Data-Centric Path to Autonomous Chemical Discovery
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For many years, chemistry was advanced by knowledge-driven experimental practice,
theory, and serendipitous findings, placing the chemist in a role more akin to an
artisan.[1,2] This model has been hugely successful, supplying the world with important
inventions such as drugs and plastics. However, the field of chemistry now faces two
interlinked and foundational challenges: a reproducibility crisis that undermines trust in
published results, and the high-dimensionality of chemical (reaction) space, which vastly
exceeds the capacity of established, manual exploration.[3—6] The latter issue is not
new—there has always been a huge gulf between the size of chemical space and our
ability to explore it—but global challenges such as resource scarcity, increased energy
use, and population growth have created an urgency to accelerate our rate of innovation
in chemistry.

At the heart of these challenges lies an ‘information gap’—a divide between the
fragmentary, selectively reported results found in the literature and the comprehensive,
structured data required for practical and generalisable predictive models and reliable
knowledge transfer.[7-9] The roots of the information gap are both systemic and cultural.
Reporting and selection biases favour the publication of successful, “positive” outcomes
while obscuring failed or negative results, leading to a distorted representation of
chemical reactivity and an overestimation of reliability. As a result, existing datasets
usually lack the comprehensive, unbiased data required for generalisable, predictive
Machine Learning (ML) models.[3,7-9]

Self-driving laboratories (SDLs) could address this information gap, if adopted widely
enough, and could constitute a paradigm shift in chemical research. SDLs seek to close
the loop of the scientific method—autonomously generating hypotheses, designing
experiments, executing them with robotic precision, and analysing outcomes through
fully integrated ML workflows. By integrating every stage of the experimental pipeline
within modular, data-centric platforms, SDLs can produce large-scale, high-quality,
machine-readable datasets—including vital metadata and negative results. In doing so,
they have the potential to overcome the physical and operational disconnects that impede
reproducibility, slow the pace of innovation, and contribute to inefficient resource
use.[4,5,10-13] Nevertheless, their full transformative potential is contingent upon
adherence to FAIR data principles—Findable, Accessible, Interoperable, and
Reusable.[7,14,15]

If SDLs become a standard mode of operation for chemistry research, then this might
fundamentally change the human role within the research cycle, liberating researchers
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from repetitive, physically demanding and potentially toxic and hazardous manual
procedures, opening the opportunity to focus on higher-level creative, strategic and
interdisciplinary challenges, such as complex hypothesis formulation, integrative data
analysis, and campaign design. There are already fully agentic Artificial Intelligence (AI)
systems that can support the entire discovery process, integrating literature search,
hypothesis generation, experimental design and data analysis, representing the emergence
of Al co-scientists.[16,17] While deep scientific intuition remains indispensable, the day-
to-day execution of the scientific method is increasingly delegated to autonomous agents
and robots, which accelerates discovery, enhances sustainability and enables efficient and
profound exploration of chemical space.[10,11,18,19]

The Glorius Group pursues a comprehensive strategy for driving the Labs of the Future
by constructing a holistic, data-centric chemical ecosystem: from automated high-quality
data generation and informative molecular representation (featurisation), through the
application of ML models to accelerate discovery, and towards reconstruction of missing
information from biased historical data.
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Fig. 1. Recent contributions of the Glorius Group to the data-driven Lab of the Future. The foundational layer
is based on systematic screening tools and standardisation, and is designed to generate high-quality,
information-rich experimental data.[20-22] This information is preserved within powerful and interpretable
molecular representations.[23,24] At the apex, high-quality experimental data from HTE and EnTdecker’s ML
predictions lead to accelerated discovery.[25-27]

Our early work focused on enriching the informativeness and reproducibility of chemical
data through systematic tools for reaction evaluation: The Robustness Screen, for
example, employs potentially interfering, fragment-based probes to systematically map a
reaction’s functional group tolerance, identifying potential reaction inhibitors and
decreased product formation without the need for extensive substrate scopes.[20]
Similarly, the Sensitivity Screen evaluates how sensitive a reaction is to minor,
unintentional deviations from its optimal published conditions, directly probing a
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common source of irreproducibility.[22,28] Building on this principle, our work on
Standardised Substrate Selection leverages unsupervised ML to guide the experimental
selection of substrates for a newly discovered reaction. This approach—publicly
available as a web application—is designed to eliminate human selection bias and
achieve a representative, objective coverage of chemical space.[21,29]

To accelerate the generation of standardised, high-quality data, we developed a workflow
for quantitative, calibration-free High-throughput Experimentation (HTE). Leveraging
our open-source pyGecko library—enabling rapid and automated processing of GC-MS
and GC-FID data—and a commercial microreactor, we eliminate the laborious bottleneck
of creating product-specific calibration standards. This enables the rapid parallel analysis
and visualisation of 96 reactions in minutes, generating standardised, high-quality
information that is highly sought after for the training of predictive ML models.[25]
Complementing data generation, our work in molecular representation seeks to create
descriptors that are both powerful and intuitive. We first developed Multiple Fingerprint
Features (MFF), a versatile descriptor based on the simple concatenation of diverse,
structure-based fingerprints, and more recently, the Evolutionary Multi-Pattern
Fingerprint (EvoMPF), which uses an evolutionary algorithm to autonomously generate
dense, problem-specific, and highly interpretable representations directly from the
data.[23,24]

