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For many years, chemistry was advanced by knowledge-driven experimental practice, 
theory, and serendipitous findings, placing the chemist in a role more akin to an 
artisan.[1,2] This model has been hugely successful, supplying the world with important 
inventions such as drugs and plastics. However, the field of chemistry now faces two 
interlinked and foundational challenges: a reproducibility crisis that undermines trust in 
published results, and the high-dimensionality of chemical (reaction) space, which vastly 
exceeds the capacity of established, manual exploration.[3–6] The latter issue is not 
new—there has always been a huge gulf between the size of chemical space and our 
ability to explore it—but global challenges such as resource scarcity, increased energy 
use, and population growth have created an urgency to accelerate our rate of innovation 
in chemistry. 
At the heart of these challenges lies an ‘information gap’—a divide between the 
fragmentary, selectively reported results found in the literature and the comprehensive, 
structured data required for practical and generalisable predictive models and reliable 
knowledge transfer.[7–9] The roots of the information gap are both systemic and cultural. 
Reporting and selection biases favour the publication of successful, “positive” outcomes 
while obscuring failed or negative results, leading to a distorted representation of 
chemical reactivity and an overestimation of reliability. As a result, existing datasets 
usually lack the comprehensive, unbiased data required for generalisable, predictive 
Machine Learning (ML) models.[3,7–9] 
Self-driving laboratories (SDLs) could address this information gap, if adopted widely 
enough, and could constitute a paradigm shift in chemical research. SDLs seek to close 
the loop of the scientific method—autonomously generating hypotheses, designing 
experiments, executing them with robotic precision, and analysing outcomes through 
fully integrated ML workflows. By integrating every stage of the experimental pipeline 
within modular, data-centric platforms, SDLs can produce large-scale, high-quality, 
machine-readable datasets—including vital metadata and negative results. In doing so, 
they have the potential to overcome the physical and operational disconnects that impede 
reproducibility, slow the pace of innovation, and contribute to inefficient resource 
use.[4,5,10–13] Nevertheless, their full transformative potential is contingent upon 
adherence to FAIR data principles—Findable, Accessible, Interoperable, and 
Reusable.[7,14,15] 
If SDLs become a standard mode of operation for chemistry research, then this might 
fundamentally change the human role within the research cycle, liberating researchers 
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from repetitive, physically demanding and potentially toxic and hazardous manual 
procedures, opening the opportunity to focus on higher-level creative, strategic and 
interdisciplinary challenges, such as complex hypothesis formulation, integrative data 
analysis, and campaign design. There are already fully agentic Artificial Intelligence (AI) 
systems that can support the entire discovery process, integrating literature search, 
hypothesis generation, experimental design and data analysis, representing the emergence 
of AI co-scientists.[16,17] While deep scientific intuition remains indispensable, the day-
to-day execution of the scientific method is increasingly delegated to autonomous agents 
and robots, which accelerates discovery, enhances sustainability and enables efficient and 
profound exploration of chemical space.[10,11,18,19]  
 
The Glorius Group pursues a comprehensive   strategy for driving the Labs of the Future 
by constructing a holistic, data-centric chemical ecosystem: from automated high-quality 
data generation and informative molecular representation (featurisation), through the 
application of ML models to accelerate discovery, and towards reconstruction of missing 
information from biased historical data. 

