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Introduction 

Artificial Intelligence (AI), specifically machine learning (ML) tools, is becoming 
increasingly adept at generating new candidate molecules, predicting their properties, 
proposing reaction pathways using computer-aided synthesis planning (CASP), and 
aiding in the analysis of analytical data [1]. Automation and robotic technologies have 
also become easier to use and more affordable to integrate, enabling automated chemical 
synthesis and characterization with little or no human intervention once the system is set 
up [2].  These self-driving laboratory systems typically involve multiple stationary robots 
that prepare and transfer samples through the various stages of synthesis and 
characterization. The robots can also roam through the lab as they transfer samples 
between process units, analogous to a human operator [3]. The ability to purify and 
measure reaction outcomes is essential to automated systems to learn and optimize 
performance. Feedback based on reaction conditions and measured outcomes enables the 
optimization of selected performance metrics across continuous and categorical variables 
by using a range of optimization techniques, now predominantly Bayesian methods [2]. 
 
Integrating these automated synthesis systems with ML algorithms for molecular 
generation [4], property prediction [5], computer-aided synthesis (CASP) [6, 7], and ML-
based chemical analysis [8] into the traditional design-make-test-analyze (DMTA) 
workflow has advanced the development of autonomous chemical discovery platforms 
capable of functioning across diverse chemical spaces with minimal manual intervention 
[9]. However, human operators will continue to play a crucial role in operating these 
platforms by defining goals, initializing procedures, monitoring experiments, assisting 
with error recovery, and managing resources.  
 
Property–focused discovery platforms can propose and synthesize molecules to expand 
the training datasets for ML generative and property prediction models, helping to map 
the chemical space and ultimately identify top-performing molecules. Once established, a 
platform can be adapted for other applications by modifying the underlying ML models. 
For instance, a system initially designed to discover new organic dye molecules [9] was 
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repurposed for drug discovery by incorporating additional assays, ML property models, 
different ML molecular generative models, and Bayesian optimization to balance 
experimental costs and the number of molecules screened during sequential rounds of 
virtual, coarse, and refined experimentation [10].  
 
Large Language Models (LLMs) are likely to accelerate further the integration of AI 
tools into automated chemical experimentation and analysis by helping researchers 
streamline and enhance their workflows through intuitive natural language prompts [11-
14]. In a sense, LLMs act as helper tools that enable access to advanced ML 
computational resources, making data-driven methodologies more accessible to a wider 
community of chemists and facilitating straightforward interfaces with synthesis, 
purification, and analysis equipment through a unified interface. 

Our recent research contributions  

Our research has focused on advances in chemistry, engineering, and machine learning 
that are necessary for automated and accelerated chemical discovery and development.  
For this session, two recent studies [9, 10] towards autonomous platforms for property-
driven molecular discovery serve to exemplify challenges and opportunities in integrating 
automation and ML techniques in chemical synthesis of organic molecules. The first case 
study uses the discovery of new organic dyes as a test case, as their fundamental 
properties — absorption maximum, water-octanol partition coefficient, and photo-
oxidative stability — are readily measurable, and their realization involves a multi-step 
synthesis through a rich variety of chemical transformations. The platform’s master 
controller orchestrates automation and ML prediction tools to iteratively propose, realize, 
and characterize dye molecules within the DMTA cycle.  
 
Initially, a generative ML model created candidate molecules. We selected a graph 
completion approach that decorates molecular scaffolds to reduce the risk of generating 
unstable or non-synthesizable structures, a common issue for generative models [15]. For 
each generated candidate, multiple synthesis pathways were automatically planned and 
proposed using open-source retrosynthesis ML tools, ASKCOS [6]. Approximately 10-
20% of these molecules had retrosynthesis routes that ended in purchasable starting 
materials. Most reaction pathways for the generated molecules required several steps, 
giving access to a broader range of the multidimensional property space.  
 
To enable the system to execute the identified reaction routes, predicting reaction 
conditions (e.g., reagents, catalysts, solvents, equivalence ratios, and concentrations) with 
an ML component of ASKCOS was essential. However, predicting these conditions 
remains a major challenge due to limited accurate data, requiring the use of checks and 
heuristic rules to supplement ML predictions. Only recently have models shown 
improved performance over chemical intuition and nearest neighbor approaches [16]. 
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Ideally, it would also be useful to predict expected yields for the reactions; however, 
yield prediction is a notoriously challenging problem, with only limited success for large 
Suzuki [17] and Buchwald-Hartwig coupling reaction datasets [18]. 
 
