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Materials discovery 
Chemistry is often a search for rare events, such as chemical bond 
breaking or formation, preferential binding, or phase transitions. But 
beyond this, chemical discovery itself centres on rare events - usually 
a large number of chemical systems or materials are synthesised and 
tested for desired properties before finding a novel system, or class of 
systems, for a target application. Often the discovery of a new material 
class and the discovery of the material's utility are two separate events, 
sometimes, perhaps even typically, separated by decades.[1] 
Cheetham et al. summarise that while some materials breakthroughs 
result from design principles based on scientists' knowledge, and 
some are serendipitous, for example buckyball and Teflon, the majority 
of discoveries result from repurposing of materials previously either 
made out of curiosity or with an alternative application in mind.[1] 
Examples of the latter include conducting polymers, topological 
insulators, and electrodes for lithium-ion batteries. 
                                         Chemical synthesis is generally time-consuming, resource 
intensive, requires field-specific expertise, and prone to plenty of 
failures. Indeed, even in reproducing previously reported syntheses, 
failure is worryingly common.[2] Set against this context, we must 
recognise that material discovery is frustratingly slow  . This at a time 
where we face enormous challenges such as climate change and 
resource scarcity, and the discovery of new materials, for example for 
renewable energy generation and storage, molecular separations and 
catalysis, is critical. Therefore, we must accelerate discovery. High-
throughput synthesis and chemical automation as well as artificial 
intelligence (AI) are highly topical, but is it realistic to expect that they 
can accelerate discovery, or will they face the same hurdles as earlier 
innovations? In an ideal world, we would be able to a priori screen, or 
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predict, on a computer which materials have the properties required 
for a target application. Computational chemistry has made enormous 
contributions over the last decades, especially in unravelling structure-
property relationships through atomistic insight, helping to facilitate 
both understanding and material design. However, this research is 
typically post-rationalisation, not prediction, although we are 
beginning to see some notable examples of the latter, as recently 
reviewed by Barbatti.[3] 

Hurdles and hopes for the realisation of computational 
predictions 

A central barrier to the realisation of computational predictions is, in 
my opinion, the challenge of including consideration of whether a 
material predicted to have promising properties on a computer is 
thermodynamically and kinetically stable and can be synthesised (see 
Figure 1). Therefore, materials predicted to be promising on a 
computer, more often than not, remain "hypothetical" and stuck in 
silico. Indeed, this was a problem termed by Jansen and Schön as 
"putting the cart before the horse", where materials are "designed" or 
screened on a computer, but without ever giving consideration of 
whether the material is "capable of existence".[4] This problem will 
remain in the era of AI unless discovery approaches augmented by AI 
take into consideration this "synthesisability" consideration. One aside 
however, is that the simplest way to factor in consideration would be to 
limit oneself to very small regions of chemical space - for example just 
combining a few compounds already physically in hand. This would 
limit oneself to very small regions of chemical space relative to the near 
limitless possibilities and greatly reduce the possibility of truly novel 
material compositions and properties. Thus, instead, we must focus 
on the development of tools that can assist in synthesisability 
consideration for the full possibility of all chemical space. 
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Fig. 1.  The synthesis bottleneck preventing experimental realisation of computational predictions.  

 
                        The synthesis bottleneck for computational predictions is present 
either when using computational chemistry simulations or AI for 
materials discovery. The specific challenges to synthesisability 
consideration vary by system, although can be divided broadly into 
considering component availability, the material synthesis step, and 
the material formulation or processing step (Figure 2). Focusing on the 
area of my group's research, organic materials, then for component 
availability, both the ease and cost with which the precursors for the 
material can be purchased or synthesised needs to be considered. 
There is no simple one-size-fits-all answer as to how cheap the 
components need to be, or how many synthesis steps are acceptable, 
or whether only certain reaction classes are viable, suXiciently high 
yielding or safe. Indeed, I find that for diXerent experimental groups 
focused on diXerent types of materials, what they consider to be 
"easily synthesisable" varies considerably. For the material synthesis 
step, there are challenges such as finding the (potentially) small region 
of material formation phase space where the material will successfully 
form, and the need for the material to be stable. Finally, the 
requirements for the material to be processable into the end device 
form vary widely by application, such as membrane processing, but 
may require the material to be soluble (rarely the case for polymers) 
and will require the material to be stable for a device's operating 
conditions (potentially high temperature/pressure such as in a battery) 
over the necessary device lifetime. 
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Fig. 2.  The hurdles to predicting synthesisable materials on a computer. Reproduced from reference 5. 

