynamics resulting from reactiondiffusion-convection processes". Supervisor: A. De Wit, ULB (2011).

Research Summary

Chemical reactions are able to influence or more drastically trigger fluid flows as soon as the reaction changes a physical property of the solution like its density, viscosity or surface tension. Our research aims at studying by combined theoretical and experimental approaches the properties of the chemo-hydrodynamic patterns and instabilities resulting from the coupling of such reactions with hydrodynamic motions.

In vertical set-ups, buoyancydriven flows can result from the presence of gradients of density in the gravity field. In reactive solutions. such gradients in density can be triggered by compositional changes and can therefore be influenced by reactions. We have shown in the past that the buoyancy-driven patterns that are obtained in the presence of reactions can be different from those obtained in nonreactive systems. This year, we have moreover investigated the role of color indicators showing that these species are not merely passive to the dynamics but, on the contrary, actively change the density gradients in the system and hence the related convective patterns (Fig.1).

Such buoyancy-driven hydrodynamic instabilities are also important in CO2 sequestration techniques which aim to reduce the amount of this greenhouse gas in the atmo-

sphere by its capture at the exit of power plants and its subsequent sequestration in deep underground soils or aquifers. We have started investigating theoretically the influence of buoyancy-driven motions on the efficiency of CO2 dissolution in salted water. Our objective is to analyze in the future the potential effect of chemical reactions on such processes.

local density gradient.

In parallel, we have also analyzed to what extent surface-

tension gradients in reactive systems can trigger so-called Marangoni fluid flows. On one hand, we have numerically studied how Marangoni convection triggered by compositional or thermal gradients across autocatalytic fronts can deform and accelerate these fronts. On the other hand, we have shown experimentally that a simple A+B-->C reaction impacting the surface tension at the liquid-air interface of a thin film can induce fingering (Fig.2).

Fig.2: Mechanism of a reactiondriven destabilization of the interface between a solution of a reactant B spreading on a glass plate prewetted by a solution of a reactant A.

The experiment consist in letting a drop of a given solution of a chemical B spread on a glass plate prewetted by a solution of another reactant A. At the contact between both solutions, a chemical reaction produces a species C with different surface tension properties. The related gradients in surface tension trigger then an instability of the contact line between both solutions leading to fractal-like fingers (Fig.3).

Eventually, we also analyze the impact of reactions on viscosity changes and on related viscous fingering hydrodynamic instabilities. Our approach based on combined theoretical and experimental approaches aims at characterizing the various patterns and instabilities that can be observed in reaction-diffusion-convection systems, at the heart of numerous industrial and environmental applications.

Fig.3: Chemically-driven instability at the contact line of a droplet of hexyl acrylate spreading on top of a glass plate prewetted by a thin film of a secondary amine. The reaction produces a tertiary amine and surface-tension gra-

observed.

dients at the origin of the Marangoni-driven fractal-type fingering

161

Research in Chemistry

Research Interests of some Members

Luis Riolfo

3rd year PhD student (ULB)

Viscous fingering is a hydrodynamic instability occurring as soon as a given fluid displaces another more viscous fluid in porous media. It is typically encountered in soils during oil recovery or pollutant spreading when less viscous and hence more mobile water displaces the oil or the contaminant. It is also observed in chromatographic columns when the displacing eluent is less viscous than the displaced sample containing the analytes to be separated. This instability leads to a deformation of the interface between the two fluids in the form of "fingers" (Fig. 1a) hence the name "viscous fingering".

Because of the increased mixing between the two fluids induced by the fingering process, the efficiency of the oil displacement out of the soils is reduced. On the other hand, in contaminant spreading or chromatographic separations, fingering leads to enhanced dispersion of the sample and thus larger polluted areas and bad column performances respectively.

In this context, my research aims at analyzing both experimentally and theoretically to what extent chemical reactions can influence the properties of viscous fingering patterns. Using polymer solutions the viscosity of which depends on the pH of the solution, we have shown this year that chemical reactions can modify a fingering pattern or even induce a fingering instability in a system otherwise stable.

We have also demonstrated that a chemical reaction can

Fig.1: Displacement of a solution of polymer by dyed water: (a) in absence of any reaction, viscous fingering is observed because of the unfavorable viscosity gradient; (b) in presence of a chemical reaction decreasing the viscosity in the reactive zone at the miscible interface between water and the polymer, a reduction of the fingering instability and hence a more efficient displacement is obtained.

The dark thick line to the left is the shadow of the injection tube.

be used to control the flow in viscously unstable conditions (Fig.1). Indeed, if a reaction leads to a decrease of the viscosity in the miscible zone between two reactive solutions, a non-monotonic viscosity profile can build up in time. The local minimum in viscosity acts then as a buffer zone in which the more mobile displacing fluid is diluting its destabilizing influence. As a result, fingering is largely decreased (Fig.1b) and the efficiency of the fluid displacement is enhanced.

I am currently working on optimizing such a use of chemical reactions to control unstable flows. Moreover, I also plan to study the influence of non-ideal mixing properties of fluids on hydrodynamic fingering instabilities.

Research Interests of some Members Invited talks at Conferences, Seminars and Schools

Invited talks at Conferences, Seminars and Schools

January 11, 2011: Anne De Wit, *Recent advances on chemo-hydrodynamic instabilities -* Workshop on chemohydrodynamic pattern formation at interfaces - Szeged, Hungary.

January 11, 2011: Laurence Rongy, *Mixing from diffusion and natural convection in non-equilibrium binary and multicomponent fluid phases* - ESA Topical Team Meeting -Szeged, Hungary.

January 31, 2011: Anne De Wit, *Reaction-driven viscous fingering* - Séminaire -ESPCI - Paris, France.

April 12, 2011: Anne De Wit, *Reaction-driven viscous fingering* - British Applied Mathematics Colloquium -Birmingham, UK.

April 12, 2011: Laurence Rongy, *Mixing from diffusion and natural convection in non-equilibrium binary and multicomponent fluid phases* - British Applied Mathematics Colloquium 2011 - Birmingham, UK. April 29, 2011: Luis Atilio Riolfo, *Reaction-driven miscible viscous fingering* -Ecole Doctorale Thématique CHIM - FNRS - Ulg - Liège, Belgium.

May 3, 2011: Anne De Wit, *Chemically-driven hydrody namic instabilities* -Colloquium at the Chemisch-Physikalische Gesellschaft -Vienna, Austria.

May 2011: Laurence Rongy, *Mixing from diffusion and natural convection in nonequilibrium binary and multicomponent fluid phases* -Reservoir Engineering Research Institute 22nd Annual Workshop - Palo Alto, USA.

May 19, 2011: Anne De Wit, *Chemically-driven hydrodynamic instabilities* - 7th Intern. Workshop on Math. in Chemical Kinetics and Engineering - Heidelberg, Germany.

October 20, 2011: Thomas Gérard, *Miscible viscous fingering induced by a A + B -> C chemical reaction -* BPI Department seminar -Cambridge University - Cambridge, UK.

November 21, 2011: Anne De Wit, *Reaction-driven viscous fingering* - 64th Annual Meeting of the Division of Fluid Dynamics of the American Physical Society - Baltimore, USA.

November 21, 2011: Laurence Rongy, *Mixing from diffusion and natural convection in binary non-equilibrium fluid phases* - 64th Annual Meeting of the APS Division of Fluid Dynamics - Baltimore, Maryland, USA.

November 22, 2011: Luis Atilio Riolfo, *Buoyancy-driven instabilities of acid-base fronts: the case of a color indicator* - 64th Annual Meeting of the APS Division of Fluid Dynamics -Baltimore, USA.

1<u>63</u>

Research in Chemistry

164

Books

G.R. Fleming, G.D. Scholes and A. De Wit, Editors, Quantum effects in Chemistry and Biology, Proceedings of the 22nd Solvay Conference on Chemistry, (Procedia, Elsevier, 2011).

65

Publications

1- C. Almarcha, Y. R'Honi, Y. De Decker, P.M.J. Trevelyan, K. Eckert and A. De Wit, Convective Mixing Induced by Acid-Base Reactions, J. Phys. Chem. B 115, 9739-9744 (2011).

2- D.A. Bratsun and A. De Wit, Buoyancydriven pattern formation in reactive immiscible two-layer systems, Chem. Eng. Sci. 66, 5723-5734 (2011).

3- T. Gérard and A. De Wit, Stability of exothermic autocatalytic fronts with regard to buoyancy-driven instabilities in presence of heat losses, Wave motion 66, 814-823 (2011).

4- S. Kuster, L.A. Riolfo, A. Zalts, C. El Hasi, C. Almarcha, P.M.J. Trevelyan, A. De Wit and A. D'Onofrio, Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: The case of a color indicator, Phys. Chem. Chem. Phys. 13, 17295-17303 (2011). 5- Y. Nagatsu and A. De Wit, Viscous fingering of a miscible reactive A + B -> C interface for an infinitely fast chemical reaction: Nonlinear simulations, Phys. Fluids 23, 043103 (2011).

6- L. Rongy, K.B. Haugen and A. Firoozabadi, "Mixing from Fickian diffusion and natural convection in binary non-equilibrium fluid phases", A.I.Ch.E. Journal, DOI 10.1002/aic (2011).

7- G. Rousseaux, M. Martin and A. De Wit, Viscous Fingering in Packed Chromatographic Columns: Non-Linear Dynamics, J. Chromatography A 1218, 8353-8361 (2011).

8- P. M. J. Trevelyan, C. Almarcha and A. De Wit, Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells, J. Fluid Mech. 670, 38-65 (2011).

Appendix: Outreach

x prix Nobel réunis à Bruxelles

Cieniale grootmachten

Gipfeltrelfen der Großhirne

INSTITUTS SOLVAT

De Marie Curie au Solar Impulse

Robert Brout, Honorary member of the Solvay Institutes

ULB Intralettre n° 158 11 May 2011

Le professeur Robert Brout est décédé le 3 mai, à l'âge de 83 ans. Physicien brillant, le nom

Fascinante, leur théorie présuppose une particule, le boson scalaire que le collisionneur LHC du CERN pourrait découvrir. Une telle découverte pourrait valoir le prix Nobel aux auteurs du

Professeur émérite de l'ULB, Robert Brout a, dès 1979, co-dirigé avec François Englert le Service de physique théorique de la Faculté des Sciences. Leurs travaux fondamentaux en physique des particules élémentaires leur ont valu le Prix Wolf de Physique en 2004 et le

les orbites des planètes, etc. À plus grande échelle dans l'Univers, on peut s'intéresser à la gravitation engendrée par les trous noirs. C'est là le domaine de recherche de Stéphane Detournay, du Service de physique mathématique des interactions fondamentales (Faculté des Sciences). Il y travaille via une approche bien précise: celle de l'entropie des trous noirs.

microscopiques donnant lieu au même état macroscopique d'un système. Prenons l'exemple d'un verre d'eau. Macroscopiquement, l'eau contenue dans le verre est décrite par un petit nombre de quantités: sa température, sa densité, son énergie. Néanmoins, on sait que l'eau est constituée de nombreuses molécules qui peuvent s'arranger de nombreuses manières différentes pour donner à l'eau le même aspect macroscopique, c'est-à-dire la même température. C'est ce nombre que mesure l'entropie. Plus un système est compliqué, plus il y a de manières différentes d'organiser ses composantes pour lui donner le même aspect extérieur, et plus son entropie est grande".

Avec les trous noirs, Stéphane Detournay tente de tenir le même genre de raisonnement. Mais les questions qui se posent sont alors: quels sont les constituants microscopiques du trou noir responsables de cette entropie ? Et quel est l'équivalent des molécules d'un verre d'eau pour un trou noir ?

Découvrez la gravitation des trous noirs en compagnie de Stéphane Detournay, Service de physique mathématique des interactions fondamentales (Faculté des Sciences) dans "Paroles de chercheurs", le podcast de la recherche à l'ULB. Vous retrouverez les autres podcasts sur le site de l'ULB ou sur iTunes. Vous pouvez aussi vous abonner aux flux RSS.

Prof. Marc Henneaux received a 5-year ERC Advanced Resarch Grant (2011 - 2015)

Esprit Libre n°16 February 2011

ERC Advanced Grant pour Marc Henneaux Au croisement de la physique et des mathématiques

Directeur des Instituts Solvay et professeur ordinaire à l'ULB, Marc Henneaux décroche un ERC Advanced Grant (Conseil européen de la recherche) pour son projet visant à approcher une théorie fondamentale de la gravitation par l'étude de ses symétries.

Depuis le début de son parcours, c'est l'efficacité fraquente des mathématiques à décrire la natise qui galade le traveil de Mar Henneaux. Un bet exemptire est la débuté de la grante-tion d'Einstein qui, s'appoyent sur un langage mathématique d'hane grande élégance, décrit avec poloisien de nombreus phénomènes statures.

Cleat danc tout ristumliement que Marc trenneaux s'intéresse à des questions de partitation, comme les trous noirs, la cos-mologie, dans le cabre de sa trièles. E parasita son doctard à RUE de est instêt un an à l'Université de Ministeran. Après que-tre ans de part-duc à l'Université du Teaus, il sevient à RUES, nú il est à gobient professaur antituaire.

20

RECHERCHE & RECONNAISSANCE

INTERACTIONS (COMMANDER, LS) See recherches le conduisant à l'oblemais deglement aux au-ties types d'internations caluadant à la gravitation; l'électro-nagnations qui exploye la cabécia deva atomes et les forses multiales auties et forte, cer trois interactions pouvent deu décrites par une seule diferire le modèle standard. La gravi-tation quart à selle ristre, cer de conditie sumfairle. De mêtre, contraisement aux autres forces, il est impossible de construie par las méthodes habitualités une verificie quartitais quartes a la métanique quartitate qui règit le mende micro sophique et la cristianté genérale quadritate qui départe aux antes des traiturés générales quadritate de tempéranemies aux àntestes des tentativés de métales quadritates des tentatives des àntestes des tentativés de métales quadritates des tentatives denoment leur

a des aberrations mathématiques. Une théorie de la gasita-tion quantique est associaté indépensable pour unequencie la physique des premiers instants agrès le big bang au des él giors proches do certes d'un trius nuit La théorie de la ga-vitation d'Europée, en dépit de son succión considerable, set dere incampléte.

Une resolution de ce problème pourrait être apportée en 6 sant l'hypothèse que les particules élémentales (les électror les guards, les résultines, etc.) ne sessent pas assimilatilies des points mais bien à de potites condes. C'est en exploit corre sible que des physiliens tentent de contraire is théo des cordes qué inclutait et complèterait la selativité généraie

STRETRIES.

EVERTIMENTS
Even approximate paralleler, gu/affectionment Marc Hennesses et minister de l'Inscherunt du Service de Physique Oblarique et Matérientique de la faculté des sciences de OLDS, fait appoi à la nistion de services, ces denoises anders, des ductantes facultations not été mises en évaluante dans certains domaines de la garéctation. Ces structures préentant dans services qui es misettes infini décrèse par des objets matérientatiques qui es misettes aprésidement anogolis. El paralent, hau partiel à croixe quicil ne s'agit que de la partier d'un isoberg. On sou-wert en préside, la constance des supetities l'une loberes permet de miseux en componente la dynamique.

C'est dans sette logique que Marc Hermaisus a déctsché un ERC C'est carlo tento deglas que tava montanas a deconde un Lino. Alavaned dista por un projet consisterar à tatalen plus en pro-fandere les symètries de la gravitation et ainsi en approcher une formulation complete. Ce financement da consulé européen de la rentenche, qui a pour objectif d'encourager des supés de rela informative qui a pour abient? d'encourager des suets de re-diserties antibieux, pionstruir et intégrisaux, persentant l'emptis de docontent et de pois deux et l'organisation de carôferness per-sient con ques, la programma, la la frantière des concasisations. E la finis en physique et en mathématique, ende assec large pour premettre l'exploration de dévelosis incontenies. Fieur Men-temenaux, cette possibilité de gader un expert nuivet ent très importance dans la microthest assectifique. De de inter Lauxi l'auxient: "La chance ne tourit qu'aux expirits bien préparés".

Univers / Sur la piste de la gravitation quantique L'Europe soutient le Pr Henneaux (ULB)

C 'est un fameux encourage-C ment que vient de recevoir le P Marc Henneaux, du service de physique théorique et mathé-matique de l'ULB et directeur des Instituts Solvay de Physique Chimie. Le Conseil Européen de la Recherche (ERC) vient de lui allouer une de ses prestigieuses bourses de recherche « avancée =. (1)

A quoi allez-vous consacrer la bourse de l'ERC ?

Elle va nous permettre de déve-lopper nos recherches dans le domaine de la gravitation quantique et ce en faisant participer davantage de jeunes chercheurs. Grâce à cette bourse, nous allons pouvoir engager quatre docto-rants et post-doctorants supplémentaires, chaque année, pendant eing ans.

ballet. H wierd. de décrocher une bourse evancée dui Consel suropèrn de la rerche entr

La gravitation quantique, estce le Graal des physiciens ?

C'est un problème qui passionne les physiciens depuis longtemps. Il s'agit de marier les deux grands piliers de la physi-que moderne. D'une port, nous avons la mécanique quantique qui décrit le monde microscopique comme les molécules, les atomes, les noyaux, les quarks, les photons. D'autre part, il y a la relativité générale d'Einstein qui est une représentation relativiste de la gravitation et qui déerit très hien le monde à l'échelle de l'Univers. Actuellement, si on veut marier ces deux théories, nous observons des conflits. Or. cette théorie globale est nécessai-re pour pouvoir expliquer les premiers instants de l'Univers ou encore comprendre ce qui se passe à la fin de l'évolution des trous noirs. La théorie des cordes vous inté-

resse donc plus précisément 7

En effet. Elle se positionne com-me une candidate intéressante pour concilier la gravitation et la mécanique quantique, mais ce n'est pas encore une théorie complète. Mes recherches ant pour but d'essayer de formuler une théorie des cordes au niveau plus fondamental.

169

Comment travaille concrète ment un physicien théoricien 7

Nous partons d'idées, d'hypothè sen, de concepts que nous mettons en équations. Nous vériflons ensuite leur cohérence mathematique. Nous verifions aus si si elles permettent de reproduire, dans différentes situations, les effets de la relativité générale et de la mécanique quantique. Idéalement, il s'agit d'aboutir à une théorie qui fait la synthèse des théories existantes qui marchent bien et de les faire fonctionner ensemble, de manière cohé rente. Nous enregistrons des progrès chaque fois que nous essuyuna de dépasser des blocages par des approches nouvelles. Dans ce contexte, je m'intéresse en particulier à la notian de symetrie. Si nous pouvons avois une meilleure perception de certaines des symètries que duit pos-séder cette théorie cela nous donne des indications sur la forme que doivent avoir ses équations fondamentales.

> Property 14 CHRISTIAN DU BRULLE

(1) + Les bourses avancées + visent à stimider la recherche explorataire de cher cheurs européens reconnus.

Le Soir, 14 January 2011

Press about the 100th Anniversary of the First Conseil de Physique Solvay

La Capitale, 6 September 2011

La Libre Belgique, 7 September 2011

Nederlands Tijdschrift voor Natuurkunde, September 2011 (The Netherlands)

Europhysicsnews, September / October 2011

EOS Magazine, 1st October 2011

ULB, 5 October 2011

Le Cercle de Lorraine, October 2011

De Morgen, 15 October 2011

De Standaard, 17 October 2011

Le Soir, 15/16 October 2011

NWT Magazine, October 2011 (The Netherlands)

L'Echo, 15 October 2011

Le Monde, 15 October 2011 (France)

Webzine Solvay S.A.-N.V. October 2011

Volkskrant, 17 October 2011 (The Netherlands)

De Tijd, 15 October 2011

La Libre Belgique, 15 October 2011

La Libre Belgique, 17 October 2011

La Libre Belgique, 18 October 2011

La Dernière Heure, 18 October 2011

La Libre Belgique, 19 October 2011

La Libre Belgique, 25 October 2011

Akademos, October/November 2011

Frankfurter Allgemeine Sonntagszeitung, 30 October 2011 (Germany)

Le Journal du médecin, 28 October 2011

NRC, 5 November 2011 (The Netherlands)

Business Club Belgo-Luxembourgeois en Suisse, November 2011 (Belgium, Luxemburg)

The Bulletin, 21 October – 3 November 2011

Esprit Libre, November 2011

EOS Magazine des Sciences, November 2011

FEB Magazine, November 2011

FNRS news, December 2011

Radio and TV programmes

Audio:

Interviews with Franklin Lambert (11/10/11 and 12/10/11), Radio Campus ULB

Interview with Henri Eisendrath (14/10/11) on "De Ochtend", Radio 1, VRT

Interview with Marc Henneaux (14/10/11) on "Bruxelles Matin", Vivacité

Interview with Alexander Sevrin and Robbert Dijkgraaf 8/10/11) on "Vandaag", Radio 1, VRT

"100 ans de Conseils Solvay" (18/10/11) RTBF, La Première

Interviews with Pierre Marage"Histoire des premiers Conseils" (23/10/11, 30/10/11 and 6/11/11), "Semences de curieux", RTBF

Interviews with Marc Henneaux "Le 25° Conseil de Physique Solvay" (13/11 and 20/11/11), "Semences de curieux", RTBF

Télévision:

RTL-TVI JT(18/10/11) RTBF JT (19/10/2011) RTBF JT (22/10/11) "100 ans de Conseils de Physique Solvay", (10/12/11), Télétourisme, RTBF

In addition to the various programmes above,a photo gallery of the event is available on Didier Reynders'website (18/10/11)

SCIENCES ANNIVERSAIRE

Bruxelles, capitale de la physique

Bruxelles deviendra la capitale mondiale de la physique, en octobre, à l'occasion du centième anniversaire du premier Conseil de Physique Solvay. Les Instituts Internationaux de Physique et de Chimie, fondés par Ernest Solvay, organiseront des activités exceptionnelles qui réuniront d'éminentes personnalités du monde scientifique, politique et économique dans la capitale belge.

Notons d'une part, la séance académique consacrée à l'importance de la recherche fondamentale et à son impact sur les progrès de la société. Elle réunira, le 18 octobre à l'hôtel Plaza, d'éminentes personnalités parmi lesquelles quatre Prix Nobel et se déroulera en présence du roi Albert II. indique les Instituts Internationaux de Physique et de Chimie. Et d'autre part, un Conseil de Physique exceptionnelsur le thème "The Theory of the Quantum World "quise déroulera du 19au 22 octobre à l'hôtel Métropole, là où a eu lieu le premier Conseil en 1911. La séance d'ouverture sera, elle, organisée à l'Hôtel de Ville de Bruxelles.

Le 25[°]Conseil de Physique sera présidé par Davifiqd Gross, Prix Nobel de Physique 2004 et un grand nombre de scientifiques prestigieux, dont une quinzaine de Prix Nobel, y participeront.

Sans oublier une expo, un colloque, une conférence et une pièce de théâtre. «

September 06, 2011-La Capitale

September 07, 2011- La Libre Belgique

e consens solvay

Sommet mondial de physique

 Les prestigieux conseils Solvay fêteront leurs cent ans avec faste.

I y a juste cent ans se déroulait à Bruxelles le premier et prestigieux conseil de physique Solvay, un moment clé dans l'émergence d'une physique neuve qui a boulevers notre compréhension de l'univers.

Pour fêter l'événement, de nombreuses activités sont prévues à Bruxelles en octobre. Bruxelles sera transformée en capitale mondiale de la physique.

Parmi ces événements, il y a d'abord le 18 octobre, une séance académique avec de nombreux prix Nobel mais aussi des grands industriels comme Gérard Mestrallet (Suez), Craig Mundie (chief research and strategy a Microsoft) ou Shoichiro Toyoda (ancien président de Toyota). Les débats seront consacrés à l'importance de la recherche fondamentale et à son impact sur les progrès de la société. Elle se déroulera en présence du roi Albert II. Dans la foulée, du 19 au 22 octobre, un conseil de physique exceptionnel, le 25° depuis celui de 1911, se tiendra à l'hôtel Métropole (la où s'était tenu le premier) sur le thème "The Theory of the Quantum World" auquel participeront une quinzaine de prix Nobel. De quoi montrer qu'à l'heure d'Internet, la rencontre des meilleurs cerveaux reste utile et que ces conseils n'ont rien perdu de leur pertinence.

Par ailleurs, une exposition sur la mécanique quantique et l'histoire des Instituts ("Remue-méninges à Bruxelles-Cent ans de conseils de physique Solvay") se tiendra d'octobre à décembre au palais des Académies. De plus, un colloque sur les "Premiers Conseils Solvay et l'avenement de l'ere quantique" aura lieu le 14 octobre. La pièce de théâtre "Copenhagen" mettant en scène le célèbre débat entre Bohr et Heisenberg sur la bombe atomique, avec dans les premiers rôles deux prix Nobel (Alan Heeger, chimie 2000 et David Gross, physique 2004) et dans le rôle de M" Bohr, la grande actrice shakespearienne Fiona Shaw, se jouera le 17 octobre à Flagey.

Comme chaque année, une conférence est aussi destinée au grand public et sera consacrée à la vulgarisation de la science. Elle aura lieu le 23 octobre à 15h à Flagey et les exposés porteront sur les grandes questions de la physique actuelle. Trois prix Nobel (William Phillips, Frank Wilczek et David Gross) répondront aux questions du public.

