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The fact that Artificial Intelligence (AI) has approached human-level intelligence in 
several areas has fueled the vision of AI-driven experimentation for chemistry. Despite 
this promise, integrating AI into day-to-day laboratory research remains at an early stage. 
Below, I outline my view on the current state of AI-guided experimentation, my recent 
contributions, and potential future directions. 

My view of the present state of research on AI, Robotics, Automation  

Over the past decade, machine learning (ML) has entered the chemistry toolbox, though 
its impact varies by domain. Where large-scale, high-quality data exists – most 
commonly from simulation – ML shows strong predictive power. For example, learned 
force fields, trained via geometric deep learning on large-scale computational data, are 
now routine in molecular dynamics.[1] However, the picture changes with experimental 
data. Large-scale datasets are rare, and existing data are often scarce, noisy, and biased. 
Powerful ML models for small molecules, macromolecules, or solid-state materials do 
exist, but they are usually much narrower in scope, and cannot be transferred to new 
problems without extensive validation. Broad breakthroughs, comparable to the impact of 
AlphaFold in protein structure prediction,[2] remain rare.  
 
These constraints are reflected in AI-driven experimentation, which has remained largely 
case-specific. Several studies across process optimization, drug discovery and materials 
chemistry have successfully shown AI-driven discoveries.[3] At the same time, they have 
largely relied on static, human-designed workflows: a fixed experimental pipeline, 
heuristic data analysis, and a pre-defined search space. Early uses of large language 
model (LLM) agents to design and operate these workflows indicate potential, but their 
limits and failure modes remain unclear, and the field is evolving at a rapid pace.  

My recent contributions to AI, Robotics, Automation  

My research aims to integrate AI into experimental workflows in molecular discovery 
and synthesis, while accounting for chemical principles, heuristics, and practical 
constraints (Fig. 1). At present, inferring these factors from data alone is challenging, and 
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we recently highlighted the gap between “data-only” models and expert-augmented 
models for obtaining practically useful predictions.[4]  
 
As an example, we recently showed that a model for selecting candidate molecules with 
attractive emission properties became predictive only after pre-training on simulated data 
and fine-tuning on experimental measurements. This hybrid model then guided 
automated synthesis and spectroscopy, and yielded state-of-the-art organic laser 
emitters.[5] Inspired by these findings, we later found that pre-trained embeddings from 
domain-specific LLMs are strong baseline representations for molecular property 
prediction.[6] These findings point towards the importance of pre-trained molecular 
foundation models for property prediction and experiment planning.   
 
Moreover, our research focuses on tools that steer ML-driven discovery toward 
practically relevant outcomes. Therefore, we recently introduced BoTier to flexibly 
encode a hierarchy of multiple optimization objectives, such as reaction yield and cost in 
chemical reaction optimization.[7] Moreover, we proposed a framework for generality-
oriented optimization that seeks optima which are transferrable across different 
substrates, and that includes benchmarks to inspire algorithm development.[8]  
 
 

 
Fig. 1.  Workflows and challenges for AI-driven experimentation. Optimal planning involves continuous 
refinements based on obtained data, literature knowledge, and researcher input. [Icons: flaticon.com] 

Outlook to future developments on AI, Robotics, Automation 

With the growing number of successful demonstrations of AI-driven experimentation, I 
foresee that the field is entering a transition from proof-of-concept studies to practical 
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tools that provide measurable value in the lab. I see four major directions for AI-driven 
experiment planning:  
 

1. Foundation Models. Historically, ML has followed “laws of scale”,[9] with 
models trained on large datasets outperforming knowledge-derived systems. 
Recent results in chemistry indicate similar trends.[10] This suggests that 
foundation models trained on large computational corpora, and then fine-tuned to 
experiments (Fig. 1), will be central to property prediction and experiment 
planning. How reliably can such models capture the trends required for their 
effective adaption to downstream tasks? 

2. Benchmarks: To assess model utility, we need better benchmarks. Rather than 
relying on a small number of overused and biased datasets, the field needs tasks 
that reflect practical reality. Can such benchmarks – similar to those in computer 
science – steer the field towards models that matter in practice?  

3. Large Language Models: As LLM capabilities grow, they are likely to play a key 
role in AI-driven experiment planning:[11,12] searching the literature through 
retrieval-augmented generation (RAG), defining search spaces, or automating 
repetitive workflows in experiment and computation. To what extent can they 
match and outperform human decision-making capacities, and where should they 
be complemented by human researchers?  

4. Hybrid, Human-in-the-Loop Systems: Eventually, data, robotics, and LLM agents 
will have limits that human adaptability can offset. What is the right balance 
between model flexibility and inductive biases, between robotic and human 
experimentation, between agent independence and human oversight?  
 

Overall, I believe that integrated AI–human co-design – rather than fully autonomous 
workflows – is the most direct route to impact in real-world laboratories.   
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