FROM FAILED EXPERIMENTS TO MACHINE-ACTIONABLE KNOWLEDGE

Berend Smit

" Laboratory of Molecular Simulation (LSMO), Ecole Polytechnique Fédérale de Lausanne

(EPFL), Sion, Switzerland

My view of the present state of research on The Lab of the
Future: Al, Robotics, Automation

For most chemists, the way we think about data is deeply rooted in a
tradition shaped by the history of scientific publishing. We were trained
to believe that the goal of a publication is to communicate the essential
results, that is, to focus on the successful experiments that lead to
clear conclusions. Reporting failed or partially successful attempts
would only confuse readers and obscure the key findings. The practical
realities of publishing reinforced this mindset: journals used to charge
authors per printed page, so including extra data literally cost more
money. Moreover, articles were physically printed and submitted by
mail, and sometimes even by surface mail. As Prof. Ben Feringa
recounted, his university refused to pay for airmail postage, so his first
manuscript made its way to the journal by sea. In this context, sharing
only the essential results was not just a scientific convention but also
an economic and logistical necessity.

Not only were there practical barriers—such as the impossibility of
publishing all our data in a single article—but we also lacked the tools
to handle such a large volume of information. Even if we had attempted
to document every experiment, managing or interpreting the resulting
data overload would have been unmanageable. We relied entirely on
human expertise: the experienced chemist who could recognize
patterns, filter out noise, and publish what truly mattered. We were,
quite rightly, very grateful to these experts, whose intuition and
judgment transformed the chaos of experimental data into a clear
scientific article.
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What has changed is that the very thing that once overwhelmed us—
data—has become the fuel that drives progress. Where humans
quickly reach their cognitive limits when faced with too much
information, Al systems thrive. The more data they are given, the better
they become at recognizing patterns, identifying correlations, and
making predictions. In fact, for Al, a little data is often worse than no
data at all; what it truly needs is massive, diverse, and well-structured
datasets to learn effectively. This marks a fundamental shift in how we
think about scientific knowledge. What was once seen as redundant,
confusing, or unpublishable information—failed experiments,
intermediate results, and incomplete series—has now become
invaluable training material for Al, enabling it to extract insights that no
human could discern alone.

It is not only about publishing raw data in a machine-readable format
but also about adhering to well-defined and agreed standards. To
illustrate this point, let's consider a typical workflow: a chemist
synthesizes a new metal-organic framework (MOF) and measures an
adsorptionisotherm. The isotherm data are saved in an Excel sheetand
uploaded as supplementary information, while the underlying crystal
structure is deposited in the Cambridge Structural Database (CSD)."
The National Institute of Standards and Technology (NIST) maintains a
database of isotherms (the NIST-ISODB?), aiming to create a vast
resource of adsorption data. NIST finds our isotherm relevant, and
adds its to their database.

We were interested in using the NIST database to validate a large-scale
benchmark molecular simulations study that predicts isotherms of
different gases in MOFs from crystal structures. This, however, required
us to link an isotherm from the NIST database to the corresponding
crystal structure. As there are over 4,000 isotherms, we aimed to do
this without reading the corresponding articles. Ongari et al®
attempted to address this challenge by developing an automated
method to connect adsorption isotherms from the NIST-ISODB with
corresponding crystal structures in the CSD. They showed that
inconsistent naming conventions ('Cu-BTC' vs. 'HKUST-1'), missing
metal identities, and unstandardized metadata hinder this connection.
This effort revealed a critical bottleneck: data without standardized
metadata (see figure 1).
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Ideally, the Excel file with adsorption data and its metadata should
match the data deposited in the CSD. Since this metadata is often
missing, NIST had to add it manually, for example, by using the caption
of the corresponding isotherm. Frequently, the name used in the
caption was an abbreviation (e.g., MOF1, MOF2, MOFA, MOFB, or any
other abbreviation) to avoid the lengthy names in the CSD.

Matching data

105 922 "MOFs" 4 143 isotherms
in the CSD in NIST DB

Figure 1: The number of matches of isotherms with their corresponding crystal structures by
Ongari et al that could be obtained by just looking for the name reported of the MOF for which
the isotherm was measured in the Cambridge Structural Database.

My recent research contributions to The Lab of the Future: Al,
Robotics, Automation

Chemists have always learned from failure. Each unsuccessful
synthesis, every amorphous powder or unexpected phase informs our
intuition about what might work next. Yet, this tacit knowledge rarely
enters the scientific record.* The study by Moosavi et al.° demonstrates
how such 'chemical intuition' can be quantified in the case of
synthesizing metal-organic frameworks (MOFs). As an example,
Moosavi et al. repeated the synthesis of HKUST-1.¢

HKUST-1 has been synthesized HKUST-1, and these groups report very
different BET surface areas. Moosavi et al. used robotic synthesis to
identify the conditions that produce the highest surface area. By
reconstructing both failed and partially successful experiments and
applying machine learning, they revealed which experimental variables
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influenced the success of the synthesis. The machine learning model
enabled us to quantify the importance of these variables, a factor that
is usually not documented but enhances chemical intuition. This work
marks a fundamental shift: instead of discarding failed experiments,
they become a rich source of information that teaches us how to
navigate the complex, multidimensional synthesis space of metal-
organic frameworks (MOFs).

Outlook to future developments of research on The Lab of the
Future: Al, Robotics, Automation

As argued by Jablonka et al.,” data management in chemistry should
not be an afterthought but an intrinsic part of the scientific process.
FAIR principles (findable, accessible, interoperable, and reusable)
must be extended to make data machine-actionable. To achieve this,
data collection, processing, and publication should be seamlessly
integrated through electronic lab notebooks (ELNs) that automatically
annotate and standardize data and their metadata directly from
instruments. Such ELNs would serve as the central hub of the research
process, ensuring that all data are stored in structured, open formats
(e.g., JISON-LD or JCAMP-DX) and linked to controlled vocabularies and
ontologies. Only then can we avoid the situation that, after 99 failed
and partially successful experiments, we finally got our desired
product; we need to spend 99% of our time documenting all our
failures. Only then can we build an ecosystem in which computational
tools autonomously understand and reuse experimental data.
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