L'histoire des 24 conseils Solvay épouse l'histoire de la physique du

XX' siècle. Elle commence en 1911. Ernest Solvay, le grand industriel et mécène, avait alors invité à Bruxelles, déjà à l'hôtel Métropole, les 25 meilleurs scientifiques du moment. Une célèbre photo d'époque les montre attablés. On y reconnait Max Planck, Marie Curie et Einstein, tout jeune et intimidé d'être la. Plus de la moitié des participants avaient eu ou auront le prix Nobel de physique. Ernest Solvay les avait invités pour discuter de la "théorie du rayonnement et les quanta". Ils furent reçus ensuite par le roi Albert et la reine Elisabeth. Cette dernière continua d'ailleurs à soutenir activement ces conseils Solvay, devenant même une amie très proche d'Einstein avec qui elle jouait du violon. En 1911, Lorentz avait dressé la liste des invités. Il s'agissait au départ d'étudier les propres idées scientifiques d'Ernest Solvay, mais celui-ci s'était vite rendu compte que l'intérêt d'un tel conseil était surtout de mettre ensemble la fine fleur de la science mondiale. Ces conseils Solvay se réunissent normalement tous les trois ans. Mais les guerres les ont interrompus. Einstein, enseignant à Berlin, n'a pu revenir à Bruxelles qu'en 1927 où on le voit cette fois au centre de la photo avec l'assurance de son énorme célébrité. Les deux conseils Solvay auxquels il participa furent sans doute les plus prestigieux. Le premier consacra - grace à Einstein - la pertinence de la révolution quantique naissante. Le second fut célèbre par la polémique qui opposa Niels Bohr et Al-bert Einstein sur les conséquences de la mécanique quantique et le rôle prédominant du hasard en dessous d'une certaine dimension. "Dieu ne joue pas aux des", s'était exclamé Einstein, mais il avait tort, comme il le reconnut plus tard, qualifiant d'erreur sa méfiance à l'égard de la mécanique quantique.

Il y eut en tout, 22 conseils Solvay. Certains furent particulièrement remarguables, comme celui de 1958 qui vit s'opposer les physiciens Oppenheimer (l'homme qui conduisit le projet de bombe atomique américain avant de devenir le fer de lance du pacifisme) et Wheeler sur les conséquences de l'effondrement gravitationnel d'une étoile. On peut se demander si un tel colloque a encore un sens alors que des milliers de colloques et réunions ont lieu et que les scientifiques dialoguent en direct par Internet. C'est tout l'enjeu de ces réunions d'octobre: montrer que ces conseils sont plus que jamais utiles car ils permettent en un temps court (trois jours), en petit comité, quasi autour d'un tableau noir, de discuter au plus haut niveau.

iuy Duplat

→ www.solvayinstitutes.be

Appendix : Outreach

71

350

De eerste Solvay Raad: een 'heksensabbat' in de fysica

Honderd jaar geleden op 29 oktober 1911 startte de eerste Solvay Raad, welke een icoon in de geschiedenis van de moderne natuurkunde zou worden. Herdenkingen zullen binnenkort in Brussel plaatsvinden; een terugblik is op zijn plaats. Frits Berends en Franklig Lambert

Een verrassende uitnodiging

Midden iuni 1911 stuurde Ernest Solvay (1838-1922), industricel, mecenas en liethebber van de wetenschap, aan 23 vooraanstaande natuurkundigen een vertrouwelijke uitnodiging tat deelname aan een "Internationale wetenschappelijke Raad om enkele actuele kwesties op te helderen in de moleculaire en kinetische theorieën". De brief van vier kantjes is als volgt samen te vatten. De gangbare theorieën over (zwarte) straling en soonelijke warmies stemmen niet met het experiment overeen. Als aan de bewegingvan elektronen en atomen beperkingen worden opgelegd, dan verdwijnt. zoals Planck on Einstein hehben autgetoond, de tegenspraak, Wel zou een fundamentele herziening van de theorie noodzakelijk zijn. De hoop wordt geuit dat de Raad een weg kan hanen maar een oplossing. Leden van de Raad en acht onderwerpen voor lezingen en discussies, met Lorentz als voorziner. worden in de brief genoemd, Kosten zijn voor rekening van Solvay; voor antwoord moet men zich richten tot Prof. dr. W. Nernst te Berlijn.

Hoe bijzonder was die brief? hen mtomationale natuurkunde conferentie was nitzonderlijk, want oo dan had er slechts een plaatsgevonden, namelijk in Parijs in 1900, met 20'n 750 deelnemers nit 24 landen. Deze bijeenkomst was georganiseerd door de Franse Nauurkundige Vereniging en niet door

cen internationale fysische organisatie, want die bestond toen niet. Alleen diarom al was Solvay's Conseil een verrassing. Echter er waren meer bijzondere aspecten. Stechts vier genodigden waren tevoren op de hoogte en daarom zullen de anderen zich zeker een aantal zaken hebben afgevraagd zoals: Is de toestand in de natuurkunde zo ernstig? Hoe is de lijst van genodigden ontstaan? Waarom in Brussel. als er geen Belgische natuarkundigen deelnemen? Waarom Nernst antwoorden, als Solvay uimodigr? War zal het resultant van zo'n ropconferenne zijn? Ferugblikkend kunnen we die vragennog steeds stellen en hun beantwoording willen we in dit anikel aan bod Laten komen.

De quantumtheorie in de periode 1900-1910

In vergelijking met röntgenstraling en radioactiviteit trokken metingen van zwarte straling weinig aandacht, alhoewel met Plancks stralingsformule bij de beschrijving daarvan een opmerkelijk succes was geboekt. De formule was in oktober 1000 yourgesteld en in december theorerisch afheleid. De volgende jaren bleef die afleiding tussen enkele fysici een punt van discussic. Zo groeg Lorentz zich af hoe essentieel Plancks veronderstelling was dat 'resonatoren' van een speeilieke frequentic energie alleen in veelvouden van vaste energie-elementen (quanta) opnemen of afgeven.

In 1903 liet horentz zien dat de elek-

Groepsfoto van de eerste Solvay Raad.

NEDERLANDS TROSCHRITT VOOR NATUURAUNDE SEREEMBER 2019

September 2011- Nederlands Tijdschrift voor Natuurkunde (The Netherlands)

tronentheorie voor lange golfleagten overeenstemde met Plancks formule. Overigens was Lorentz' formule in essentie dezelfde die Rayleigh uit de equipartitiewet in juni 1900 had afgeleid en door leans was herontdekt in 1905. Het was Einstein die in 1905 tot het revolutionaire concept van het lichtquantum kwam, waarmee hij het foto-elektrisch effect kon beschrijven. Startpunt was Wiens strulingsformule, die juist voor korte golflengten geldt.

In 1907 paste Einstein Plancks ideeën over energieoverdracht van resonatoren toe op de trillingen van atomen en zo op soortelijke warmtes. Daarmee kon hij de bij lagere temperaturen bestaande afwijkingen van de klassieke wet van Dulong en Petit begrijpelijk maken. Dit waren de belangrijkste wapenfeiten van de vroege quantumtheorie [1], toen de fysisch-chemicus Nernst in het gebied terecht kwam.

Nernst ontdekt Einstein

Eind 1905 stelt Nernst (1864-1941). een bekende Berlijnse hoogleraar, zijn warmtetheorema op, die nu bekend is als de derde hoofdwet van de thermodynamica. De door hem voorgestelde wet blijft echter lange tijd controversieel en er is hem derhalve veel aan. gelegen de consequenties van die wet te toetsen. Met name raakt hij geïnteresseerd in het gedrag van soortelijke warmtes, die volgens hem bij dalende temperatuur naar eenzelfde limietwaarde zouden moeten gaan. Zijn metingen starten in 1909 en de resultaten bij lagere temperatuur komen begin 1910 beschikbaar. Kwalitatief blijken de metingen overeen te stemmen met Einsteins voorspellingen. Hierdoor neemt zijn belangstelling voor Einsteins soortelijke warmte theorie toe en daarmee ook zijn interesse in de quantumtheorie.

Begin maart 1910 besluit Nernst Einstein te bezoeken, die dan buitengewoon hoogleraar is in Zürich. Hoe Nernst dat bezoek erwaart, blijkt uit zijn brief [2] die hij daarna schrijft aan Schuster in Manchester: "Het was voor mij een extreem stimulerende en interessante ontmoeting. Ik geloof dat we voor de ontwikkeling van de natuurkunde erg gelukkig kunnen aijn zo'n originele jonge denker te hebben, een 'Boltzmann reduinus': dezelfde zekerheid en snelheid van denken; grote vermetelheid in de

Aanhef van Solvay's uitnodigingsbrief, exemplaar uit Noord-Hollands Archief, Archief van prof. dr. H.A. Lorentz (1853-1928), 1866-1930, inv.nr. 73.

Les sujets de conférence traitée sermient les suivante :

- 1 Déduction de la formule de Rayleigh sur la radiation
- 2 Comparaison de la théorie cinétique des gas parfaite avec les résultats de l'expérience.
- 5 Application de la théorie cinétique sux émulaions.
- 4 La théorie cinétique de la chaleur spécifique d'après Clausius, Marwell et Boltzmann.
- 5 La formule de redistion at la théorie des degrée d'énergie ("Questenhypribese").
- 6 Chalour spécifique et théorie das degrés.
- 7 Application de la théorie des degrée à une série de problèmes de nature physique.
- 2 Application de la théorie des degrée à une série de problèmes de mature physico-chimique et chimique.

Lijst van onderwerpen in uitnodigingsbrief, NHA, Archief H.A. Lorentz, inv.nr. 73. De daarbij later aangezochte rapporteurs worden in het artikel in dezelfde volgorde genoemd als deze acht onderwerpen. In de uitnodiging worden de onderwerpen waarover Warburg, Rubens en Langevin zullen rapporteren nog niet vermeld.

theorie, wat geen kwaad kan, omdat nauw contact met het experiment bewaard blijft. De 'quantumhypothese' van Binstein behoort waarschijnlijk tot de meest opmerkelijke gedachtenconstructies ooit; als het juist is, dan geeft het volledig nieuwe wegen voor de zogenaamde fysica van de ether en voor alle moleculatre theorieën; is het onjuist, wel, dan zal het voor altijd een mooie herinnering blijven."

Begin april 1910 presenteert Nernst in Parijs zijn metingen en onderstreept het belang van Einsteins theorie voor het warmtetheorema [3]. Deze buitenlandse contacten zullen Nernst gestimuleerd hebben over de quantumtheorie een 'Konzil', ofwel een 'Concile' of 'Conseil' te organiseren.

Het plan van Nernst voor een Konzil

Nernst polst Planck, Knudsen en Lorentz en zij zeggen hun medewerking toe, alhoewel Planck zijn twijfels houdt. Hij wil eigenlijk een jaar wachten tot de erisis nog groter is. Bowendien maakt hij kauttekeningen bij de lijst van beoogde deelnemers, want de meeste aouden geen echte interesse in de te bespreken kwesties hebben L42. Nernst zet toch door en wordt daarbij geholpen door zijn veelzijdige Belgische medewerker Goldschmidt,

omber son NEBERLANDS TUDSCHEITT VOOR NATUURKUNDE

351

Groepsfoto van de tweede Solvay Raad 'Structure de la Matière', in het Solvay Instituut voor Fysiologie, oktober 1913 (gereproduceerd met toestemming van de Internationale Solvay Instituten voor Fysica en Chemie, gesticht door E. Solvay, Brussel).

fysisch-chemicus, uitvinder en een goede kennis van Solvay. Tenslotte is er begin juli 1910 in Brussel een ontmoeting tussen Solvay. Nernst en Goldschmidt.

Eind juli 1910 stuurt Nernst aan Solvay een uitgewerkt plan voor een Raad [5]. Uit de tekst blijkt dat Nernst een afwijzing voor mogelijk houdt. Immers Nemist schrift lets in de trant van: "Mocht hij (Solvay) om wat voor reden dan ook niets in het voorstel zien, dan kan hij het rustig in de Papirrkerb gooien." Toch is er al cen uitnodigingshrief hijgevoegd, nog slechts door Solvay te ondertekenen. Nernst benadrukt dat hijzelf op de achtergroud wil bliwen en wil zeker niet als initiator genoemd worden. Hij stelt your dat Goldschmidt in Brussel de zaken zal regelen. Nernst hecht er kennelijk veel belang aan om op neutraal terrein, in het toen al internationale Brussel, en op initiatief van eenonpartijdige mecenas, de quantumtheorie internationaal door gezagheb-

Frits Berends is emeritus hoogleraar theoretische natuurkunde aan de Universiteit Leiden. Hij heeft vooral onderzoek gedaan in de hoge-energiefysica, ondermeer op

het gebied van procisievoorspellingen uit het Standaard Model voor experimenten, zoals die bij colliders gedaan worden. Na zijn emeritaat is hij in de goschiedenis van de natuurkunde geïnteresseerd geraakt.

berends@lorentz.leidenuniv.nl

bende fysici besproken te zien.

Solvay gaat akkoord, maar wil de Conseil warlater houden. In de tussentijd veranderen het voorzitterschap en de deelnemerslijst enkele malen – Solvay vindt bijvoorbeeld twee Fransen te weinig bij vijf Duitsers en zes Britten. Als Lorentz in mei 1911 het voorzitterschap aanvaardt, verzoekt hij ook Kamerlingh Onnes uit te nodigen.

Hoe is het mogelijk dat de naam van Nernst aiteindelijk roch in de uitnodiging voorkomt? Wel, in juni 1911 vertrekt Goldschmidt voor enige maanden naar Belgisch-Congo om daar de mogelijkheden voor draadloze telegrafie te onderzoeken. Ook al is Nernst geïtriteerd, hij kan er niets aan veranderen, want Goldschmidt reist op verzoek van koning Albert. Nernst zai zelf de correspondentie met de deelnemers moeten voeren.

De Raad in hotel Métropole

Van de 23 genodigden zeggen vier Britten en Van der Waals af. Goldschmidt, M. de Broglie en Nernsts Engelse medeworker Lindemann fungeren als secretarissen. Na de openingstoespraken van Solvay, Lorentz en Nernst presenteren gedurende viif dagen de sprekers hun al van tevoren verspreide rapporten. Als sprekers voor de onderwerpen uit Solvay's brief waren gevonden: Lorentz, Knudsen, Perrin, Jeans, Planck, Einstein, Sommerfeld en Nernst, Verder tapporteren Rubens en Warburg over zwarte-stralingsdata en Langevin over magnetisme. Tijdens de voordrachten vinden uitvoerige - genotaleerde - discussies plaats. Het geheel verschijnt later als De stralingstheorie en de quanta [6]. Kamerlingh Onnes' artikel over supergeleiding is gebaseerd op zijn discussiebijdrage bij de lezing van Nernst. Terwiji de recente ontdekking van supergeleiding ter sprake kwam, bleef een andere mijlpaul uit 1911 onvermeld. In discussies werd soms het atoommodel van Haasof Thomson genoemd, maar niet bet recente van Rutherford. Die zweeg, vermoedelijk wegens de 'klassieke' instabiliteit van zijn model. Pas bij de tweede Raad in 1913 noemde hij in discussies het model. Naast bovengenoemde deeinemers waren aanwezig: M. Brillouin, M. Curie, Hasenöhri, Poincaré en Wien.

Hoe deze bijeenkomst van de Raad isgeweest, is door sommigen wel beschreven, Einstein grapte over het Konzii in prive-brieven [7] als een "Hexen-Sabbath" of "En Delicium für diabolische Jesutenpattes". Zijn commentaar op diverse deelnemers eindigt met "aber wissen that kenner was". Sfeerimpressies klinken door in Brillouins woorden [81: "Tijdens de lange en moeizame vergaderingen, in de kleine, een beetje oververhitte, zaal van her horel Métropole, verlieten elke dag opnieuw leans on Ratherford ons roud theetiid en namen enkele momenten rast. De underen ondervonden tegen zessen de behoefte een luchtje te scheppen op de boulevard Anspach, de geest een beetje rust te geven of onder vier ogen de in de sessie opgeworpen problemen thema bestond het gevaar dat de kleine zaal een waar Babel zou worden.

Franklin J. Lambert is emeritus hoogleraar wiskundige en theoretische natuurkunde aan de Vrije Universiteit Brussel, Hij Is verbonden aan de Internationale Solvay

Instituten voor Fysica en Chemie – eerst als lid van de raad van bestuur van 1995 tot 2003, daarna als adjunt directeur tot 2010. Zijn onderzoek in de fysica betrof vooral de wiskundige aspecten van de niet-lineaire dynamica, met nadruk op de solltontheorie. De laatste jaren doceerde hij geschiedenis van de natuurkunde en deed onderzoek barteffende het archief van de Solvay Instituten.

NEDERLANDS TUDICHBIFT VOOR NATUURKENDE September 2019

352

September 2011- Nederlands Tijdschrift voor Natuurkunde (The Netherlands)

Maar Lorentz volgde alles, onderbrak de spreker als zijn wat moeilijk te vatten uiteenzetting aan een van ons leek te ontgaan, en vatte her essentiële, gefilterd door zijn heldere intelligentie, samen in de twee nationale talen van de anderen. En iedereen kon zonder moeite – maar niet zonder voortdurende aandacht – de beweringen en tegenwerpingen, de argumenten en bezwaren volgen en vooral zeggen wat hij niet begreep en kon min of meer bevredigende uitleg krijgen."

Gevolgen Solvay Raad

De gevolgen van de Raad zijn divers. De quantumheorie krijgt bekendheid. Een deelnemer, Poincaré, publiceert een artikel over het essentiële karakter van de quantumdiscontinuïteit voor Plancks stralingswet, dat Jeans zal beinvloeden [9]. Rutherfords nieuwe medewerker Bohr hoort over de Solvay Raad [10] en past in 1913 quanta in zijn theorie toe. De notulist Maurice de Broglie maakt zijn 19-jarige broer Louis zo enthousiast dat deze natuurkunde gaat studeren.

Bovendien is er het effect op de loopbaan van Einstein. Inmiddels wel hoogleraar in Praag, zou hij dat liever aan de Eidgenössische Technische Hochschule zijn, waar er echter geen haast wordt gemaakt. Onder de indruk van Einsteins optreden in de Raad, schrijven Poincare en M. Curie aanbevelingsbrieven. Dit helpt voor de benoeming in Zürich, waar hij in juli 1012 begint. Maur diezelfde uitstekende indruk bekort ook zijn verblijf aldaar. In 1913 weten de vier Berlijners uit de Raad een aantrekkelijke positie voor Einstein te creëren. Na een bezoek van Planck en Nernst accepteert Einstein hun aanbod en verhuist hij begin 1914 naar Berlijn.

Institut International de Physique Solvay

Voor een opmerkelijk resultaat van de bijeenkomst werd op de laatste dag de kiem gelegd in een privé-onderhoud van Solvay met enkele deelnemers: Solvay zal steun verlenen aan experimenten over de besproken problematiek. Om dit vorm te geven verzoekt Solvay aan Lorentz een plan voor een internationaal instituut op te stellen. Begin januari 191a zendt Lorentz zijn concept naar Solvay, die hier in principe mee instemt. Hij stuurt een medewerker naar Leiden om de statuten

48. WOUDSTOCK ROAD Oxford Dear Sir y enclose a stat

Toelichting van Moseley bij specificatie van zijn ultgaven van subsidiegelden (archief Centre de ressources historiques de l'ESPCI ParisTech, document L12/83).

voor het instituut op te stellen. Na verder overleg wordt op 1 mei 1913 het Solvay International Institute of Physics een feit. De fysica zou internationaal gestimuleerd worden door subsidies te verstrekken en Raden te organiseren, terwijl met studiebeurzen jonge Belgen onderzoekservaring konden opdoen.

Een internationaal comité scientifique met voorzitter Lorentz hield zich met het toekennen van onderzoekssubsidies bezig, terwijl een Belgische commissie over beurzen, financiën en administratie ging. Tot de eerste wereldoorlog ontvingen ongeveer veertig onderzoekers een subsidie. Zes daarvan wonnen later de Nobelprijs: von Laue, W.L. Bragg, Barkla, Stark, Franck en Hertz. Een andere, Moseley, werd voor de Nobelprijs in 1915 genomineerd, maar sneuvelde bij Gallipoli. De oorlog bracht grote verbittering en isoleerde de centrale mogendheden. Pas in 1926 slaagde Lorentz met zijn verzoeningspogingen, toen - voor de viifde Raad, in tegenstelling tot de derde en vierde - weer experts uit alle landen konden worden uitgenodigd. Bijna alle sleutelfiguren van de quantummechanica waren in 1927 aanwezig

Referenties

- Een gedetailleerde beschrijving is te vinden in T.S. Kuhn, Black-body theory and the quantum discontinuity, 1994-1912, The University of Chicago Press, Chicago 1978.
- Diana Kormos Barkan, Science in context 6 (1993) 62.
- Journal de Physique, 4e série, IX (1910) 48.
 Brief 11-6-1910 van Planck aan Nernst, Archief Solvay Instituut, ULB, Brussel, document 1720a.
- 5 Brief 26-7-1910 van Nernst aan Solvay, ibidem, document 1688a.
- 6 P. Langevin en M. de Broglie, Théorie du Rayannement et les Quanta, Rapports et Discussions de la Réunion tenue à Bruxeiles, Gauthier-Villars, Paris, 1912.
- Prieven 299, 303 en 305 in The collected papers of Albert Einstein, Vol.5, correspondence 1902-1914, eds. M.J.Klein, A.J.Kox, R. Schulmann, Princeton University Press, Princeton, 1993.
- 8 M.Brillouin, Physica 6 (1925) 30.
- 9 Russell McCormmach: Henri Poinceré and the Quantum Theory, Itis **58**, 1967, p.37.
- 10 N.Bohr, Essays 1958-1962 on Atomic physics and human knowledge, 1963, p.31.

353

175

september zon NEDERLANDS TILDSCHEIFT VODE NATUURKUNDE

FIRST SOLVAY COUNCIL HISTORY

Einstein's witches' sabbath: the first Solvay council on physics

Frits Berends - professor of theoretical physics emeritus, Universiteit Leiden - DOI: 10.1051/epn/2011502
 Franklin Lambert - professor of theoretical physics emeritus, Vrije Universiteit Brussel and Solvay Institutes

One hundred years ago, on 29 October 1911, a very special event took place in Brussels: the opening of the first Solvay Council, a meeting which would become a milestone in the history of modern physics.

n mid-June 1911, invitations were sent to 23 prominent physicists to take part in a 'Conseil scientifique international. Its aim was to 'elucidate some actual problems regarding the molecular and kinetic theories'. The confidential letter, signed by Ernest Solvay (1838-1922) - a wealthy Belgian industrialist and scientific philanthropist - stressed that the existing theories could not account for the observed properties of radiation and specific heats. It recalled that Planck and Einstein had shown that the contradictions between theory and experiment could be solved by imposing limitations to the motion of electrons and atoms, an assumption requiring a fundamental revision of current theories. The meeting was said to be convened in the hope that it would pave the way to a solution to the problem. Eight subjects were to be discussed under the chairmanship of Hendrik Antoon Lorentz (1853-1928). The names of the invited members were listed. Replies to the invitation were to be sent to Prof. Dr. W.Nernst in Berlin.

What was so special about this letter?

An international conference on physics was most unusual. Only one had taken place before: the 1900 Conference in Paris, with 750 participants from 24 countries, which had been convened by the French Physical Society, not by an international physics organization – as none existed.

Yet, more things were special. Among the invited members only four had been previously informed. The others must have been puzzled. What was so critical in physics? Why this sudden concern? Why Brussels, if no Belgian physicists were involved? What would be the outcome of such a 'summit'? Why was it called by Solvay, and what about Nernst? These questions are still relevant today. This note will try to answer them.

The quantum theory between 1900 and 1910

In spite of its success, Planck's result on black-body radiation in 1900 did not attract much attention. Its derivation remained a matter of discussion between a few experts, including Lorentz. How essential was the assumption that Planck's oscillators could only absorb and emit energy by indivisible 'units' (quanta)?

In 1903, Lorentz showed that the electron theory could only account for the long-wave behaviour of Planck's formula, in accordance with what Rayleigh had deduced from the equipartition theorem - a result also obtained by Jeans and by Einstein in 1905.

Starting from Wien's radiation formula, which accounted for the short-wave regime, Einstein was led in 1905 to the formulation of his revolutionary concept of 'light quanta', a heuristic view which provided a simple description of the photoelectric effect. In 1907 Einstein applied quantum ideas to matter, treating the oscillating atoms in a solid as Planck-oscillators. He thus obtained a specific heat formula which explained the observed deviations from the classical law of Dulong-Petit. This was the state of the art in the early quantum theory [1], when the physical-chemist Walther Nernst (1864-1941) entered the field.

Nernst discovers Einstein

Late in 1905 Nernst announced his 'heat theorem', or the 'third law of thermodynamics', a bold proposition with far-reaching implications. It predicted a decrease of specific heats with temperature, and their convergence

* FIG. 1:

Starting lines of Solvay's letter of invitation, reproduced from the one sent to Lorentz, Noord-Hollands Archief, Archive of prof. dr. H.A. Lorentz (1855-1930, 1866-1930, inv.nr. 73.

