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Synthesis as a Driver of Innovation - Balancing Efficiency, Innovation and 

Responsibility 

Organic synthesis is a central driver of innovation in modern society, with small organic 

molecules securing our health, food supply and improving everyday life as colorants, 

fragrances, flavourings or innovative materials. As the world faces growing challenges 

from climate change to limited resources, the need for new, efficient and more sustainable 

molecular solutions is becoming increasingly clear. Meeting these challenges will require 

not only discovering new molecules more quickly, but also rethinking how we make them. 

Catalysis is central to this transition. It enables more selective, energy-efficient and less 

wasteful chemical transformations, and beyond that has enabled a range of transformations 

previously considered impossible. Today, the continued evolution of catalysis stands to 

benefit greatly from the integration of digital tools, particularly computational chemistry 

and machine learning. Owing to tremendous advances in theory, algorithms and computing 

power, chemical reactivity can nowadays be simulated and predicted with a level of speed 

and accuracy that is competitive with (or even faster than) doing experiments. These 

capabilities open up new opportunities to (i) predicting and designing chemical reactivity 

with minimal experimental input, thereby saving time, reducing costs and minimizing 

waste; and (ii) revealing new mechanistic insights at the molecular level, enabling the 

discovery of entirely new transformations and the rational design of next-generation 

catalytic systems. 

My recent research contributions to the session’s theme: sustainable synthesis 

Over the past 15 years, our group has conducted research at the interface of synthetic 

organic, mechanistic and computational chemistry, with a strong emphasis on 

homogeneous catalysis (Fig. 1). By uniting digital and experimental strategies, we aim to 

move beyond intuition- or trial-and-error-driven discovery toward a design-and-simulate 

paradigm. This integrated approach not only supports more informed decision-making but 

also uncovers new reactivity principles and enables the prediction of catalysts and reagents 

before they are experimentally realized. 
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Fig. 1.  Integrating experimental, computational and machine learning approaches for reactivity developments. 

Example 1. Computational and ML insights driving experimental advances: Ni-catalyzed 

dynamic stereomutation. 

To meet the demand for sustainable, low-energy chemical processes, the identification of 

fundamentally new reactivity concepts will be imperative. In this context, the ability to 

directly mutate molecules to access alternative isomers, while avoiding lengthy and 

resource-intensive multistep syntheses, is especially appealing. Leveraging the unique 

potential of odd oxidation states in non-precious metals, we recently showed that Ni(I) 

metalloradicals defy conventional paradigms [1,2]. Instead of ring-opening in 

vinylcyclopropanes, the non-precious Ni(I) catalyst triggers rapid, reversible cis/trans 

isomerization with stereoinversion at room temperature in under 5 minutes [2]. Quantum 

mechanical calculations and experimental studies revealed metalloradical catalysis as the 

origin of this reactivity, and the molecular insight inspired the realization of an iterative 
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thermodynamic stereomutation towards single isomers. In extension to 

divinylcyclopropanes, i.e. strategic motifs in total synthesis, we showed that while classical 

trans→cis isomerization requires ~200 °C and causes racemization, Ni(I) catalysis 

achieves the contra-thermodynamic transformation under mild conditions with, for the first 

time, complete stereochemical integrity, offering not only a more sustainable solution but 

also a powerful new tool for synthesis [2]. 

Example 2. Speciation and reactivity challenges in sustainable metal catalysis: abundant 

metals offer greater oxidation state diversity, but are harder to control? A machine 

learning solution. 

The in situ fate of a catalyst or intermediate, i.e. its speciation, critically shapes catalytic 

efficiency, reactivity and selectivity. Precious metals typically adopt stable oxidation states 

and nuclearities, but less precious, more sustainable metals readily shift between states, 

dimerize or deactivate, often limiting scope and selectivity [3]. These speciation factors 

remain poorly understood, with trial-and-error dominating catalyst development. To 

overcome this, we developed an unsupervised machine learning workflow that requires 

only minimal experimental input (as few as two experimental data points) and builds an in 

silico database through calculation, followed by algorithmic similarity searching [4]. This 

approach successfully predicted metal dimers of oxidation state (I) [4,5], including ligands 

from unexplored chemical space, and Ni(I)–phenyl monomers [6], which are key 

intermediates in CO2 functionalization. The model identified ligands that stabilize Ni(I)–

aryl complexes and render them reactive with CO₂ at room temperature. 

Example 3. Smarter, leaner, greener: building predictive models with minimal 

experiments. 

Data scarcity remains a major obstacle to harnessing the predictive power of AI for 

chemical reactivity [7,8], where models must capture subtle steric, electronic and structural 

effects. In the context of sustainable synthesis, this limitation translates into excess 

experimentation, higher ressource use and more waste. To address this, we explored data 

augmentation, a strategy well established in fields like image and speech recognition, as a 

route to build predictive reactivity models with less data. By introducing Gaussian noise to 

existing datapoints, full datasets can be expanded in seconds, dramatically improving 

model performance especially in low-data regimes. This approach enables meaningful 

predictions with only a fraction of the data, reducing the need for additional experiments 

by 20–50% [9]. In doing so, it not only conserves time, energy and resources but also 

establishes data augmentation as a powerful strategy to accelerate machine-learning-driven 

advances in molecular reactivity in a more sustainable fashion. 

Outlook on Sustainable Synthesis 

Looking ahead, the steadily expanding repertoire of synthetic methods, together with 

deeper insight into chemical processes and the accelerating role of digital tools, points to a 
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future where sustainability can be integrated more naturally into practice. In addition, 

growing awareness and commitment within the community make the transition towards 

sustainable molecule-making not only feasible but increasingly likely. 

Ambitious goals, such as achieving circularity and advancing more reagent and waste 

recycling, will benefit from wider, coordinated initiatives. Yet the breadth of ‘sustainable 

synthesis’ should be seen as an opportunity: it allows priorities to evolve dynamically 

alongside global developments. As the energy system shifts toward renewable sources, 

new cost structures will open up possibilities for recycling and resource efficiency. This 

evolving context holds the promise of reshaping synthesis in ways that are both innovative 

and more sustainable. 
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