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AI-driven materials discovery has captured the world’s imagination 
with software giants and world-leading research labs claiming or 
contending all sorts of breakthroughs. that accelerate materials 
science. AI-driven efforts that use computational methods to predict 
materials with targeted physical or chemical properties are of 
particular contention. Only last week was this debate amplified by a 
contentiously titled Nature article: “AI is dreaming up millions of new 
materials. Are they any good?”[1]. 

There are clearly many challenges to overcome and yet opportunities 
to harness. This viewpoint article attempts to address the current hype 
in AI for materials discovery, by showcasing the current status of the 
field; and focusing on using experimental data, rather than computed 
data, in concert with AI, to present results from real-world data. 

Challenges and Opportunities in AI for Materials Discovery 

What actually makes AI intelligent in materials science? I’ll argue for 
three key things based on my personal perspective: 

(1) Data  

AI methods are useless without data to train them. More specifically, AI 
algorithms need to be trained on sufficient, relevant data.  

Data quantity: Each type of AI algorithm can be described by a certain 
number of parameters that need to be optimised with enough relevant 
data to produce a reliably predictive AI model. A key consideration is 
the data : parameter ratio which should be no less than 10 : 1 to be 
minimally viable from a statistical perspective.  
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Data types - Chemical space: As well as raw data quantity, one should 
also consider how balanced is a dataset. In the field of materials 
science, an AI model will best serve a given chemical problem if it has 
been trained on chemical data that relate to that problem as well as a 
broader range of chemical data.  

Data types - Chemical data on positive, null and negative results. 
Datasets that describe how chemicals respond to external effects (e.g. 
chemical reactions, chemical properties) should ideally contain a 
mixture of positive, null or negative responses to ensure a balanced 
dataset. However, with few exceptions, such data nearly always 
comprise positive results in the bulk or entirety of the dataset. High-
throughput experiments (HTEs) are one such exception as they record 
a range of measurements that typically show positive, null or negative 
types of data.[2] Likewise, electronic laboratory notebooks that log 
positive as well as null or negative research results are a source of 
balanced data. 

Data types - Experimental data. These depict real-world chemical data 
which are much more heterogeneous than computed data by virtue of 
chemicals being affected by all sorts of experimental environments, 
e.g. device environment, interfacial effects; and containing various 
types of experimental error.[3] In stark contrast, computed chemical 
data are much smoother, being exact e.g. from calculations on isolated 
molecules, and lacking in any experimental error (albeit they may 
manifest systematic computational error); moreover, calculations can 
easily map out an entire region of chemical space, subject to the 
availability of sufficient computational resources. Such complete 
mappings have not tended to be possible experimentally until recently 
with the latest advances in robotic autonomous laboratories, enabling 
HTEs that offer such mapping options.  

(2) Representations  

Aside from raw data, the intelligence of AI for materials science lies in 
encoded forms of relationships between chemicals and their 
responses e.g. chemical-reaction patterns or structure-property 
relationships; these issue patterns in the data that machine-learning 
(ML) algorithms can identify and learn to correct predict chemical 
reactions or predict materials with designer functionality. 
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Representations comprise the way in which these relationships have 
been encoded via custom algorithms that depict systematic patterns 
in chemical reactions or known structure-property relationships. The 
smarter representations tend to be more comprehensive and efficient 
in their description of the chemical relationships involved. 

(3) Design-to-device pipelines for materials discovery. 

Supply-chain management for materials science is needed if AI is to be 
used for materials discovery. A bespoke pipeline is required to solve a 
given type of materials problem. For example, a data-driven materials 
discovery pipeline[4] may manifest as: 

Data Source > Data Mine > Predict properties > experimentally validate 

An autonomous lab using HTEs that test a series of ligands, l, may use: 

Reactant > Add a ligand, l > Characterise product > Measure properties 

My provision of large experimental datasets for materials research 

We released the world’s first ‘chemistry-aware’ natural-language-
processing tool, ChemDataExtractor,[5,6] for the materials-research 
community. This software enables scientists to automatically mine 
text from scientific documents (e.g. the academic literature) to auto-
generate large custom materials datasets to meet the bespoke data 
needs of a given application of interest. Thereby, experimental datasets 
can be auto-curated to train ML models for materials science. 

Popular examples of experimental datasets that have been created by 
ChemDataExtractor users include “DigiMOF” on metal-organic 
frameworks[7] and a dataset on self-cleaning coating materials[8]. 

The Cole group has also used ChemDataExtractor to auto-generate 12 
open-source experimental datasets to serve the materials community; 
each contain 20k-720k data records, culminating in a total of 2.15 
billion data records for materials science. Each dataset covers a 
distinct materials-science domain. The stress-strain engineering,[9] 
battery[10] and photovoltaics[11] datasets are the world’s largest auto-
generated experimental materials datasets, comprising ca. ¾, ¼ and ½ 
million records of chemicals and materials or device properties, 
respectively. Such sizes meet the data needs of some of the most 
sophisticated machine-learning (ML) algorithms.  
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Thereby, we have trained materials-domain-specific language models 
for stress-strain engineering[12], batteries[13], photovoltaics[14], and 
other domains, using corpora sourced from the experimental datasets. 

ChemDataExtractor has also been employed to create large question-
answering datasets that can be used to fine-tune these materials-
domain-specific language models for prompt engineering.[14,15] 

Our ChemDataExtractor-generated databases have been used in a 
‘design-to-device’ pipeline to afford data-driven materials 
discovery;[4] the most successful exemplar being the discovery of new 
light-harvesters for dye-sensitized solar cells.[16]  

Digital assistants for autonomous labs in materials science 

Supply-chain management of chemistry-informed AI pipelines is 
crucial for operating autonomous robotic laboratories. The realisation 
of such AI pipelines has reached the demonstration phase via the AI 
agent, ChemCrow, which is based on a large-language model.[17] 
Major improvements in such agentic-AI  demonstrations are needed 
before any digital-lab assistant for chemistry can operate with a 
sufficiently high quality that it is practically viable within a human-AI 
user mode; let alone one that is usable as an autonomous lab agent.  

Notwithstanding such current limitations in the state-of-the-art, some 
parts of the supply chain for data-driven materials discovery can be 
automated with AI. For example, AI-based materials characterisation 
is now possible. Thereby, Cole et al. were the first to demonstrate how 
an AI model could automatically identify the molecular structure of a 
material directly and solely from a raw infra-red spectral image.[18] 
Their AI model was based on a convolutional neural network (CNN) that 
had been trained on 50,000 experimental data. Its CNN architecture lay 
the foundations for the automatic materials characterisation of any 
type of raw diffraction or spectroscopy data. Indeed, Liu and Cole have 
just reported a CNN that can automatically classify 1H or 13C nuclear 
magnetic resonance (NMR) spectra from chemical solutions.[19]  

Cole et al. also built a transformer-based neural-network architecture 
to predict nanostructural shape and size from small-angle X-ray 
scattering data, albeit using computational data to train their AI-
model.[20] They highlight the need for experimental data to better train 
their AI models. This AI need for such data runs throughout this paper.  
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