The true power of this data-centric ecosystem is realised when high-quality datasets and
informative representations are deployed in predictive models that directly guide
experimental campaigns. A prime example is our EnTdecker platform, a ML tool—
publicly available as a web application—that provides chemists with near-instantaneous
predictions of excited-state properties crucial for energy transfer catalysis.[26,30] This
predictive engine is integrated into a data-driven, three-layer screening strategy, which
synergistically combines in silico substrate mapping, luminescence quenching, and high-
throughput reaction screening to dramatically accelerate the discovery of novel
dearomative cycloadditions.[27] Such integrated digital-physical workflows, where
predictive models serve as the cognitive core for experimental design, exemplify how
data-driven chemistry is evolving to become the intelligent 'brain' for the autonomous
laboratories of the future.

The Cooper Group has work in automated or “high-throughput” chemistry since the mid-
2000’s,[31-33] but more recently our focus has shifted toward computational design of
materials,[34,35] autonomous ‘mobile robotic chemists’,[10,11] and human-in-the-
loop[36] and machine reasoning methods,[37] working toward a concept of ‘hybrid
intelligence’ for chemistry laboratories (Fig. 2). Our long-term goal is to unlock the
power of automation and robotics by building a hybrid reasoning platform that can avoid
the decision-making bottlenecks that are otherwise imposed by the mismatch between
automated experiments and human working patterns (Fig. 2a). We see mobile robots
(Fig. 2b) as an enabling technology here because they are inherently modular, and they
can carry out experiments in any order, like a human researcher.[10,11] We also believe
that Large Language Models (LLM), notwithstanding their clear limitations, will play an
important role in this hybrid intelligence paradigm. We have already demonstrated[37]
that LLMs can greatly enhance the performance of searches in high-dimensional
chemical space, for example for catalysis problems (Fig. 2c).
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Fig. 2. a, Hybrid intelligence for autonomous laboratories. A supervisory intelligence (S.1.) coordinates (from
top to bottom) experimental data, physics-based models (f;),[34,35] human reasoning,[36] algorithmic searches,
and machine reasoning,[37] leveraging the advantages and mitigating the weaknesses of these various inputs.
b, Mobile robots[10,11] are an enabling technology for modular, flexible laboratories where conditional
decisions are made using hybrid intelligence. c, ‘LLM-in-the-loop’ reasoning—BORA, a hybrid of LLMs and
Bayesian optimisation (BO)[37] can outperform human-in-the-loop (HypBO), BO only (DBO) and LLM-only
search strategies, as illustrated here for a 10-dimensional photocatalysis problem. A key advantage is that LLM
reasoning, unlike human reasoning, can be deployed as frequently as needed in a closed-loop experiment (a).

Looking to the future, the field is advancing toward universal, human-compatible
robotics and generalist, reasoning-capable Al. The prospect of modular robots, able to
seamlessly operate existing laboratory infrastructure, foreshadows the liberation of
automation from bespoke, platform-specific constraints. In parallel, ‘foundation’ models
and agentic Al—endowed with broad chemical intuition and reasoning capacities—are
positioned to become the cognitive core of the autonomous laboratory, coordinating
complex workflows, adapting dynamically, and integrating virtual and physical
experimentation.[16,19,38,39]

The synergy of modular robotics and agentic Al promises a virtuous cycle: improved
automation generates richer data, which empowers better Al, in turn enabling more
ambitious automation and accelerating discovery. However, this vision depends
fundamentally on the universal, rigorous application of FAIR data standards.[15] Only
with high-quality, machine-readable, openly shared data can the potential of automation
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and Al be fully realised, thus closing the information gap, ensuring reproducibility, and
ushering in a new era of collaborative, autonomous discovery.

Acknowledgments

Generous financial support from the ERC Advanced Grant (Agreement No. 101098156,
HighEnT) and the Deutsche Forschungsgemeinschaft (Priority Program SPP 2363,
“Molecular Machine Learning”) is gratefully acknowledged. We also acknowledge
funding from the AI for Chemistry: Alchemy hub (EPSRC grants EP/Y028775/1 and
EP/Y028759/1), the Leverhulme Trust via the Leverhulme Research Centre for
Functional Materials Design, and the European Research Council under the European
Union's Horizon 2020 research and innovation program (grant agreement no. 856405).
AIC thanks the Royal Society for a Research Professorship (RSRP\S2\232003).

References

1. A.McNally, C. K. Prier, D. W. C. MacMillan, Science 334, 1114 (2011).
. A.Y.Rulev, New J. Chem. 41, 4262 (2017).

3. F. Strieth-Kalthoff, F. Sandfort, M. Kiihnemund, F. R. Schéfer, H. Kuchen, ef al.,

Angew. Chem. Int. Ed. 61, 202204647 (2022).

G. Tom, S. P. Schmid, S. G. Baird, Y. Cao, K. Darvish, et al., Chem. Rev. 124, 9633

(2024).