EPN 42/5 15

HISTORY FIRST SOLVAY COUNCIL

+ 116.2:

Topics for the first Council, as listed in the letter of NHA, Archive H.A. Lorentz. inv.nr. 73. The corresponding rapporteurs are listed in our text in the order of these eight topics. Experimental topics on blackbody radiation covered by Warburg and Rubens are not yet mentioned. The same holds for magnetism, Langevin's topic. Los pujote de conférence textide escateurs las estenate :) - Décentión de la formule de Baylaigh our la eministica

- 2 Comparation de la tadarie minétique des parteits avec les pésuitate de l'ampériente.
- 1 Application of in theory statistics and instances.
- 4 In thisrts staitigss on in theirur spinifips dia-
- gres Clausius, Manuell et bullinnen.
- 8 Le Terrente de rententien et la théorie des degrée L'énergie ("Quaintentryntheow").
- 8 Chileur spicifius of thioris iss ingris.
- Application de la toderie des degrée à une effice de problèmes de estare physique.
 Application de la toderie des pagnée à une effice de
- problimes de auture physics-chinique et chinique.

toward the same limit at absolute zero. In order to find evidence for his theorem, Nernst started a programme of specific heat measurements in 1909. Promising results - down to liquid air temperatures - started accumulating in 1910. They agreed qualitatively with the Einstein formula, boosting thereby Nernst's confidence in 'Einstein's quantum theory'. Early March 1910, Nernst - a major authority in Berlin

FIG. 1: Group picture of the second Solvay

Council Structure de la Matiere, in the Solvay Institute of Physiology, october 1913, reproduced with permission of the International Solvay Institutes for Physics and Chemistry, founded by E. Solvas, Brusels. - decided to pay a visit to Einstein, who was a relatively unknown associate professor in Zürich. Shortly after the meeting, Nernst expressed his enthusiasm in a letter [2] to his Manchester colleague, Arthur Schuster: "It was for me an extremely stimulating and interesting encounter. I believe that , as regards the development of physics, we can be very happy to have such an original young thinker, a 'Boltzmann redivivus'; the same certainty and speed of thought; great boldness in theory, which however cannot harm, since the most intimate contact with experiment is preserved. Einstein's 'quantum hypothesis' is probably among the most remarkable thought constructions ever; if it is correct, then it indicates completely new paths both for the so-called 'physics of the ether' and for molecular theories; is it false, well,

16 EPN 42/5

then it will remain for all times a 'beautiful memory'". On 1 April Nernst spoke in Paris, about his theorem, the results of his measurements and their agreement with Einstein's formula [3]. Stimulated by his findings and by his foreign contacts, Nernst conceived the idea of organizing a 'Konzil' on quanta, a 'summit,' in other words a 'Concile' or 'Conseil'.

Nernst's plan for a Konzil

Nernst discussed his idea with Planck, Knudsen and Lorentz. They agreed to participate, but Planck preferred to wait one more year for the emergence of new elements that would even increase the crisis. He also expressed concern about the proposed list of participants, indicating that most of them would not be seriously interested in the subject. In spite of this, Nernst decided to go ahead with the help of his Belgian collaborator Goldschmidt, a chemist, an inventor and a personal acquaintance of Solvay.

Early in July 1910 Nernst met the industrialist at Goldschmidt's home in Brussels. Later that month he submitted a detailed proposal for a *Konzil*, asking Solvay to throw it in the waste-paper basket in case of disapproval. The proposal contained a letter of invitation which Solvay only needed to sign.

Nernst also insisted for not being named as the initiator of the project. He was obviously eager to have the quantum theory discussed by internationally recognized authorities, brought together on neutral ground by a fair-minded patron of science. Brussels seemed therefore perfectly suited. Solvay accepted the proposal, but asked for some deferment. Meanwhile, several alterations were made in the list of invited members and in the Council's chairmanship. For instance, Solvay wanted to have a balance between the numbers of German, French and British participants. When Lorentz became the chairman, in May 1911, he arranged for Kamerlingh Onnes to be invited. Why did Nernst's name show up on the letter of invita-

tion? Quite simply because Goldschmidt left for the Congo, in June 1911, to set up wireless telegraphy, at King Albert's request. The irritated Nernst had no other choice than to take care himself of the correspondence.

The Council in hotel Métropole

Among the 23 invited members, five chose to stand aside: Larmor, Lord Rayleigh, Schuster, Thomson and Van der Waals. Goldschmidt, M. de Broglie and Lindemann. Nernst's British collaborator, acted as secretaries. Opening speeches were delivered by Solvay, Lorentz and Nernst. 11 reports and a letter from Rayleigh were discussed, five on black-body radiation and six on the properties of matter. The rapporteurs were: Lorentz, Knudsen, Perrin, Jeans, Planck, Einstein, Sommerfeld, Nernst, Warburg, Rubens and Langevin. The proceedings appeared in 1912 under the title "The Theory of Radia-

September/October 2011- Europhysicsnews volume 42 n°5

tion and the Quantal Kamerlingh Onnes's contribution on the discovery of superconductivity was based on what he had said during the discussion of Nernst's report. Rutherford did not mention his remarkable alpha-scattering results, notwithstanding the fact that atomic models were discussed during the reports of Planck and Sommerfeld. The other participants were M.Brillouin, M.Curie, Hasenöhrl, Poincaré and Wien.

The meeting was described by several participants. Einstein joked, in letters [4] to his friends, about the 'witches' sabbath' which would have been a 'delight to diabolic Jesuit fathers'. Brillouin reported [5] on the atmosphere during the long discussions which took place in the overheated little room of hotel Métropole. He described Lorentz' brilliant performance as chairman and translator, who used his wonderful tact and intelligence to intervene whenever a clarification was needed, and who managed to summarize the outcome of the many discussions.

Consequences of the Council

The Brussels meeting was rich in consequences. It made a large group of scientists aware of the importance of quantum problems. One member, Poincaré, produced a proof that Planck's law was bound to introduce an essential quantum discontinuity. This had a decisive influence on Jeans [6]. As he visited Manchester Bohr was told by Rutherford of the Solvay Council discussions [7]. In 1913, he used Planck's quantum of action with success. Louis de Broglie's enthusiasm for quanta was aroused by his reading of the Council's minutes which had been noted by his brother Maurice.

The Solvay Council had also a major impact on Einstein's academic career. His move in 1912 from Prague to the ETH in Zürich was made easier by M.Curie's and Poincare's strong recommendations, which were sent shortly after the conference. The next step, which brought him to Berlin, as a member of the Prussian Academy, took place in 1913, when the four Berliners from the Solvay Council signed the pivotal election proposal.

Institut international de physique Solvay

The origin of the Council's most remarkable achievement - the founding by Solvay of the International Institute of Physics in May 1912 - was a private meeting on the last day of the conference, at which Solvay, Lorentz and some members discussed experiments for which Solvay would provide the necessary means. Lorentz was asked to work out a plan for an international institute. On 4 January, he presented his concept of the institute. Solvay agreed with it, in principle, and sent one of his co-workers to Leiden to draw up the statutes.

The Institute's main purpose was to stimulate research in physics at an international level, by means of grants. Regular Councils would be organized, and young Belgians would get travelling scholarships. The grants would go to researchers selected by an international committee, chaired by Lorentz. A local committee would take care of the budget, the scholarships and the administration.

Research subsidies were granted until the outbreak of WWI. Among the 40 beneficiaries, six would get a Nobel Prize: von Laue, W. L. Bragg, Barkla, Stark, Franck and Hertz. Moseley, who also obtained support, was nominated in 1915 for the Prize but died on the battle field near Gallipoli.

The war gave rise to a lot of bitterness, and led to the isolation of the Austro-German scientists. In spite of Lorentz' efforts to achieve international reconciliation, it was only in 1926 that experts from all countries could be invited in contrast to the third and fourth Councils. So it was not until the fifth Solvay Council in 1927 that most key-developers of quantum mechanics gathered in Brussels.

References

 T.S. Kuhn, Block-Body Theory and the Quantum Discontinuity, 1894-1912, The University of Chicago Press, Chicago (1978).

[2] Diana Kormos Barkan, Science in Context 6 (1993) 62.

[3] W. Nernst, Journal de Physique, 4e Série, IX (1910) 48.

[4] Letters 299, 303 en 305 in The collected papers of Albert Einstein, Vol.5, correspondence 1902-1914, eds. M.J.Klein, A.J.Kox, R. Schulmann, Princeton University Press, Princeton (1993).

[5] M. Brillouin, Physics 6 (1925) 30.

(6) Russell McCommach, Henri Poincaré and the Quantum Theory, Iuli 58 (1967) 37.

 [7] N.Bohr, Essays 1958-1962 on Atomic Physics and Human Knowledge (1963) 31.

23 16 1914 48. WOODSTOCK ROAD. Oxford: 12 83

4 FIG. 4

Moseley's explanatory note which specifies the spending of his grant, Archive Centre de ressources historiques de (TESPCI ParisTech, document L12/83.

October 01, 2011-EOS Magazine

Octobre 2011 - Bruxelles, capitale mondiale de la physique

A l'occasion du centième anniversaire du légendaire premier Conseil de Physique Solvay qui a marqué le développement de la physique actuelle, les Instituts internationaux de Physique et de Chimie fondés par Ernest Solvay organisent plusieurs activités tournées vers le grand public et les jeunes du secondaire en particulier.

Exposition "Remueméninges" au Palais des Académies à Bruxelles du 14 ctobre au 21 décembre L'exposition expliquera, à travers différents récits, comment les Conseils Solvay ont contribué à établir les bases du monde technologique d'aujourd'hui et fera découvrir au public le côté passionnant de la recherche scientifique. Conçue par des enseignants et chercheurs de l'ULB et de la VUB, l'exposition, divisée en cinq chapitres, propose un parcours de la physique classique aux principes de la mécanique quantique et aux applications de celle-ci. De nombreuses expériences et des vidéos permettent de rendre concrets et d'appréhender sans complexe des concepts qui vont à l'encontre de l'intuition ordinaire.

Pièce de théâtre "Copenhagen" le 17 octobre à l'Espace Flagey à Ixelles

Cette pièce est une reconstitution dramatique de la rencontre qui s'est déroulée dans le plus grand secret, en 1941, entre le scientifique danois Niels Bohr et son ancien élève et collègue, le scientifique allemand Werner Heisenberg. Au centre du conflit: la bombe atomique.

Exposés de vulgarisation "Le futur de la physique" le 23 octobre à l'Espace Flagey à Ixelles

Les exposés de William Phillips et Frank Wilczek, tous deux Prix Nobel de Physique, porteront sur les grandes questions de la physique actuelle et sur plusieurs de ses applications qui ont révolutionne notre vie quotidienne. Les exposés seront suivis d'un débat mené par **David Gross**, Prix Nobel de Physique et Docteur honoris causa de l'ULB, sur le thème "Le futur de la Physique".

Colloque "Les premiers Conseils Solvay et l'avènement de l'ère quantique" le 14 octobre au Palais des Académies à Bruxelles

Cette journée d'étude sera consacrée aux aspects historiques de l'origine et de l'impact des Conseils Solvay, en présence d'historiens des sciences et physiciens de renommée mondiale.

Plus d'information: http://www.solvayinstitutes.be

October 05, 2011-ULB (intra) lettre

Centième anniversaire du Conseil de Physique Solvay

A l'occasion du 100mm anniversaire du 1m Conseil de Physique Solvay, les Instituts Internationaux de Physique et de Chimie, fondés par E. Solvay, organiseront des activités exceptionnelles en octobre 2011. Elles réuniront à Bruxelles d'éminentes personnalités du monde scientifique, politique, et économique. Ces événements, qui célèbreront un siècle d'excellence scientifique, feront de Bruxelles la capitale mondiale de la physique.

Lundi 17 octobre à 19 h 30

Théâtre

Copenhagen

Ecrit par Michael Frayn

a pièce de théâtre met en scène le fameux débat de 1941 entre Bohr et Eisenberg sur la bombe atomique.

Les rôles de Bohr et Heisenberg seront interprétés par les prix Nobel Alan Heeger (Chimie 2000) et David Gross (Physique 2004).

La pièce sera suivie d'un débat et d'une réception auxquels participeront l'auteur, la metteuse en scène et les acteurs.

La pièce est en anglais. Projection du texte en français et en néerlandais sur écran latéral.

A	dresse du jour	1		
F	lagey-Studio 4			
P	lace Sainte Croix			
	050 bielles			

Mardi 18 octobre à 14 h 30

Séance académique Why "curiosity-driven" science ?

Institut Solvay organise une séance académique consacrée à l'importance de la recherche fondamentale et à son impact sur les progrès de la société.

Des représentants du monde politique, de la Commission européenne, des scientifiques éminents, des philanthropes et des capitaines d'industrie partageant la vision toujours d'actualité d'Ernest Solvay prendront part à cette séance.

En présence de Sa Majesté le Roi Albert II.

Adresse du jour : Hôtel Plaza Boulevard Adolphe Max, 118-126

A cette occasion, en collaboration avec l'Institut Solvay, le Cercle vous offre 100 places pour assister à la pièce de théâtre « Copenhagen » et 100 places pour assister à la séance académique Why "curiosity driven ?" AMNTAGE

October, 2011- Cercle de Lorraine

100.000

1911, het wonderjaar van de wetenschap

Watson (links) en Crick presenteerden hun model van de DNA-structuur (zie onder) in 1953 in Brussel. Credit: IMAGEGLOBE-11888911

Het vijfde Solvaycongres in 1927, met onder anderen Albert Einstein en Marie Curie. Maar liefst 17 van de 29 aanwezigen schopten het tot Nobelprijswinnaar. Credit: Science Photo Library

Einstein en Nieis Bohr op een vervolgcongres in 1930. Credit: rv

Herfst 1911. Er hangt mist in de straten wanneer Einstein - hoed op het hoofd, warme legerjas aan - arriveert in Brussel. Met wat nog overblijft van de 1.000 francs die hij heeft gekregen van Ernest Solvay voor zijn reiskosten, gaat hij op zoek naar Hotel Metropole. Daar moet hij zijn. Daar zal de eerste wereldconferentie fysica plaatsvinden.

KATRIJN SERNEELS

"Ik kan het goed vinden met Einstein, die het meest indruk op mij heeft gemaakt. Al heeft hij geen goede manieren - hij houdt zijn legerjas aan tijdens het diner - hij bedenkt wel theorieën waar hij succes mee oogst. En dan zegt hij dat hij heel weinig kent van wiskunde." Dat schrijft de jonge Frederick Lindemann, die het op een dag zal schoppen tot wetenschappelijk adviseur van Churchili, in een brief aan zijn vader, gedateerd 4 november 1911.

Ja, we zouden er graag bij geweest zijn, daar in Hotel Metropole. Om met onze eigen ogen te zien hoe Einstein, een jong broekje van 32 jaar oud, het aan de stok krijgt met de eminente heer Poincaré over quantumfysica. Om er de hand te schudden met Marie Curie, die net de Nobelprijs heeft gekregen voor haar ontdekking van de elementen radium en polonium. Om samen met de briljantste geesten van de de twintigste eeuw de voeten onder tafel te schuiven voor het diner en de ober de glazen wijn nog eens te laten bijvullen.

Want Ernest Solvay keek niet op een franc. Dat hoefde ook niet. De geestelijke vader van de eerste wereldconferentie fysica had zijn fortuin gemaakt met sodazout. Zijn imperium strekte van Amerika tot Rusland, zijn ambities nog verder. Hij wilde de wereld veranderen. De geesten verlichten.

October 15, 2011- De Morgen

Solvay had een idee dat zijn tijd vooruit was. Om wetenschappers samen over ideeën die hun tijd vooruit waren te laten praten. "Un conseil scientifique international pour élucider quelques questions d'actualité des théories moléculaires et cinétiques", zo beschreef Solvay het doel van zijn eerste congres, in een brief die hij in juni 1911 verstuurde naar de grote natuur- en scheikundigen der aarde. Zijn brief trof doel. Huidige en toekomstige Nobelprijswinnaars gingen op zijn uitnodiging in en stapten op 29 oktober over de drempel van Hotel Metropole in Brussel.

Dubbele helix

Deze week herdenkt Solvay een eeuw vol wondere ontdekkingen. Met een congres, zoals 100 jaar geleden. "De Solvaycongressen waren keerpunten in de geschiedenis van de moderne wetenschap", zegt Peter Galison, professor geschiedenis van de wetenschap aan Harvard University. "Het lijkt onwaarschijnijk dat de ontdekkingen die onze kennis van de wereld veranderden niet een keer, maar verschillende keren plaatsvonden op een paar kleine, kortdurende congressen." Vandaag hebben congressen bijlange niet dezelfde impact als een eeuw geleden. Wij vinden het evident dat wetenschappers wereldwijd samenwerken. Wie wil weten waar anderen mee bezig zijn, hoeft de deur niet meer uit. Die leest gewoon de samenvattingen van de artikels van Nature, Science of Reviews of Modern Physics op internet.

Van 1911 tot 1953 was dat wel anders. Voor je erover dacht om jouw doorbraak te publiceren in een prestigieus vakblad als Nature, ging je naar Brussel en stelde je de ontdekking die de wereld ging veranderen voor op het Solvaycongres. Crick en Watson deden het in 1953. Hun model van de dubbele helix van de DNA-structuur werd eerst in Brussel gepresenteerd, en enkele maanden later pas in Nature gepubliceerd.

Die ontdekking is een van de grootste wetenschappelijke doorbraken van de twintigste eeuw. De meest memorabele editie van een Solvaycongres is 1927, toen maar liefst 17 van de 29 aanwezigen huidige of toekomstige Nobelprijswinnaars waren. In 1927 sprak Einstein er ook de beroemde woorden uit: "God speelt niet met dobbelstenen". Waarop fysicus Niels Bohr repliceerde: "Einstein, hou op met God te vertellen wat hij moet doen."

Maar terug naar die kille herfstdag in 1911. toen Einstein liever zijn warme legerjas aanhield voor het diner. De Nederlandse natuurkundige Heike Kamerlingh Onnes (1853-1926), hoogleraar in Leiden, kon de kou niet deren. Onnes had iets met extreem lage temperaturen. Bij zulke temperaturen slaagde hij er in 1908 in helium vloeibaar te maken. Van een beetje herfstkou was hij niet bang, hij had immers eerder in 1911 temperaturen ontdekt die dichtbij het absolute nulpunt liggen (nu graden Kelvin of -273 graden Celsius).

Op deze temperaturen neemt de elektrische weerstand van metalen heel sterk af, zo constateerde hij. Onder een kritische temperatuur verdwijnt die weerstand zelfs helemaal. Kamerlingh Onnes ontdekte zo het fenomeen van de supergeleiding: elektrische stroom kan zonder verlies worden getransporteerd. Hij praatte erover op het eerste Solvaycongres, en won er de Nobelprijs voor Natuurkunde mee in 1913.

Gemengde gevoelens

Onnes was niet de enige rijzende ster in Hotel Metropole. Ernest Rutherford, een fysicus uit Nieuw-Zeeland, zat er ook aan tafel. Hij had voor hij naar Brussel afreisde in zijn !aboratorium alfadeeltjes op goudatomen afgeschoten. Uit de manier waarop de dubbel positief geladen deeltjes werden verstrooid, maakte hij op dat het atoom bestaat uit een positief geladen kern waarrond zich in een ijle ruimte negatief geladen deeltjes (elektronen) bevinder. En voilà, het eerste atoommodel was geboren. Later zou dit atoommodel door Niels Bohr, Werner Heisenberg en Erwin Schrödinger, die trouwens ook in Hotel Metropole aan tafel zaten, worden geperfectioneerd.

Naast rijzende sterren schoven ook de grote eminenties van die tijd aan tafel voor het diner. Voor Marie Curie was de reis naar Hotel Metropole wat korter dan voor Ernest Rutherford. Curie had net haar tweede Nobelprijs in de wacht gesleept. Haar eerste Nobelprijs kreeg ze in 1903, samen met haar echtgenoot Pierre Curie en Henri Becquerel voor hun onderzoek naar stralingsverschijnselen. In 1911 kreeg ze de prijs toegekend als ontdekster van de elementen radium en polonium en omdat ze erin was geslaagd zuiver radium te bereiden.

Al lijkt het voor ons overduidelijk hoe vernieuwend en geniaal de ideeën waren die op het eerste Solvaycongres gespuid werden, de deelnemers gingen met gemengde gevoelens naar huis. "Niemand lijkt het eens met elkaar, en hoe langer we discussieren, hoe meer onduidelijk wordt", schrijft Lindemann aan zijn vader na de discussie over quantumfysica te hebben bijgewoond.
Einstein is ook niet gelukkig met hoe Poincaré, verantwoordelijk voor de synthese van de sessie over quantumfysica, hun discussie samenvat. "Mijn ervaring met Poincaré is in het algemeen negatief te noemen. Hij heeft geen inzicht in de situatie", klaagt Einstein.

In 1911 lijkt de mist waaruit de moderne wetten van de fysica zullen ontstaan, van relativiteitstheorie tot higgsmechanisme, verre van opgeklaard. Maar één man ziet met zijn ronde brillenglazen door de nevelen van de toekomst. Die man is Hendrik Lorentz, professor theoretische fysica in Leiden. Als voorzitter van het Solvaycongres behoort hij tot de éminences grises, maar hij ziet het licht in de duisternis. Hij onderscheidt het genie van de gissingen. "Ik word ouder, de kracht van mijn creativiteit is tanende", schrijft Hendrik Lorentz aan Einstein in februari 1912, vier maanden na afloop van het congres. "Hoe bewonder ik je goede ideëen, jouw enthousiasme en creativiteit, jonge man. Het is mijn stille wens dat je mij opvoigt."

'Sterft, gij oude gedachte'

Hendrik Lorentz beschrijft treffend de gevoelens waarmee hij op 4 november, na afloop van het congres, van Brussel naar Leiden vertrekt. "Het is alsof we door een doodlopende straat lopen. De oude theorieën zijn niet meer bij machte om de schaduwen die ons overal omringen te doen verdwijnen. Hoe veraf is het succes en de voldoening die we tien, twintig jaar geleden nog voelden toen we de theorie van de beweging van gassen konden uitbreiden tot vloeistoffen en tot het systeem van de elektronen."

Maar er flikkert licht in de duisternis: "de hypothese van de energie-elementen, die meneer Planck voorstelt, en die Einstein en Nernst vandaag toepassen om andere fenomenen te verklaren. Ik begrijp echter volkomen dat in de toekomst de nieuwe wetten van de fysica zullen afwijken van de oude wetten van de mechanica. Een Nieuwe Bewegingsleer zal de plaats innemen van de oude. Sterft, gij oude vormen en gedachten. De wereld steunt op nieuwe krachten. Kennis heeft ons aangeraakt."

De Morgen

DE STANDAARD

October 15, 2011- De Morgen

WETENSCHAP D9

Honderd jaar revolutie in de fysica in Brussel

Een tentoonstelling laat het belang zien van een historische reeks natuurkundige conferenties

STEVEN STROEYKENS

BRUSSEL De cerste decennia van de twintigste eeuw waren een periode van revoluties voor de na-tuurkunde. De relativiteitstheorie, de kwantumfysica... de ene tsunami na de andere overspoel-de het eens zo statige landschap van de "klassieke" natuurkunde En hoewel er geen Belgische we-tenschappers een eersterangsrol speelden in die revoluties, heh ben ze zich wel voor een stukje in Brussel afgespeeld. Op een reeks natuurkundige conferenties, de beroemde. "Solvay-raden". ont etten de hoofdroispelers van natuurkundige omwentelingen elkaar. Hier bespraken ze de mysteries en de oplossingen, en werd het nieuwe beeld van de natuur scherpgesteld

bit jaar is het honderd jaar geleden dat de eerste Solvay-raad

Groepsfoto van de eerste Solvay-raad. Tweede van rechts is Albert Einstein, tweede van rechts zittend is Marie Curie. Control of Solvay-raad.

plaatsvond. Dut wordt feestelijk vindt - een zeer evelusieve eonfeherdacht op de 25ste Solvay-raad die deze week in Brussel plaatsstaande fysiei van het moment

rijn uitgenodigd - over het thema 'De theorie van de kwantumwereld'. En er is voor de gelegenheid

een tentoonstelling opgezet, waar je kan kennismaken met de omwentelingen in de fesica van de vorige eenw. De tentoonstelling toont zowel de

De tentioonstelling toom zowel de fysien – inclusief experimenten die de bezoeker zelf kan nitproberen als de context waarin de natuurkundige revolutie plaatsvond. En dat was een bewogen context: van de Ferste Wereldoorlog tot de opkomst van de nazis. De natuurkundige uitleg is niettechnisch en gericht op een breed publiek, maar wet gedetailleerd en hier en daar pittig: wie de moeite neemt alles in detail te volgen kan er een hoop geschiedenis en fysien van opsteken. We willen ook het menselijke aspeet laten zien. zegt Henri Eisendrath van de VUB, dat de fysien het werk is van mannen en vrouwen met een passie.

Ted 21 december 2011 Poleis der Academenn Heitogolistat 1. Brussel Tergong grafts 96 20.306 zendag gestöten

O Contrast www.solvayastitutes.be

Vingt-quatre étudiants de 1º IRAC en psychologie à l'UCL ont raté leur année p pu'un bogue informatique dans la correction d'un de leurs examens n'à pas éte bétecté tout de suite 1 erreur a rependant été corrigée.

lasociété 9

Science / La semaine prochaine, on célèbre le centenaire des Conseils Solvay ix prix Nobel réunis à Bruxelles

L'ESSENTIEL

· Ce n'est pas un, ni deux, ni cinq, mais bien dix Prix Nobel qui ont rendez-vous la semaine prochaine à Bruxelles ! Le 25ª Conseil Solvay de physique s'annonce exceptionnel.