 
Fig. 1.  Recent contributions of the Glorius Group to the data-driven Lab of the Future. The foundational layer 
is based on systematic screening tools and standardisation, and is designed to generate high-quality, 
information-rich experimental data.[20–22] This information is preserved within powerful and interpretable 
molecular representations.[23,24] At the apex, high-quality experimental data from HTE and EnTdecker’s ML 
predictions lead to accelerated discovery.[25–27]  
Our early work focused on enriching the informativeness and reproducibility of chemical 
data through systematic tools for reaction evaluation: The Robustness Screen, for 
example, employs potentially interfering, fragment-based probes to systematically map a 
reaction’s functional group tolerance, identifying potential reaction inhibitors and 
decreased product formation without the need for extensive substrate scopes.[20] 
Similarly, the Sensitivity Screen evaluates how sensitive a reaction is to minor, 
unintentional deviations from its optimal published conditions, directly probing a 
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common source of irreproducibility.[22,28] Building on this principle, our work on 
Standardised Substrate Selection leverages unsupervised ML to guide the experimental 
selection of substrates for a newly discovered reaction. This approach—publicly 
available as a web application—is designed to eliminate human selection bias and 
achieve a representative, objective coverage of chemical space.[21,29]  
To accelerate the generation of standardised, high-quality data, we developed a workflow 
for quantitative, calibration-free High-throughput Experimentation (HTE). Leveraging 
our open-source pyGecko library—enabling rapid and automated processing of GC-MS 
and GC-FID data—and a commercial microreactor, we eliminate the laborious bottleneck 
of creating product-specific calibration standards. This enables the rapid parallel analysis 
and visualisation of 96 reactions in minutes, generating standardised, high-quality 
information that is highly sought after for the training of predictive ML models.[25] 
Complementing data generation, our work in molecular representation seeks to create 
descriptors that are both powerful and intuitive. We first developed Multiple Fingerprint 
Features (MFF), a versatile descriptor based on the simple concatenation of diverse, 
structure-based fingerprints, and more recently, the Evolutionary Multi-Pattern 
Fingerprint (EvoMPF), which uses an evolutionary algorithm to autonomously generate 
dense, problem-specific, and highly interpretable representations directly from the 
data.[23,24] 
The true power of this data-centric ecosystem is realised when high-quality datasets and 
informative representations are deployed in predictive models that directly guide 
experimental campaigns. A prime example is our EnTdecker platform, a ML tool—
publicly available as a web application—that provides chemists with near-instantaneous 
predictions of excited-state properties crucial for energy transfer catalysis.[26,30] This 
predictive engine is integrated into a data-driven, three-layer screening strategy, which 
synergistically combines in silico substrate mapping, luminescence quenching, and high-
throughput reaction screening to dramatically accelerate the discovery of novel 
dearomative cycloadditions.[27] Such integrated digital-physical workflows, where 
predictive models serve as the cognitive core for experimental design, exemplify how 
data-driven chemistry is evolving to become the intelligent 'brain' for the autonomous 
laboratories of the future. 
 
The Cooper Group has work in automated or “high-throughput” chemistry since the mid-
2000’s,[31–33] but more recently our focus has shifted toward computational design of 
materials,[34,35] autonomous ‘mobile robotic chemists’,[10,11] and human-in-the-
loop[36] and machine reasoning methods,[37] working toward a concept of ‘hybrid 
intelligence’ for chemistry laboratories (Fig. 2). Our long-term goal is to unlock the 
power of automation and robotics by building a hybrid reasoning platform that can avoid 
the decision-making bottlenecks that are otherwise imposed by the mismatch between 
automated experiments and human working patterns (Fig. 2a). We see mobile robots 
(Fig. 2b) as an enabling technology here because they are inherently modular, and they 
can carry out experiments in any order, like a human researcher.[10,11] We also believe 
that Large Language Models (LLM), notwithstanding their clear limitations, will play an 
important role in this hybrid intelligence paradigm. We have already demonstrated[37] 
that LLMs can greatly enhance the performance of searches in high-dimensional 
chemical space, for example for catalysis problems (Fig. 2c). 
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Fig. 2.  a, Hybrid intelligence for autonomous laboratories. A supervisory intelligence (S.I.) coordinates (from 
top to bottom) experimental data, physics-based models (fx),[34,35] human reasoning,[36] algorithmic searches, 
and machine reasoning,[37] leveraging the advantages and mitigating the weaknesses of these various inputs. 
b, Mobile robots[10,11] are an enabling technology for modular, flexible laboratories where conditional 
decisions are made using hybrid intelligence. c, ‘LLM-in-the-loop’ reasoning—BORA, a hybrid of LLMs and 
Bayesian optimisation (BO)[37] can outperform human-in-the-loop (HypBO), BO only (DBO) and LLM-only 
search strategies, as illustrated here for a 10-dimensional photocatalysis problem. A key advantage is that LLM 
reasoning, unlike human reasoning, can be deployed as frequently as needed in a closed-loop experiment (a). 
 
Looking to the future, the field is advancing toward universal, human-compatible 
robotics and generalist, reasoning-capable AI. The prospect of modular robots, able to 
seamlessly operate existing laboratory infrastructure, foreshadows the liberation of 
automation from bespoke, platform-specific constraints. In parallel, ‘foundation’ models 
and agentic AI—endowed with broad chemical intuition and reasoning capacities—are 
positioned to become the cognitive core of the autonomous laboratory, coordinating 
complex workflows, adapting dynamically, and integrating virtual and physical 
experimentation.[16,19,38,39]  
The synergy of modular robotics and agentic AI promises a virtuous cycle: improved 
automation generates richer data, which empowers better AI, in turn enabling more 
ambitious automation and accelerating discovery. However, this vision depends 
fundamentally on the universal, rigorous application of FAIR data standards.[15] Only 
with high-quality, machine-readable, openly shared data can the potential of automation 
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and AI be fully realised, thus closing the information gap, ensuring reproducibility, and 
ushering in a new era of collaborative, autonomous discovery. 
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