 
          While there is significant progress in the development of 
approaches that can assist in consideration of synthesisability, these 
are not routinely used in computational (organic) materials discovery 
processes. An exception is the use of algorithms for the ranking of 
organic molecules based on their structural complexity or predicted 
number of reaction synthesis steps, although these are not originally 
developed for application in materials discovery and therefore we have 
shown such metrics do not necessarily correlate well with the 
synthesisability expectations from synthetic materials chemists.[6] To 
develop a algorithmic scoring method that mimics a synthetic material 
chemist's brain, we trained a supervised machine learning model to 
score organic molecule's synthesisability.[6] The training data for this 
model was collected by producing an "app" where our experimental 
collaborators had to rank molecules when considering the question 
"Can you make 1 g of this compound in under 5 steps?", a question our 
experimental collaborators rationalised that they were eXectively 
asking themselves when considering the synthesis of hypothetical 
computational predictions that we presented them with. The trained 
model, the Materials Precursor Score (MPS), was highly eXective at 
simplifying the materials proposed for synthesis that still had 
promising properties.[6] To further consider subsequent steps in the 
material synthesis, we are testing automation methods, which have 
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demonstrated already that only 15% of the material synthesis 
reactions are successful for the porous organic materials we study, 
even when the chemical precursors are available and expected to react 
successfully by system experts.[7] The multiple considerations such as 
solvent and catalyst choice are very diXicult to predict using 
computational chemistry approaches alone, and thus the benefits of 
automated approaches are that we are beginning to build larger 
quantities of consistently collected experimental data to include in 
data-driven predictions in the future.[7,8]   
                             Other exciting developments for synthesisability prediction 
include the development of retrosynthesis prediction algorithms,[9,10] 
although there remain challenges here in how to rank the large network 
of possible pathways that are produced by such algorithms, and for 
synthesisability consideration, how to therefore score material 
synthesisability from retrosynthesis predictions. Data-driven 
approaches in chemistry more generally can also help with 
cheminformatics-based predictions of factors such as solubility, 
especially as increasing amounts of open-source data is available for 
the more complex systems of consideration for materials, far beyond 
small molecules. Of course, one does not just want a predicted 
promising material to be ranked as "synthesisable", one also wants the 
synthesis recipe to be predicted a priori. While there are extensive 
eXorts in the use of machine learning algorithms for literature data 
extraction to retrieve reported syntheses for known materials, the data 
is unlikely to be suXiciently complete and accurate to allow direct 
prediction of new material synthesis routes, especially where there is 
a greater degree of extrapolation beyond known systems if we want to 
find more novel new materials.[11,12]   

Future outlook 

We need to move to a future where computational predictions are 
synthesis-informed, so that predictions can be more routinely realised, 
which holds great potential for accelerating the discovery of new 
materials. While there is significant excitement and early promise for 
the potential of AI and automation in accelerating chemical discovery, 
there is lots of work to truly consider synthesisability from the outset, 
and this will plague the use of AI, such as generative AI (GenAI), in this 
area just as it has for computational chemistry simulations before. Or 
else, restrict us to exploration of "safe", but limited regions of chemical 
space similar to those already explored. Even in scenarios where we 
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work in an augmented fashion with agentic AI, it is essential to develop 
synthesisability consideration tools, and these are likely to require the 
use of both AI and computational chemistry approaches. 
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