· Un siècle après la réunion de 1911, l'esprit d'Ernest plane encore sur la mécanique quantique.

it a inventer, Les saitre. Un siècle plus entiminel. 257 Conseil

du centenaire », qui se tiendra du 19 nu 22 octobre à Bruselles, toujours dans les salorse de Phôtel temports data les adores de Photel Métropolo (commo en 1917), réo-nirs 20 seiensifiques de ressous nu rang diresparts ou notres la pri-sense de dire prix Nobel, d'un noi-daille Fields et d'Illustres seienti-fiques, tel Stephen Hawhing. La emminie prochanos, firzoscille se-na auns le reasimbre douté la capi-des de la direspan et la capi-tacione de la direspanne et la capi-tacione de la direspanne et la capi-

signs of is informing spanning the suit au programme. Order is com-firmense-débat avec trais lacristic du pris Nobiel du 33 scholes (voir ci-course), les functions du cap et leurs partennies (ULB et VCB containment) vous propo-sent aux plangée au reurs de cri-te grande aventure scientifique

hysique moderne au déve-sent de laquelle les Consulla Solvay out contribué. Outre un parentre historique, une quin-taine d'expériences et des simula-

mothe state arethe physique nous concette tim tous les jours : qu'il s'agine de multiples outils électroniques : informatiques que nous

mennent, les la

« En 1911, ils ont inventé une nouvelle physique »

M are Hommun est le direc-tionant de physique chime Sol-ray. A or titre, il participe étroiti-

res fameux C re utiles 7 Ne mple d'opter ter po

October 15, 2011-Le Soir

ment progresser la science

Appendix : Outreach

ANNO

Eeuwfeest voor de fysica

Vaarwel oude fysica, welkom nieuwe natuurkunde. Een eeuw geleden kwamen voor het eerst zwaargewichten uit de fysica bijeen op het **Solvay-congres**. Op een schoolbord in een Brussels zaaltje veranderde de fysica voorgoed. Door Maarten Muns OGAL VERBAASD MOET DE jonge Albert Einstein geweest zijn toen hij ergens in juni 1911 een uitnodiging ontving van Ernest Solvay, een steenrijke industrieel uit Brussel. Solvay wilde de twintig voormaamste wetenschappers uit de chemie en de fysica in een besloten 'raad' (conseil) bijeenbrengen om te praten over een vraagstuk dat steeds meer natuurkundigen – inclusief Einstein – in die tijd bezig hield, namelijk dat van de kleinste bouwsteentjes van materie en straling.

Toen Einstein las wie er allemaal aanwezig zouden zijn in Brussel was hij helemaal met stomheid geslagen. De voorzitter van de bijeenkomst zou niemand minder dan de Nederlander Hendrik Lorentz zijn, misschien wel de grootste natuurkundige van zijn tijd. Max Planck, die in 1900 voor het eerst vermoedde dat er zoiets als energjepakketjes of quanta bestonden, zou

52 | nwtmagazine | oktober 2011

komen. Ook de grote Franse wiskundige Henri Poincairé en Marie Curie - die in 1903 een Nobelprijs kreeg voor haar onderzoek naar radioactiviteit - stonden op de gastenlijst. Vanzelfsprekend moest Einstein erbij zijn. Een bijeenkomst met al die grote namen zou wel eens zijn definitieve doorbraak kunnen betekenen. Helemaal onderaan de brief stond nog een verzoek. Einstein moest zijn komst bevestigen bij Walter Nernst, hoogleraar en directeur van het prestigieuze Institut für Physikalische Chemie in Berlijn. Einstein had een sterk vermoeden dat de uitnodiging was geschreven door Nernst. Solvay had enkel zijn handtekening gezet.

Een jaar eerder had Nernst de heer Solvay benaderd met de vraag of de industrieel hem kon helpen met het financieren van een bijeenkomst van de belangrijkste wetenschappers van dat moment. Solvay had gedurende de 19e eeuw een immens fortuin vergaard door de industriële toepassing van een methode om goedkoop soda te produceren. Hij vond dat de wetenschap als voormaamste taak had vooruitgang te brengen in de maatschappij. Als welgesteld man trad

Het stoorde Solvay dat in Brussel amper natuurkundigen waren te vinden

Solvay dan ook regelmatig op als pleitbezorger voor de wetenschap. Hij stichtte in 1892 een instituut voor fysiologie en in 1903 een instituut voor sociologie.

Aan het begin van de 20e eeuw leefde onder de elite het idee dat de verschillende wetenschappen een hiërarchisch bouwwerk vormden, hij Solvay was dat niet anders. De moeder aller wetenschappen was de fysica. Als de wetmatigheden van de natuurkunde eenmaal waren ontdekt, zouden de antwoorden op vragen uit de biologie en de maatschappijwetenschap daaruit vanzelf voortvloeien. Het stoorde Solvay daarom des te meer dat in zijn thuisstad Brussel nauwelijks natuurkundigen waren te vinden. Belangrijk natuurkundig onderzoek werd aan het begin van de 20e eeuw gedaan in Nederland, Engeland en met name Duitsland.

Walther Nernst, het toonbeeld van de Pruisische aristocratie, had zo zijn eigen beweegredenen om Solvay te benaderen. In 1905 had Nernst voor het eerst zijn warmtetheorie geformaleerd. Deze theorie, die later bekend werd als de derde wet van de thermodynamica, stelde dat alle beweging tot stilstand koint wanneer de temperatuur het absolute milpunt

ANNO

(-273 °C of 0 K) bereikt. Het bleek echter onmogelijk om deze theorie door middel van experimenten te testen. Nernst zocht naar erkenning. Dat hij ondanks gebrek aan bewijs aan zijn warmtetheorie bleef vasthouden, leverde hem hoon en kritiek op uit de wetenschappelijke gemeenschap.

Zaaltje

Eveneens in 1905 was Albert Einstein bezig met een formule waarin hij, in navolging van de energiequanta van Planck, voor het eerst de hypothese opwierp dat ook licht uit kleine deeltjes bestaat.

Toen Nernst de latere vergelijkingen van Einstein toepaste op zijn eigen ideeën over warmte, bleek dat hij de uitkomsten van zijn experimenten beter kon verklaren door gebruik te maken van Einsteins quantumtheorie. Nernst bedacht dat hij wel eens twee vliegen in een klap kon slaan. Als Einsteins ideeën over quanta op een internationale bijeenkomst van topwetenschappers werden bevestigd, betekende dat ook zijn eigen gelijk wat betreft de warmtetheorie. Nernst moest op zoek naar een geldschieter om zo'n bijeenkomst te kannen organiseren, en trof uiteindelijk Solvay.

De eerste Solvay-conferentie werd van 30 oktober tot 4 november gehouden in het luxueuze Métropole Hotel in Brussel. Na een welkomstwoord van Solvay zelf ging de bijeenkomst van start. Al na de eerste dag werd duidelijk dat de conferentie een groot succes zou worden. Lorentz bleek een uitstekende voorzitter. Omdat hij vloeiend Frans, Duits en Engels sprak, trad hij tevens op als tolk. Het was de eerste keer dat internationale deskundigen bijeen kwamen om in een zeer select gezelschap over een specifiek probleem in de natuurkunde te praten.

Voorheen was het beroep van theoretischnatuurkundige nogal eenzaam, maar daar kwam nu eindelijk verandering in. In het kleine zaaltje werd levendig gediscussieerd. Het twintigtal verdrong zich rondom een groot schoolbord om met formules hun argumenten kracht bij te zetten. De eerste Solvay-conferentie leek in niets op de massale wetenschappelijke congressen zoals die anno 2011 worden gehouden.

Het officiële thema van de conferentie was 'de theorie van straling en quanta'. In 1900 ontdekte Max Planck dat hij de manier waarop een zwart voorwerp warmtestraling uitzendt langs het elektromagnetisch spectrum, niet volledig kon verklaren met de bestaande natuurkundige wetten. Uit wanhoop bedacht Planck toen een 'tijdelijke' onorthodoxe oplossing: hij formuleerde een geheel nieuwe wet, waarin hij aannam dat een voorwerp alleen energie kan opnemen en uitstralen in de vorm van 'quanta' pakketjes energie van een beperkte grootte.

Einstein ging in 1905 iets verder, en pastte het idee van de energiepakketjes toe op licht. Hiermee wilde hij verklaren waarom licht dat op een metalen plaat valt elektronen van die plaat kan losslaan. Volgens Einstein kon dat alleen als afzonderlijke 'lichtquanta' zogeheten fotonen, genoeg energie bevatten. Zowel voor Einstein als voor Planck was het idee van quanta voorlopig niets meer dan een hypothese – maar dan wel een waarmee onverklaarbare verschijnselen zich toch lieten verklaren.

Voor Nernst waren het spannende dagen. Hij had het thema bewust gekozen

Samen bij Solvay

Een Solvay-congres anno nu: een grotere groep genodigden, maar nog steeds in het Brusselse Hotel Métropole. Naast Solvaycongressen voor fysica worden ook congressen voor chemie gehouden. Vanwege het jubileum zal koning Albert II dit jaar op 18 oktober bij de opening van het Solvay-congres aanwezig zijn.

De Duitse fysisch-chemicus Walter Nernst (1864-1941) kwam op het idee om twintig zwaargewichten uit wetenschap bijeen te brengen - onder meer om zijn eigen ideeën te toetsen.

om quanta in de theoretische natuurkunde te introduceren. Het was weliswaar gelukt Einstein en vele andere grote namen uit de wetenschappelijke wereld naar Brussel te krijgen, maar Nernst was zich er als geen ander van bewust hoe controversieel de quantumtheorie op dat moment nog was, en hoe klein de kans was dat de ideeën van Einstein werkelijk zouden worden bevestigd door de aanwezigen.

Op de laatste dag kwam het werk van Einstein aan bod. Ze spraken lang over zijn quanturnhypothese. Een voor een werden de wetenschappers gewonnen voor het idee dat men quanta serieus moest nemen. Nu zag Nernst zijn kans schoon. Hij wees Einstein en de rest erop dat de quantumfysica zijn eigen warmtetheorie onderbouwde. Het bleef even stil, maar toen zei Einstein: 'Nee. Dat heeft u volledig verkeerd gezien. Op geen enkele manier volgt uw warmtetheorie uit mijn formules,'

Na de conferentie volgde een vinnige briefwisseling. Op de begrafenis van Nernst in 1941 zei Einstein: 'Ik waardeerde hem om zijn experimenteerdrift, maar van de theorie had hij aanzienlijk minder kaas gegeten.'

De eerste Solvay-conferentie betekende de grote doorbraak van Einstein - met dank aan Nernst, die zelf grotendeels van het

54 | nwtmagazine | oktober 2011

toneel verdween. Ook betekende de conferentie een ware revolutie op het gebied van de fysica. Licht kon niet meer simpelweg worden gezien als enkel een golf, het had ook eigenschappen van deeltjes. Dankzij Solvay waren de grootste wetenschappers zich ervan bewust geworden dat de klassieke natuurkande niet meer voldeed en het de hoogste tijd was voor een nieuwe fysica.

De Franse wiskundige Henri Poincaré begon zijn nieuwe inzichten over quanta direct uit te werken toen hij terug was in Parijs. Kort na zijn aankomst werd hij ernstig ernstig zick. Op weg naar het ziekenhuis

Na 'Solvay' zat de natuurkunde ineens met talloze nieuwe vragen

postte hij een envelop met daarin een artikel voor een gezaghebbend tijdschrift. Hij schneef vol lof over de 'nieuwe natuurkainde' in tegenstelling tot de 'oude natuurkainde'. Zijn publicatie betekende dat ook Frankrijk gewonnen was voor de nieuwe fysica. Albert Einstein was als 31-jarige van de partij op het eerste Solvay-congres.

Poincaré zou het ziekenhuis echter niet meer levend verlaten.

Met zijn optreden op de Solvay-conferentie van 1911 had Einstein weliswaar voor een revolutie gezorgd, helemaal tevreden was hij niet over de nieuwe natuurkunde. De vreemde eigenschappen van de quantumwereld knaagden aan Einstein. In de nieuwe natuurkunde was bijvoorbeeld een grote rol weggelegd voor statistiek. Theoretici konden alleen nog maar in termen van waarschijnlijkheid spreken over de uitkomst van een formule. Einstein, maar ook Planck, hadden daar

Einstein, maar ook Planck, hadden daar de grootste moeite mee. Aan het begin van de 20e eeuw dacht men dat de natuurkunde bijna compleet was. Na 'Solvay' zat de natuurkunde ineens met talloze onbeantwoorde vragen. Het werd meteen duidelijk dat het niet bij dit ene congres kon blijven.

Succes

Dat bleef het dan ook niet. In 1913 organiseerde Solvay een nieuwe bijeenkomst. Lorentz was wederom voorzitter. Het feit dat de meeste natuurkundigen opnieuw naar Brussel afreisden, toonde aan dat de Solvaycongressen een succes waren. Pas na de Eerste Wereldoorlog kregen de debatten over quantumfysica een nieuwe impuls. Op de Solvay-conferenties van 1921 en 1927 werd opnieuw diepgravend gediscussieerd over de nieuwe natuurkunde.

De fundamentele debatten op de Solvayconferenties gaven een enorme impuls aan de ontwikkeling van de moderne natuurkunde. Met dank aan Walther Nernst die, hoewel vooral gedreven door zijn persoonlijke zoektocht naar erkenning, het initiatief nam voor een internationale bijeenkomstprecies op het moment dat er steeds meer vragen ontstonden. Honderd jaar later, van 19 tot 23 oktober 2011 vind de 25e Solvayconferentie plaats. Niet meer in de intieme sfeer van een klein zaaltje met een schoolbord, maar met zeventig van de knapste koppen in de grote conferentiezaal van het Metropolé Hotel in Brussel. Het thema dit keer is 'De theorie van de quantumwereld' - de nieuwe natuurkunde is in een eeuw tijd nog altijd niet verouderd.

189

oktober 2011 | nwtmagazine | 55

PERCENTER AND

EEcho 35

L'ANNIVERSAIRE

INSTITUTS SOLVAY De Marie Curie au Solar Impulse

Le premier Conseil de physique voulu et financé par Ernest Solvay a cu fieu à Bruxelles il y a cent ans tout juste. Un siècle de découvertes fondamentales qui ont permis des percées spectaculaires dans la compréhension du monde et la mise au point de techniques qui font avancer l'humanité.

LES INSTITUTS SOLVAY, DES PÉPITES TROP PEU CONNUES

Concretement

La recherche fondamentale sonde le mystère du monde

M

190

Annual Report 2011 - Appendix: Outreach

October 15, 2011- L'Echo

Attrape-brouillard - Cummulus - est une exposition artistico-scientifique sur le theme de la recuperation de l'eau des brumes et brouillards en Amerique du Sud. L'architecte Ciro Najle presente ses realisations dans un lieu original privilegiant l'expérience du visiteur.

> Le Laboratoire, 4, rue du Bouloi, Paris :", jusqu'au 9 janvier. Lelaboratoire.org

Din Inc.

Les cent ans de congrès extraordinaires à Bruxelles

Pour féter les célebres congres Solvay, premières réunions de la fine fleur des savants europeens (Einstein, Poincare, Lorentz...), les Instituts Solvay proposent plusieurs evénements dans la capitale beige: exposition au Palais de l'Academie sur Pour la science de ces reucions October 15, 2011- Le Monde (France) pour la science, une piece de théatre (Copenhagaen), et des conférences grand public sur l'avenir de la physique lavec les Prix Nobel William Phillips et Frank Wilczek),

Webzine

October 2011- Webzine, Solvay SA-NV

Cent ans sprès Marie Curie et Albert Einstein.

tobre 2011

Dans la communauté scientifique, une invitation à un Conseil Solvay ne se refuse pas. Encore moins lorsqu'il s'agit de célébrer le centenaire de ce prestigieux événement dont la première édition, en 1911, a rassemblé les plus grands esprits scientifiques de l'époque.

es Instituts Internationaux Solvay de Physique et de Chimie ont accueilli à Bruxelles leur 25e Contérence de Physique, du 19 au 22 octobre 2011, sur le thème «La Théorie du Monde quantique». L'événement s'adressait à un groupe

de 70 grands physiciens venus du monde entier, dont pas moins de 10 Prix Nobel ! SM le Roi des Belges lui-même a assisté, la veille du Conseit, à la séance académique consacrée à l'importance de la recherche fondamentale.

Le grand public n'a pas été oublié, puisque quelques jours plus tard une après midi entière a été consacrée à une conférence-débat sur la physique actuelle, ses applications dans le quotidien et dans le futur, avec la participation des Prix Nobel de Physique David Gross, William Phillips et Frank Wilczek.

28

Les Instituts Solvay et la société Solvay ont été fondés par la même perso Ernest Solvay, mais demeurent des entités distinctes. Lorsqu'il a créé les Instituts et initié les Conférences qui portent son nom, Ernest Solvay a voulu encourager la recherche fondamentale de pointe. En 1911, le tout premier Conseil Solvay a réuni les physiciens les plus éminents de l'époque, dont Marie Curie, Albert Einstein, Max Planck, Ernest Rutherford, Henri Poincaré et Maurice de Broglie.

Deelnemers aan de eerste Solvay-conferentie, eind oktober 1911 in hotel Metropole in Brussel. Zittend van links naar rechts Nernst, Brillouin, Solvay (met baard) Lorentz, Warburg, Perrin, Wien, Marie Curie als enige vrouw, en Poincaré. Staand: Goldschmidt, Planck, Rubens, Sommerfeld, Lindemann, De Broglie Knudsen, Hasenöhrl, Hostelet, Herzen, Jeans, Rutherford, Kamerlingh Onnes, Einstein en Langevin Foto Solvay Int titutes Revealed

Heksensabbat' herdad

Martijn van Calmthout

BRUSSEL Kopstukken uit de he dendaagse natuurkunde verzamelen zich de komende dagen in Brussel voor een herdenking van de eerste zogeheten Solvay-conferentie, deze maand precies een eeuw geleden.

Onder hen Nobelprijswinnaar Gerard 't Hoolt en Spinozaprijswinnaar October 17, 2011- Volkskrant (The Netherlands)

kunde. Onder leiding van de vooraanstaande Leidse brogleraar Hen-drik Lorenta praatte het gezelschap vijf dagen over de hoofdbrekens van de fysica van dat moment.

De foto van het gezeischap, ge maakt in de conferentiekamer van het hotel, geldt onder historici als een unieke momentopname van de bloeiende wetenschap van dat mo-ment. Onder anderen Hendrik Lorentz, Marie Curie, Henri Poincaré, Max Planck, Ernest Rutherford, Heirends. Uit de briefwisselingen van voorjaar 1911 blijkt dat niet Solvay zelf initiator was van de bijeenkomst, maar de Berlijnse fysicus Walther Nernst, een bewonderaar van de jonge Linstein, vooral vanwege diens toen nieuwe theorie over warmte en

Op de bijeenkomst in 1911 draait het in feite om Finstein van de Vrije tinsversiteit in Amsterdam, lag op dat moment in de falende theorie van warmte en moleculen. Einstein en Planck hadden daarvoor nieuwe ideeën untwikkeld, maar die

vonden nog geen brede ingang. Van Lunteren: Temand als Polincare hail tot dan gedacht dat het met de oude theorie wel goed zou komen. Door de Solvay-conferenție realiseer den fysici zich in brede kring dat de natuurkunde een fundamenteel probleem had,"

Annual Report 2011 - Appendix : Outreach

192

Geniale grootmachten

In het spoor van ERNEST SOLVAY, de industrieel die topwetenschappers naar Brussel haalde

SALE NEWSFILMEN

Dv topfysici i van dene plannet etekan korrende week inan ge nide koppen bij elinar in anso morfiteta. Zoola zo dari doen owar kong in alfo etilte doen, opiniliatief van oang groothte industrinet. Ernset Solvay, feer verhaal over de eur van een Nedscheptparlantinaat, eur lang solaterine anigten wetter-

and the second s

The second second second

and a digenstrate of another additional line to Here the immunol date do endo wanamiese integrated the endown of the strangeneous concompared line in each of reacting and the strangeneous Strangent Hole of the strangeneous of the strangeneous Three, it is do to express the strangeneous of an entown of the strangeneous the strangeneous

ari diatek (gi, kgi antinethenado en ochrimide sover generativ bilder ver enn a parvisi den mer huns nämis en despeligte song. Erns skytens för att her störk för er kölfagere hörerndiren, näggenen bisse och hör ern gis kanna hörerkansen. Alleret Einsteine en als kanna hörerkansen Alleret Einsteine in angendärer sonder des Kählt förderare i örer bissenstensen. Kör att öffenteraret

ek Bohre tabitten tatanakete tata- koele takoele tak geschappelijke dombraken uurden) bereitet, of teel arking door own al beel ingram deeler transmore references deer prompil je doeld ankale fan deer prompil je doeld ankale fan doe gewen prompil je doeld ankale fan doe gewen and teel teel teel separate ok kijkt wat eruit kanst inderget, kaldt Solten.

door up a set indiagrout very peperfectuneral perdocritepresent stars reads, was ensued additional the set of the set of the list even up this thirty, twee just model by the chemical built indiates. Here, you are not beginness to workfore, wort do since our age list to a do proposed to increase prior factor age to propose to increase the Kill para factor of end for period actions. versionable, gettersteller versionerskingsleich tet deren von proeff. Waarman bedrage Labelen an ender von Einen (mitterstaard) und de Naverigsleic Flacken, werde bied sessiongeries. Navers is en der branks langeler version erstell bedregtigt dast qu'affigie erst werstellichgeiter ist. Zulan gebrech nerst werterstellichgeiter ist. Zulan gebrech

De genodigden die nog geen Nobelprijs op zak hebben, krijgen hem later nog wel.

e die Sullivap operformation Pyral is an Diversi

It must find the element framewine de manuel must en ortgen fan de margine entrar, Wei hann en blatt, word er relative an haart te heren an, Thacateur had fan eren Framewine ander fan jaren later technist is der gerren framewine gin jaren later technist is der gerren framewine for en in eren för melse stade. Versicht soch George framewine stade stade. Versicht soch

de antonisérie estes grouper losse hoverendéring, stradué log est end van voertringel ware die an enne, werden betrek toosken andare. Were begrippet, gaat woorden, gelochte log die stradukt on die en enneder en eindere en eindereit. In ander hower die en effektieft einder ander eindereit das antoest worden achteutet in an eindereit. In die hower die een einder einder einder einder der beit hower die een einder einder einder einder ander hower die een einder worden einder einder der beit hower die een einder worder einder der beit hower die einder einder einder einder ander beite die einder one fanst wert hate. Der pass ein blieften die einder einder einder einder werthalt einderen. Hit ware die eindersteamen wertragt is worden beite gelochte eindersteamen wertragt is worden beite eindersteamen. Beitradie einderen einder eindersteamen ein gelochte einder einder einder wertragt einder einder eindersteamen ein zu gelochte.

The second secon

the beeff have morphiseds, in het bedrigf en in de familie, songe dige achtest- achterbeingenen. De contract is werzanderell, the di ani euro winet maleret, Mare i la sond dare un manter de digenen innederen is, nedere winnig Alim het dare gamen moresenad. Solory als bedrigf hereft gamen desserts hanset ig er en europer de digenet met energenet.

October 15, 2011- De Tijd

42

193

1958

Geniale grootmachten

Thread up to be an interview of the process of the process of the second second

The is even unbigging das Errent Reitway sich under some hann recording och die darene spasierelikarmelte reideling och dies inderen some internet werdelikarten underten some internetiere dare 17 Staturfur()- Not app a matter a detainer a detainer

new horselation (and

F (c) (but herefor even international series, ford data underkands series, ford data underkands series, ford data underkands (bibliotid activity activity), and series, ford orderswerp-tip op die serkenfelfor data series, forgen tiet fand data vertrafferen series (bibliotid activity), for data Unitation (bibliotid ac

'God speelt niet met dobbelstenen', zei Einstein. Waarop Bohr uitriep dat Einstein moest 'stoppen met God te vertellen wat die moet doen'.

Martin, 1927, it and discussion near incontraction (action

Het belang van zinloze wetenschap

the global gardeness contension, in global care do temporale automatitage do non-charle ha furmatiing and temporale temporalism. Use the antime gardeness have been also antime temporal temporalism of the manufacture of the temporalism of the manufacture of the temporalism of the manufacture of temporalism of the start temporalism of temporalism of an antimeter of the temporalism of the temporalism of temporalism of the start temporalism of the temporalism of an antimeter of the temporalism of the start temporalism of temporalism of the temporalism of the start temporalism of temporalism o

To the evanues grouphus getterates perte contributingen transmissi, missden dati pe entrare auclit. Det to aumun toseven, lique genotiden, wittement. Die visuenten ten die Sammitare, inthe European, weder turcht ogenitat hertigeleichen, lind au is naterne ontiterate kan malare. Ethanis witer bij teamal

all, organisation to pick to stoule in also and a superior manten. The pickles

In this of a sparticle Resentered. The local and there are local in an advancement reserves and the second second second second and the second second second second second second in the second s

F23.050(F32

Experimental is in the Electronic work op white sense problems? The sense of the Sectors were chosen of the sense of the sector of the sense of the sector o

Her trends that ever spacements, for bemerches dags to its Warner. Their statements are determined as a second statement of the statement of the statements of the best statement of the statements of the statement of the statements of the statement based to apply the statements of the statement of the statements of the statement of the stateme

i di annel ann werstenethappelijke en inalieg soulier gelijken daatten en inder reaken. De elijk gest voert. Volst han te kentenn a kent ooj ist

Renderd'son Schemender nur Spilly. Nor-monetig til spindag um 916 %. 20 um Gerlehnung tentig

Annual Report 2011- Appendix : Outreach

194

Einstein parlait d'un

 On fête les cent ans du premier Conseil Solvay.

 En 1911, les meilleurs physiciens étaient à Bruxelles: Einstein, Planck, Marie Curie et ses déboires.

Entretien Guy Duplat

I y a juste cent ans, se déroulait à Bruxelles le premier et prestigieux. Conseil de physique Solvay, un moment clé dans l'émergence d'une physique neuve qui à bouleverse notre compréhension de l'univers.

Pour fêter l'événement, Bruxelies sera transformée en capitale mondiale de la physique (*lire ci-contre*). Nous publierons dans les prochains jours plusienrs articles autour de cet important événement, Mais, d'abord, retraçons la genése passionnante de ces Conseils avec Franklin Lambert, professeur émérite de la VUB et ex-directeur adjoint des Instituts. Il consacra de patientes recherches à leur histoire.