M. Abolhasani, E. Kumacheva, Nat. Synth. 2, 483 (2023).

O. Bayley, E. Savino, A. Slattery, T. Noél, Matter 7, 2382 (2024).

M. L. Schrader, F. R. Schéfer, F. Schifers, F. Glorius, Nat. Chem. 16, 491 (2024).

N. S. Eyke, B. A. Koscher, K. F. Jensen, Trends Chem. 3, 120 (2021).

R. Mercado, S. M. Kearnes, C. W. Coley, J. Chem. Inf- Model. 63,4253 (2023).

0. B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, et al., Nature

583,237 (2020).

11. T. Dai, S. Vijayakrishnan, F. T. Szczypinski, J.-F. Ayme, E. Simaei, et al., Nature
635, 890 (2024).

12. Y. Shi, P. L. Prieto, T. Zepel, S. Grunert, J. E. Hein, Acc. Chem. Res. 54, 546 (2021).

13. M. Seifrid, R. Pollice, A. Aguilar-Granda, Z. Morgan Chan, K. Hotta, et al., Acc.
Chem. Res. 55, 2454 (2022).

14. M. A. Butakova, A. V. Chernov, O. O. Kartashov, A. V. Soldatov, Nanomaterials
12, 12 (2022).

15. M. D. Wilkinson, M. Dumontier, Ij. J. Aalbersberg, G. Appleton, M. Axton, ef al.,
Sci. Data 3, 160018 (2016).

16. A.E. Ghareeb, B. Chang, L. Mitchener, A. Yiu, C. J. Szostkiewicz, et al., arXiv, ID:
2505.13400, (2025).

17. M. D. Skarlinski, S. Cox, J. M. Laurent, J. D. Braza, M. Hinks, ef al., arXiv, ID:
2409.13740, (2024).

18. F. Hése, L. M. Roch, A. Aspuru-Guzik, Trends Chem. 1,282 (2019).

19. H. Hysmith, E. Foadian, S. P. Padhy, S. V. Kalinin, R. G. Moore, et al., ChemRxiv,
doi: 10.26434/chemrxiv-2024-3xq9z, (2024).

b

— O 00 3 O\ W



6

20.
21.

22.
23.

24.

25.

26.

27.

28.
29.

30.
31.
32.
33.
34.
35.
36.
37.
38.

39.

F. Boser, F. Glorius and A. I. Cooper

K. D. Collins, F. Glorius, Nat. Chem. 5, 597 (2013).

D. Rana, P. M. Pfliiger, N. P. Holter, G. Tan, F. Glorius, ACS Cent. Sci. 10, 899
(2024).

L. Pitzer, F. Schifers, F. Glorius, Angew. Chem. Int. Ed. 58, 8572 (2019).

P. M. Pfliiger, M. Kithnemund, F. Katzenburg, H. Kuchen, F. Glorius, Chem 10,
1391 (2024).

F. Sandfort, F. Strieth-Kalthoff, M. Kithnemund, C. Beecks, F. Glorius, Chem 6,
1379 (2020).

F. Katzenburg, F. Boser, F. R. Schéfer, P. M. Pfliiger, F. Glorius, Digit. Discov. 4,
384 (2025).

L. Schlosser, D. Rana, P. Pfliiger, F. Katzenburg, F. Glorius, J. Am. Chem. Soc. 146,
13266 (2024).

D. Rana, C. Hiimpel, R. Laskar, L. Schlosser, S. Korgitzsch, et al., J. Am. Chem.
Soc. 147, 28359 (2025).

F. Schéfer, L. Liickemeier, F. Glorius, Chem. Sci. 15, 14548 (2024).

Substrate Selection - Evaluating Pharmaceutical Scope Relevance.
https://pharmascope.uni-muenster.de/ (accessed August 4, 2025).

EnTdecker - Accelerating Substrate Discovery for EnT Catalysis.
https://entdecker.wwu.de/ (accessed August 4, 2025).

C. L. Bray, B. Tan, C. D. Wood, A. 1. Cooper, J. Mater. Chem. 15, 456 (2005).

S. Jana, S. P. Rannard, A. 1. Cooper, Chem. Commun. 28, 2962 (2007).

C. L. Bray, B. Tan, S. Higgins, A. I. Cooper, Macromolecules 43, 9426 (2010).

A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, et al., Nature 543, 657
(2017).

M. O’Shaughnessy, J. Glover, R. Hafizi, M. Barhi, R. Clowes, ef al., Nature 630,
102 (2024).

A. Cissé, X. Evangelopoulos, S. Carruthers, V. V. Gusev, A. 1. Cooper, Proc. 33rd
Int. Joint Conf. Artificial Intel. (IJCAI-24), 3881-3889, (2024).

A. Cissé, X. Evangelopoulos, V. V. Gusev, A. 1. Cooper, Proc. 34th Int. Joint Conf.
Artificial Intel. (IJCAI-25), in press, (2025).

Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao, et al., Natl. Sci. Rev. 9, nwac190
(2022).

S. Gao, A. Fang, Y. Huang, V. Giunchiglia, A. Noori, et al., Cell 187, 6125 (2024).