The properties of the proposed molecules were evaluated using ML molecular prediction 
models [5], and the feasible candidate pathways were scored based on their molecular 
value and platform feasibility. The platform-selected reaction pathways were 
automatically translated into synthesis and characterization workflows to be executed in 
96-well plates. The master controller orchestrated four independent systems with 
different capabilities to work simultaneously, executing reactions, preparing reaction 
solutions, analyzing reaction outcomes, isolating target products, and characterizing the 
isolated molecules. The developed platform was capable of performing multiple 
unrelated tasks in parallel and only required human intervention for non-automated error 
recovery and restocking. We developed our own software after considering alternative 
options, such as Chemputer [19] and ChemOS [20], since none of these options 
supported parallel operation in well plates, work-up and isolation, characterization, and 
on-the-fly modification of workflows. The development of open-source, flexible, user-
friendly orchestration and operation software remains a challenge. 
 
After completing reaction tasks, a series of automatically selected and executed work-up 
steps processes the crude products to prepare them for subsequent reactions and HPLC 
analysis. We employed multivariate curve resolution and a photodiode array (PDA) 
detector to deconvolute peaks, in conjunction with a mass spectrometer (MS) to identify 
them, and an ML model of molar extinction coefficient to determine analyte 
concentration without calibration [8]. Purification often presents a challenge for 
automated systems, as reactions typically require cleanup through extraction, 
evaporation, precipitation, and filtration. Additionally, chromatography demands method 
development to handle diverse chemical compositions. Vendor-proprietary software 
protocols also create a significant bottleneck for achieving fully autonomous systems. 
High-resolution NMR is typically required for structural characterization; however, for 
most laboratories, it remains too costly to incorporate into an automated reaction 
platform.  Mobile robots are one option that allows for automatic transfer to centralized 
NMR facilities [3] - we hand-carried our samples.  
 
A plate reader measured absorption spectra, calibrated HPLC retention times provided 
water/octanol partition coefficients, and a simulated solar light source combined with the 
plate reader quantified photo-oxidative degradation. The measured molecular properties 
were automatically fed back to retrain the property prediction models, completing one 
step of the automated DMTA cycle. Three iterations were sufficient for the ML model 
deviations to approach the experimental uncertainty, allowing for exploitation. Human 
involvement was limited to setting and adjusting objectives, providing requested 
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materials, and occasionally fixing unrecoverable errors, such as clogging of the HPLC 
unit. Overall, the platform attempted over 3,000 reactions, with more than 1,000 yielding 
the predicted reaction product, thereby completing multi-step reaction pathways for 318 
previously unreported molecules, demonstrating its ability to explore unknown structure-
property spaces by searching for structures with desired properties (hits) and to exploit 
characterized structure-property spaces by optimizing promising candidates (leads).  
 
Since our system was constructed with standard equipment modules, it could be easily 
adapted to an autonomous chemical synthesis and testing platform for automatically 
searching for new histone deacetylase inhibitors by incorporating new assays and ML 
tools [10]. The new platform combined a genetic algorithm to generate diverse candidate 
molecules, a multi-fidelity Bayesian optimization iterative discovery algorithm for 
molecular property optimization to select candidates and determine the optimal level of 
fidelity at which to evaluate them, and ASKCOS computer-aided synthesis planning tools 
to plan synthesis execution. 

 Challenges and Outlook   

Self-driving laboratory systems for automated discovery and development with varying 
degrees of autonomy will become as ubiquitous in chemical laboratories as today’s 
HPLCs. They will accelerate discovery, expand chemical data, and drive innovation. 
However, many challenges remain to improve the accuracy of ML models and ease the 
integration of equipment.  The cost and complexity of such systems are barriers that can 
be mitigated by utilizing standardized and scalable equipment modules, as well as open-
source software. Their effective operation requires the collaboration of chemists, 
computer scientists, and engineers who have some understanding of each other’s 
disciplines. Advanced models, such as large language models (LLMs), are poised to play 
an increasingly important role in experimental workflows due to their ability to predict 
properties, synthesize new molecules, and orchestrate existing computational and 
experimental tools through a unified interface. However, challenges remain, including 
minimizing hallucinations, improving data efficiency in training, and increasing 
integration with automation and robotics.  
 
FAIR (Findable, Accessible, Interoperable, Reusable) data practices will be essential for 
improving the ML predictions of retrosynthesis tools, particularly in predicting reaction 
conditions and reactivity. The organic chemistry database ORD is an example of a 
community-driven effort to create access to reliable, high-quality reaction data [21]. The 
autonomous systems described in the main text automatically saved all reaction 
information, including conditions and outcomes for both failed and successful reactions, 
for all attempted reactions, illustrating that current and future self-driving systems offer 
the opportunity to create large, community-accessible databases for training improved 
ML models.   
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