Il revient d'abord sur le "mythe" qui fait d'Ernest Solvay (1838-1922) l'initiateur de ces Conseils rassemblant les meilleurs scientifiques du monde. C'est en réalité l'activisme d'un chimiste allemand, Walther Nernst, qui joua un rôle déciaif. Celui-ci voulait, en 1910, réunire les meilleurs scientifiques pour discuter de chimie molèculaire et cinétique. Il n'était pas (encore) question de parler de la théorie du rayonnement ni de celle des quanta. Nernst voulait appuyer ses propres recherches sur la théorie de la chaleur et espérait en être récompensé par le prix Nobel. Ses idées changent quand il découvre, en 1909, les travaux d'Albert Einstein les avait réalisés en 1907 et se basait sur la chaleur spécifique. Einstein les avait réalisés en 1907 et se basait sur la théorie quantique de Planck. Une vraie révolution. La nature devenait discontinue et agissait par sauts, par 'quanta'. Nernist est d'autant plus enthousiaste que les travaux d'Einstein confirment les siens. Einstein n'était encore alors qu'un modeste professeur associé de l'Université de Zurich, et n'était pas encore célébre malgré l'importance énorme de ses travaux de 1905 et malgré son travail de 1907 (premier travail sur la théorie quantique qui pouvait être vérifié). Pour Einstein, recevoir Nernist à Zurich était un grand honneur.

Walther Nerrist modifia son idée d'organiser ce qu'il appelait alors "un concile scientifique" (comme les conciles du Vatican). Il ne veut pas l'organiser à Berlin pour ne pas effaroucher les scientifiques français et anglais (on est à la veille de la guerre 1914-1918). Un très entreprenant chimiste belge, ami d'Ernest Solvay, Robert Goldschmidt, lui propose alors de le fuire à Bruxelles, en terrain "neutre", Bruxelles était en pleine gloire, l'Expo-universelle de 1910 fut un succès. On y vit de grands scientifiques comme Marie Curie et Jean Perrin. Goldschmidt avait mis au point un dirigeable, un zeppelin belge, le "Belgica", qui servit d'image pour l'Expo-universelle et qui avait été financé pa Solvay.

La rencontré entre Nernst et Solvay, via Goldschmidt, fut décisive. Solvay, très riche industriel, avait déjà fondé un institut de physiologie (1892), un institut de sociologie (1901), une école de commerce (1904) et révait de créer des Instituts de physique et de chimie et de fonder une cité des sciences. Luimême, en autodidacte, avait déve loppé une théorie de "la gravito-maté rialitique" que Planck trouvera intéressante. Nernst prépare tout et envoie à Solvay une liste des meilleurs scientifiques que Solvay doit inviter. L'initia tive, faut-il le souligner, est purement privée. Finalement, ils seront 24 à se réunir du 30 octobre au 3 novem bre 1911, à l'hôtel Métropole. Ils iront un jour dans la grande salle du parc Léopold; sans doute leur avait-on promis une visite royale, mais qui ne vint pas. Une célébrissime photo montre les participants. Tous des hommes, sauf Marie Curie. Neuf d'entre eux ont eu ou auront le prix Nobel. On recon-naît Nerust, Solvay, Poincaré, Marie Curie, Lorentz, Robert Goldschmidt, Planck, de Broglie, Rutherford, Kamer-lingh Onnes, Einstein et Langevin. Curieusement, ce n'est pas Nernst qui préside les travaux mais bien Lorentz qui deviendra le premier président de l'Institut Solvay de Physique). Nernst a finalement préféré qu'on désigne le Hollandais Hendrik Lorentz comme président, plus "neutre" qu'un Allemand

Ce Conseil de 1911 sera capital. Il assied définitivement. la théorie des quanta. De manière significative, le terme "quanta" -qui n'existait avant ce Couseil qu'en allemand - entre dans le vocabulaire français et anglais. Henri Poincaré, qui a découvert la théorie à Bruxelles, l'impose en France. Même s'il est encore au bord de la table sur la photo, Einstein est déjà le vrai centre

52 La Libre Belgique - samedi 15 et dimanche 16 octobre 2011 -

October 15, 2011- La Libre Belgique

A gauche, le Conseil de 1911. Assis (de gauche à droite) Nernst, Brillouin, Ernest Solvay, Lorentz, Warburg, Perrin, Wien, Marie Curie et Poincaré. Debout: Robert Goldschmidt, Planck, Rubens, Sommerfeld, Lindemann, Maurice de Broglie, Knudsen, Hasenöhrl, Hostelet, Herzen, Jeans, Rutherford, Kamerlingh Onnes, Albert Einstein, et Paul Langevin A droite, le Conseil de 1937. Avec au dernier rang, de gauche à droite: Piccard, Henriot, Ehrenfest, Herzen, de Donder, Schrödinger, Verschaffelt, Pauli, Heisenberg, Fowler, Brillouin, Debye, Au rang du milieu: Knudsen, Bragg, Kramers, Dirac, Compton, L. de Broglie, Born, Bohr. Et devant: Langmuir, Planck, Marie Curie, Lorentz, Einstein, Langevin, Guye, Wilson, Richardson

"sabbat de sorcières"

du Conseil. Dans une autre photo célébre du Conseil de 1927, il apparait alors à sa vraie place, au centre. Le principe d'un Conseil d'une trentaine de savants au maximum, de très haut niveau, qui se retrouvent ensemble pendant quelques jours, a montré son efficacité et sa capacité à susciter d'importants transferts de connaissances qui font avancer la science.

Ernest Solvay, non seulement continua ces Conseils qui se réunissent tous les trois ans, mais plaça aussi Lorentz à la tête d'un nouvel Instituit de Physique qu'il dote d'un million de franes. La somme sert aussi à donner des bourses de voyages et des bourses à des jennes chercheurs. On sait peu qu'en 1911, Solvay finançait ainsi des recherches de physique à Moscout Malheureusement, la guerre et la dépréciation de l'argent ont dù tantener oes ambitions, mais aujourd'hui encore. Finatitut de Physique unifié avec celui de chimie "les Instituts") sont actifs, dirigés longtemps par flya Prigogine et, aujourd'hui, par Marc Henneaux. Ils bénéficient toujours de l'appui de la famille Solvay mais aussi d'autres sponsors comme les Communautés et la Loterie Nationale.

Il est intéressant de voir qu'au début du XX siècle, on croyait que la physique avait atteint sa plénitude et qu'il n'y avait plus rien à découvrir. Or, c'est à ce moment que Planck introduit la notion des quanta d'énergie et qu'Einstein fait de mêtne avec la relativité. Et le prenuire Conseil Solvay prend acte de cette "explosion" de la physique. Un parallèle est possible avec aujourd'hui. A la fin du XX siècle, on a pu croire à nouveau que la physique était au bout du chemin, et que tout s'expliquait avec le modèle standard et l'unification des forces (hors gravité). Mais les découvertes de la matière noire, de l'energie noire, de l'expansion accélérée de l'univers et, maintenant, de possibles neutrinos plus rapides que la lamière, montrent qu'on se trouve à nouveau devant une "explosion" de la physique et la nécessite de réfléchir à une théorie plus globale.

Ce premier Conseil donna lieu à un épisode bien peu glorieux. Quand Marie Curie quitta le Conseil le 3 novembre, elle ne savait pas que, des le lendemain, une campagne de presse haineuse en France et en Belgique se déchainerait contre elle. En cause, la présidence simultanée à Bruxelles de Marie Curie et du scientifique Paul Langevin était marie (séparé). Elle était veuve (son mari Pierre Curie était mort en 1906). On l'accusa de dévenjonder "un bon mari". Comme elle était de

Au programme

18 octobre: séance académique avec le Roi, nombreux prix Nobel et de grands industriels sur l'Impottance de la eccherche fondamentale. 9 9 92 22 : un Conseil de physique sur le thème: "The Theory of the Quantum World" avec 15 prix Nobel. 9 17 octobre: à Flagey, la pièce "Copenhagen" sur le débat Bohr/ Heisenberg sur la bombe atomique, joués ici par 2 prix Nobel! * 23 octobre: à Flagey, conférence grand public sur la vulgarisation de

la science, avec 3 prix Nobel. • Infos: www.solvoyinstitutes.be plus, d'origine polonaise, on se déchaina contre "l'étrangère". En 1910, elle avait dejà subi l'affront de ne pas être reçue à l'Acadêmie française des Sciences alors qu'elle avait dejà reçu le prix Nobel de physique. Le 7 novembre, trois jours après le début des attaques, elle apprend qu'elle reçoit un second prix Nobel, de chimie cette fois. Mais un éminent scientifique du Nobel lui fait savoir que ce serait mieux qu'elle ne viennie pas chercher sou prix à Stoekholm, ce qu'elle refusa la tête haute, en disant que son prix était pour ses recherches et non pas pour sa vie privee. El elle ina bien chercher son prix. Il est lamentable de voir que la presse n'a, en général, que peu parlé des travaux du Conseil, tuais beaucoup de la vie privee de Marie Curie.

Celle-ci viendra à tous les Conseils Solvay (sept Conseils de suite) jusqu'à sa mort. On la voit encore sur la photo du Conseil de 1927. Elle fut la seule femme jusqu'au Conseil de 1933 ou elle était accompagnée de sa fille, Irêne Joliot-Curie, et de Lise Meitner.

Dès le début, la famille royale s'est intéressée aux débats des Conseils. Il y a des lettres claires en ce sens du roi Albert. Mais il n'y eut pas de réception à Læken pour les congressistes avant 1929. C'est alors que la reine Elisabeth entama une arnitié forte avec Einstein avec qui elle jouait du violon et avec qui elle échangeait des lettres que certains interprétent comme des preuves qu'il y eut entre eux plus qu'une arnitié. Ils étaient, il est vrai, tous deux Allemands du sud et dotés de personnalités hors du commun.

Bien entendu, les deux guerres vont considérablement perturber ces con-

seils. Planck et Nernst signerent un manifeste militariste pro-allemand. Certains scientifiques qui avaient pourtant bénéficié de bourses Solvay ignèrent un soutien à l'Allemagne alors que celle-ci avait perpétré des massacres en Belgique! Il y eut donc, au lendemain de la guerre, un boycott des scientifiques allemands. Lorentz et Solvay muyrerent patiemment à réconcilier les gens et, en 1927, tout le monde est à Bruxelles pour un important Conseil où Bohr et Einstein s'affrontèrent de manière célèbre (on y re viendra). Mais le Conseil de 1933 fut tout aussi prestigieux et important, assurant une large diffusion des dernié res recherches. Le Conseil de 1939 eut pu être capital: on devait y parler énertie nucléaire avec les meilleurs scientifiques allemands et américains (ceux qu'on retrouvera dans le programme allemand d'une bombe et dans le projet américain Manhattan). Mais ce Conseil fut annulé par la guerre.

Au lendemain de la Seconde Guerre mondiale, les Conseils reprirent. Pointons celui exceptionnel de 1958, en parallèle avec l'Expo 58. Le Bélgé Georges Lemaître y fit un exposé sur l'atome primitif en présence de Fred Hoyle, principal détracteur de sa théorie, qui avait inventé le terme de "big bang" pour s'en moquer. Au même Conseil, Robert Oppenheimer s'opposa à John Wheeler sur la possibilité qu'une étoile s'effondre jusqu'a créer une singularité doit la gravité serait si forte que la lumière ne pourrait s'en échapper ("trou noir"). Mais les deux hommes n'avaient pas que celà comme pomme de discorde. Ils s'étaient affrontés aussi sur la nécessité de construire une bombe H.

samedi 15 et dimanche 16 octobre 2011 - La Libre Belgique

196

Découvertes Culture

I Physique | Centième anniversaire des Conseils Solvay (II)

Le combat du siècle: Einstein fa

Les Conseils Solvay connurent des débats acharnés sur la physique.

Le plus célébre se demanda : "Dieu joue-t-il aux dés?" Alain Aspect le raconte.

Entretien Guy Duplat

l'occasion du centième annive saire du 1" Conseil de Physique Solvay, Bruxelles sera, on le sait, pendant plusieurs jours, la capitale mondiale de la physique. Parmi les activités, on aura ce lundi 17 octobre à 19h 30 à Flagey, une lecture de la pièce de theâtre "Copenhagen" de Michael Frayn, mettant en scène le fameux débat de 1941 entre Bohr et Heisenberg (participants réguliers aux Conseils Solwy) sur la bombe atomique. Les rôles de Bohr et Heisenberg scront interprétés par les Prix Nobel Alan Heeger (chimie 2000) et David Gross (physique 2004). Le rôle de M^m Bohr sera interprété par la grande actrice shakespearienne Fiona Shaw

Ce sera une manière de rappeler que ces Conseils Solvay furent souvent le lieu de grands debats qui ont fait avan-cer la science. La discussion la plus vive et la plus célébre opposa Einstein à Bohr Tous deux étaient de grands spécialistes de la physique quantique mais ils avaient une lecture toute différente de son aspect probabiliste. Einstein p fusait, ou plus exactement voulait dépasser, cette lecture statistique qui empêchait de déterminer avec précision, à a fois la position et la vitesse d'une particule (ce qui s'exprime par les relations d'incertitude d'Heisenberg). "Dirsi ne joue pas aux dés", aurait-il dit. Le débat fut très dramatique, thioitral, lors des Conseils de 1927 et de 1930. Einstein estimait que la dimension probabiliste de la mecanique quantique n'était qu'un effet de son incompletude. Si on cherchait encore on arriverait à une théorie qui léverait cette incertitude. Niels Bohr, au contraire, disait que l'incertitude et les probabilités étaient au cœur même de la nature au niveau mi-

croscopique. Einstein n'eut de cesse de lutter contre cette interprétation d'une théorie que par ailleurs il appuyait. Il lança même, en 1935, un sacré défi qui ne fut résolu... que des décennies plus tard, notamment par le physicien français Alain Aspect qui sera aussi cette semaine à Bruxelles. Il a pu imaginer et mener l'expérience qui a permis de conclure le débat par la victoire de Bohr, même si cette interprétation probabiliste défie totalement notre sens commun. Et ce

résultat n'est pas sans effet pratique. On parfera beaucoup à litruvelles des suites bien concrètes de cela qui sont les re-cherches actuelles sur l'ordinateur quantique et la cryptographie quantique.

Nous avons longuement interrogé Alain Aspect sur le débat des géants du XX^{*}siech

Einstein peut être considéré, à l'instar de Max Planck, comme un des pères fondateurs de la physique quantique avec son article de 1905 sur l'effet phoavec son arrive de 1905 sur rener poo-toelectrique. Mais dans les années 1923-25 se développa ce qu'on a appelé l'école de Copenhague, qui ajouta à la description discontinue de la matière apportée par la théorie quantique, u volet probabiliste. Une particule est à la fois un corpuscule et une onde. Et comme onde, elle peut s'étendre à tout l'espace. Sa position est alors liée à une simple probabilité. Etant une onde, on ne peut alors déterminer à la fois la localisation d'une particule et sa vitesse. Einstein n'aimait pas cela. Cela signifiait pour lui que la mécanique quantique était inachevée et qu'il fallait la dévelop per pour arriver à déterminer avec pré cision, à la fois, la position et la vitesse d'une particule. Il est vrai que le formacule peut être à la fois dans une boite hermétiquement fermée et en dehors,

1927 temoigna que la confusion était "à son comble". Et on imagine, le soir, dans les rues de Bruxelles, Bohr et Einstein irsuivant leurs discussions. Mais en 1935, Einstein pense avoir trouvé une objection majeure qui "coincera" Bolir. Pour comprendre ce defi appele "para-doxe EPR" du nom de trois physiciens (Einstein, Podolsky et Rosen), il faut savoir que les débats sur la mécanique quantique avaient d'abord porté sur une particule unique. Bien entendu, les choses ne sont pas comme cela. Les par-ticules interagissent. Et les ondes associèes à deux particules qui ont interagi un moment avant de diverger sont dites "Intriquées". C'est sur les états intri-qués, dont Einstein découvre en 1935 qu'ils sont autorisés par le formalisme quantique, que va porter le débat.

Alain Aspect les explique par une ana-

Niels Bohr et Albert Einstein (à droite) se sont affrontés pe tant des années sur l'aspect prob

ouve aleatoirement la couleur blanche deux rouges, même si elles sont alors éloignées de plusieurs kilomètres. Einstein y voyait une objection majeure à la lecture probabiliste de la mécanique quantique. Car, disait-il, soit on estime qu'une boule "sait" instantanément que autre adopte une couleur au moment de la mesure, même si elles sont fort éloignées l'une de l'autre, mais alors il faudrait que l'information se propage d'une boule à l'autre plus vite que la vitesse de la lumière ce qui est impossible d'après la relativité. Soit alors, la couleur des deux boules de chaque paire était contenue dans l'état initial et les boules avaient alors des propriétés détermi-nées et non statistiques ce qui contredi-rait les vues de Bohr. Celui-ci estimait au contraire que, même si cela paraistat bizarre, les deux boules, mêmes à des distances énormes, formaient encore un seul système d'objets intriqués, qui pouvaient jusqu'au dernier moment donner aussi bien le résultat "rouge-rouge" que "blanc-blane". "Einstein, sou-ligne Alain Aspect, avait mis le doigt sur une bizarrerie incrogable de la mécanique quantique." Des particules très éloignées se comportaient comme si elles étaient liées sans avoir besoin d'échanger des informations

Ce paradoxe a mis 45 ans à être résolu. Les physiciens d'abord ne s'y intéresse-rent pas vraiment puisque de toute manière la mécanique quantique nurchait bien et Einstein ne contestait pas ce point. Cela apparaissait d'abord comme un problème de philosophie des sciences. Mais dans les années 60 et 70, une série de physiciens s'y attelèrent, après la découverte de John Bell qui établit une inégalité pouvant être vérifiée ou contredite par les résultats d'une expé-rience, permettant ainsi de trancher entre Einstein et Bohr. Dans les années 70 un jeune chercheur français, Alain Aspect se passionna pour ce defi et consacra huit ans à mener une expérience très subtile où deux photons sont émis par paires, avec des polarisations intri-quées. Des détecteurs permettent de déterminer l'état de polarisation de chaque photon, une fois ces particules suffisamment éloignées l'une de l'autre,

111 La Libre Belgique - lundi 17 octobre 2011

ce à Bohr

te, aléatoire, de la méca

inégalités de Bell et donc trancher la controverse. L'expérience demande par exemple, que le réglage des détecteurs soit modifié physiquement entre le moment de l'émission de la paire de moment de l'emission de la parte de photons et leur réception pour être certains que ce réglage des détecteurs n'était pa "comm" au départ des pho-tons et puisse expliquer qu'il changent ensemble. Or les photons se deplacent à la vitesse de la lumière, ce qui ne laisse que quelques milliardièmes de seconde pour effectuer le changement!

Le résultat, confirmé depuis par d'autres recherches est clair: Bohr avait

et on peut soumettre les résultats aux raison. La nature est définitivement etrange pour notre sens commun, elle est probabiliste et non déterministe, elle est non locale, c'est-à-dire qu'il existe des influences se propageant plus vite que la lumière, en contradiction avec un principe fondateur de la relativité, dont Einstein était le péret retativité, dont Eutstein char le perei 'Mais Einstein fut genial en pointant cette bizarrerie, continue Alain Aspect, il a attiré l'attention sur ces états intri-qués qui sont aujourd'hui à la base des re-cherches sur les futurs ordinateurs quintiques, et sur la cryptographie quantique" (les clés pour sècuriser la transmission des dor nées, par exemple sur intermet)

Danse Les spots de Chanel copient-ils "Kiss & Cry"?

"Décidément, la danse contemporaine inspire non seulement les artistes mais aussi les multinationales", constate Charlerai/Danses dans un communiqué, Tandis que la chanteuse Beyancé est accusée de plagist par Rosas, la compagnie d'Anne Teresa De Keersmaeker pour son clip "Countdown", voici gu'une campagne de pub est mise en cause pour de troublantes similitudes avec "Kiss & Campagne de publiers mise en clusie pour de rounaines seminitades avec, seus a Cry" créé par Michèle Anne De Mey et Jaco Van Dormael, et produit par Charterol/Damass. Un spectacle de "nanodanie", pour rappel (LLB 22/3/2003), "Interprêté" par les doigts de Michèle Anne de Mey et Grégory Grossean. Or, deux récents spots "Shade Parade", visant à promouvoir les vernis Chanel, montrent des dolgts dansant un numéro de cabaret. Ces spots "improvinted de anterprété" par les doigts de mande de la cabaret. Ces spots "improvinted de anterprété" par les dolgts dansant un numéro de cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la cabaret. Ces spots "improvinted de anterprété de la cabaret de la monteren des donges bansant un numero de cauarris ses spore importent de nombreux éléments ou spectocie Kiss & Gry, tont des éléments de mise en scène que de chorégrophie , constate Charlerol/Danses – qui ne parle pas de plagiat, pour l'heure. Et de pointer, entre autres, plusieurs pas de danse des doigts, le jeu de minairs, la reprise de diverses scènes, dont l'entrocroisement de deus trapères où se balancent les dolgts... "Les coincidences sont trop nombreuses pour croire qu'elles résultent du hasard", conclut Charlerol/Danses, qui indique que son avocat va traiter le dossier, tandis que Chanel, interpelié, n'a pas encore réagi.

Concert Les bonnes vibrations du Quatuor Alfama

Dans la série des concerts Carlo Van Neste, le Quatuor Alfama se produisait joudi dernier au Conservatoire de Bruxelles, en compagnie du joure planiste français Guillaume Coppola. Assemblée nombreuse et attentive (aucune toux, étrange...). pour un programme où le Quatuor n°1 d'Arriaga (1806-1826) et le Quintette op. 44 de Schumann encadraient 5 Danses espagnoles de Granados. données par le planiste invité. Le trop rare quatoor d'Arriaga confirma la nouvelle étape franchie par le quatuor depuis son CD de "Quartetsatz" (Fuga Libera): sonorités élargies et enrichies, commune respiration – tant pour les attaques que pour les phrasés –, circulation d'énergie. On notera aussi, dans cette pièce aux allures concertantes, l'assurance inspirée du premier violon. Mêmes traits mais autre dynamique dans Schumann où la partie concertante revient plutôt au plano, chaque membre du quatuor ayant une part identifiable dans l'ample construction des quatre mouvements. Personnalité, so technique, sensibilité commune, ces musiciens ont beaucoup pour eux. MDM

Politique culturelle

Création de "pôles": quelle "unanimité"?

Dans nos éditions de samedi, nous rapportions que le comité de direction des dix établissements scientifiques l'édéraux (ESF, musées, etc.) avait approuvé mercredi, "ô l'unonimité", selon Philippe Mettens, patron de la Politique mercreat, o rubonimer, senor emitipe vertens, parton de la Potitique scientifique, son idée de créer trois "pôles" (Art, Espace, Documentation) regroupant les ESF et créant des symergies. Une "unonimité" surprenante a priori après les débats intenses que cette idée avait suscités. Mais précisons qu''unonimité" signifie ici qu'il n'y a eu aucune vois négative face à la proposition. Mais il faut voir que très peu de directeurs se sont sentis directement concernés. En effet, le Museum des sciences naturelles et Tervuren ne sant pas concernés par la réforme. Pour les huit autres, l'idée de pôle favorisant les synergies est acceptée depuis longtemps mais c'est la direction commune par pôle qui pose problème. A nouveau, la Bibliothègue royale et les Archives du Royaume (pôle documentation)-ne sont pas encore concernés. Les directeurs actuels viennent d'être renommés pour six ans et la direction commune n'interviendrait pas avant 2017 i Restent les pôles Art et Espace qui concernent six ESF dont quatre sont dirigés par des "falsant fonction". Il ne reste que deux directeurs nommés et qui sont les deux pressentis pour diriger (après examens) les huturs pôles. A cela s'ajoute évidemment que ce projet doit encore passer par le prochain ministre de la Politique scientifique. G.Dt

Découvertes Culture

E Sciences Les cent ans du conseil Solvay (III)

Energie et matière noires, le H

 Quels sont les défis aujourd'hui en physique ? Trouver le boson de Higgs.

 Mais aussi expliquer les mystères de l'énergie noire. Rene Ramond explique.

Entretien Guy Duplat

Bombaerts@ulb.ac.bc

destinéo à Valerie.

Copie

N ous avons deja largement evoque dans deus articles prese inseils Solvay de physique qui fetem ce mois-el leur centieme anniversaire. En marge des ceremonies, un conseil se tiendra du 19 au 22 octobre avec les meilleurs specialistes du physique quantique et relativiste, sur le theme. "The Theory of the Quantum World". Quels sont les dells aujourd'hui en physique theorique et esperimentale? Que cherche-t-on pour mieux comprendre notre univers, son origine et son futur." Nons avons interroge a ce sujet le scientifique francais Pierre Ramond, un des peres de la theorie des cordes, qui travaille aux Etais-t nis mais qui est aussi membre du conite scientifique des institurs Solvay.

Où en sommes-nous?

Depuis le premier conseil Solvay, on a resolu les problemes d'interaction entre novaux et on a mis au point le famastique modele appele "modele standard" qui integre les interac-tions electromagnetiques de Maswell, les interactions macleaires fortes et les internations faibles, t'e modele a etc elabore il y a 40 ans, et malgre tous nos efforts pour hai trouxer des failles, il resiste et se montre estraordinairement ro-buste. Il ne lui manque qu'une chose, la particule de Higgs Englert-Brout, qui expliquerait les masses mesurees. Elle est prevue par le modele, mais elle resiste jus-qu'ici a l'esperience. On a maintenant l'espair que la formidable ma-chine. LHC: du Cern: a Geneve, pourra la trouver. Le LHC n'est pas encore a son coergie maximale, mais elle peut creer des flux de protous sa luminosite qui permettent d'esperer, et des signes sont la une particule d'un poids de l'ordre de 150 Ges, Avec le détecteur precedent, le LEP, on ne pouvait créer que des turticules de 115 Gev maximum et on n'avait rien trouve. Pour nons qui avons grandi avec le mo-dele standard, qui avons essave de le prendre en defant, mais en vain, ce serait formidable, Si on tre le troncait pas, ce serait aussi incompre-

Dans les défis de la physique, l'infiniment grand, la cosmologie et le big bang rejoignent l'infiniment petit des particules étémentaires et le LHC à Genève.

hensible que l'aunonce recente de neutrinos allant plus vite que la vitesse de la lumière. D'ailleurs, les neutrinos font partie du modele standard et s'il s'averait qu'ils n'obeissent pas a la relativite speciale d'Einstein, tout le reste du modele standard, non plus? Mais il est possible qu'il y ait en, dans ce cas, un biais experimental. C'est pourquoi il faut avant tout attendre les meaures similatives au les neutrinos qui vont erre faites aux Etats-Unis.

