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My view of the present state of research on The Lab of the 
Future: AI, Robotics, Automation 
For most chemists, the way we think about data is deeply rooted in a 
tradition shaped by the history of scientific publishing. We were trained 
to believe that the goal of a publication is to communicate the essential 
results, that is, to focus on the successful experiments that lead to 
clear conclusions. Reporting failed or partially successful attempts 
would only confuse readers and obscure the key findings. The practical 
realities of publishing reinforced this mindset: journals used to charge 
authors per printed page, so including extra data literally cost more 
money. Moreover, articles were physically printed and submitted by 
mail, and sometimes even by surface mail. As Prof. Ben Feringa 
recounted, his university refused to pay for airmail postage, so his first 
manuscript made its way to the journal by sea. In this context, sharing 
only the essential results was not just a scientific convention but also 
an economic and logistical necessity. 
 

Not only were there practical barriers—such as the impossibility of 
publishing all our data in a single article—but we also lacked the tools 
to handle such a large volume of information. Even if we had attempted 
to document every experiment, managing or interpreting the resulting 
data overload would have been unmanageable. We relied entirely on 
human expertise: the experienced chemist who could recognize 
patterns, filter out noise, and publish what truly mattered. We were, 
quite rightly, very grateful to these experts, whose intuition and 
judgment transformed the chaos of experimental data into a clear 
scientific article. 
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What has changed is that the very thing that once overwhelmed us—
data—has become the fuel that drives progress. Where humans 
quickly reach their cognitive limits when faced with too much 
information, AI systems thrive. The more data they are given, the better 
they become at recognizing patterns, identifying correlations, and 
making predictions. In fact, for AI, a little data is often worse than no 
data at all; what it truly needs is massive, diverse, and well-structured 
datasets to learn eNectively. This marks a fundamental shift in how we 
think about scientific knowledge. What was once seen as redundant, 
confusing, or unpublishable information—failed experiments, 
intermediate results, and incomplete series—has now become 
invaluable training material for AI, enabling it to extract insights that no 
human could discern alone. 
 

It is not only about publishing raw data in a machine-readable format 
but also about adhering to well-defined and agreed standards. To 
illustrate this point, let's consider a typical workflow: a chemist 
synthesizes a new metal-organic framework (MOF) and measures an 
adsorption isotherm. The isotherm data are saved in an Excel sheet and 
uploaded as supplementary information, while the underlying crystal 
structure is deposited in the Cambridge Structural Database (CSD).1 
The National Institute of Standards and Technology (NIST) maintains a 
database of isotherms (the NIST-ISODB2), aiming to create a vast 
resource of adsorption data. NIST finds our isotherm relevant, and 
adds its to their database.  
  
We were interested in using the NIST database to validate a large-scale 
benchmark molecular simulations study that predicts isotherms of 
diNerent gases in MOFs from crystal structures. This, however, required 
us to link an isotherm from the NIST database to the corresponding 
crystal structure. As there are over 4,000 isotherms, we aimed to do 
this without reading the corresponding articles.  Ongari et al3 
attempted to address this challenge by developing an automated 
method to connect adsorption isotherms from the NIST-ISODB with 
corresponding crystal structures in the CSD. They showed that 
inconsistent naming conventions ('Cu-BTC' vs. 'HKUST-1'), missing 
metal identities, and unstandardized metadata hinder this connection. 
This eNort revealed a critical bottleneck: data without standardized 
metadata (see figure 1).  
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Ideally, the Excel file with adsorption data and its metadata should 
match the data deposited in the CSD. Since this metadata is often 
missing, NIST had to add it manually, for example, by using the caption 
of the corresponding isotherm. Frequently, the name used in the 
caption was an abbreviation (e.g., MOF1, MOF2, MOFA, MOFB, or any 
other abbreviation) to avoid the lengthy names in the CSD. 

 

 

My recent research contributions to The Lab of the Future: AI, 
Robotics, Automation 
Chemists have always learned from failure. Each unsuccessful 
synthesis, every amorphous powder or unexpected phase informs our 
intuition about what might work next. Yet, this tacit knowledge rarely 
enters the scientific record.4 The study by Moosavi et al.5  demonstrates 
how such 'chemical intuition' can be quantified in the case of 
synthesizing metal-organic frameworks (MOFs). As an example, 
Moosavi et al. repeated the synthesis of HKUST-1.6  
 
HKUST-1 has been synthesized HKUST-1, and these groups report very 
diNerent BET surface areas. Moosavi et al. used robotic synthesis to 
identify the conditions that produce the highest surface area. By 
reconstructing both failed and partially successful experiments and 
applying machine learning, they revealed which experimental variables 

 
Figure 1: The number of matches of isotherms with their corresponding crystal structures by 
Ongari et al that could be obtained by just looking for the name reported of the MOF for which 
the isotherm was measured in the Cambridge Structural Database. 
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influenced the success of the synthesis. The machine learning model 
enabled us to quantify the importance of these variables, a factor that 
is usually not documented but enhances chemical intuition. This work 
marks a fundamental shift: instead of discarding failed experiments, 
they become a rich source of information that teaches us how to 
navigate the complex, multidimensional synthesis space of metal–
organic frameworks (MOFs).  

Outlook to future developments of research on The Lab of the 
Future: AI, Robotics, Automation  
As argued by Jablonka et al.,7 data management in chemistry should 
not be an afterthought but an intrinsic part of the scientific process. 
FAIR principles (findable, accessible, interoperable, and reusable) 
must be extended to make data machine-actionable. To achieve this, 
data collection, processing, and publication should be seamlessly 
integrated through electronic lab notebooks (ELNs) that automatically 
annotate and standardize data and their metadata directly from 
instruments. Such ELNs would serve as the central hub of the research 
process, ensuring that all data are stored in structured, open formats 
(e.g., JSON-LD or JCAMP-DX) and linked to controlled vocabularies and 
ontologies. Only then can we avoid the situation that, after 99 failed 
and partially successful experiments, we finally got our desired 
product; we need to spend 99% of our time documenting all our 
failures. Only then can we build an ecosystem in which computational 
tools autonomously understand and reuse experimental data. 
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