Sommes-nous alors à un moment, comme II y a cent ans, où on croit avoir tout découvert?

La generation qui a suivi Newton, elle aussi, vest scritte frustree en vovant que beaucoup de phenomenes physiques apparentment differents se ramenaient a Newton.

Mais tout n'est pas régié. Il n'y a pas de compatibilité entre les théories quantique et relativiste?

Certes, mais dans l'experience habimelle, cela n'a pas d'importance, car la force de gravite est exceptionnellement plus faible que les autres. Ce n'est done pas un probleme de pinsique experimentale mais bien de physique theorique, les deux théories ne doivent ette compatibles qu'aux densites des trous noirs ou du debut de l'univers. On est surtout devant des defis itonycaux depuis qu'on a montre que l'univers connu formait moins de 5% de la masse totale de l'univers. Pres de 25% de cette masse serait de la matiere noire pas encore vue experi-mentalement mais qui pourrait s'expliquer an depart du modele standard. On a parle de particules appelees "axions" ou "supersyme-triques". On cherche leurs maces dans le EHC. A cote de cela, il via surtont le mystere de l'energie noire qui representerait 75 - de la mass de l'univers, Personne n'en a une explication precise. On peut seulement tenter de la parametrer en reintroduisan la constante cosmologique d'Ensuein et en renvovant aux travaux de cet homme formidable que vous avez eu en Belgique, l chanoine Lematte, le pere de la théorie de l'arome primitif, du "big long"

Mais cela heurte l'esprit que deux théories aussi fortes et démontrées que la quantique et la relativiste ne soient pas compatibles?

thi, mais je le repere, dans l'experience cela ne jone pas, La theorie des confes, developpee depuis qua nute ans, tente de ressondre ce paradoxe. Elle a la force de nous faire rever, d'amener a imaginer un monde avec des dimensions supplementaires, un monde supersymetrique ou basons et fermions se reponditaient. Ce serair formidable si le LHC pouvait nous donner des signatures pour ces dimensions supplementaires de notre monde. Un livre anusant, datam de 1884, "Haltand" d'Edwinn Mott, parle d'un monde qui ne serait qu'à deux dimensions et de l'irruption d'une troisiente dimension. Peut-etre sommes-nous de meme comme des monches "collees" a un espace a trois dimensions sans pouvoir entrer dans les antres dimensions.

Vous parlez de rêver. Le rêve est-îl împortant en physique?

Mealument, Tous les physicieus qui operent a la frontiere de nos con naissances som des artistes a leur maniere. Ils s'expriment par des equations et non par des pinceaux, mais c'est la meme chose. Notis avons tonjours, dans nos recher-ches, ete habites par des notions d'apparence farfelue. A Paris, il y avait au Petit Pakais des demonstrations de physique que je n'ai jamais oubliees a cause de leur pouvoit evocateur pour l'imagination d'un jeune curieux, et c'est pour cela que je considere les schemas venant des cordes necessaires pour motiver les ieunes a creuser et agrandir la phere de connaissances humaines.

Une théorie doit-elle être belle ?

Il existe un tres beau texte de Dirac,

48 La Libre Belgique - mardi 18 octobre 2011 -

iggs: les défis de la physique

de 1938, ou il parle de la beaute et de la simplicite en physique. Newton avait apporte la simplicite en ramenant plein de phenomenes a tate forme simple. Einstein a apporte la beaute en amenant la symetrie. Si

on doit choisir entre la beante et la simplicité d'une théorie, il fau choisir sa beaute. La théorie des con-des est belle, mais elle n'est pas simpie, et doit etre pourtant proche de la realite meme si on n'en a pas (chcore de preuves experimentales. D'un point de vue historique, il est interessant d'ailleurs de voit 1 [LDC des theories peuvent exister long temps avant leurs preuves experimentales. La notion d'atome etait deja presente chez les Grees mais ce n'est finalement qu'il y a un siecle qu'on a pu individualiser un atome dans le mouvement brownien. Les grands physiciens sont ceny qui perjoivent les questions ausquelles ils pourront repondre. Mais la capache de rever est sans doute surtout l'apanage des journes car les "vieux" en savenit trop pour never et colover le mystere. Les physiciens daivent aussi erre ouverts a la surprise; on a vu d'enormes laboratoires soutertains destines à mesurer l'even-tuelle desintegration du proton. trouver des resultats surprenants sur la physique du neutrino. El recemment, ce sont des rechetches sur les munations du neutrino qui ont abouti par hasard a ce resultat tevolutionnaire, sil se contirmait, de neutrinos plus rapides que la lumiere.

N'est-il pas dommage que l'esprit humain "commun" ait tant de mal à comprendre cette beauté du monde?

Dirac, encore lui, expliquait que le

monde n'etait pas simple a com prendre alors qu'il suit des equa-tions simples. C'est parce qu'il y des conditions initiales qui influencent le cours des choses, il y a des fluctuations quantiques qui ont ete determinantes, sans doute dans la creation meme de l'univers, et certaine-ment dans la constitution des galaxies et des ctoiles. Quand Wat-son et Chick ont decouvert la strueture de l'ADN, ils ne savaient pas vraiment a quoi cela servait, c'est Gamoy qui parla d'un code. Aujourd'hui, la theorie des cordes est un beloutil, un belobjet, mais on ne sair pas encore bien a quoi elle sert, t ela me fait penser a Clemencoau, grand amateur de ferrimes qui disait que c'etait la montee de l'escalier qui etait le moment le plus ex-citant d'une rencourre. En plus sique aussi, c'est l'attente, les preparaits qui sont les plus excitants. Et cette recherche a plein d'effets induits surprenants; regardez au Cern, On y a invente le Web, Internet, et, aujourd'hui, le Grid, au Cern on des milliers de scientifiques venus de 130 pays differents inventent un mode de cohabitation passionnari a etudier pour les sociologues Finalement, en guise de clin d'œil, une petite remarque sur la diffe-rence entre rumeurs et faits, Les tumeurs se propagent plus vite que la lumiere mais, comme elles ne contiennem pas d'information, il n'y a pas de contradiction avec la physi-

que que nous contaissons!

Épinglé

Conseil Solvay: au programme

Les cent ans du conseil Solvay Ce 18 octobre, une séance acadé que avec de nombreux prix Nobel mais aussi des grands industriels comme Gérard Mestrallet (Suez). Craig Mundie (chief research and strategy à Microsoft) ou Shoichiro Toyoda (ancien président de Toyota), débattra de l'importance de la recherche fondamentale et à de son influence sur les progrès de la société. Elle se déroulera en présence du roi Albert II. Du 19 au 22 octobre, un conseil de physique exceptionnel. le 25 depuis celui de 1911, se tiendra à l'hôtel Métropole (là où s'était tenu le pre mier) sur le thème "The Theory of the Quantum World" auguel participeront une quinzaine de prix Nobel. Une exposition sur la mécanique quantique et l'histoire des instituts ("Remue-méninges à Bruxelles - Cent ans de conseils de physique Solvay") se tient d'octobre à décembre au palais des Académies.

Le 23 octobre à 15h à Flagey se tien-dra une conférence destinée au grand public et consacrée à la vulgarisation de la science. Les exposés porteront sur les grandes questions de la physique actuelle. Trois prix Nobel (William Phillips. Frank Wilczek et David Gross) répondront aux questions du public. Infos : www.solvoyinstitutes.he

October 18, 2011- La Libre Belgique

BRUXELLES Jusqu'au 21 décembre, au palais des Académies-Écuries royales, il sera possible de découvrir ce que fut, voici un siècle, le légendaire premier Conseil de physique Solvay. Les Instituts internationaux de physique et de chimie fondés par Ernest Solvay organisent des activités tour-

nées vers le grand public et les jeunes du secondaire en particulier. L'expo Remue-méninges à Bruxelles - Cent ans de Conseils de physique Solvay est le fruit d'une collaboration entre les Instituts internationaux de physique et de chimie, enseignants et chercheurs de l'ULB et de la VUB. J. B.

October 18, 2011- La Dernière Heure

La rencontre secrète entre Bohr et Heisenberg à Copenhague en 1941.

Sciences | Cent ans des conseils Solvay

l'occasion du 100' anniversaire nees du premier conseil de physique Solvay, le Studio 4 de Flagey a accueilli ce lundi soir une lecture de la pièce de théâtre de Michael Frayn, "Copenhagen", qui met en scène le mystérieux débat de 1941 entre Bohr et Heisenberg au sujet de la bombe atomique, Les prix Nobel Alan Heeger (chimie, 2000) et David Gross (physique, 2004) ont interprété les rôles de leurs deux prédécesseurs, Niels Bohr et Werner Heisenberg. Fiona Shaw, grande actrice shakespearienne, a, quant à elle, prêté sa voix à Margrethe

Bohr, la femme du physicien. "Pourquoi suis-je venu à Copenha-

gue?" La question du physicien alle mand, Werner Heisenberg, est toujours sans réponse. Dans sa pièce, Copenhagen", Michael Frayn tente de livrer les différentes interprétations de la rencontre secrète entre les deux scientifiques dans la capitale danoise. Au plus fort de la Seconde

A Copenhague... Guerre mondiale, Heisenberg a-t-il tenté d'obtenir des informations sur la fabrication de la bombe atomique pour le compte des nazis ? Le mystère reste entier. "Je suis l'ennemi, mais je suis ton ami", pense le fantôme du physicien. Ce débat a marqué la fin de leur amitié vieille de plus de vingt an-

"L'histoire, ce n'est pas ce qui s'est passé, mais c'est ce dont les gens se souviennent" affirme l'auteur de "Copenhagen". La pièce reste néanmoins "une fiction à propos des protagonistes". Michael Frayn rappelle les fantômes de Heisenberg, de Bohr et de sa femme, et les force à méditer sur leurs actions passées face à une salle comble aux mille et une questions. La metteuse en scène, Nancy Kawalek, nous propose un tableau sobre et minimaliste aux allures de cours magistral. Il faut dire également que les explications scientifiques ne manquent pas pour éclairer le spectateur lambda. Les trois acteurs sont au centre de la scène, parfois debout, parfois assis, tels des professeurs face à leurs élèves. Les mots seuls suffisent à exprimer les souvenirs d'un passé encore trop pro-

Leslie Berdelou

October 19, 2011- La Libre Belgique

Sciences | Cent ans des conseils Solvay "Passionnez-vous...

enseignement de la science, Einstein, la physique quantique et l'avenir de la recherche fondamentale étaient au programme de la conférence grand public organisée, comme chaque année, par les Instituts Solvay. Pendant trois heures, ce dimanche 23 octobre, des invités de renom se sont appliqués à vulgariser la physique devant un public de tout âge. La rencontre était clairement orientée vers les jeunes à qui les conférenciers ont démontré tout l'intérêt de la recherche.

Les ministres en charge de la Recherrite cientifique (en Région wallonne/ Fe __ration Wallonie-Bruxelles), d'une p. rt, et de l'Enseignement (en Flandre), de l'autre, ont été les premiers invités à s'exprimer. Le conseiller de Jean-Marc Nollet a expliqué l'importance d'attirer les jeunes dans les domaines de la recherche scientifique. Il leur a d'ailleurs adressé un message: Passionnez-vous et engagez-vous dans les métiers de la recherche," Du même avis, Pascal Smet a affirmé que "notre futur et notre bien-être en dépendront". Et pour attirer la future génération, les physiciens présents ont bien compris qu'il fallait lui montrer que la science

est passionnante en faisant eux-mêmes part de leur engouement.

William Phillips (prix Nobel de physique en 1997) a souhaité diriger sa présentation "vers ceux qui ont encore la petite flamme de l'enfance". A l'aide d'aimants, de ballons et d'une grande quantité d'azote liquide, le physicien américain a réalisé un exposé simple et ludique sur la relation entre Einstein et le temps. Il a voulu montrer que "les scientifiques ne sont rien d'autre que des enfants qui n'ont pas grandi". Autre grand passionné de connaissance, Franck Wilczek (prix Nobel de physique en 2004) a tenté de vulgariser la physique quantique dans un exposé au titre attrayant: "Beauté

Enfin, la rencontre s'est terminée par un débat consacré à l'avenir de la physique. Un panel de sept physiciens triés sur le volet a répondu à quelques questions posées par le public via Internet. De l'enseignement des sciences en secondaire à l'observation récente de neutrinos plus rapides que la lumière, en passant par l'expansion de l'univers, de nombreux thèmes ont été abordés. Leslie Berdelou

La Libre Belgique - mardi 25 octobre 2011

October 25, 2011- La Libre Belgique

TENTOONSTELLING

Brainstormen in Brussel

Tentoonstelling over 100 jaar Solvayraden voor Fysica en hoe ze de wereld hebben veranderd

"Hier in Brussel heeft een echte revolutie plaatsgevonden, een enorme mutatie van het denken." Prof. em. Henri Eisendrath komt woorden te kort om het belang te omschrijven van de Solvayraden voor Fysica die vanaf 1911 in de hoofdstad plaatsvonden. Fysicus Henri Eisendrath is coördinator van 'Brainstormen in Brussel', een grote tentoonstelling in het Paleis der Academiën over honderd jaar Solvayraden voor Fysica. De bezoekers kunnen er de geboorte van de kwantumtheorie herbeleven alsof ze er zelf bij waren.

De eerste Solvayraad vond plaats in 1911 in Hotel Métropole in het ceritrum van Brussel. De knapste hysici van de wereld zaten toen samen rond de tafel: Albert Einstein, Marie Curie, Max Planck en nog twintig andere absolute topwetenschappers. Ze waren naar Brussel gekomen op uitnodiging van de beroemde Belgische industrieel Ernest Solvay. Op de eerste Solvayraden van 1911 tot 1930 is de basis gelegd van de moderne fysica en in het bijzonder van de kwantumfysica van straling en materie. En ook van alle toepassingen die eruit voortvloeien: x-stralen, suprageleiding, kernenergie, micro- en nano-elektronica, fotonica en lasertechnologie, medische beeldvorming, informatie- en communicatietechnologie, erz.

"Met de tentoonstelling willen we in de verf zetten dat de fundamentele wetenschappen gezorgd hebben voor veel vooruitgang", zegt prof. Eisendrath. "Neem nu de MRI-scan of de PET-scan in de geneeskunde. Die vinden hun oorsprong in de fundamentele wetenschappen. Net als alle communicatiemiddelen van vandaag. De theoretische basis werd al in 1911 en de volgende jaren gelegd." De tentoonstelling richt zich tot het brede publiek, maar vooral tot jongeren. "We willen de jongeren duidelijk maken dat de moderne fysica geen droge materie is, maar het resultaat van hevige discussies, vol emoties."

Op de Sulvayraden hielden de topwetenschappers verhitte discussies over onderzoeksresultaten die met de klassieke fysica van Isaac Newton en James Maxwell niet te verklaren waren. De voorzitter van de eerste Solvayraad was de Nederlandse Nobelprijswinnaar Hendrik Lorentz. "De fysica staat voor een impasse", zei hij toen.

"Op het einde van de 19de eeuw dachten fysici dat ze alles verklaard hadden", zegt Henri Eisendruth. "Maar de triontf van het determinisme was van korte duur. De Solvayraden hebben de overgang van het determinisme naar het probabilisme in de hand gewerkt. Alles draait rond de dualiteit tussen deeltje en golf. Vroeger dacht men dat een elektron een deeltje was en alleen maar een deeltje en dat licht alleen maar een golf was. Maar experimenten met ficht en elektronen leverden resultaten op die niet meer te verklaren waren vanuit hun deeltjeskarakter of vanuit hun golfkarakter. Ook ficht heeft een deeltjeskarakter en elektronen hebben naast een deeltjeskarakter ook een golfkarakter."

Experimenten

De tentoonstelling leidt de bezoeker van de klassieke theorieën van Newton en Maxwell naar de beroemde Solvayraden van 1911 en 1927. Van de geboorte van de kwantumtheorie naar haar hightech toepassingen in de 21ste eeuw. Je kan Brainstormen in Brussel individueel ontdekken,

Prof. em. Henri Eisendrath

maar de tentoonstelling is ook ideaal om in groep of met de klas te bezoeken, met enthouslaste gidsen die voor een heldere uitleg zorgen. Door de vele experimenten, simulaties en filmfragmenten wordt Brainstormen in Brussel een spannende interactieve belevenis.

"We hebben de tentoonstelling zo opgevat dat ze de jongeren van vandaag kan aansgreken"; zegt Henri Eisendruith. "Naast panelen, staan er tal van experimenten en video's van experimenten opgesteld."

Zo staat er een biljart om te tonen dat met de klassieke mechanica van Newton alles perfect voorspelbaar of deterministisch is. Of het dubbele spleet experiment van Young om het golfkarakter van licht aan te tonen. Er is een opstelling om straling van radioactieve isotopen te illustreren, een fenomeen dat bij het begin van de 20ste eeuw nog geen verklaring had. Of ook nog: een revolutionair diffractie experiment met elektronen om aan te tonen dat die deeltjes ook een golfkarakter hebben of het fotoelektrisch effect waarmee Albert Einstein duidelijk maakte dat het licht ook een deeltjeskarakter heeft. De jonge bezoekers kunnen ook meedoen aan een interactieve guiz met een iPod touch.

"Ik hoop dat de tentoonstelling bijdraagt tot het besef dat wetenschap essentieel is in onze wereld", zegt Henri Eisendrath. "Het is de basis voor vooruitgang."

Praktisch

Brainstormen in Brussel loopt tot 21 december 2011 in het Paleis der Academiën, Hertogstraat 1 in 1000 Brussel (van maandag tot zaterdag van 9u tot 16u30). Vanaf 2012 maakt de tentoonstelling een rondreis door de Vlaamse en Waalse provincies. [pvr]

[W] www.solvayinstitutes.be

Een wereldberoemde foto

Op aandringen van de Duitste fysico-chemicus Walther Nernst (Nobelprijs 1920), en met de steun van de Nederlandse fysicus Hendrik Antoon Lorentz (Nobelprijs 1902), organiseerde de rijke en vooruitstrevende Belgische ondernemer Ernest Solvay de allereerste Solvayraad in oktober 1911 in Brussel. Een twintigtal topwetenschappers uit die tijd – van wie 11 Nobellaureaat zijn of het fater zullen worden – gingen in op de uitnodiging. Zij werden rijkelijk ontvangen en hielden hun vergaderingen in het statige Hotel Métropole aan het de Brouckerepiein. De officiële foto van deze hijeenkomst heeft sindsdien een mythisch karakter vergaard.

25^{SE} SOLVAYRAAD

Ter gelegenheid van het jubileum vindt in Brussel van 19 tot 22 oktober een uitzonderlijke Solvayraad plaats – de 25ste – met als titel "The Theory of the Quantum World". Kwantumfysica is immers de rode draad doorheen het gros van de vorige 24 Solvayraden. De Solvayraad 2011 verloopt nog steeds volgens het unleke "Solvay-stramien" de deelname is enkel op uitnodiging en de nadruk ligt op discussie tussen de aanwezigen, niet op individuele presentaties zoals op andere conferenties.

De geboorte van de kwantumfysica

De Solvayraad van 1911 heeft de wetenschappelijke wereld doen aanvaarden dat het revolutionair concept van «kwantum van energie» heel belangrijk was, hoewel het nog niet volledig werd begrepen.

De structuur van het atoom, steunend op de modellen van 11 Thomson, Rutherford en Bohr, werd uitgebreid besproken tijdens de Raden van 1913 en 1921. Het is ook tijdens de Raad van 1921 dat de Britse fysicus Ernest. Rutherford het bestaan van een nieuw deeltje, later het neutron genoemd, voorspelde. Na de eerste wereldoorlog werden er in 1921 en 1924 twee Raden georganiseerd, die vooral gekenmerkt werden door de afwezigheid van de Dultse wetenschappers. Het zijn Solvay en Lorentz die, door hun openheid van geest en hun persoonlijke contacten, erin geslaagd zijn om na 1924 de grenzen opnieuw open te stellen voor internationale samenwerking.

In 1923 bevestigde de Amerikaan Arthur H. Compton experimenteel het schizofreen karakter van het licht, dat zich naargelang de omstandigheden gedraagt als een golf (zoals

October, 2011- Akademos

voorspeld door de klassieke theorie van Maxwell) of als een bundel van deeltjes («kwanta van licht» zoals voorgesteld door Einstein). Louis de Broglie postuleerde in 1924 dat dit ook moet gelden voor het elektron.

In 1925 formuleerde Wolfgang Pauli zijn uitsluitingsprincipe, een fundamenteel werktuig om de label van Mendeljev te begrijpen. In 1925 ontdekte men bovendien dok de spin van het elektron, een zoveelste mijlpaal in de ontwikkeling van de spin heeft toegelaten de meest gekende vormen van magnetisme zijn zuiver kwantumeffecten. Maar hoe kan men de «deeltje-golf» dualiteit interpreteren? Deze vraag staat eentraal in alte discussies die plaatsgrijpen tijdens de Baad van 1927

Voor Louis de Broglie wordt elk deeltje vergezeld door een «pilootgolf», die het deeltje als het ware «leidt». Dat is ook Einstein's idee Voor Erwin Schrüdinger, Werner Helsenberg en Max Born diarentegen moet de toestand van het deeltje wiskandig beschreven worden door een «waarschijnlijkheidsgolf». Met deze golf kan men exact de kans te berekenen om het deeltje op een bepaald tijdstip op een bepaalde plaats in de ruimte te vinden. Het is ook in 1927 dat Werner Heisenberg

een fundamentele eigenschap van de kwantumfysica formuleerde: het **xonzekerheidsprincipes**. Heisenberg stelde dat het onmogelijk is om terzelfdertijd de snelheid en de plaats van een deeltje exact te bepalen. Deze problematiek met betrekking tot de meting van een eigenschap is vandaag nog steeds heel actueel.

Ten slotte werd in 1928 de kwantumtheorie van het elektron in zijn definitieve vorm gegoten, dankrij het werk van Paul A.M. Dirac. Hij voorspelde hierbij meteen ook het bestaan van het anti-elektron - het «positron».

Een opmerkelijk feit is dat de heren Pauli, Heisenberg en Dirac nog geen 30 jaar oud zijn op het ogenblik van hun grote ontdekkingen. Zi) waren jonge ontdekkingsreizigers op zoek naar de kwantumrealiteit, net zoals er vlandaag nog velen aan het werk zijn.

68 WISSENSCHAFT

TRANSPORTER ALL-GEMEINE DOWNTAGEZETTUNG, IN OKTORER JULI, NR. 4)

appendid no lipsuse and de Sular-Konferen apr. De seglinenge Here (mond, § 1. 1) in Frent Solar, donne Thory de Greetin Marcultur, gyre de ten Mar Plant (inhead, 2. 1. 1) segnifier Questingforg fore codiade Classi http://doi.org/10.1011/0011000

Semimon, das Se or hend Seminor report, infraid einer Flaus, Vela auf die kninn gallaus bei einer Flaus in Maaaranan der Seminor Mehr Nacht auf kommten Mehr Nacht auf kommten Mehr Nacht auf bei einer Schaussen im Mehr einer Schaussen im Maaranan of einer die Anteilen und einer Kein Mehr Schertz mit einer Kein Anteilen und refer, Mie auf viele aufen Kernen, das auf viele aufen Kernen, das auf viele aufen Kernen, Kein auf Attrassel von genanner Worken in der auf diese keiner Schaussent aum Gabe printige ausgenannen. Babkeiner Keinausen in der das diese keiner Schaussent auf Gab printige ausgenannen. Babkeiner Keinausen auf Gab printige ausgenannen. Babkeiner Kein dass die Laus diesen auf aufen beite auf die Laus diesen auf

Birrenste dierben. The Stars and Superstars der Psycho-seater sein a. S. Schop Kangens - seatterungeplannenen, 51 en fers 2018. Alle werden von zumm vor Wilcieke emitigienen Dekorringer und Mitz-Schalzministrager Die ellförma uns der Ustmitzuger Die ellförma uns sohn Barbars eingelafilter Annalders oder auch nur bereichen kann wich für die Thindmenten.

Dark nor creats foring were manufarmenes and singly Norrestorishistic singlicent, data or works gainers. Vie press are jibret, an p. Chicke una, begins determine *Journal Sology*, in denter energ. *Journal Sology*, in denter energ. *Journal Sology*, in denter the *Journal Sology*, in denter the *Journal Sology*, and the sole in the sology of the *Journal Computer* interfaces. *Consult in the Solost* conferences, *Consult in the Solost* conferences of *Consultagentia* where the *Consult interface* and the solost conference in the solost conference of *Consultagentia* where the consultation the important the terms of the init its Instance interes cognoring in an dem wises solution the terms in an dem wises solution the terms of the conference in the solution terms of the complements in terms of the terms of the terms of the conference in the terms of th

de die Uterfans gat eine Anne halpcheine Indonerfahlen Erzuge Gelaus, Urer Inner #66, ein wenne Verfahren um Hennellung einen Nathenbencheite um Hennellung einen Nathenbencheeinen Merche um auflichtungen. Die einem Henden Hausen ein Jahreten mit die der auflichtungen bei wenn die der einen Fertrig die undehrenhert reich ausellen und is Daseinen der Geneen Fertrig die undehrenhert reich ausellen und is Dassensatieften wennen Helder ausensatieften wennen Helder aus

Gipfeltreffen der Großhirne

Vor 100 Jahren lud der belgische Industrielle Ernest Solvay die Crème de la Crème der Physik nach Ilrüssel ein und begründete eine Tradition, die Wissenschaftsgeschichte schrieb. Doch warum tat er das? *Von Bauchbaupt*

tenam der Wessenschaft. Dach der die Schwager ware ansichte in Wehrerfessenstag, die den saml försergichten kangendaten Ensen Seitze annehe. Gass dem Angene des spains au, Juferstateken vorpflichtet sich im einer nuch dem Wehrt der klassensten, dies stemaeiner auf der Schwarten um die dem des geschlichtetlichen Kinnehent des des die Verstellichtet des Kinnehensten und fehren des Schwigt der Halberet in Keiter des Kinnehenttigen Schwig der klasser der Verstellicten kangen des klasse der Verstellichtet steinterung diese stander beiter steinterung diese schweiteren des Schwigt der klasse des klasser der Verstellichtet steinterung diese schweiteren beiter steinterung diese schweiteren des Schwigt der klasse des schweiteren des Schwigt des klasse des schweiteren des Schwigt des schweiteren des Schwigt des schweiteren des Schwigt des klasse des schweiteren des Schwigt des schweiteren des Schweiteren des Schwigt des schweiteren des Sch

die Geschalten die Astrauch ein Desendung von Except in Jaerniken andere Aus Sicht deuer aus diese Fanzepatik², sagne Heilburn wett auch resenschliche Indieteken en Grande nachte anderes als eine "eineber Apparaue. die Statister aus diese gemasse naturgesetlich als Are der sig Telleslasser ein hunderunggen gerebes-meridelitischen Tellest rangelichte, die sollte ner der Aufliche Hollicher Hottlich Artone Levent, der für Eigung zu hier kann, megfällig auflehren vorder auch der Belatten- einer einer Anten Anten Auflicherverte ber Herner, Beiste Leiters einer einer Anten Anten Auflicherverte ber Deuter Mehren, mit der die auflehren Beisten einer einer Beisten Beisten einer ber Deuter höhen.
Weisten Berlauten auf kennen beiter Berlauten.

We die Physike in Fernal dass alleringe transible ordnadaltung immibile softwy distanceulter Things to be cross. Also also spiriter zu artexes fast diernes Softwmere spowarden softw. De ging menoff fragg, de Hanarde - General metore and the second second second metore and the second second second metore and the second second second second second second second second metore and the second metore and the second sec ter mann Fandatume geneft weren minne - daribar worde kenne IPmaginie ortek - Auf die Tageng IDge worde dies songehretunk. Der die arbei genoet, aug Hadron, Das die nied worden, eine reindlichen M der ein Einemig is andertekter. Gitent vorsiche kanne milte ingenet die offenten sonschlichter. Gitent worden die kanne milte ingenet offenten sonschlichter die so

Ernet Solvey and das ührlich, Doch war am einen Brief von Mart nast hervregelt, wei er anne finner der Usernegang, das eine nass Vipsion der Greine martirialtiger das genechte Fandamene der Physik som meine. Der Eat warde ein auterest. Mal andersoffen.

The mean Shap-Kostman india any net. Witney Kostman Zerns der des Jehre, aufer is der Zerns der Weichtragt. Die wissender schehaltasertich aus hentiger fiche Indianation ver sigte der die seit spingenetische Hondmart dahen eine spingenetische Hondmart dahen teiligten den Kostmannen von den die seit spingenetische Hondmart dahen teiligten Heinelden, sondertilte aufer die Bernetische seinen die den bei Heinelden, sondertilte aufer die hen erkermage zuch der an der Baniden Kostmanchenden dassen berechte die kennen um Witherschalterlichkon-missen um Witherschalterlichkon-innung mende weine kommen-annungen gemeinte weinke kommen-annungen gemeinte weinke kommen-annungen gemeinte weinke kommen-

vari der Diversionnen des klass Bruck des reich fandensenen geng Die strehelt einer des der der ander Einneren Wertige der ander Einneren Wertige ander der Einner der Einneren ehrer der Gestrackserspreimenten est ein der des Dopenhagener Dan wirder des Dopenhagener Dan wirder des Einneren Wert weis is nicht der ferne Wert weis is und Beiter ausgestellt aufert aus in Beiter ausgestellt aufert auch einer alle Beiter ausgestellt aufer der der all. Zinzeine einher bereicht werte von der der von Berten Wert weis is Beiter ausgestellt aufer aus bereich einer der voll. Zinzeine, abereicht stehet, mit der der voll. Zinzeine, abereicht stehet, mit der der beite von eine er ten sollt der der beite von eine er ten sollt.

Vier, Solope Conston-Marrier rene war stafe medie als Rash. Jalipent adie Extra runse kanzen zach konzej die Extra runse kanzen zach konzej die einer Sonologie-Jastitution ga later in kanz, den im Quantaché que cerendue Physikare au orden Phytary einer and the state and the state and the state state of the state of the state state state of the state state state of the state state of the state state state of the state state state state state war state state state state state war state state state state state and state war state sta task Dass Physikissium täpti sigt soch eines für Germa. Als Jasumatisant börsen Fastmarer eintrastantent von Spanseren, dassamt nach immar die Solins-Kasarti and die Fasihie. Die sigd pelsonistion der Erfahrte Genaterian. Die Frage oner de führte in – wie

machen. Gennaus verfehlt wäre die Fordetrag, auf einer Soloy-Tagang misein im besamfahren wissenaufahltdur Forschnut ernich warkan. Die beureben und micht galangen, wei dass in sige einstal dare kann, iste daminerzeit wellt zummä im ohne verteikonfahren. Konferens-Prosisiellen Nickerzerling, Diem Bilde teil dare und einsetzter Weisen allen frihenen Vorzugen abehreiten.

Alexifial beam sets. There is a set of the s

the set of the second of the second of the second set of the second s

October 30, 2011- Frankfurter Allgemeine Sonntagszeitung (Germany)

22 WEEK-END

Expositions

Le Journal du médecin | 2195 | Vendredi 28 octobre 2011

Un problème Solvay

Expo très instructive et didactique à l'usage des jeunes et moins jeunes générations, Remue-méninges à Bruxelles commémore à sa façon la première édition, voici cent ans (du 30 octobre au 3 novembre 1911), des conseils Solvay et mesure leur impact sur nos connaissances actuelles en physique, notamment au niveau de la mécanique guantique.

mostion up 39 conseil s'est déroulé la semaine dernière alors que deux prix Nobel americains se produisaient sur sciene le 17 octobre dennier a Flagey pour interpréter la pièce Copenhague de l'Anglais Michael Frayn- l'auteur imaging les conversations qui ont dù se derouler entre Niels Bohr le Dane et Werner Heisenberg au début de la demière guerre, à propos de la théo-rie quantique et de son application militaire, notamment.

Mais revenues a l'exposition, qui rend hommage dans son introduction à timest Solvay qui, poussé par le scientifique allemand Walther Nernst, eut l'idée de réunir dic-huit scientifiques de renom (dent once pairri eux avaient rogu cu) rece-vront plus tard le prix Nobel) pour dis cuter des defis auxquels la science faisait face au début du 20^e siècle

Car, comme le montre très bien l'exposition qui se déploie en panneaux de sept couleurs différentes, avec en leur

centre des images et obiets encadaés de texte et soulignés par une ligne du temps, cattle mise en commun de consuissance engendress une revolution copernicienne dans le domaine des sciences, et de la physique en particulier. Une physique qui a cette époque se complete dans une cestitude déterministe héritée de Newton et Mixwell: à tel point que le professeur de Planck déconseille au jeune Max de se lanorr dans la physique, puisque -tout ou presque, y a ette deconvert-

Saul qu'il reste des mystères à éclaircir, notamment le problème du rayon nement du corps noir ou Forigine des radiations atomiques décelées par Bequiref, Dars une relation chronologique des kits emailée d'espériences per mettant de visualiser, par exemple, ce qu'est une livéquence, une onde ou un arc electrique, l'exposition progresse en montrant les énigmes auxquelles la science fait face à l'époque, et la révolution que leur résolution va susciter.

La mise en commun des conra sances lors de ces fameux conseils Solviny va ami engendrer la mécanique quan tique (du num de la théorie des quanta de Planck), le principe d'incertitude d'Heisenberg remplaçarit au niveau de la méranique quantique le principe de determinisme règissant la physique classique Enonçant de façon claire et intelligible

les principes nouvenux ernis au III de ces. 24 conveils, certains se revélant moins fertiles que d'autres notamment du fait de l'absence des scientifiques allemands lors de certains après la Première Guerre. Remue-meninges illustre également les rivalités et les désaccords entre scientifigues, et caconte comment au terme d'une nuit blanche et suite à une dis-cussion de couloir, Planck annonce à Einstein que clest sa théorie de la relativité qui sauve la notranique quantique (Einstein tentera en vain de trouver une falle dans cette affirma tion). Une thi rie autourd hui acceptée, mais dont l'in-

Le légendaire pro nier Conseil Solvay qui se tint à l'Hôtel Métropole du 30 octobre au 3 novembre 1911.

nathematique reste encore Manual Autor de nos jours sujette a discutsion

L'espò, topiours ponchale d'espènocs qui permettent de visualiser des phénomènes en réalité microscopiques, se clót par un bilan de cette sévolution au niveou des connaissance (expliquant de facon très didactique « l'expérience » à première vui absurde du chat de Schrödinger), mais suttixit de leurs applications, que se soit au niveau du PET-scon, de l'IRM, de la fibre optique, des disques durs et inéme du LHC du Cern, dont la dentissante expérience récorde rait être à la base d'une nouvelle nivo-

Enfin, elle se conclut par une mesure de l'évolution - et non pas de révolution, cette fois - que manquent les conseils Solvay, celle qui contiste désormais à

partager set connaissances, à collaborer et à se réunic Elle évoque également la disparition du myslichime du champ scientifique qui imprégnait des sovarits auxil réputés que les Curie ou William Crockes, et illustre clairs une postface édifiante la consance et les progrés fuigurants de la science depuis un siècle. Un rappel opportun du soutien qu'il faut apporter à la recherche fondamentale en ces temps sombres d'austérité programmée...

Bernard Roisin

demose estimages parqu'as 23 décombre au ristas des Accélernes fasaires Royales, see Parties à a 1000 timoréhis. Convert de landi au samedo de 1600 a 164 do 16 mérico de partie de 2012, l'exposition sere timoranos trensaignamente. 02/450 56 00, wave sol-cepentitates be

205

Appendix : Outreach

October 28, 2011- Le Journal du médecin

COLUMN ROBBERT DIJKGRAAF

Zinloos/zinvol onderzoek

He ordered jaar geledert, op 50 oktober opt, hvannen in brunnel de tweeenswintig knapstie koppen bjoern om de ernas in de moderne natuuriuunde te bespreken. 21 waren daar op uitriodi-ging von de Belgische industrieel ging von de Belgtoche industrieel Frinsitt Solway, toen eigemaat van heit prootate chemieromeen ter wereld. Vele aanwezigen hadden een Nobel-prijs of routien die uitendelijk krij gen, zoals Man Flanck. Albert fin-tein, Ernest Burberford en de No-derlandse voezitter, Hendrik La-ternzt. Marie-Curie, de mige rouw in het werelchans, ontring dat iaar in het gezelschap, ontving dat jaar zelfs haar tweede.

Twee weken geleden was het Twee westen geteeden waa het eeuwefeet, Gastheer was au de ach-terachterkkeitazoou ean Solven. Hee hema was weer de quantiumcheo-rie. Nu geen erisis, enaar totale tri-ontf, nuds, computers gemaaks uit meheu anomen of de eerste trimpe-lingen in het vroege heefal. Nee, die rethte erisis komma aat bes

Nee, de echte crisis lowam aan bod idens een symposium dat aan de icaconferentle voorafging en getid was any 'het nut van natteloos nderzoek". Deze bijeenkomst werd tigewoond door onder anderen de elgische koning, de minister-presi en Onderzoek, samen met een tim-tal Nobelprijvwinnaars en enkele

grote industriëlen. Centraal mond de impact van het vrije onderpoek en de ondersteuning daarvan, zowel financieel als moreel, door visionaiter industriëllen.

International dis Interest, and Constant in Internetificati. Research and a service and a service and terms inche oder all druk word de te group te nadruk op die enresidadellijk roo-pusloarcheid van die wertenschap. Ein-neut Solway had in die aantoop van aijn oostferentie verd contact met die Duittee chemiscas Walter Nermst. In die redie waarmach bij in 1906 het pre-iedersichap van die Konitviklijke Pruitische Akademie van Ween-schappen haad aanwaard. Juah Nermsschappen had aanvaard, had Nernor met vlammende woorden gewaarschuwd soor de bekrompen tiidschuwd rooje de bekrompen tijd-geest. Duitsland ontwikkleide rich van een kand van Dichter and Perker tot een natie waar alleen nog maar het praktische not telde. Hij dacht met britnwee terug dan een euw ender, uom aan het begin van de megentiende erwer de moderne uit-vensiteit van Humboldt entstend als bereft van de andernetwerd weitheid. burcht van de academische vrijheid. In die tijd vluchtte men grang naar het "tuwereiland van de poëzie of her hooggebergte van de filosofie met zijn dromerige, maar ook vers-derlijke vergezichten"; on keek met liever naar "warvende korenvelden of feaaie industrieterreinen". Solway herhunde in de woorden van Nernst

nijn eigen zorgen over de intellectu de bilivernauwing en proberde dit te verhelpen mer agin fortain. Wat in 1911 guid, is antos son rele vent in de overtreffende trap. De wigheid van onderzoek is zo moge-lijk nog minder vanzelfspeckend, eker in deze comonisch onrekerr acker til dära committen enreker tijden. Toch enderkennen ecomo-tien ande lang het belang van or-gebursden onderzoek. Zo schreve Adam Smith in The Wealth of Norion (1776) dar "velle verbetaritigen zijn bereikt [...] door hen die fölmsten o nammer zu anstendeit waarben of mannen van speculatie worden ge noemd, die niets anders doen dan alles observeren en no in staat zijn de nicest afstandelijke en verschillende zaken te combineren." Mislende zaken te combineren," Mo-deen economisch ondersoedt sehat her penioonlijk en maatschappelijk rendemeent van wetenischap tussen de ao en 30 procern. Duidelijk is wet das ven 'nog nier toegepast onder-aoek' niet alleen aan de krachten van de vrije markt kan worden over-gelaten. De industrie zal nooir ge-noeg in finadamented onderzoek investeren, andat ook vele anderen hier van eerditeren. Zo tal indereen investeren, omdat eos vele anderen hier van profittern. Zo tal iedereen op aarde genienen van het achonere milien en de vermindering van broeikagassen die een doestraak is het onderzoek naar duurtantie ener gie kan beweristelligen.

Quantummechanica. waarover de geleerden zich verwonderden, is nu goed voor de helft van alle industrie

Het is gemakkelijk voorbeelden watt het onvoorriette nut van motte van het einvoorziene nur van mente-loos onderzoek te geren door etrug in de geschiedenis te kulken. Hon-dend procente van alle bedrijven macker nur gebruik van de elekertici-teit die Nitchael Faraday in elso ont-deker. De guotenummechanica, waarever Planck, Einstein en Le-roug zich in gan verwennderden. Is rentz zich in 1918 verwonderden, is nu goed voor zic's vijftig process van alle industrie.

van alle industrie. Het is ocher roseilijk honderd jaar vroenit te kijken. Zo nam ook de Leider natuurkundige Heike Ra-merlingh Oostes dest aan de Subva-conferentie. Hij had in april van dat jaar supergeleiding ontdekt: het

verschöpset dar bij men lage tempe-mmut een elektrikelte ströom som-der weerstand of warmtentreikke-ling kan rondfopen. Deze sonda wurdt ou gebruikt om de zoer ster-ke magneceviden op in reigen die in zweeftreinen, dettijewennelbers of reisevenweitereinen, dettijewennelbers in rweettreinen, dreitjesvennellers of nun-scanners worden, gebisilit. In afgeleide ain heeft de ørndelsking van kanretjingh Onnes das geleid uts render begrig van de werking utan ons brein. U auf denkom dat deze doorbenak inderigd euwig bedisenssiered werd tideen de covige bedisenssiered werd tideen de covige bedisenssiered werd tideen de covige bedisensiered werd tideen de covige bedisensiered ute versier.

in het vervlag, die er ochter pas later in her verslag, die er ochter pas laise aan is toegewegel. Op de conferen-tic viel het woord supergeleiding niet. De aanwezigen kondett de im-part van dege ontdekking maar moeilijk inscharten. Dat geldt van-daag de dag net zo sterk de konderd izie gekielen. Het motto vool het wetenschaps-beleid van deze regering is "tormis, kunde, kassa", brdustriffe filmteo-pen ret en vrije geste ne een genoë

pen met een vrije geest en een groot hart als Ernest Solvay zouden eich hart als Ernest Softwy zunden nem zeher in deze wonden herkend heltben, al zouden zu een ander beeld bij het element 'haust' hetiten gehad. Voor her was het niet alleen een kwestie van inkomisten, maar ok van uitgaven.

November 28, 2011- 5 NRC (The Netherlands)

Une «première» - mondiale en physique: le Conseil Solvay de 1911

Il y a cent ans, le 29 octobre 1911, débutait un événement unique dans l'histoire des sciences du XX° siècle: le premier Conseil de physique Solvay.

Consacré à l'examen d'un problème particulier, ce Conseil fut le coup d'envoi qui donna naissance à l'Institut international de physique Solvay. Il servit ainsi de modèle aux Conseils ultérieurs de physique et de chimie. Le Conseil de Bruxelles constitua surtout un tournant dans l'une des révolutions les plus profondes de la pensée scientifique: la révolution des quanta. Au moment de célébrer le centenaire de cet événement mythique, il convient d'évoquer son origine, sa spécificité, et ses conséquences les plus notoires.

S'il fut convoqué par Ernest Solvay, fondateur de l'industrie de la soude et mécène passionné de physique, le Conseil dut son existence au chimiste berlinois Walther Nernst, auteur en 1906 d'un ambitieux «théorème de la chaleur». Enthousiasmé par sa découverte des travaux quantiques d'Einstein, dont il venait de vérifier la validité dans le domaine des chaleurs spécifiques, Nernst conçut le projet de réunir un «Concile», destiné à valider la

Eine «Weltpremiere» in der Physik: die Solvay-Konferenz von 1911

Vor hundert Jahren, am 29. Oktober 1911, wurde eine in der Geschichte der Wissenschaft des XX. Jahrhunderts einmalige Veranstaltung durchgeführt: die erste Solvay-Physikkonferenz.

Aufgrund dieser Konferenz, die der Überprüfung eines besonderen Problems gewidmet war, wurde das Internationale Solvay-Institut für Physik (IIPS) gegründet. Diese erste Konferenz diente auch als Modell für die folgenden Physik- und Chemiekonferenzen. Die Konferenz von Brüssel leitete insbesondere mit der Revolution der Quantentheorie eine grundlegende Wende im wissenschaftlichen Denken ein. Die Feiern zum 100. Geburtstag sind ein Grund, sich mit dem Ursprung, den Besonderheiten und den wichtigsten Folgen dieser mythischen Veranstaltung zu befassen. Die Konferenz, die von Ernest Solvay, Gründer der Soda-Industrie und begeisterter Mäzen der Physik, einberufen wurde, verdankt ihr Bestehen dem Berliner Chemiker Walther Nernst, dem Autor des ambitionierten «Theorems der Wärme» (1906). Nernst war begeistert von den Quantenarbeiten Einsteins, die er gelesen hatte und deren Gültigkeit er im Bereich der spezifischen Wärme überprüfen konnte. So be-

Ernest SOLVAY entouré d'une vingtaine de savants éminents, dont Marie CURIE, Albert EINSTEIN, Ernest RUTHERFORD et Henri POINCARE.

58 DLC

BUSINESS CLUB BELGO LUXEMBOURGEOIS EN SUISSE 2011/2012

théorie des quanta et à faire reconnaître, par la même occasion, la pertinence de son théorème. Présidé par H. A. Lorentz, les délibérations du «Concile» ou Conseil eurent un grand retentissement. Elles influencèrent les travaux d'autres savants éminents, tels que N. Bohr et L. de Broglie, et contribuèrent à lancer la carrière académique d'Einstein.

Fondation de l'IIPS

Le succès du Conseil fut le fruit de son originalité: discussion approfondie d'un nombre limité de rapports sur des sujets précis. Ce succès, lié à la présence de Lorentz et sa capacité de concevoir et de diriger un «Conseil scientifique international», persuadèrent Solvay d'assurer la pérennité de l'entreprise par la fondation en 1912 de l'Institut international de physique Solvay (IIPS). Sa première priorité fut de stimuler la recherche en physique par l'octroi de subsides à des chercheurs de diverses nationalités. Cette initiative inédite s'étendit sur trois exercices budgétaires, de 1912 à 1914. Elle permit de soutenir une quarantaine de projets, dont six émanaient de futurs prix Nobels *.

L'autre activité principale de l'IIPS est celle qui s'est poursuivie jusqu'aujourd'hui: l'organisation régulière de Conseils à l'image de celui de 1911. Parmi ceux-ci, on note les Conseils qui marquèrent la naissance d'une nouvelle discipline, tels qu'en 1913 (physique atomique, et physique de l'état condensé), 1927 (mécanique quantique) et 1933 (physique nucléaire). Rares sont les créateurs de ces nouveaux domaines qui ne participèrent pas à l'un ou à plusieurs Conseils Solvay!

> Prof. Franklin LAMBERT Université Libre de Bruxelles (VUB) & Instituts Internationaux SOLVAY

Die Solvay-Konferenz von 1911

schloss er, eine «Konferenz » einzuberufen, welche die Quantentheorie validierte und gleichzeitig die Relevanz seines Theorems anerkannte. Die Tagung wurde präsidiert von H. A. Lorentz und die Ergebnisse der Konferenz fanden grossen Anklang. Sie beeinflussten die Arbeiten anderer herausragender Wissenschaftler wie N. Bohr und L. de Broglie und legten den Grundstein zu Einsteins akademischer Laufbahn.

Gründung des IIPS

Der Erfolg der Konferenz beruhte auf ihrer Originalität: vertiefte Diskussion einer beschränkten Anzahl Wissenschaftler über präzise Themen. Dieser Erfolg, verbunden mit der Anwesenheit von Lorentz und seiner Fähigkeit, eine «internationale wissenschaftliche Konferenz » zu planen und zu leiten, überzeugten Solvay davon, den Fortbestand der Veranstaltung durch die Gründung des Internationalen Solvay-Instituts für Physik im Jahre 1912 zu gewährleisten (IIPS). Seine erste Priorität war die Förderung der physikalischen Forschung durch die Gewährung von Subventionen an Forscher verschiedener Nationalitäten. Diese gänzlich neue Form der Förderung erstreckte sich auf drei Geschäftsjahre, von 1912 bis 1914. Sie ennöglichte die Unterstützung von rund vierzig Projekten. Sechs davon stammten von künftigen Nobelpreisträgern*. Die zweite Priorität des IIPS hat sich bis heute nicht verändert: die regelmässige Organisation von Konferenzen nach dem Vorbild der ersten Konferenz aus dem Jahre 1911. Besonders hervorzuheben sind dabei die Konferenzen, aus denen neue Disziplinen entstanden sind: 1913 (Atomphysik und Physik der kondensierten Materie), 1927 (Quantenmechanik) und 1933 (Nuklearphysik). Die meisten Gründer dieser neuen Bereiche haben an einer oder an mehreren der Solvay-Konferenzen teilgenommen!

> Prof. Franklin LAMBERT Université Libre de Bruxelles (VUB) & Instituts Internationaux SOLVAY

*-Internationalisme scientifique et révolution quantique», Revue Germanique Internationale, Paris, CNRS éditions, 1910, p.159-173. *«Internationalisme scientilique et révolution quantique». Revue Germanique Internationale, Paris, Verlag CNRS, 1910; \$.159-173.

2011/2012 BELGISHE-LUXEMBURGISCHE BUSINESS CLUB IN DER SCHWEIZ

November, 2011- Business club Belgium-Luxemburg in Switzerland

18 POLITICS & BUSINESS

THE BULLETIN

November 2011- The Bulletin

The Brand - Solvay

Talkin' 'bout a quantum revolution

Classical physics collapsed in complete confusion in Brussels 100 years ago. We look at the first and most famous Solvay conference, its founder and his vast legacy

BY KRISTOF DAMS

hey were all there for the photo op: Albert Einstein, Max Planck, Ernest Rutherford, Marie Curie, Henri Poincaré and a handful of other luminaries of 20th-century physics. As was considered proper at the time, they all posed solemnly and self-assuredly. According to Marc Henneaux, a physicist and the present director of the International Solvay Institutes for Physics and Chemistry, their composure belied an inner bafflement.

"The 1911 conference was essentially about confusion. It has acquired a legendary status, because up until then theories propounded by physicists had completely failed to explain newly observed phenomena at an atomic level, like atomic radiation, for instance. Indications that theold physics framework would have to go had been detected before, but it wasn't until 1911 that physicists felt they needed to come up with a radical new theory to explain them," says Henneaux. "If you read the attendees' impressions of the conference, you can see that they felt they were on the eve of a revolution."

The conference, says Henneaux, dashed the hopes of those who thought the newly discovered phenomena could be fitted neatly in the old edifice of classical physics. The 1911 Solvay Conference, held in the Hotel Métropole, went on to become famous not so much for a scientific breakthrough but rather for a scientific breakdown.

In the 15 years following the conference, the muchanticipated revolution took place: quantum physics was born. Early in 1927, German physicist Werner Heisenberg formulated his Uncertainty Principle [key to the development of quantum theory], and at the 5th Solvay Conference in the autumn of that year, he and Danish physicist Niels Bohr declared to their colleaguesthat quantum mechanics were now "complete and irrevocable".

"This closed the chapter begun in 1911," says Henneaux. "If 1911 was about confusion, 1927 was about an accomplished theoretical construction. Not that quantum physics was thoroughly mastered - research into the field continues today. But the principles of quantum mechanics that were formulated then are still taught today." Not that everyone was in agreement. Einstein, for one, was not convinced. Says Henneaux: "You see, in 1911 Einstein was one of the younger generation. By 1927 he was an authority who didn't agree with the work of the younger physicists like Heisenberg, Born or Schrödinger." It was at the 1927 Solvay Conference that Einstein is alleged to have asserted to Heisenberg: "God doesn't play dice with the universe." To which Bohr retorted: "Einstein, stop telling God what to do!"

kimming through the records of Solvay conferences can be a pleasure, says Henneaux, who is in charge of organising the scientific gatherings today. "Another important one was held in 1958, where there was a lengthy discussion between Robert Oppenheimer, father of the atomic bomb, and

19 POLITICS & BUSINESS

OCTOBER 21 - NOVEMBER 3 2011

the American physicist John Wheeler on the possibility of black hole formation. Wheeler argued that a star could not collapse into a black hole, while Oppenheimer argued the opposite. We now know, of course, that it can. And Wheeler changed from being an opponent of the idea to its main champion."

The era of superstar physicists might be over, says Henneaux, but every few years, the Solvay conference still assembles Nobel Prize-winners and other top physicists to discuss ongoing issues. "Discussion has always been a central aspect of the Solvay conferences. They are at least as important as the presentations. A speaker presents the state of the art in a given domain, and then there is a discussion." This year, the conference is in its 25th edition; the title "The Theory of the Quantum World.'

In the official group photo of the 1911 Solvay Conference attendees, one man is doubly out of place. First, because he wasn't a physicist – in fact he had never even been to university. Second, because he wasn't even there. He couldn't make it to the photo-shoot and had someone sit in for him; his face was pasted onto the picture later. Even for those pre-Photoshop days, it was a hatchet job: his head appears much too hig for his body. The missing **Appendix : Outreact**

20 POLITICS & BUSINESS

THE BULLETIN

CAPITAL OF PHYSICS

Solvey Institutes for Physics and

centenary with a series of events that, organisers say, will

the "world capital of physics" for the

duration. For a full

solvayInstitutes.be.

list, see www.

turn Brussels into

The International

Chemistry is

celebrating its

man was Ernest Solvay, a wealthy industrialist and philanthropist, who was also the conference organiser and subsequent founder of the International Solvay Institutes for Physics and Chemistry, which continues to organise the conferences.

Born in 1838 in Rebecq, Walloon Brabant, Solvay suffered from acute pleurisy for most of his adolescence, and subsequently missed out on university. At 22, he became assistant manager of his uncle's chemical factory in Schaerbeek, where he spent most of his free time studying and experimenting. In 1861, he developed the so-called Solvay process for the manufacture of soda ash from brine and limestone. (Soda ash is needed in a

variety of industrial products, most notably glass). He founded his own company in 1863, and patented his procedure. Solvay & Cie soon expanded to the UK, Germany and the United States, turning its owner into a man of considerable means.

B ut money did not soften his character. Solvay always clung to the rugged philosophy of the self-made man: hard work and discipline. He rose at 5 am to exercise and went to be around to pm. Hedid not smoke, and had one glass of wine with lunch. His

only real forms of relaxation were walking (he loved to walk the 30km from his house in Brussels to his estate in La Hulpe and back) and his annual six weeks of mountaineering in the Alps. Politically active (as a senator for the Liberal party) and socially aware (many labour regulations were applied in his companies before they became compulsory), he developed a social philosophy which embraced two theories that he called 'productivism' and 'comptabilism'. The basic tenets of the philosophy were that every man should be as productive as possible, and should own no more than the fruits of his own labour.

In other words, every man had the right to prosper through his own efforts. Since this right was denied to almost all in a system of hereditary capitalism, the system had togo. One's inheritance, Solvay held, should not pass down through the family; it should go to the state. He was also of the opinion that the financial sector did not add anything to national wealth, but only subtracted from it and caused chaos, thus impeding productivity. Therefore, the financial sector had to be eliminated, too. This could be achieved, according to Solvay, by abolishing the concept of money and replacing it with a system he called 'national accountancy'. In order to advance his views, Solvay founded and bankrolled several institutions, such as the Solvay Institute of Sociology and the Ecole de Commerce Solvay.

November 2011- The Bulletin

"If you read the attendees' impressions of the 1911 conference, you can see that they felt they were on the eve of a revolution"

Almost 90 years after the death of this steely man, how are his company and his many institutes doing? And what, if anything, links them? Says Henneaux: "Basically, we share the same ancestor. The International Solvay Institutes for Physics and Chemistry,

> however, is a non-profit organisation that is not affiliated to the chemical company, even though several members of the Solvay family sit on our board of directors. We have good relations with the chemical company, which provides us with funding, but our research work is of little practical value to them."

> The Institute for Sociology, founded by Solvay, never carried his name, and in 1960 became a part of Brussels Free University (ULB), as foreseen by its founder. Its original location, the Solvay Library in Leopold Park, still carries his name, but is now an

independent events hall. The Ecole de Commerce – recently renamed Solvay Business School of Economics and Management – is also a part of ULB and arguably the most prestigious business school in the country. How to eliminate the financial sector, though, is not high on the curriculum.

nd then there is the Solvay Chemicals company. Though a relatively small player compared to chemical giants such as BASF, DuPont or Dow Chemical, it is still a major multinational company with its HQ in Brussels and decision centres around the world. Flying somewhat in the face of the founder's philosophy, the company is still in the hands of the Solvay family, but like its founder, still wants to base its actions on social research. At the presentation of the annual report earlier this year, CEO Christian Jourquin said: "As Solvay has done since it was founded in 1863, we are positioning ourselves in the flow of history." Today, he says, this means scanning the world - this chaotic place - to distil mega-trends, and to work from there. To him, there are three such mega-trends: climate change, the demand for natural resources outstretching the supply, and the structural competition of emerging economies.

In order to meet these challenges, Solvay wants to focus on what it sees as its core business, sustainable chemistry. Solvay recently underwent a major restructuring, which involved selling off its pharmaceutical branch and using the money to acquire French chemical firm Rhodia, which, they say, is equally focused on sustainability. Solvay is also a main partner in the sun-powered Solar Impulse plane which flew from Switzerland to Brussels earlier this year and aims to fly around the globe in 2013-14.

Inside the Solvay Lihrary in Leopald Park, top: delegates at the 1927 Solvay conference, front row, Marie Curie (third left), Albert Einstein, centre

O to we esta

21 POLITICS & BUSINESS

OCTOBER 21 - NOVEMBER 3 2011

100 ans du premier Conseil de physique Solvay

Il y a cent ans, le 30 octobre 1911, débutait un événement unique dans l'histoire des sciences du XX^e siècle: le premier Conseil de physique Solvay intitulé « La théorie du rayonnement et les quanta ».

Plus d'info sur www.solvayinstitutes.be

Premier congrès international de physique consacré à l'examen d'une question spécifique, ce Conseil constitua un tournant décisif dans l'une des révolutions les plus profondes de la pensée scientifique: la révolution des quanta et le développement de la mécanique quantique. Cette théorie qui décrit le monde à l'échelle atomique et subatomique a non seulement bouleversé les conceptions physiques existantes, mais a aussi conduit à une foule d'applications qui ont envahi notre vie quotidienne. Réunis à Bruxelles par Ernest Solvay, les plus grands physiciens de l'époque (Mme Curie, Einstein, Lorentz, Planck, Poincaré et Rutherford entre autres) ont tous participé à ce Conseil mythique.

Les Instituts internationaux de Physique et de Chimie fondés par Ernest Solvay célèbrent cette année le centenaire du Conseil de 1911, qui marqua le début de leur propre histoire. Depuis leur fondation, les Instituts bénéficient du soutien de la famille Solvay et des universités bruxelloises ULB et VUB.

BRUXELLES, CAPITALE MONDIALE DE LA PHYSIQUE

A cette occasion, les Instituts Internationaux Solvay organisaient en octobre 2011 des activités exceptionnelles qui ont réuni à Bruxelles d'éminentes personnalités du monde scientifique, politique et économique. Ces évènements ont célèbré un siècle d'excellence scientifique feront de Bruxelles la capitale mondiale de la physique.

November 2011- Esprit Libre, ULB

SÉANCE ACADÉMIQUE : WHY

"CURIOSITY-DRIVEN" SCIENCE? Une séance académique consacrée à l'importance de la recherche fondamentale et à son impact sur le progrès de la société, s'est tenue le 18 octobre 2011 en présence de Sa Majesté le Roi Albert. Le rôle des Instituts Solvay depuis 1911 y a été indiqué. Des représentants du monde politique, de la Commission européenne, des scientifiques éminents, des philanthropes, des capitaines d'industrie partageant la vision toujours d'actualité d'Ernest Solvay ont pris part à cette séance.

25" CONSEIL DE PHYSIQUE

Un conseil exceptionnel s'est par ailleurs tenu du 19 au 22 octobre 2011 sur le thème « The Quantum World » II était présidé par David Gross, Prix Nobel de Physique 2004. Un grand nombre de scientifiques prestigieux y ont participé dont plus d'une dizaine de Prix Nobel. De nombreuses activités gratuites étaient par ailleurs organisées gracieusement pour le grand public.

EXPOSITION, COLLOQUE, THEATRE ...

Conçue par des enseignants et chercheurs de l'Université libre de Bruxelles et de la Vrije Universiteit Brussel, une **exposition** sur la mécanique quantique et l'histoire des Instituts « Remue-Méninges à Bruxelles – Cent ans de Conseils de Physique Solvay » était proposée pour l'occasion au Palais des Académies à Bruxelles. Un colloque ayant pour thème « Les premiers Conseils Solvay et l'avènement de l'ère quantique » s'est également tenu au Palais des Académies à Bruxeilles. Des historiens des sciences et des physiciens de renommée mondiale sont venus des Etats-Unis et de toute l'Europe pour contribuer à cette journée d'études consacrée aux aspects historiques de l'origine et de l'impact des Conseils Solvay.

Par ailleurs, une lecture de la pièce de théâtre « Copenhagen » de Michael Frayn, a remis en scène pour l'occasion le fameux débat de 1941 entre Bohr et Heisenberg (participants réguliers aux Conseils Solvay) sur la bombe atomique. Les rôles de Bohr et Heisenberg étaient interprétés par les Prix Nobel Alan Heeger (chimie 2000) et David Gross (physique 2004). Le rôle de Mme Bohr l'était par la grande actrice shakespearienne Fiona Shaw. La mise en scène étant assurée par Nancy Kawalek (Université de Californie et the Professional Artists Lab). La pièce fut suivie d'un débat et d'une réception au Studio 4 de Flagey.

Enfin, les Instituts organisaient, comme chaque année, une conférence destinée à un large public. Cette demi-journée de vulgarisation de la science a porté sur les grandes questions de la physique actuelle et sur plusieurs de ses applications qui ont révolutionné notre vie quotidienne, William Phillips et Frank Wilczek, physiciens exceptionnels, tous les deux Prix Nobel de Physique ont donné des exposés sur les thèmes suivants : « Time and Einstein in the 21st Century » et « Quantum Beauty » ; exposés suivis d'un débat mené par le Prix Nobel David Gross sur le thème « Le Futur de la Physique », lors duquel le public était invité à poser des questions.

ESPRIT LIBRE | NOVEMBRE 2011 | Nº 20

November 2011 - EOS, Le magazine des sciences

REMUE-MÉNINGES

Si on ne s'y intéresse pas maintenant, alors quand? C'est cette année, en effet, qu'est célébré le centenaire du premier Conseil de Physique Solvay, auquel participèrent, entre autres, Bohr. Marie Curie, Einstein, Heisenberg, Planck et Schrödinger. Les Instituts internationaux de Physique et de Chimie fondés par Ernest Solvay organisent plusieurs activités exceptionnelles tournées vers le grand public et les jeunes du secondaire en particulier (exposition - pièce de théâtre - exposés de vulgarisation - colloque). Parmi ces événements, l'exposition "Remue-méninges" explique, à travers différents récits, comment les Conseils Solvay ont contribué à établir les bases du monde technologique d'aujourd'hui et raconte l'histoire de la révolution quantique. Les expériences à la potrée du public ne manquent pas, et donnent l'occasion non seulement d'en apprendre toujours plus mais également de frôler le monde des chercheurs ainsi que les applications pratiques de leurs découvertes. *Remue-méninges à Bruxelles, jusqu'au 21 décembre 2011, Palais des Académics-Ecuries Royales, rue Ducale 1, 1000 Bruxelles.*

Expo Remue-Méninges

À l'occasion du centième anniversaire du légendaire premier Conseil de Physique Solvay (1911 à Bruxelles voir p. 13) qui a marqué le développement de la physique actuelle, les Instituts internationaux de physique et de chimie fondés par Ernest Solvay organisent l'Exposition « Remue-méninges à Bruxelles - Cent ans de Conseils de physique Solvay » au Palais des académies de Bruxelles. Une exposition à découvrir jusqu'au 21 décembre 2011. Le visiteur découvrira les principes de la physique moderne au développement de laquelle les célèbres Conseils Solvay ont spectaculairement contribué. Un parcours historique fascinant au travers d'une quinzaine d'expériences et des simulations qui illustrent le comportement étrange de la lumière, des atomes et de la nature à l'échelle subatomique, et qui plongeront chacun au cœur de la « révolution quantique ».

November 2011- Esprit Libre, ULB

REMUE-MÉNINGES A BRUXELLES

/100 ans de Conseils de Physique Solvay Jusqu'au 21 décembre au Palais des Académies, Rue Ducale 1, 1000 Bruxelles Lu-sa de 9h à 16h30. Fermé le dimanche. Entrée gratuite. Visites guidées pour les groupes (max. 15 p.) : 30 EUR réservation obligatoire par Internet : www.solvayinstitutes.be À partir de 2012, exposition itinérante dans les provinces flamandes et wallonnes

Remue-méninges à Bruxelles commémore le 100° anniver-saire du premier Conseil Solvay. L'exposition est une initiative des Instituts internationaux de physique et de chimie, fondés par Ernest Solvay en 1912. Elle montre au grand public à quel point les Conseils Solvay ont été importants. Ils ont en effet permis le développement de visions révolutionnaires qui ont conduit à la physique quantique. Remueméninges à Bruxelles montre également que la recherche scientifique est une activité humaine captivante pleine d'étonnement, de victoires et

213

de défaites, de passions et de conflits.

L'exposition mène le visiteur des théories classiques de Newton et Maxwell aux fameux Conseils Solvay entre 1911 et 1930. De la naissance de la théorie quantique aux applications high-tech du 21^e siècle.

PHYSIQUE

Les conseils lvay et notre futu

« Quelle que soit la théorie en question, nous devons toujours de toute manière cohérence mathématique. »

Le centenaire du Conseil de Physique Solvay a été l'occasion d'une semaine de travail pour les chercheurs et de manifestations culturelles et scientifiques autour de l'événement. C'est l'occasion aussi d'évoquer avec le Pr Marc Henneaux, responsable de l'unité de Physique mathématique des interactions fondamentales de l'Université Libre de Bruxelles et Directeur des Instituts Solvay...

Les Conseils Solvay ont têté leur cente- bénéficient d'un cadre strict, mais aussi naire cette année. Cet anniversaire nous d'un environnement permettant de favoriinterpelle à plus d'un fitre. Il nous rappelle ser leurs recherches. . tout d'abord que notre pays, sous l'impulsion d'Ernest Solvay, a vu la naissance de Unio Gliche do fornit la physique moderne et en reste un peu le C'est aussi l'idée que Salvay a voulu entrecentre depuis grâce à ces réunions régulières qui se déroulent chez nous. Ensuite donc en 1911. On peut s'étonner que ces elle rend compte de l'importance de la recherche fondamentale et de la réflexion qui n'est pas par désir d'entretenir un mystère. la sous-fend. « Il est vrai que beaucoup de découvertes ont été faites par hasard, mais cun de s'exprimer librement en sachant comme l'a dit Posteur 'Le hasard sourit aux esprits préparés'. Il y a donc certainement une part de hasard, mais à côté de cela. seul un spécialiste peut distinguer l'essentiel de l'accessoire. Pour cela, nous avons besoin de chercheurs extrêmement compétents. Par essence, la recherche fondamentale est non dirigée au contraire de la devraient déjà être connus puisqu'ils ont recherche appliquée. Cela rie signifie pas non plus que cette recherche est livrée à cations scientifiques alors quel est l'intérêt l'arbitraire Il faut donc que les chercheurs d'en rediscuter au sein d'une nouvelle réu-

hot Marc Henneaux, ULB

tenir avec ses conseils de physique, initié conversations se tiennent à huis clos. « Ce mais plutôt pour permettre à tout un chaque les propos tenus ne seront pas sortis de leur contexte ni déformés. D'ailleurs. les actes des Conseils Solvay sont rendus publics après une relecture attentive et un travail éditorial nécessaire », explique Marc Henneaux, Cependant, les théories et les progrès évoqués lors de ces conseils fait l'objet de communications et de publi-

December 2011 - FNRS news

FNRS_news // Décembre '11

« La physique n'est pas une discipline fermée comme le montre le chemin parcouru depuis 1911. »

nion ? « Nos entretiens se concentrent sur un point particulier de la physique actuelle qui nous semble particulièrement difficile Lors de la réunion de 2005, nous avions posé la question de la réunitacition de gravitation et la méaanique quantique Cest une question qui occupe les physiciens depuis 1930 et nous ne sommes toujours pas arrivés à obtenir la réponse, même si des propositions sont intéres santes à étudier et que nous avons fait des progrès. Ces discussions nous permettent de changer de point de vue, cé qui peut étre important pour mieux les appréhender. «

Un mende hantroisieurs

C'est d'autant plus difficile que toute théorie quantique des champs doit posséder. comme toute théorie scientifique, la possibilité d'être vérifiée expérimentalement. C'est ainsi que certaines théories, comme la théorie des cordes, qui n'est finalement encore qu'une idée puisque cette théorie n'est pas écrite formellement, vérifient ce que l'on connaît déjà grâce à d'autres théories qu'elles reproduisent dans les limites où ces théories sont valables. C'est donc très rassurant pour l'avenir. Quelle que soit la théorie en question, nous devons toujours de toute manière retrouver une cohérence mathématique. » Dr. si on applique formellement les mathématiques de la théorie quantique des champs à la relativité générale, les scientifiques arrivent à des incohérences. « Il faut dire que pendant très longtemps la relativité générale a été considérée comme un 'amusement' de mathématiciens, car les mesures de temps

que dans les années 60. C'est en effet à ce moment-là qu'on a pu vérifier en particulier une des prédictions importantes de la relativité générale, à savair que des horloges synchronisées au départ deviennent asynchrones selon qu'elles soient à proximité ou élaignées du centre de la Terre. » On pourrait se dire que la contradiction entre théorie quantique des champs et relativité générale ne nous influence pas dans notre vie de tous les jours, mbis pour les physiciens et les mathématiciens deux théories contradictoires ne peuvent pas être correctes simultanément. Les problèmes se posent lorsque l'infiniment petit et l'infiniment grand se rejoignent. Ainsi dans les trous noirs ou pour la compréhension des tout débuts de l'Univers, la gravitation et les effets quantiques jouent tous deux des rôles importants. « Lors du 11ème Conseil Solvay en 1958. Oppenheimer estime que lors de l'effondrement d'une étoile, aucun phénomène physique ne pourra l'arrêter jusqu'à la formation d'un trou noir alors que d'autres comme Wheeler pensaient que d'autres phénomènes physiques entreraient en jeu pour empêcher cela. Le concept défendu par Oppenheimer est largement accepté aujourd'hui... On voit donc ici l'importance de la confrontation directe des idées lors de ces conseils de physique. .

Quantigue ou relativiste 7.

Actuellement, aucune synthèse cohérente n'existe de la mécanique quantique et de la gravitation. « Nous nous trouvons ici bien en amont de n'importe quels champs

d'application de l'unification de ces deux théories. Il s'agit d'un problème fondamental et sa solution sera révolutionnaire. Souvenons-nous du conflit entre la théorie de Galilée et celle de Maxwell. Pour Maxwell. la vitesse de la lumière est invariante alors que pour Galilée, la vitesse de la lumière peut s'additionner à la vitesse d'un mobile. De la résolution de ce conflit entre les deux est née la relativité restreinte l'Puis on s'est aperçu que cela entrait en contradiction avec la théorie newtonienne et de là est née la relativité générale où l'espace et le temps ne sont plus figês, mais bien soumis à des codres dynamiques répondant aux lois de la physique ... + Ceci n'était que des théories à l'époque d'Einstein dont on connaît aujourd'hui les applications dans notre quotidien : les GPS, par exemple.

La recherche fondamentale connaît donc souvent des applications, mais à très longue échéonce. « Contrairement à ce qui se passe actuellement aux USA, nous sommes contraints en Europe et en ce qui me concerne en Belgique à une lourdeur administrative très importante qui constitue un frein à la recherche. Il est bien entendu indispensable de produire des rapports et qu'il existe un contrôle de ce que font les chercheurs avec l'argent alloué, mais pour la plupart d'entre nous, nous sommes pratiquement incapables de dire où nous mènera la recherche 2 ou 3 ons à l'avance. Il y a plus d'institutions aux USA où la liberté et l'indépendance des chercheurs sont préservées que chez nous, dans notre domaine de recherche en tout cos. .

En physique théorique, les contraintes liées aux brevets par exemple n'existent pas, car l'applicabilité d'une découverte est très éloignée dans le temps « C'est ce qui fait que les résultats de nos recherches sont bien souvent accessibles sur le Web avant même que l'article original ne soit soumis à une revue. Cela montre qu'il n'y a pas de culture du secret en physique théorique. En effet, tout le monde a accès aux contributions des différents rapporteurs avant que n'ait lieu le conseil, de manière à ce que chocun puisse préparer au mieux les discussions. » C'est une coutume assez courante puisque les résultats d'Opera qui a semble-t-il montré que les neutrinos pouvaient dépasser la vitesse de la lumière ont été rendus publics très rapidement. Attention, il n'y a pas encore d'explications valides de ce phénomène, ni même qu'il a une existence réelle. Peut-être s'agit-il d'une erreur de calcul au de méthodoloale ?.

. La physique n'est pas une discipline fermée comme le montre le chemin parcouru depuis 1911. En 1911, personne ne pouvait prédire les questions que nous nous posons aujourd'hui. Il n'y a aucun signe que cela s'arrête en physique, contrairenent à ce que l'an pensait au 19e siècle. La physique nous réserve encore des surprises et elles pourraient venir du LHC. Je pense réellement que les Conseils Solvay féteront leur deux centième anniversaire avec des questions que nous serions incopobles de comprendre maintenant, car les concepts auront évolué. C'est intéressant de se rappeler que lorsau'Ernest Solvay crée les Instituts Solvay à la suite du succès du Conseil de 1911, il leur donnait 25 ons d'existence, pensant probablement que tout serait résolu à ce moment-là... Aujourd'hui, il n'est pas certain que dans le codre de l'unification de la relativité générale et de la physique quantique, on aura la réponse à toutes les questions, même si les progrès sont réels ! », conclut le Pr Marc Henneaux

Pierre Dewoele

« On voit l'importance de la confrontation directe des idées lors de ces conseils de physique. »

Annual Report 2011- Appendix : Outreach

Members of the Association

Antoniou Ioannis Barnich Glenn **Bingen Franz** Busquin Philippe Craps Ben De Keuleneer Eric Delchambre Alain **Deneubourg Jean-Louis** De Wit Anne **Dewit Pascal** Gaspard Pierre Geerlings Paul George Claude Goldbeter Albert Gunzig Edgar Halloin Véronique

Hasquin Hervé Henneaux Marc Janssen Daniel Jaumotte André de Laguiche Bernard Lambert Franklin Lefever René Mandel Paul de Maret Pierre Monard Elisabeth Musette-Evrard Micheline Nicolis Grégoire Philippot Jean Piret Jean-Marie **Reignier Jean** Reisse Jacques

Sanglier Michèle Schamp Niceas Sevrin Alexandre Solvay Jean-Marie Stengers Isabelle Thys-Clément Francoise Van Binst Georges Van Camp Benjamin Van Den Broeck Christian Van Gelder Eddy Vanherweghem Jean-Louis van Outryve d'Ydewalle Gery Veretennicoff Irina Wyns Lode Wielemans Patrick Willox Ralph

Colophon

Editorial Director: Professor Marc Henneaux Editorial account: Dominique Bogaerts Design: Marc Barbay, info@imagedemarc.be Prepress: IMAGE de MARC, Brussels Printing in Belgium © Internatinal Solvay Institutes

Photo Credit

Antonin ROVAI : Pages à réaliser Jean JOTTARD : Pages à réaliser

Postal address

International Solvay Institutes Campus Plaine ULB / CP 231 Bd du Triomphe B-1050 Brussels Belgium

Delivery address

International Solvay Institutes Campus Plaine ULB / Access 2 Bd de la Plaine Building NO, 5th Floor, Office N105A B-1050 Brussels Belgium

Tel: + 32 2 650 54 23 (Ms Juif/Ms Van Geet) or + 32 2 650 55 42 (Ms Bogaerts) Fax: + 32 2 650 50 28 Emails: dominique.bogaerts@ulb.ac.be isabelle.vangeet@solvayinstitutes.be

Website: http://www.solvayinstitutes.be Webmaster: Isabelle Juif/Isabelle Van Geet